当前位置:文档之家› 土木工程毕业设计外文翻译

土木工程毕业设计外文翻译

土木工程毕业设计外文翻译
土木工程毕业设计外文翻译

本科毕业设计(论文)

外文翻译

题 目 温州会展中心三期建筑结构设计

学 院 建筑与土木工程

学院 专 业

土木工程 班 级 10土木本2 学 号 10115003207 学生姓名 高建栋

指导教师

李桅

温州大学教务处制

外文资料来源及题目(注:含作者、书名、杂志名或外文数据库名等,英文文章或段落标题,原文附后)

Parameter study on composite frames

consisting of steel beams and reinforced

concrete columns

Wei Li a,, Qing-ning Li b, Wei-shan Jiang b

译成中文后题目(译文附后)

钢梁和钢筋混凝土柱组合框架的参数研究

指导教师审阅意见:

签名:

年月日

Parameter study on composite frames

consisting of steel beams and reinforced

concrete columns

Wei Li a,, Qing-ning Li b, Wei-shan Jiang b

[Abstract] A host of tests and numerical analyses for frames consisting of reinforced concrete columns and steel beams (RCS) have been conducted in the US and Japan over the past decades. Most results have revealed the superior performance of these structures relative to that of traditional concrete and steel frames.

However, few studies could be found about composite frame structures consisting of high-strength concrete columns confined by continuous compound spiral ties and steel beams (CCSTRCS), which requires the development of an accurate finite element model of composite CCSTRCS frames. The validity of the proposed model is examined by com-paring with the test data presented in reference studies. With the proposed model, an extensive parametric study is carried out to investigate the behavior of composite CCSTRCS frames. Simplified hysteretic lateral load versus lateral displacement models are proposed for such composite frames.

1.Introduction

It has been widely recognized that composite moment frames consisting of RC columns and steel (S) beams, or the so-called RCS system, can provide cost-effective alternative to traditional steel or RC construction in seismic regions. As opposed to conventional steel or RC moment frames, the problems associated with connections are greatly reduced, and the RCS frames are generally more economical than the purely steel or RC moment frames. The research program included extensive testing and finite element analyses of RCS beam-to-column connections and subassemblies, testing of reduced-scale and full-scale RCS moment frames and finite element analyses, seismic design studies and analyses of RCS moment frames and development of guidelines and recommendations for detailed design work [1].

Despite its potential benefits in construction speed and structural excellent ductility due to the use of CCSTRC column, research was rarely conducted on composite moment frames consisting of continuous compound spiral tie reinforced concrete (CCSTRC) columns and com-posite steel beams. The experimental research on the CCSTRC column and CCSTRC-steel (S) composite connection has been conducted and the CCSTRC and steel (CCSTRCS) composite frames have great advantage due to the use of high‐strength concrete column confined with high‐strength

continuous compound spiral ties, which improves the strength and ductility of the column and reduces the section size of column,thereby increasing effective building space. As an “unde fined structural system”, the composite CCSTRCS system cannot be easily adopted in design and construction practice. However, they have become recog-nized by more and more researchers and practicing professionals in recent years that though structural systems do not fully satisfy the prescriptive requirements of current building codes, they can provide satisfactory seismic performance. The desirable seismic characteristics should be validated by analyses and laboratory tests. However, since it is difficult to conduct a lot of experiments from an economical view-point, and due to unique features of the tested specimens and material heterogeneity, it is also difficult to understand the complex seismic behavior of beam-column connections and framed structures. Further-more, the effect of several influencing parameters such as plate thick-ness, axial load and the effect of confining cannot be varied in a limited number of tests. In order to quantify and make clear the influence of critical design parameters, it is necessary to develop a robust numerical model. Following this understanding, a series of finite element analysis for composite structures was conducted by many researchers.

Liu and Foster [2] developed a finite element model to investi-gate the response of concentrically loaded columns with concrete strength up to 100 Mpa. Yu et al. 2010 [3,4] presented a modified Drucker-Prager (D-P)-type model and a Plastic-damage model and then implemented it in ABAQUS. Hajjar et al.[5]proposed a 3D modeling of interior beam-to-column composite connections with angles by means of the ABAQUS code [6]. Salvatore et al. [7] studied seismic perfor-mance of exterior and interior partial-strength composite beam-to-column joints by using ABAQUS software. Hu et al. [8] proposed proper material constitutive models for concrete-filled tube (CFT) columns and they were verified by the nonlinear finite element program ABAQUS against experimental data. Zhao and Li [9] studied the nonlinear me-chanical behavior and failure process of a bonded steel-concrete com-posite beam by using finite element program ABAQUS, The eight-node brick elements (C3D8) were employed to model the concrete slab and steel beam. An adhesive layer was modeled by the eight-node three-dimensional cohesive elements (COH3D8). Bursi et al. [10] studied the seismic performance of moment-resisting frames consisting of steel-concrete composite beams with full and partial shear connection by using the

ABAQUS program. Han et al. [11] presented a finite element modeling of composite frame with concrete-filled square hollow section (SHS) columns to steel beam, the finite element program ABAQUS was adopted. Wu et al. [12] studied the effect of wing plates numerically by simulating H-beams in bolted beam-column connections as cantilever beams using ABAQUS.

Set against this background, Li et al. [13] applied the finite element program ABAQUS to simulate the behavior of composite CCSTRCS frames. The results show that continuous compound spiral high-strength ties can effectively improve the lateral deformation capacity of concrete, with a good constraint to the concrete in the core area, which increases the ultimate lateral bearing and deformation capacity of the composite CCSHRCS frame. However, the detailed influence factors for composite CCSTRCS frames are not clear. Therefore, this paper focuses on conducting an extensive parametric study on the behaviors of composite CCSTRCS frames. Through parametric analysis, the simplified hysteretic lateral load versus lateral displacement models for such composite frames is proposed.

2.Finite element model

2.1. General descriptions

In order to accurately simulate the actual behavior of RCS frame specimen, the main six components of the frames need to be modeled. They are the confined concrete columns, the interface and contact between the concrete in joint regions and the structural steel (e.g. face bearing plates, cover plates), the interface and contact between the shear connections of steel beam and concrete slab, the interaction of reinforcement and concrete, the connection details between RC columns and steel beam, and the steel beam. In addition to these parameters, the choice of the element types, mesh sizes, boundary conditions and load applications that provide accurate and reasonable results are also impor-tant in simulating the behavior of structural frames.

2.2. Material modeling of concrete

In conventional concrete models, the behavior under compressive stresses is usually represented by the plasticity model, while the behavior under tensile stresses is expressed by the

smeared cracking model. The smeared cracking model, however, always encounters numerical difficulties on analysis under cyclic load. To circumvent this situation, the concrete damaged plasticity model (Lee and Fenves 1998) implemented in ABAQUS 2006 [6] is used herein.

By experimental observations on most of quasi-brittle materials, including concrete, when the load changes from the tension to com-pression, compression stiffness recovers with the closure of crack. In addition, when the load changes from compression to tension, once the crushed micro-cracks occur, and the stiffness in tension will not be restored. This performance corresponds to the default value wt = 0 and wc = 1 in ABAQUS. Fig. 1 describes the default properties under uniaxial cyclic loading.

Fig. 1. Uniaxial load cycle (tension-compression-tension) assuming default values for the stiffness recovery factors: wt = 0and wc = 1.

2.3. Material modeling of reinforcement and structural steel

In this paper, in order to simplify the problem in the analysis of finite element method, assuming that the ties and longitudinal rein-forcement in concrete columns are ideal elasto-plastic materials, regardless of the reinforcement service stage and Bauschinger effect in their stress-strain relations. The stress-strain curve is sloped before the steel yields, and it should be simplified to horizontal line after that, as shown in Fig. 2. The V on Mises yield criterion with isotropic hardening model is adopted for structural steel.

Fig. 2. Stress-strain relationship of reinforcement.

2.4. Interactive modeling between concrete and reinforcement, concrete and structural steel

Since joints of steel beam and concrete column connect together by welding face bearing plate at the steel beam flange in the frame structure, beam-column and face bearing plate have a good confined with joint regions to make joint regions little slip. The details of the connection of steel beam and reinforced concrete column are shown in Fig. 3a. It is shown that concrete and steel in the joint regions can still work together until the destruction of the beam-column joint. Salvatore et al. [7] studied the seismic performance of exterior and interior partial-strength composite beam-to-column joints by using ABAQUS software, a hardening elasto-plastic material is modeled using discrete two-nodded beam elements, dimensionless bond-link Steel beam and concrete, face bearing plate and concrete in joint regions are directly constrained by the module “Tie”command in the “Interaction” to make binding constraint, so there is no relative slip between them.

2.5. Bounding conditions and loading

The boundary conditions and loading manners of RCS frame struc-tures are specific in this paper: concrete column foot is fixed constraint, axial load is imposed by the loading plate on top of the column, and lateral load is imposed on the beam. In the ABAQUS software, the boundary conditions are set as follows: three concrete columns with fixed boundary constraints, the steel beam and face bearing plates used the “Merge” command of the “Assembly” module to merge. In this case, steel beams and face bearing plate can be regarded as fixed constraints. The loading plate and the interface of column cap are con-strained by the “Interaction” module “Tie” command. As shown in Fig. 3b.

The loading of the frame divides into two categories: the axial load at the top of the framed column and the lateral load at the end of framed beam. The two load steps are required in the ABAQUS code. The specific methods are as follows: at the top of the three framed columns respectively applied to the axial load. Firstly applied to interior column, and then to two other exterior columns, set it as a load step. When axial loading is completed, the lateral load should be loaded at both ends of the framed beam, and displacement loading adopted in order to obtain the load-displacement curves of frame, that is, displace-ment applied at the end of the beam (applied displacement boundary conditions that known). In order to avoid stress concentration, the “Load” module “Pressure” of ABAQUS is adopted for the axial load and the analysis will not stop until the selected displacement is reached. Fig. 3b is the loading model diagram of composite RCS frame.

(a) The connection details

(b) Load modeling of a composite RCS frame

Fig. 3. The connection details and load modeling of a composite RCS frame.

2.6. The selection of element type and meshing

In order to simulate the detailed characteristics of steel beams-concrete columns joint, steel beams and concrete adopted a three-dimensional solid element with reduced integration eight-node formulation (C3D8R). Compared with the high-order isoparametric element, although the accuracy of this element is slightly lower, it can reduce to a lot of freedom degree, which can greatly reduce the computational cost. In order to understand the force characteristics of reinforcement, the ties and longitudinal reinforcement in concrete columns used a two‐node linear three-dimensional truss element (T3D2).

Fig. 4 shows the cross-section mesh diagram of the finite element model for the concrete columns, steel, steel beams—the whole face bearing plate and beam-column joint region in this paper. Due to the complexity of the beam-column joint regions, these regions are subdivided to ensure the accuracy of the computational results.

(a) Concrete column (b) Longitudinal reinforcementand tie

(c) Steelbeam and FBP (d) beam-column joint

Fig. 4. Meshing sketch of section.

6.Summary and concluding remarks

In this paper, the ABAQUS software is applied to analyze the influ-ence of different parameters on behaviors of composite CCSTRCS frame structures. These parameters are as follow: the ratio of longitudi-nal reinforcement (ρs) and the volume ratio of tie (ρv), the strength of longitudinal reinforcement (fys) and the strength of tie (fyv), the com-pressive strength of cubic concrete (fcu), characteristic values of tie (λv), the yield strength of steel (fak), axial-load ratio (n), the linear stiff-ness ratio of beam-column (K) an d the slenderness of column (λ).

The results show that the above parameters have a corresponding effect on lateral load-lateral displacement of the composite CCSTRCS frame. In which, the axial-load ratio(n), the linear

stiffness ratio of beam-column (K) and the slenderness of column (λ) have a significant influence on elastic stiffness; and the characteristic values of tie(λv), the yield strength of steel (fak), axial-load ratio (n) and the slen-derness of column (λ) have a significant influence on the post-yield stiffness. When the characteristic value of tie is more than 0.362, P-Δ curves are not descending; if less than 0.362, P-Δ curves are descending. Other conditions are the same, with the decrease of the characteristic value of tie, elastic stiffness is invariable, post-yield stiffness and ultimate load reduce, so is the degradation stiffness; when the axial-load ratio increases, the elastic stiffness changes little, post-yield stiffness and ultimate load significantly reduce, degrada-tion stiffness also significantly reduces.

The relationship of the lateral load-lateral displacement of composite CCSTRCS frame is based on the above parameters, the bilinear model and trilinear model are adopted to simulate non-descending and descending curves of lateral load-lateral displacement of composite CCSTRCS frame.

The parameters of the simplified model of P-Δ curve with descend-ing and non-descending for composite CCSTRCS frame are derived by multiple linear regressions. Comparing the simplified model with finite element results, it shows that for the case of non-descending, elastic stiffness is of good agreement, yield load is slightly higher and post-yield stiffness is lower than that of the finite element method. For the descending case, elastic stiffness is also of good agreement, yield load is slightly less and post-yield stiffness is lower than that of the finite element method. The degradation stiffness also agrees well with each other. As a simplified model, the overall agree well between the two, and they are able to meet the general engineering requirements.

In addition, if ties with high-strength and small spacing are adopted, the characteristic value of tie is generally greater than 0.362. Therefore, the P-Δ curves for high-strength concrete column confined with continuous compound spiral ties-steel beam frame structure, even when the axial-load ratio is more than 1.0, the curves are still not descending. Ductility coefficient is infinite in theory. However, in practical engineering, it is necessary to consider the slenderness of column and axial-load ratio to ensure the ductility of the columns.

钢梁和钢筋混凝土柱组合框架的参数研究

李桅a,, 李青宁b, 姜维山b

[摘要]对钢筋混凝土柱—钢梁(RCS)组合框架的试验和数值分析在美国和日本已经进行了几

十年。大多数结果都表明这些结构相对于传统的混凝土和钢框架结构性能更优越。然而,很少

有研究能找到关于钢梁—连续复合螺旋箍混凝土柱组合框架结构(CCSTRCS),这就要求复合

CCSTRCS框架精确的有限元模型的发展。该模型的有效性是通过比较参考研究提出的测试数

据进行检查。对提出的模型,用一个广泛采用的参数研究方法探讨复合CCSTRCS框架的行为。

为此,对于这类组合框架提出了一种迟滞横向载荷与侧向位移模型。

1 引言

由钢筋混凝土柱和钢(S)梁形成的组合框架,或所谓的RCS系统已被广泛承认在地震地区替代传统的钢或钢筋混凝土建筑具有良好的成本效益。相对于传统的钢或钢筋混凝土抗弯框架,与连接相关的问题得以大大减少,并且RCS框架通常比纯钢或钢筋混凝土抗弯框架更经济。该研究计划包括对RCS组合框架全面的测试及其梁柱连接和组件的有限元分析,对RCS组合框架模型尺寸和原型尺寸的测试和有限元分析,对RCS组合框架抗震设计的研究和分析及对详细设计工作提供指导和建议[ 1 ] 。

尽管使用CCSTRC柱可发挥其在施工速度和结构延展性方面的潜在益处,但很少有进行连续复合螺旋箍钢筋混凝土( CSTRC )柱和复合钢梁组成的组合框架的研究。针对CCSTRC柱和CCSTRC—钢梁(S )复合连接的实验已经在进行,并且由于采用了高强度混凝土柱和高强度连续复合螺旋箍,CCSTRC和钢梁( CCSTRCS )组合框架表现出很大的优势,提高了强度柱的强度和延展性,减小了柱的截面尺寸,从而增加了有效的建筑空间。作为一个“未定义的结构体系”,复合CCSTRCS系统不能很容易地应用在设计和施工实践。然而,近几年它们已经被越来越多的研究人员和从业专业人员认可,虽然结构体系并不完全满足目前的建筑法规的规范性要求,但且能满足良好的抗震性能的要求。理想的地震特性应通过理论分析和实验检验进行验证。然而,由于难以从经济的视点进行了大量的实验,并且由于被测试的样品功能的独特性和材料的异质性,梁柱连接和框架结构复杂的抗震性能难以理解。此外,某些影响参数诸如板厚,轴向载荷和约束效果等,它们的影响效果无法在有限数量的测试当中表现出来。因此为了量化和明确关键设计参数的影响,有必要建立一个可靠的数学模型。基于这样的认识,一系列复合材料结构的有限元分析的应运而生。

刘和Foster[2]提出了一个有限元模型,用于探讨高强度同心负荷柱的响应(混凝土强度高达100兆帕)。在2010年[3,4]Yu等人提出了一种改进的德鲁克—普拉格(DP)型模型和塑性损伤模型,然后在ABAQUS中实现它。Hajjar等人[5]提出了借助于ABAQUS代码手段用角度内饰梁与柱的复合连接的三维模型[6]。Salvatore等人[7]利用ABAQUS软件

进行外饰和内饰局部强度的复合梁柱节点的抗震性能的研究。Hu等人[8]提出采用合适的材料本构模型的钢管混凝土柱(CFT)并采用非线性有限元程序ABAQUS对实验数据进行了验证。赵,李[9]通过有限元程序ABAQUS研究钢—混凝土组合梁连接的非线性力学性能和破坏过程。八节点实体单元(C3D8)被用来模拟混凝土板和钢梁。通过八节点的三维内聚单元( COH3D8 )模拟粘接剂层。Bursi等人[10]使用ABAQUS程序研究由全部或部分剪力连接的钢—混凝土组合梁的抗弯框架的抗震性能。Han等人[11]提出了混凝土填充方形中空截面(SHS)柱与钢梁的组合框架的有限元模型,该有限元程序ABAQUS获得通过。Wu等人[12]使用ABAQUS模拟悬臂梁H型钢梁柱螺栓连接研究翼板的数值影响。

在此环境下,李等人[13]应用有限元程序ABAQUS,模拟复合CCSTRCS框架的行为。结果表明,连续复合螺旋高强度箍筋可以有效地改善混凝土的横向变形能力,对核心区混凝土具有良好的约束,这增加了复合CCSHRCS框架的最终侧向承载力和变形能力。然而,对复合CCSTRCS框架的详细影响因素是不清晰的。因此,本文的重点是开展对复合CCSTRCS 框架的行为的广泛参数研究。通过参数分析,简化滞回水平载荷与侧向位移模型对这样的组合框架是合适的。

2 有限元模型

2.1 总体说明

为了准确地模拟RCS框架样本的实际行为,需要对框架的主要六个组件进行建模。它们是约束混凝土柱,在接合区域混凝土和结构钢接触界面(例如对面支承板,盖板),钢梁和混凝土板的抗剪连接之间的接触界面,钢筋与混凝土之间的相互作用,钢筋混凝土柱和钢梁之间连接的详细信息,以及钢梁。除了这些参数外,单元类型,网格尺寸,边界条件的选择和提供准确、合理的载荷应用对模拟框架结构的行为也很重要。

2.2 混凝土材料建模

对于传统的混凝土模型,在压应力作用下的行为通常由塑性模型表示,而在拉应力作用下的行为则是由弥散开裂模型来表示的。但是,对于弥散开裂模型,在循环荷载作用下总是遇到分析数值困难。为了避免这种情况,在2006年通过使用ABAQUS[6]实现了混凝土损坏的塑性模型(李和1998年Fenves)。

通过实验观察对大多数的准脆性材料,包括混凝土,当从拉伸到压缩进行负载变化时,压缩刚度随裂缝的闭合而恢复。另外,当从压缩到拉伸进行负载变化时,一旦受压微裂纹产生,则在变化过程中拉伸刚度不会被恢复。这一性能相当于在ABAQUS中默认值wt=0和wc=1。图. 1 描述了单轴循环加载下的默认属性。

图.1. 单轴循环加载(拉伸—压缩—拉伸)假设刚度恢复默认值:wt=0和wc=1。

2.3 钢筋混凝土结构材料建模

在本文中,为了简化有限元方法分析的问题,假设混凝土柱的箍筋和纵向钢筋是理想弹塑性材料,在应力—应变关系中忽略强化阶段和包辛格效应。在钢筋屈服以前它们的应力—应变曲线是倾斜的,而在钢筋屈服以后应力—应变曲线应该被简化为水平线。如图2所示。von Mises屈服准则采用各向同性硬化模型适用于结构钢。

图2. 钢筋的应力—应变关系。

2.4 混凝土和钢筋,混凝土和钢结构之间的交互建模

由于钢梁与混凝土柱节点通过在框架结构钢梁翼缘焊接面承压板连接在一起,梁柱和面承载板在接合区域形成良好的约束,使接合区域减少滑移。钢梁和钢筋混凝土柱的连接的详细情况如图.3a所示。

图.3a 节点构造

结果表明:混凝土和钢筋的连接区域可以一起工作,直到梁柱节点的破坏。Salvatore 等人[7]利用ABAQUS软件对外部和内部局部强化的复合梁柱节点的抗震性能进行研究,采用两节点梁单元对硬化弹塑性材料进行建模,无量纲键链接钢梁和混凝土,面承载板和混凝土接头部分直接由模块中的“联系”命令以实现捆绑约束,所以它们之间没有相对滑动。

2.5 边界条件及荷载

边界条件和RCS框架结构的加载方式是在本文特指:混凝土柱脚固定约束,轴向载荷通过加载板施加在柱顶部,横向负荷施加在横梁上。在ABAQUS软件中,边界条件设置如下:三个混凝土柱采用固定边界约束,钢梁和面支承板用的“装配”模块的“合并”命令来合并。在这种情况下,钢梁和面支承板可视为固定的约束。加载板和柱帽的接口是由“互动”模块“联结”命令约束的。如图.3b所示。

图.3b 复合RCS框架的加载模型。

该框架的负载分为两类:在框架柱顶部的轴向载荷,在框架梁的端部的横向荷载。这两个加载步骤是需要在ABAQUS中进行编码的。具体方法如下:在3个框架柱的顶部分别施加轴向载荷。首先应用于室内列,然后其余两个外柱,并将其设置为一个载荷步骤。当轴向加载完成时,在框架梁的两端施加横向荷载并进行位移加载,获得框架的载荷—位移曲线,即施加在梁端部的位移量(施加的已知位移边界条件)。为了避免应力集中,“加载”模块采用轴向载荷,当到达选定的位移值时,ABAQUS“压力”分析将会停止。图.3b 是复合RCS框架的加载模型图。

2.6 单元类型和网格划分的选择

为了模拟联合钢梁—混凝土柱的详细特征,钢梁和混凝土采用缩减积分八节点(C3D8R)三维实体单元。与高阶等参单元相比,尽管这种单元的精度略低,但它可以减少很多的自由度,从而可以大大降低计算成本。为了了解钢筋的受力特点,混凝土柱中的箍筋和纵向钢筋采用了双节点的线性立体桁架单元(T3D2)。

图.4示表示在本文中的混凝土柱,钢,钢梁,四边支承板和梁柱连接区域有限元模型的横截面网格图。由于梁柱连接区域的复杂性,因此通过细分这些区域,以保证计算结果的精度。

(a)混凝土柱(b)纵筋和箍筋

(c)钢梁和面承板(d)梁柱节点

图. 4 截面单元网格草图。

6总结和结束语

在本文中,ABAQUS软件用于分析不同参数对复合CCSTRCS框架结构行为的影响。这些参数如下:纵筋配筋率(ρS)和箍筋体积配箍率(ρV),纵筋(fys)的强度和箍筋的强度(ftv),混凝土立方体抗压强度(fcu),箍筋配箍特征值(λV),钢筋(fak)的屈服强度,轴向压比(n),梁柱线刚度(K)和柱(λ)的长细比。

结果表明,上述参数在复合CCSTRCS框架上有相对应的侧向载荷和横向位移影响。其中,轴压比(n),梁柱(K)线刚度和柱(λ)长细比弹性刚度显著的影响;箍筋的配箍特征值(λV),钢筋(fak)的屈服强度,轴压比(n)和柱(λ)长细比对屈服后刚度有显著的影响。当箍筋配箍特征值大于0.362时,P—Δ曲线不降,如果小于0.362,P—Δ曲线下降。其他条件都相同,只减小配箍特征值,弹性刚度是不变的,屈服后刚度和极限载荷降低,所以是退化刚度;当轴压比增大时,弹性刚度变化不大,屈服后刚度和极限荷载显著减少,刚度也是退化的。

复合CCSTRCS框架的横向载荷和横向位移的关系是基于上述参数的,双线性模型和三线性模型被用来模拟复合CCSTRCS框架横向载荷和横向位移的非递减和递减曲线。

复合CCRCS框架递减和非递减的P—Δ曲线的简化模型参数是由多重线性回归分析得出。与有限元计算结果的简化模型相比,发现,对于非降的情况,弹性刚度有很好的一致性,而屈服载荷比有限元法稍高,屈服后刚度比有限元法要低。对于下降的情况,弹性刚度也有很好的一致性,而屈服载荷略和屈服后刚度均比有限元方法要低。对于两种情况退化刚度均与有限元法一致。作为简化模型,两种方法整体吻合,并且都能够满足一般工程的要求。

另外,如果采用了高强度和小间距的箍筋,配箍特征值一般大于0.362。因此,对于采用高强度混凝土柱和密闭连续复合螺旋箍筋的钢梁框架结构,即使轴压比大于1.0,P—Δ曲线仍然不下降。在理论上延性系数是无限。然而,在实际工程中,有必要考虑柱的长细比和轴压比以确保各柱的延性。

参考文献

[1] Goel SC. United States-Japan Cooperative Earthquake Engineering Research Program on Composite and Hybrid Structures [J]. J Struct Eng ASCE 2004;130(2):157-8.

[2] Liu J, Foster SJ. Finite element model for confined concrete columns[J]. J Struct Eng ASCE

1998;124(9):1011-7.

[3] Yu T, Teng JG, Wong YL, Dong SL. Finite element modeling of confined concrete-I:Drucker-Prager type plasticity model [J]. Eng Struct 2010;32:665-79.

[4] Yu T, Teng JG, Wong YL, Dong SL. Finite element modeling of confined concrete-II:Plastic-damage model [J]. Eng Struct 2010;32:680-91.

[5] Hajjar J, Leon R, Gustafson M, Shield C.Seismic response of compositemoment-resisting connections. II: Behavior[J]. J Struct Eng ASCE 1998;124(8):877-85.

[6] ABAQUS user's manual—version 6.8.1. Pawtucket, RI: Hibbit, Karlsson & Sorenson;2006.

[7] Salvatore W, Bursi OS, Lucchesi D. Design, testing and analysis of high ductile partial-strength

steel-concrete composite beam-to-column joints[J]. Comput Struct 2005;83:2334-52.

[8] Hu HT, Huang CS, Wu MH, Wu YM. Nonlinear Analysis of Axially Loaded Concrete-Filled Tube Columns with Confinement Effect[J]. J Struct Eng ASCE 2003;129(10):1322-9.

[9] Zhao GZ, Li A. Numerical study of a bonded steel and concrete composite beam[J]. Comput Struct 2008;86:1830-8.

[10] Bursi OS, Sun FF, Postal S. Non-linear analysis of steel-concrete composite frames with full and partial shear connection subjected to seismic loads[J]. J Constr Steel Res 2005;61:67-92.

[11] Han LH, Wang WD, Zhao XL. Behavior of steel beam to concrete-filled SHS column frames: Finite element model and verifications [J]. Eng Struct 2008;30:1647-58.

[12] Wu L Y, Chung LL, Wang MT, Huang GL. Numerical study on seismic behavior of H-beams with wing plates for bolted beam-column connections [J]. J Constr Steel Res 2009;65:97-115.

[13] Li W, Li QN, Jiang WS. Nonlinear finite element analysis of behaviors of steel beam-continuous compound spiral stirrups reinforced concrete column frame structures [J]. The Structural Design of Tall and Special Buildings. https://www.doczj.com/doc/7112209808.html,/10.1002/tal.758,2012.

[14] Li W, Li QN, Jiang WS, Jiang L. Seismic performance of composite reinforced concrete and steel moment frame structures-state-of-the-art[J]. Compos B 2011;42(2):190-206.

[15] Technical specification for confined concrete structures and hybrid structures of concrete and steel

(DB13(J)/T83-2009[S]. Shijiazhuang: Engineering Construction

Standard in Hebei Province; 2009 [in Chinese].

[16] ACI Committee 318. Building code requirements for structural concrete, ACI318-08, and commentary, ACI R318-08[S]. Farmington Hills, Michigan: American Concrete Institute; 2008.

[17] Zhong ST, Jiang WS, Liu WY. The theory and practice of steel and concrete composite structures [M]. Beijing: China Architecture and Building Press; 2008 [in Chinese].

[18] Wang WD, Han LH. Research on practical resilience model of load versus displacement for concrete filled steel tubular frame[J]. Eng Mech 2008;25(11):62-9 [in Chinese].

土木工程外文翻译.doc

项目成本控制 一、引言 项目是企业形象的窗口和效益的源泉。随着市场竞争日趋激烈,工程质量、文明施工要求不断提高,材料价格波动起伏,以及其他种种不确定因素的影响,使得项目运作处于较为严峻的环境之中。由此可见项目的成本控制是贯穿在工程建设自招投标阶段直到竣工验收的全过程,它是企业全面成本管理的重要环节,必须在组织和控制措施上给于高度的重视,以期达到提高企业经济效益的目的。 二、概述 工程施工项目成本控制,指在项目成本在成本发生和形成过程中,对生产经营所消耗的人力资源、物资资源和费用开支,进行指导、监督、调节和限制,及时预防、发现和纠正偏差从而把各项费用控制在计划成本的预定目标之内,以达到保证企业生产经营效益的目的。 三、施工企业成本控制原则 施工企业的成本控制是以施工项目成本控制为中心,施工项目成本控制原则是企业成本管理的基础和核心,施工企业项目经理部在对项目施工过程进行成本控制时,必须遵循以下基本原则。 3.1 成本最低化原则。施工项目成本控制的根本目的,在于通过成本管理的各种手段,促进不断降低施工项目成本,以达到可能实现最低的目标成本的要求。在实行成本最低化原则时,应注意降低成本的可能性和合理的成本最低化。一方面挖掘各种降低成本的能力,使可能性变为现实;另一方面要从实际出发,制定通过主观努力可能达到合理的最低成本水平。 3.2 全面成本控制原则。全面成本管理是全企业、全员和全过程的管理,亦称“三全”管理。项目成本的全员控制有一个系统的实质性内容,包括各部门、各单位的责任网络和班组经济核算等等,应防止成本控制人人有责,人人不管。项目成本的全过程控制要求成本控制工作要随着项目施工进展的各个阶段连续 进行,既不能疏漏,又不能时紧时松,应使施工项目成本自始至终置于有效的控制之下。 3.3 动态控制原则。施工项目是一次性的,成本控制应强调项目的中间控制,即动态控制。因为施工准备阶段的成本控制只是根据施工组织设计的具体内容确

土木工程类专业英文文献及翻译

PA VEMENT PROBLEMS CAUSED BY COLLAPSIBLE SUBGRADES By Sandra L. Houston,1 Associate Member, ASCE (Reviewed by the Highway Division) ABSTRACT: Problem subgrade materials consisting of collapsible soils are com- mon in arid environments, which have climatic conditions and depositional and weathering processes favorable to their formation. Included herein is a discussion of predictive techniques that use commonly available laboratory equipment and testing methods for obtaining reliable estimates of the volume change for these problem soils. A method for predicting relevant stresses and corresponding collapse strains for typical pavement subgrades is presented. Relatively simple methods of evaluating potential volume change, based on results of familiar laboratory tests, are used. INTRODUCTION When a soil is given free access to water, it may decrease in volume, increase in volume, or do nothing. A soil that increases in volume is called a swelling or expansive soil, and a soil that decreases in volume is called a collapsible soil. The amount of volume change that occurs depends on the soil type and structure, the initial soil density, the imposed stress state, and the degree and extent of wetting. Subgrade materials comprised of soils that change volume upon wetting have caused distress to highways since the be- ginning of the professional practice and have cost many millions of dollars in roadway repairs. The prediction of the volume changes that may occur in the field is the first step in making an economic decision for dealing with these problem subgrade materials. Each project will have different design considerations, economic con- straints, and risk factors that will have to be taken into account. However, with a reliable method for making volume change predictions, the best design relative to the subgrade soils becomes a matter of economic comparison, and a much more rational design approach may be made. For example, typical techniques for dealing with expansive clays include: (1) In situ treatments with substances such as lime, cement, or fly-ash; (2) seepage barriers and/ or drainage systems; or (3) a computing of the serviceability loss and a mod- ification of the design to "accept" the anticipated expansion. In order to make the most economical decision, the amount of volume change (especially non- uniform volume change) must be accurately estimated, and the degree of road roughness evaluated from these data. Similarly, alternative design techniques are available for any roadway problem. The emphasis here will be placed on presenting economical and simple methods for: (1) Determining whether the subgrade materials are collapsible; and (2) estimating the amount of volume change that is likely to occur in the 'Asst. Prof., Ctr. for Advanced Res. in Transp., Arizona State Univ., Tempe, AZ 85287. Note. Discussion open until April 1, 1989. To extend the closing date one month,

土木工程外文翻译

转型衰退时期的土木工程研究 Sergios Lambropoulosa[1], John-Paris Pantouvakisb, Marina Marinellic 摘要 最近的全球经济和金融危机导致许多国家的经济陷入衰退,特别是在欧盟的周边。这些国家目前面临的民用建筑基础设施的公共投资和私人投资显著收缩,导致在民事特别是在民用建筑方向的失业。因此,在所有国家在经济衰退的专业发展对于土木工程应届毕业生来说是努力和资历的不相称的研究,因为他们很少有机会在实践中积累经验和知识,这些逐渐成为过时的经验和知识。在这种情况下,对于技术性大学在国家经济衰退的计划和实施的土木工程研究大纲的一个实质性的改革势在必行。目的是使毕业生拓宽他们的专业活动的范围,提高他们的就业能力。 在本文中,提出了土木工程研究课程的不断扩大,特别是在发展的光毕业生的潜在的项目,计划和投资组合管理。在这个方向上,一个全面的文献回顾,包括ASCE体为第二十一世纪,IPMA的能力的基础知识,建议在其他:显著增加所提供的模块和项目管理在战略管理中添加新的模块,领导行为,配送管理,组织和环境等;提供足够的专业训练五年的大学的研究;并由专业机构促进应届大学生认证。建议通过改革教学大纲为土木工程研究目前由国家技术提供了例证雅典大学。 1引言 土木工程研究(CES)蓬勃发展,是在第二次世界大战后。土木工程师的出现最初是由重建被摧毁的巨大需求所致,目的是更多和更好的社会追求。但是很快,这种演变一个长期的趋势,因为政府为了努力实现经济发展,采取了全世界的凯恩斯主义的理论,即公共基础设施投资作为动力。首先积极的结果导致公民为了更好的生活条件(住房,旅游等)和增加私人投资基础设施而创造机会。这些现象再国家的发展中尤为为明显。虽然前景并不明朗(例如,世界石油危机在70年代),在80年代领先的国家采用新自由主义经济的方法(如里根经济政策),这是最近的金融危机及金融危机造成的后果(即收缩的基础设施投资,在技术部门的高失业率),消除发展前途无限的误区。 技术教育的大学所认可的大量研究土木工程部。旧学校拓展专业并且新的学校建成,并招收许多学生。由于高的职业声望,薪酬,吸引高质量的学校的学生。在工程量的增加和科学技术的发展,导致到极强的专业性,无论是在研究还是工作当中。结构工程师,液压工程师,交通工程师等,都属于土木工程。试图在不同的国家采用专业性的权利,不同的解决方案,,从一个统一的大学学历和广泛的专业化的一般职业许可证。这个问题在许多其他行业成为关键。国际专业协会的专家和机构所确定的国家性检查机构,经过考试后,他们证明不仅是行业的新来者,而且专家通过时间来确定进展情况。尽管在很多情况下,这些证书虽然没有国家接受,他们赞赏和公认的世界。 在试图改革大学研究(不仅在土木工程)更接近市场需求的过程中,欧盟确定了1999博洛尼亚宣言,它引入了一个二能级系统。第一级度(例如,一个三年的学士)是进入

土木工程外文文献翻译

专业资料 学院: 专业:土木工程 姓名: 学号: 外文出处:Structural Systems to resist (用外文写) Lateral loads 附件:1.外文资料翻译译文;2.外文原文。

附件1:外文资料翻译译文 抗侧向荷载的结构体系 常用的结构体系 若已测出荷载量达数千万磅重,那么在高层建筑设计中就没有多少可以进行极其复杂的构思余地了。确实,较好的高层建筑普遍具有构思简单、表现明晰的特点。 这并不是说没有进行宏观构思的余地。实际上,正是因为有了这种宏观的构思,新奇的高层建筑体系才得以发展,可能更重要的是:几年以前才出现的一些新概念在今天的技术中已经变得平常了。 如果忽略一些与建筑材料密切相关的概念不谈,高层建筑里最为常用的结构体系便可分为如下几类: 1.抗弯矩框架。 2.支撑框架,包括偏心支撑框架。 3.剪力墙,包括钢板剪力墙。 4.筒中框架。 5.筒中筒结构。 6.核心交互结构。 7. 框格体系或束筒体系。 特别是由于最近趋向于更复杂的建筑形式,同时也需要增加刚度以抵抗几力和地震力,大多数高层建筑都具有由框架、支撑构架、剪力墙和相关体系相结合而构成的体系。而且,就较高的建筑物而言,大多数都是由交互式构件组成三维陈列。 将这些构件结合起来的方法正是高层建筑设计方法的本质。其结合方式需要在考虑环境、功能和费用后再发展,以便提供促使建筑发展达到新高度的有效结构。这并

不是说富于想象力的结构设计就能够创造出伟大建筑。正相反,有许多例优美的建筑仅得到结构工程师适当的支持就被创造出来了,然而,如果没有天赋甚厚的建筑师的创造力的指导,那么,得以发展的就只能是好的结构,并非是伟大的建筑。无论如何,要想创造出高层建筑真正非凡的设计,两者都需要最好的。 虽然在文献中通常可以见到有关这七种体系的全面性讨论,但是在这里还值得进一步讨论。设计方法的本质贯穿于整个讨论。设计方法的本质贯穿于整个讨论中。 抗弯矩框架 抗弯矩框架也许是低,中高度的建筑中常用的体系,它具有线性水平构件和垂直构件在接头处基本刚接之特点。这种框架用作独立的体系,或者和其他体系结合起来使用,以便提供所需要水平荷载抵抗力。对于较高的高层建筑,可能会发现该本系不宜作为独立体系,这是因为在侧向力的作用下难以调动足够的刚度。 我们可以利用STRESS,STRUDL 或者其他大量合适的计算机程序进行结构分析。所谓的门架法分析或悬臂法分析在当今的技术中无一席之地,由于柱梁节点固有柔性,并且由于初步设计应该力求突出体系的弱点,所以在初析中使用框架的中心距尺寸设计是司空惯的。当然,在设计的后期阶段,实际地评价结点的变形很有必要。 支撑框架 支撑框架实际上刚度比抗弯矩框架强,在高层建筑中也得到更广泛的应用。这种体系以其结点处铰接或则接的线性水平构件、垂直构件和斜撑构件而具特色,它通常与其他体系共同用于较高的建筑,并且作为一种独立的体系用在低、中高度的建筑中。

土木工程岩土类毕业设计外文翻译

姓名: 学号: 10447425 X X 大学 毕业设计(论文)外文翻译 (2014届) 外文题目Developments in excavation bracing systems 译文题目开挖工程支撑体系的发展 外文出处Tunnelling and Underground Space Technology 31 (2012) 107–116 学生XXX 学院XXXX 专业班级XXXXX 校内指导教师XXX 专业技术职务XXXXX 校外指导老师专业技术职务 二○一三年十二月

开挖工程支撑体系的发展 1.引言 几乎所有土木工程建设项目(如建筑物,道路,隧道,桥梁,污水处理厂,管道,下水道)都涉及泥土挖掘的一些工程量。往往由于由相邻的结构,特性线,或使用权空间的限制,必须要一个土地固定系统,以允许土壤被挖掘到所需的深度。历史上,许多挖掘支撑系统已经开发出来。其中,现在比较常见的几种方法是:板桩,钻孔桩墙,泥浆墙。 土地固定系统的选择是由技术性能要求和施工可行性(例如手段,方法)决定的,包括执行的可靠性,而成本考虑了这些之后,其他问题也得到解决。通常环境后果(用于处理废泥浆和钻井液如监管要求)也非常被关注(邱阳、1998)。 土地固定系统通常是建设项目的较大的一个组成部分。如果不能按时完成项目,将极大地影响总成本。通常首先建造支撑,在许多情况下,临时支撑系统是用于支持在挖掘以允许进行不断施工,直到永久系统被构造。临时系统可以被去除或留在原处。 打桩时,因撞击或振动它们可能会被赶入到位。在一般情况下,振动是最昂贵的方法,但只适合于松散颗粒材料,土壤中具有较高电阻(例如,通过鹅卵石)的不能使用。采用打入桩系统通常是中间的成本和适合于软沉积物(包括粘性和非粘性),只要该矿床是免费的鹅卵石或更大的岩石。 通常,垂直元素(例如桩)的前安装挖掘工程和水平元件(如内部支撑或绑回)被安装为挖掘工程的进行下去,从而限制了跨距长度,以便减少在垂直开发弯矩元素。在填充情况下,桩可先设置,从在斜坡的底部其嵌入悬挑起来,安装作为填充进步水平元素(如搭背或土钉)。如果滞后是用来保持垂直元素之间的土壤中,它被安装为挖掘工程的进行下去,或之前以填补位置。 吉尔- 马丁等人(2010)提供了一个数值计算程序,以获取圆形桩承受轴向载荷和统一标志(如悬臂桩)的单轴弯矩的最佳纵筋。他们开发的两种优化流程:用一个或两个直径为纵向钢筋。优化增强模式允许大量减少的设计要求钢筋的用量,这些减少纵向钢筋可达到50%相对传统的,均匀分布的加固方案。 加固桩集中纵向钢筋最佳的位置在受拉区。除了节约钢筋,所述非对称加强钢筋图案提高抗弯刚度,通过增加转动惯量的转化部分的时刻。这种增加的刚性可能会在一段时间内增加的变形与蠕变相关的费用。评估相对于传统的非对称加强桩的优点,对称,钢筋桩被服务的条件下全面测试来完成的,这种试验是为了验证结构的可行性和取得的变形的原位测量。 基于现场试验中,用于优化的加强图案的优点浇铸钻出孔(CIDH)在巴塞罗那的

土木工程专业外文文献及翻译

( 二 〇 一 二 年 六 月 外文文献及翻译 题 目: About Buiding on the Structure Design 学生姓名: 学 院:土木工程学院 系 别:建筑工程系 专 业:土木工程(建筑工程方向) 班 级:土木08-4班 指导教师:

英文原文: Building construction concrete crack of prevention and processing Abstract The crack problem of concrete is a widespread existence but again difficult in solve of engineering actual problem, this text carried on a study analysis to a little bit familiar crack problem in the concrete engineering, and aim at concrete the circumstance put forward some prevention, processing measure. Keyword:Concrete crack prevention processing Foreword Concrete's ising 1 kind is anticipate by the freestone bone, cement, water and other mixture but formation of the in addition material of quality brittleness not and all material.Because the concrete construction transform with oneself, control etc. a series problem, harden model of in the concrete existence numerous tiny hole, spirit cave and tiny crack, is exactly because these beginning start blemish of existence just make the concrete present one some not and all the characteristic of quality.The tiny crack is a kind of harmless crack and accept concrete heavy, defend Shen and a little bit other use function not a creation to endanger.But after the concrete be subjected to lotus carry, difference in temperature etc. function, tiny crack would continuously of expand with connect, end formation we can see without the

土木工程毕业设计外文文献翻译修订版

土木工程毕业设计外文文献翻译修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

外文文献翻译 Reinforced Concrete (来自《土木工程英语》) Concrete and reinforced concrete are used as building materials in every country. In many, including the United States and Canada, reinforced concrete is a dominant structural material in engineered construction. The universal nature of reinforced concrete construction stems from the wide availability of reinforcing bars and the constituents of concrete, gravel, sand, and cement, the relatively simple skills required in concrete construction, and the economy of reinforced concrete compared to other forms of construction. Concrete and reinforced concrete are used in bridges, buildings of all sorts underground structures, water tanks, television towers, offshore oil exploration and production structures, dams, and even in ships. Reinforced concrete structures may be cast-in-place concrete, constructed in their final location, or they may be precast concrete produced in a factory and erected at the construction site. Concrete structures may be severe and functional in design, or the shape and layout and be whimsical and artistic. Few other building materials off the architect and engineer such versatility and scope. Concrete is strong in compression but weak in tension. As a result, cracks develop whenever loads, or restrained shrinkage of temperature changes, give rise to tensile stresses in excess of the tensile strength of the concrete. In

土木工程外文翻译参考3篇

学校 毕业设计(论文)附件 外文文献翻译 学号: xxxxx 姓名: xxx 所在系别: xxxxx 专业班级: xxx 指导教师: xxxx 原文标题: Building construction concrete crack of prevention and processing 2012年月日 .

建筑施工混凝土裂缝的预防与处理1 摘要 混凝土的裂缝问题是一个普遍存在而又难于解决的工程实际问题,本文对混凝土工程中常见的一些裂缝问题进行了探讨分析,并针对具体情况提出了一些预防、处理措施。 关键词:混凝土裂缝预防处理 前言 混凝土是一种由砂石骨料、水泥、水及其他外加材料混合而形成的非均质脆性材料。由于混凝土施工和本身变形、约束等一系列问题,硬化成型的混凝土中存在着众多的微孔隙、气穴和微裂缝,正是由于这些初始缺陷的存在才使混凝土呈现出一些非均质的特性。微裂缝通常是一种无害裂缝,对混凝土的承重、防渗及其他一些使用功能不产生危害。但是在混凝土受到荷载、温差等作用之后,微裂缝就会不断的扩展和连通,最终形成我们肉眼可见的宏观裂缝,也就是混凝土工程中常说的裂缝。 混凝土建筑和构件通常都是带缝工作的,由于裂缝的存在和发展通常会使内部的钢筋等材料产生腐蚀,降低钢筋混凝土材料的承载能力、耐久性及抗渗能力,影响建筑物的外观、使用寿命,严重者将会威胁到人们的生命和财产安全。很多工程的失事都是由于裂缝的不稳定发展所致。近代科学研究和大量的混凝土工程实践证明,在混凝土工程中裂缝问题是不可避免的,在一定的范围内也是可以接受的,只是要采取有效的措施将其危害程度控制在一定的范围之内。钢筋混凝土规范也明确规定:有些结构在所处的不同条件下,允许存在一定宽度的裂缝。但在施工中应尽量采取有效措施控制裂缝产生,使结构尽可能不出现裂缝或尽量减少裂缝的数量和宽度,尤其要尽量避免有害裂缝的出现,从而确保工程质量。 混凝土裂缝产生的原因很多,有变形引起的裂缝:如温度变化、收缩、膨胀、不均匀沉陷等原因引起的裂缝;有外载作用引起的裂缝;有养护环境不当和化学作用引起的裂缝等等。在实际工程中要区别对待,根据实际情况解决问题。 混凝土工程中常见裂缝及预防: 1.干缩裂缝及预防 干缩裂缝多出现在混凝土养护结束后的一段时间或是混凝土浇筑完毕后的一周左右。水泥浆中水分的蒸发会产生干缩,且这种收缩是不可逆的。干缩裂缝的产生主要是由于混凝土内外水分蒸发程度不同而导致变形不同的结果:混凝土受外部条件的影响,表面水分损失过快,变形较大,内部湿度变化较小变形较小,较大的表面干缩变形受到混凝土内部约束,产生较大拉应力而产生裂缝。相对湿度越低,水泥浆体干缩越大,干缩裂缝越易产 1原文出处及作者:《加拿大土木工程学报》

土木工程毕业设计外文翻译最终中英文

7 Rigid-Frame Structures A rigid-frame high-rise structure typically comprises parallel or orthogonally arranged bents consisting of columns and girders with moment resistant joints. Resistance to horizontal loading is provided by the bending resistance of the columns, girders, and joints. The continuity of the frame also contributes to resisting gravity loading, by reducing the moments in the girders. The advantages of a rigid frame are the simplicity and convenience of its rectangular form.Its unobstructed arrangement, clear of bracing members and structural walls, allows freedom internally for the layout and externally for the fenestration. Rig id frames are considered economical for buildings of up to' about 25 stories, above which their drift resistance is costly to control. If, however, a rigid frame is combined with shear walls or cores, the resulting structure is very much stiffer so that its height potential may extend up to 50 stories or more. A flat plate structure is very similar to a rigid frame, but with slabs replacing the girders As with a rigid frame, horizontal and vertical loadings are resisted in a flat plate structure by the flexural continuity between the vertical and horizontal components. As highly redundant structures, rigid frames are designed initially on the basis of approximate analyses, after which more rigorous analyses and checks can be made. The procedure may typically inc lude the following stages: 1. Estimation of gravity load forces in girders and columns by approximate method. 2. Preliminary estimate of member sizes based on gravity load forces with arbitrary increase in sizes to allow for horizontal loading. 3. Approximate allocation of horizontal loading to bents and preliminary analysis of member forces in bents. 4. Check on drift and adjustment of member sizes if necessary. 5. Check on strength of members for worst combination of gravity and horizontal loading, and adjustment of member sizes if necessary. 6. Computer analysis of total structure for more accurate check on member strengths and drift, with further adjustment of sizes where required. This stage may include the second-order P-Delta effects of gravity loading on the member forces and drift.. 7. Detailed design of members and connections.

土木工程外文翻译5

PROJECTCOSTCONTROL INTRODUCTION project a corporate image window and effectiveness of the source. With increasingly fierce market competition, the quality of work and the construction of civilizations rising material prices fluctuations. uncertainties and other factors, make the project operational in a relatively tough environment. So the cost of control is through the building of the project since the bidding phase of acceptance until the completion of the entire process, It is a comprehensive enterprise cost management an important part, we must organize and control measures in height to the attention with a view to improving the economic efficiency of enterprises to achieve the purpose. 2, outlining the construction project cost control, the cost of the project refers to the cost and process of formation occurred, on the production and operation of the amount of human resources, material resources and expenses, guidance, supervision, regulation and restrictions, in a timely manner to prevent, detect and correct errors in order to control costs in all project costs within the intended target. to guarantee the production and operation of enterprises benefits. 4, the construction cost control measures cost control measures. Reduce the cost of construction projects means, we should not only increase revenue is also reducing expenditure, or both also increase savings. Cutting expenditure is not only revenue, or revenue not only to cut expenditure, it is impossible to achieve the aim of reducing costs, at least there is no ideal lower cost effective.

土木工程毕业设计中英文翻译

附录:中英文翻译 英文部分: LOADS Loads that act on structures are usually classified as dead loads or live loads are fixed in location and constant in magnitude throughout the life of the the self-weight of a structure is the most important part of the structure and the unit weight of the density varies from about 90 to 120 pcf (14 to 19 KN/m)for lightweight concrete,and is about 145 pcf (23 KN/m)for normal calculating the dead load of structural concrete,usually a 5 pcf (1 KN/m)increment is included with the weight of the concrete to account for the presence of the reinforcement. Live loads are loads such as occupancy,snow,wind,or traffic loads,or seismic may be either fully or partially in place,or not present at may also change in location. Althought it is the responsibility of the engineer to calculate dead loads,live loads are usually specified by local,regional,or national codes and sources are the publications of the American National Standards Institute,the American Association of State Highway and Transportation Officials and,for wind loads,the recommendations of the ASCE Task Committee on Wind Forces. Specified live the loads usually include some allowance for overload,and may include measures such as posting of maximum loads will not be is oftern important to distinguish between the

土木工程岩土类毕业设计外文翻译

学号: 10447425 X X 大学 毕业设计(论文)外文翻译 (2014届) 外文题目 Developments in excavation bracing systems 译文题目开挖工程支撑体系的发展 外文出处 Tunnelling and Underground Space Technology 31 (2012) 107–116 学生 XXX 学院 XXXX 专业班级 XXXXX 校内指导教师 XXX 专业技术职务 XXXXX 校外指导老师专业技术职务 二○一三年十二月

开挖工程支撑体系的发展 1.引言 几乎所有土木工程建设项目(如建筑物,道路,隧道,桥梁,污水处理厂,管道,下水道)都涉及泥土挖掘的一些工程量。往往由于由相邻的结构,特性线,或使用权空间的限制,必须要一个土地固定系统,以允许土壤被挖掘到所需的深度。历史上,许多挖掘支撑系统已经开发出来。其中,现在比较常见的几种方法是:板桩,钻孔桩墙,泥浆墙。 土地固定系统的选择是由技术性能要求和施工可行性(例如手段,方法)决定的,包括执行的可靠性,而成本考虑了这些之后,其他问题也得到解决。通常环境后果(用于处理废泥浆和钻井液如监管要求)也非常被关注(邱阳、1998)。 土地固定系统通常是建设项目的较大的一个组成部分。如果不能按时完成项目,将极大地影响总成本。通常首先建造支撑,在许多情况下,临时支撑系统是用于支持在挖掘以允许进行不断施工,直到永久系统被构造。临时系统可以被去除或留在原处。 打桩时,因撞击或振动它们可能会被赶入到位。在一般情况下,振动是最昂贵的方法,但只适合于松散颗粒材料,土壤中具有较高电阻(例如,通过鹅卵石)的不能使用。采用打入桩系统通常是中间的成本和适合于软沉积物(包括粘性和非粘性),只要该矿床是免费的鹅卵石或更大的岩石。 通常,垂直元素(例如桩)的前安装挖掘工程和水平元件(如内部支撑或绑回)被安装为挖掘工程的进行下去,从而限制了跨距长度,以便减少在垂直开发弯矩元素。在填充情况下,桩可先设置,从在斜坡的底部其嵌入悬挑起来,安装作为填充进步水平元素(如搭背或土钉)。如果滞后是用来保持垂直元素之间的土壤中,它被安装为挖掘工程的进行下去,或之前以填补位置。 吉尔- 马丁等人(2010)提供了一个数值计算程序,以获取圆形桩承受轴向载荷和统一标志(如悬臂桩)的单轴弯矩的最佳纵筋。他们开发的两种优化流程:用一个或两个直径为纵向钢筋。优化增强模式允许大量减少的设计要求钢筋的用量,这些减少纵向钢筋可达到50%相对传统的,均匀分布的加固方案。 加固桩集中纵向钢筋最佳的位置在受拉区。除了节约钢筋,所述非对称加强钢筋图案提高抗弯刚度,通过增加转动惯量的转化部分的时刻。这种增加的刚性可能会在一段时间内增加的变形与蠕变相关的费用。评估相对于传统的非对称加强桩的优点,对称,钢筋桩被服务的条件下全面测试来完成的,这种试验是为了验证结构的可行性和取得的变形的原位测量。 基于现场试验中,用于优化的加强图案的优点浇铸钻出孔(CIDH)在巴塞罗那的几个非对称加强桩的施工过程中观察到混凝土桩沿与测得的变形的结果在常规和描述优化桩。实验证据表明,非对称地增强桩变形比观察到在常规增强那些小。两桩类型(对称和非对称)具有相同的直径,并设计为抵抗基于极限强度设计相同的弯曲力矩;离散杆的尺寸和使用的条全数字的,导致类似的名义抗弯强度。

相关主题
文本预览
相关文档 最新文档