当前位置:文档之家› Soft X-ray emission lines from a relativistic accretion disk in MCG -6-30-15 and Mrk 766

Soft X-ray emission lines from a relativistic accretion disk in MCG -6-30-15 and Mrk 766

Soft X-ray emission lines from a relativistic accretion disk in MCG -6-30-15 and Mrk 766
Soft X-ray emission lines from a relativistic accretion disk in MCG -6-30-15 and Mrk 766

a r X i v :a s t r o -p h /0011167v 1 8 N o v 20001

Abstract.XMM-Newton Re?ection Grating Spectrome-ter (RGS)spectra of the Narrow Line Seyfert 1galaxies MCG ?6-30-15and Mrk 766are physically and spectro-scopically inconsistent with standard models comprising a power-law continuum absorbed by either cold or ionized matter.We propose that the remarkably similar features detected in both objects in the 5–35?A band are H-like oxygen,nitrogen,and carbon emission lines,gravitation-ally redshifted and broadened by relativistic e?ects in the vicinity of a Kerr black hole.We discuss the implications of our interpretation,and demonstrate that the derived parameters can be physically self-consistent.Key words:Black hole physics –Accretion,accretion disks –Line:formation –Galaxies:individual:MCG ?6-30-15–Galaxies:individual:Mrk 766–X-rays:galaxies

A&A manuscript no.

(will be inserted by hand later)

ASTRONOMY

AND ASTROPHY SICS

Send o?print requests to:G.Branduardi-Raymont

?Based on observations obtained with XMM-Newton,an ESA science mission with instruments and contributions di-rectly funded by ESA Member States and the USA(NASA).jects),while Mrk766displays a soft excess that varies less than the continuum at higher energies.Evidence for Compton re?ection has been found only in MCG?6-30-15.Broad features in the<1keV spectra of both sources have been attributed to absorption in an ionized inter-stellar medium at some distance from the central massive black hole.The pro?le of the broad?uorescent Fe Kαline observed at6–7keV can be explained as due to the e?ects of relativistic motions and gravitational red-shift

in a disk surrounding the central black hole(Tanaka et al.1995).MCG?6-30-15and Mrk766are bright (L2?10keV~few×1043erg s?1)and nearby AGN(z= 0.00775±0.00005and0.01293±0.00005for MCG?6-30-15and Mrk766,respectively;redshifts based on optical emission line measurements,Fisher et al.1995,Smith et al.1987),with relatively low Galactic absorption along the lines of sight(4.1×1020cm?2and1.8×1020cm?2, respectively).

3.RGS observations and data analysis

MCG?6-30-15was observed with XMM-Newton in July 2000for a total of120ks;Mrk766in May2000for55 ks.The RGS data were processed with the XMM-Newton Science Analysis Software.Source and background events were extracted by making spatial and order selections on the event?les,and were calibrated by applying the most up-to-date calibration parameters.The current wave-length scale is accurate to~8m?A.The instrumental oxy-gen edge feature nearλ~23?A mentioned in den Herder et al.(2001)was calibrated using observations of a pure continuum source,PKS2155?304.

The raw extracted spectra are shown in Fig.1.They are remarkably similar,in their overall shape and in the details,being dominated by prominent“saw-tooth”fea-tures,which peak at around15,18,24and33?A.A single power-law?t with neutral absorption is clearly an unac-ceptable representation of the observed spectra.In partic-ular,the neutral oxygen edge at23?A implies a higher col-umn density than can be accommodated by the?t to the

G.Branduardi-Raymont et al.:XMM-Newton observations of MCG?6-30-15and Mrk766

3 Fig.1.The raw RGS?rst order spectra of MCG?6-30-

15(top)and Mrk766(bottom),plotted in the observer’s

frame.

continuum.In addition,the spectra do not show neutral

absorption edges from the other elements at their expected

positions.

3.1.Spectral Fits with Warm Absorber Models

We attempted to?t the spectra with a warm absorber

model which includes the appropriate absorption edges

and absorption lines associated with all ions of abundant

elements(C,N,O,Ne,Mg,and Fe).The absorption line

equivalent widths depend on the velocity pro?le,and we

assume a turbulent velocity,which is a free parameter for

each charge state.The absorbing column density of each

charge state,as well as the neutral Galactic column den-

sity,are also left free to vary.The?ts(shown in Fig.2;best

?t power-law slopesΓ=2.14and2.53for MCG?6-30-

15and Mrk766respectively)are unacceptable for both

objects,for a number of reasons.Firstly,the observed,

putative“O viii and O vii edges”are redshifted with re-

spect to their expected positions(14.23?A and16.78?A for

O viii and O vii,respectively),and by very large amonts

(~1?A),corresponding to infall velocities on the order

of~16,000km s?1.However,the absence of the as-

sociated absorption lines at the redshift implied by the

edges for these two charge states places an upper limit

in the line equivalent widths of EW~20m?A.For the

derived column densities of N OVIII~4×1018cm?2and

N OVII~3×1018cm?2determined from the edges,these

absorption lines are in the saturated region of the curve of

growth.Therefore,the upper limit to the equivalent width

implies a sensitive upper limit to the velocity width of the

infalling material,which is≤60km s?1for both objects.

This is very di?cult to reconcile with the apparent red-

shifts.The radial in?ow,in this case,would have to be at

one particular velocity.Re-emission following absorption

is an unlikely explanation for the absence of the absorption

lines.If the surrounding material is falling towards the nu-

cleus,most of the material will be re-emitting radiation at

shorter wavelengths than that of the absorbed resonance

line,and we would expect to observe an inverted P Cygni

pro?le,which is de?nitely not seen in the data.

The?ts described above still require a signi?cant neu-

tral absorbing component in excess of the Galactic column

density to these sources.In the case of Mrk766,the neu-

tral oxygen edge is again too high with respect to what is

required to?t the data at longer wavelengths.An excess

of?ux is also present between18and19?A in MCG?6-

30-15.

3.2.Disk-line Emission Interpretation

The physical and spectroscopic implausiblities described

above force us to examine alternative models to reproduce

the observed RGS spectra.Remarkably,we have been able

to obtain acceptable?ts to both the MCG?6-30-15and

Mrk766data with a completely di?erent model consist-

ing of an absorbed power-law and emission lines,which are

gravitationally redshifted and broadened by relativistic ef-

fects in a medium which is encircling a massive,rotating

black hole.In this interpretation,the saw-toothed features

in Fig.1are attributed to(in ascending wavelength order)

H-like Lyαlines of O viii,N vii,and C vi.

Our model includes a power-law continuum,with cold

absorption?xed at the Galactic value,and three emission

lines represented by pro?les originating near a maximally

rotating Kerr black hole(Laor1991).The line wavelengths

are?xed at their expected values in the observer’s frame

for the redshifts of the sources.The continuum power-law

slope(photon indexΓ)is?tted,as are the disk inclination

angle i,the emissivity index q(i.e.,the slope of the radial

emissivity pro?le in the disk),and the inner and outer

limits R in and R out of the disk emission region.These

parameters are tied for all the lines in the?t.

The best?t parameters are listed in Table1;data and

best?t models are shown in Fig.3for both MCG?6-30-15

and Mrk766.The errors quoted correspond to90%con-

?dence ranges for one interesting parameter.The derived

emissivity index of q~4indicates that most of the line

emission originates from the inner part of the disk where

gravitational e?ects are the strongest.The outer emission

radius is,therefore,not well-constrained.For the same rea-

son,disk emission line pro?les produced in a Schwarzschild

metric(Fabian et al.1989)do not provide an acceptable

4G.Branduardi-Raymont et al.:XMM-Newton observations of MCG?6-30-15and Mrk766

Fig.2.“Fluxed”spectra of the two sources(corrected

for e?ective area)with the best-?t warm-absorber model,

plotted in the observer’s frame.

Table1.RGS best?t parameters for isolated lines model

Parameter MCG?6-30-15Mrk766

Γ1.33±0.0121.68±0.03

Inclination i40.3o±0.3o35.6o±0.9o

Emissivity index q3.78±0.053.56±0.09

R in1.24+0.7

?0.01.24+0.8

?0.0

R out110+90

?6060+60

?15

C vi Lyαa(6.8±1.3)10?4(1.2±0.1)10?3 N vii Lyαa(2.4±0.1)10?3(1.9±0.1)10?3 O viii Lyαa(4.6±0.1)10?3(1.9±0.1)10?3

G.Branduardi-Raymont et al.:XMM-Newton observations of MCG?6-30-15and Mrk7665 Table 2.Ion emission measures derived from self-

consistent?ts

CVI Lyαa(0.54±0.13)T0.65

100eV (3.6±0.4)T0.65

100eV

NVII Lyαa(2.5±0.1)T0.65

100eV (6.6±0.6)T0.65

100eV

OVIII Lyαa(3.3±0.1)T0.82

100eV (5.5±0.5)T0.82

100eV

6G.Branduardi-Raymont et al.:XMM-Newton observations of MCG?6-30-15and Mrk766 where f?3is the ratio H/R in multiples of10?3.The

implied electron scattering optical depth in the vertical

direction of the disk is,

τe~n e HσT=6.0T0.41

100eV A?1/2

O⊙

f1/2

?3

M?1/2

7

.(3)

These simple estimates may be uncertain by as much as a factor of a few.

The moderate to high optical depth may present a po-tential problem.Forτe>~5,broadening of the spectral lines due to electron scattering becomes comparable to the broadening from gravitational and relativistic e?ects. Ifτe<~1,however,electron scattering produces a negligi-ble e?ect on the observed line pro?les,and this situation is possible if,for example,the emission region is much smaller than the scale height of the accretion disk(i.e., f?3?1).

On the other hand,a medium in whichτe~1is re-quired to explain the absence of the RRC and the higher Lyman series lines.With trace abundances of the H-like species,the medium can be optically thick to its own RRC. In this case,recombination to the ground state is sup-pressed and most of the expected RRC?ux is eventually radiated in the Lyαline.It only takes an optical depth of order a few at the photoelectric edge in order to achieve this.In O viii,the threshold optical depth in the K edge isτOVIII~130τe A O⊙f OVIII,where f OVIII is the frac-tional ion abundance of O viii.Therefore,even a small trace abundance of O viii can almost completely suppress the RRC.Moreover,since the medium is optically thick to photoelectric absorption,it is very optically thick to line absorption as well.The higher series Lyman lines(Lyβand higher)are also destroyed by a mechanism similar to the one responsible for suppressing the RRC,since the up-per levels can decay through channels other than to the ground level.The Lyαline,on the other hand,can decay only to the ground level and,therefore,is not destroyed.

Since the Ne x and Ne ix emission line wavelengths are close to but shorter than that of the O viii edge,most of these line photons are probably also absorbed by O viii, which subsequently are pumped into the O viii Lyαline. The O viii Lyαline wavelength is longer than that of the N vii edge,and is not a?ected by this opacity e?ect.How-ever,the N vii Lyαline is just on the short wavelength side of the C vi edge,and might be somewhat a?ected.

A medium withτe~1is also an e?cient re?ector, which suggests that a large fraction of the illuminating continuum radiation is also re?ected into our line of sight. With trace elements of H-like oxygen,for example,the re?ected spectrum should contain an absorption edge fea-ture that is also distorted by strong relativistic e?ects. Therefore,the residual feature nearλ~15?16?A in MCG?6-30-15,may be identi?ed as an O viii edge,analo-gous to the iron K edge absorption feature produced in re-?ection from a cold medium.The precise characterization of these opacity e?ects,however,requires a detailed radia-tive transfer calculation with self-consistent photoioniza-tion models,which is beyond the scope of this Letter.

To check for consistency in the parameters derived above,we compute the upper limit for the average ion-ization parameter of the plasma to be,

ξ=

L

G.Branduardi-Raymont et al.:XMM-Newton observations of MCG?6-30-15and Mrk7667 to be established,however,the preliminary analysis pre-

sented in Sec.4is encouraging.Note that the conclusions

we draw do not depend on any pre-conceived assumption

about the shape of the ionizing continuum.

This result could not have been achieved without the

combination of large e?ective area and high energy res-

olution a?orded by the XMM-Newton RGS.The poorer

resolution of CCD spectrometers cannot provide discrim-

inatory power for the warm absorber versus line emission

debate raised by the RGS results presented in this paper.

A more robust test will be?nding the same problems and

applying the same solution to other AGN sources.

Acknowledgements.The authors would like to thank Du-

ane Liedahl for kindly providing the atomic calculations.

The Mullard Space Science Laboratory acknowledges?nan-

cial support from the UK Particle Physics and Astronomy Re-

search Council.The Columbia University team is supported

by NASA.The Laboratory for Space Research Utrecht is sup-

ported?nancially by the Netherlands Organization for Scien-

ti?c Research(NWO).

References

Anders,E.,&Grevesse,N.1989,Geochim.Cosmochim.Acta,

53,197

Artymowicz,P.,Lin,D.N.C.,&Wampler,E.J.1993,ApJ,

409,592

Cunningham,C.T.1975,ApJ,202,788

den Herder,J.W.,Brinkman,A.C.,Kahn,S.,et al.2001,

A&A,365(this issue)

Fabian,A.C.,Rees,M.J.,Stella,L.,&White,N.E.1989,

MNRAS,238,729

Fisher,K.B.,Huchra,J.P.,Strauss,M.A.,Davis,M.,Yahil,

A.&Schlegel,D.1995,ApJS,100,69

Halpern,J.P.1984,ApJ,281,90

Hamann,F.,&Ferland,G.1992,ApJ,391,L53

Kallman,T.R.,&Krolik,J.H.1995,XSTAR–A Spectral

Analysis Tool,HEASARC(NASA/GSFC,Greenbelt)

Kato,S.,Fukue,J.,&Mineshige,S.1998,Black-hole Accretion

Disks(Kyoto:Kyoto University Press)

Laor,A.1991,ApJ,376,90

Liedahl,D.A.,&Paerels,F.1996,ApJ,468,L33

Nandra,K.,George,I.M.,Mushotzky,R.F.,Turner,T.J.&

Yaqoob,T.1997,ApJ,477,602

Otani,C.,Kii,T.,Reynolds,C.S.,et al.1996,PASJ,48,211

Reynolds,C.S.1997,MNRAS,286,513

Smith,B.J.,Kleinmann,S.G.,Huchra,J.P.&Low,F.J.

1987,ApJ,318,161

Sunyaev,R.A.,&Titarchuk,L.G.1980,A&A,86,121

Tanaka,Y.,Nandra,K.,Fabian,A.C.,et al.1995,Nature,

375,659

(完整版)X射线光电子能谱分析(XPS)

第18章X射线光电子能谱分析 18.1 引言 固体表面分析业已发展为一种常用的仪器分析方法,特别是对于固体材料的分析和元素化学价态分析。目前常用的表面成分分析方法有:X射线光电子能谱(XPS), 俄歇电子能谱(AES),静态二次离子质谱(SIMS)和离子散射谱(ISS)。AES 分析主要应用于物理方面的固体材料科学的研究,而XPS的应用面则广泛得多,更适合于化学领域的研究。SIMS和ISS由于定量效果较差,在常规表面分析中的应用相对较少。但近年随着飞行时间质谱(TOF-SIMS)的发展,使得质谱在表面分析上的应用也逐渐增加。本章主要介绍X射线光电子能谱的实验方法。 X射线光电子能谱(XPS)也被称作化学分析用电子能谱(ESCA)。该方法是在六十年代由瑞典科学家Kai Siegbahn教授发展起来的。由于在光电子能谱的理论和技术上的重大贡献,1981年,Kai Siegbahn获得了诺贝尔物理奖。三十多年的来,X射线光电子能谱无论在理论上和实验技术上都已获得了长足的发展。XPS已从刚开始主要用来对化学元素的定性分析,业已发展为表面元素定性、半定量分析及元素化学价态分析的重要手段。XPS的研究领域也不再局限于传统的化学分析,而扩展到现代迅猛发展的材料学科。目前该分析方法在日常表面分析工作中的份额约50%,是一种最主要的表面分析工具。 在XPS谱仪技术发展方面也取得了巨大的进展。在X射线源上,已从原来的激发能固定的射线源发展到利用同步辐射获得X射线能量单色化并连续可调的激发源;传统的固定式X射线源也发展到电子束扫描金属靶所产生的可扫描式X射线源;X射线的束斑直径也实现了微型化,最小的束斑直径已能达到6μm大小, 使得XPS在微区分析上的应用得到了大幅度的加强。图像XPS技术的发展,大大促进了XPS在新材料研究上的应用。在谱仪的能量分析检测器方面,也从传统的单通道电子倍增器检测器发展到位置灵敏检测器和多通道检测器,使得检测灵敏度获得了大幅度的提高。计算机系统的广泛采用,使得采样速度和谱图的解析能力也有了很大的提高。 由于XPS具有很高的表面灵敏度,适合于有关涉及到表面元素定性和定量分析方面的应用,同样也可以应用于元素化学价态的研究。此外,配合离子束剥离技术和变角XPS技术,还可以进行薄膜材料的深度分析和界面分析。因此,XPS 方法可广泛应用于化学化工,材料,机械,电子材料等领域。 18.2 方法原理 X射线光电子能谱基于光电离作用,当一束光子辐照到样品表面时,光子可以被样品中某一元素的原子轨道上的电子所吸收,使得该电子脱离原子核的束缚,以一定的动能从原子内部发射出来,变成自由的光电子,而原子本身则变成一个激发态的离子。在光电离过程中,固体物质的结合能可以用下面的方程表示: E k = hν- E b - φs (18.1)

X射线光电子能谱仪

X射线光电子能谱分析 1 引言 固体表面分析业已发展为一种常用的仪器分析方法,特别是对于固体材料的分析和元素化学价态分析。目前常用的表面成分分析方法有:X射线光电子能谱(XPS), 俄歇电子能谱(AES),静态二次离子质谱(SIMS)和离子散射谱(ISS)。AES分析主要应用于物理方面的固体材料科学的研究,而XPS的应用面则广泛得多,更适合于化学领域的研究。SIMS和ISS由于定量效果较差,在常规表面分析中的应用相对较少。但近年随着飞行时间质谱(TOF-SIMS)的发展,使得质谱在表面分析上的应用也逐渐增加。本章主要介绍X射线光电子能谱的实验方法。 X射线光电子能谱(XPS)也被称作化学分析用电子能谱(ESCA)。该方法是在六十年代由瑞典科学家Kai Siegbahn教授发展起来的。由于在光电子能谱的理论和技术上的重大贡献,1981年,Kai Siegbahn获得了诺贝尔物理奖。三十多年的来,X射线光电子能谱无论在理论上和实验技术上都已获得了长足的发展。XPS已从刚开始主要用来对化学元素的定性分析,业已发展为表面元素定性、半定量分析及元素化学价态分析的重要手段。XPS的研究领域也不再局限于传统的化学分析,而扩展到现代迅猛发展的材料学科。目前该分析方法在日常表面分析工作中的份额约50%,是一种最主要的表面分析工具。 在XPS谱仪技术发展方面也取得了巨大的进展。在X射线源上,已从原来的激发能固定的射线源发展到利用同步辐射获得X射线能量单色化并连续可调的激发源;传统的固定式X射线源也发展到电子束扫描金属靶所产生的可扫描式X射线源;X射线的束斑直径也实现了微型化,最小的束斑直径已能达到6 m 大小, 使得XPS在微区分析上的应用得到了大幅度的加强。图像XPS技术的发展,大大促进了XPS在新材料研究上的应用。在谱仪的能量分析检测器方面,也从传统的单通道电子倍增器检测器发展到位置灵敏检测器和多通道检测器,使得检测灵敏度获得了大幅度的提高。计算机系统的广泛采用,使得采样速度和谱图的解析能力也有了很大的提高。 由于XPS具有很高的表面灵敏度,适合于有关涉及到表面元素定性和定量分析方面的应用,同样也可以应用于元素化学价态的研究。此外,配合离子束剥离技术和变角XPS技术,还可以进行薄膜材料的深度分析和界面分析。因此,XPS方法可广泛应用于化学化工,材料,机械,电子材料等领域。 2 方法原理 X射线光电子能谱基于光电离作用,当一束光子辐照到样品表面时,光子可以被样品中某一元素的原子轨道上的电子所吸收,使得该电子脱离原子核的束缚,以一定的动能从原子内部发射出来,变成自由的光电子,而原子本身则变成

光电子能谱分析法基本原理

第十四章 X-射线光电子能谱法 14.1 引言 X-射线光电子谱仪(X-ray Photoelectron Spectroscopy,简称为XPS),经常又被称为化学分析用电子谱(Electron Spectroscopy for Chemical Analysis,简称为ESCA),是一种最主要的表面分析工具。自19世纪60年代第一台商品化的仪器开始,已经成为许多材料实验室的必不可少的成熟的表征工具。XPS发展到今天,除了常规XPS外,还出现了包含有Mono XPS (Monochromated XPS, 单色化XPS,X射线源已从原来的激发能固定的射线源发展到利用同步辐射获得X射线能量单色化并连续可调的激发源), SAXPS ( Small Area XPS or Selected Area XPS, 小面积或选区XPS,X射线的束斑直径微型化到6μm) 和iXPS(imaging XPS, 成像XPS)的现代XPS。目前,世界首台能量分辨率优于1毫电子伏特的超高分辨光电子能谱仪(通常能量分辨率低于1毫电子伏特)在中日科学家的共同努力下已经研制成功,可以观察到化合物的超导电子态。现代XPS拓展了XPS的内容和应用。 XPS是当代谱学领域中最活跃的分支之一,它除了可以根据测得的电子结合能确定样品的化学成份外,XPS最重要的应用在于确定元素的化合状态。XPS可以分析导体、半导体甚至绝缘体表面的价态,这也是XPS的一大特色,是区别于其它表面分析方法的主要特点。此外,配合离子束剥离技术和变角XPS技术,还可以进行薄膜材料的深度分析和界面分析。XPS表面分析的优点和特点可以总结如下: ⑴固体样品用量小,不需要进行样品前处理,从而避免引入或丢失元素所造成的错误分析 ⑵表面灵敏度高,一般信息采样深度小于10nm ⑶分析速度快,可多元素同时测定 ⑷可以给出原子序数3-92的元素信息,以获得元素成分分析 ⑸可以给出元素化学态信息,进而可以分析出元素的化学态或官能团 ⑹样品不受导体、半导体、绝缘体的限制等 ⑺是非破坏性分析方法。结合离子溅射,可作深度剖析 目前,XPS主要用于金属、无机材料、催化剂、聚合物、涂层材料、纳米材料、矿石等各种材料的研究,以及腐蚀、摩擦、润滑、粘接、催化、包覆、氧化等过程的研究,也可以用于机械零件及电子元器件的失效分析,材料表面污染物分析等。 14.2 基本原理 XPS方法的理论基础是爱因斯坦光电定律。用一束具有一定能量的X射线照射固体样品,入射光子与样品相互作用,光子被吸收而将其能量转移给原子的某一壳层上被束缚的电子,此时电子把所得能量的一部分用来克服结合能和功函数,余下的能量作为它的动能而发射出来,成为光电子,这个过程就是光电效应。 该过程可用下式表示: hγ=E k+E b+E r(14.1) 式中: hγ:X光子的能量(h为普朗克常数,γ为光的频率);

X射线衍射分析原理及其应用

X射线衍射分析

目录 1.摘要 (2) 2.前言 (2) 3.X射线及XRD (2) 4.X射线衍射仪的结构 (3) 5.X射线衍射仪的原理 (5) X射线衍射原理 (5) X射线图谱 (6) 6.X射线衍射法 (7) 多晶粉末法 (7) 单晶衍射法 (10) 7.X射线衍射法的应用 (11) X射线衍射分析方法在中药鉴定中的应用 (11) X射线衍射仪在岩石矿物学中的应用 (11) 8.总结 (12) 9.参考文献 (14)

X射线衍射分析 摘要: X射线衍射分析是一种重要的晶体结构和物相分析技术,广泛应用于冶金、石油、化工、科研、航空航天、教学、材料生产等领域。本文简要介绍X射线衍射原理,X射线衍射仪器的结构、原理,及其在地质学、医学等自然科学领域中的应用。 前言: 1895年伦琴发现X射线,又称伦琴射线。德国科学家劳厄于1912年发现了X射线衍射现象,并推导出劳厄晶体衍射公式。随后,英国布拉格父子又将此衍射关系用简单的布拉格方程表示出来。到上世纪四、五十年代,X射线衍射的原理、方法及在其他各方面的应用逐渐建立。在各种测量方法中,X射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点。X射线衍射技术可以探究晶体存在的普遍性和特殊性能,使得其在冶金、石油、岩石矿物、科研、航空航天、材料生产等领域的被广泛应用。 关键词:X射线,XRD,衍射,原理,岩石矿物,中药,应用 一、X射线及XRD 1.X射线是由高能电子的减速运动或原子内层轨道电子的跃迁产生的短波电磁 辐射。X射线的波长在10-6 ~10nm,在X射线光谱法中常用波长在0.01~2.5nm范围内。 2.X射线的产生途径有四种:1.高能电子束轰击金属靶即在一个X射线管中,固体阴极被加热产生大量电子,这些电子在高达100KV的电压下被加速,向金属阳极轰击,在碰撞过程中,电子束的一部分能量转化为X射线;2.将物质用初级X射线照射以产生二级射线—X射线荧光; 3.利用放射性同位素衰败过程产生的发射,人工放射性同位素为为某些分析应用提供了非常方便的单能量辐射源; 4.从同步加速器辐射源获得。 3.X射线的吸收。当一束X射线穿过有一定厚度的物质时,其光强和能量会因吸收和散射而显著减小。物质的原子序数越大,它对X射线的阻挡能力越大,X射线波长越长,即能量越低,越容易被吸收[1]。 4.X射线衍射分析(XRD)是利用晶体形成的X射线衍射,对物质进行内部原子在空间分布状况的结构分析方法。将具有一定波长的X射线照射到结晶性物质上时,X射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X射线在某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象。X射线衍射法是目前测定晶体结构的重要手段,应用极其广泛。在实际的应用中将该分析方法分

γ射线能谱的测量

(一) γ射线能谱的测量 摘要: 本实验将了解闪烁探测器谱仪的工作原理及其使用;学习分析实验测量的137Cs 和60Co γ谱之谱形和γ射线能谱的刻度测定谱仪的能量分辨率,本实验的目的是了解NaI(Tl)闪烁谱仪的原理、特性与结构,掌握NaI(Tl)闪烁谱仪的使用方法和γ射线能谱的刻度。 关键词:γ 射线 Na(Tl)闪烁探测器 能谱图 单道脉冲幅度分析器 引言: 闪烁探测器是利用某些物质在射线作用下会发光的特性来探测射线的仪器。它的主要优点是:既能探测各种带电粒子,又能探测中性粒子;既能测量粒子强度,又能测量粒子能量;且探测效率高,分辨时间短。它在核物理研究和放射性同位素测量中得到广泛的应用。核物理的发展,不断地为核能装置的设计提供日益精确的数据,新的核技术,如核磁共振、穆斯堡尔谱学、晶体的沟道效应和阻塞效应,以及扰动角关联技术等都迅速得到应用。核技术的广泛应用已成为现代化科学技术的标志之 正 文: 实验原理 1.闪烁谱仪结构与工作原理 NaI(Tl)闪烁谱仪结构如图。整个仪器由探头(包括闪烁体、光电倍增管、射极跟随器),高压电源,线性放大器、多道脉冲幅度分析器几部分组成。射线通过闪烁体时,闪烁体的发光强度与射线在闪烁体内损失的能量成正比。带电粒子(如α、β粒子)通过闪烁体时,将引起大量的分子或原子的激发和电离,这些受激的分子或原子由激发态回到基态时就放出光子;不带电的γ射线先在闪烁体内产生光电子、康普顿电子及正、负电子对(当Eγ>1.02MeV时),然后这些电子使闪烁体内的分子或原子激发和电离而发光。闪烁体发出的光子被闪烁体外的光反射层反射,会聚到光电倍增管的光电阴极上,打出光电子。光阴极上打出的光电子在光电倍增管中倍增出大量电子,最后为阳极吸收形成电压脉冲。每产生一个电压脉冲就表示有一个粒子进入探测器。由于电压脉冲幅度与粒子在闪烁体内消耗的能量(产生的光强)成正比,所以根据脉冲幅度的大小可以确定入射粒子的能量。利用脉冲幅度分析器可以测定入射射线的能谱。 由原子物理学中可知γ射线与物质的相互作用主要是光电效应、康普顿效应和正、负电子对产生这三种过程分别如下: (1)光电效应。入射γ粒子把能量全部转移给原子中的束缚电子,而把束缚电子打出来形成光电子。由于束缚电子的电离能E1一般远小于入射γ射线能量Eγ,所以光电子的动能近似等于入射γ射线的能量E光电=Eγ-E1≈Eγ (2)康普顿效应。核外电子与入射γ射线发生康普顿散射,设入射γ光子能量为h,散射

X射线衍射分析法原理概述

第十四章 X射线衍射分析法 14.1概述 X射线衍射法是一种研究晶体结构的分析方法,而不是直接研究试样内含有元素的种类及含量的方法。当X射线照射晶态结构时,将受到晶体点阵排列的不同原子或分子所衍射。X射线照射两个晶面距为d的晶面时,受到晶面的反射,两束反射X光程差2dsinθ是入射波长的整数倍时,即 2dsinθ=nλ (n为整数) 两束光的相位一致,发生相长干涉,这种干涉现象称为衍射,晶体对X 射线的这种折射规则称为布拉格规则。θ称为衍射角(入射或衍射X射线与晶面间夹角)。n相当于相干波之间的位相差,n=1,2…时各称0级、1级、2级……衍射线。反射级次不清楚时,均以n=1求d。晶面间距一般为物质的特有参数,对一个物质若能测定数个d及与其相对应的衍射线的相对强度,则能对物质进行鉴定。 X射线衍射分析方法在材料分析与研究工作中具有广泛的用途。在此主要介绍其在物相分析等方面的应用。 14.1.1 物相定性分析 1.基本原理 组成物质的各种相都具有各自特定的晶体结构(点阵类型、晶胞形状与大小及各自的结构基元等),因而具有各自的X射线衍射花样特征(衍射线位置与强度)。对于多相物质,其衍射花样则由其各组成相的衍射花样简单叠加而成。由此可知,物质的X射线衍射花样特征就是分析物质相组成的“指纹脚印”。制备各种标准单相物质的衍射花样并使之规范化(1969年成立了国际性组织“粉末衍射标准联合会(JCPDS)”,由它负责编辑出版“粉末衍射卡片”,称PDF卡片),将待分析物质(样品)的衍射花样与之对照,从而确定物质的组成相,这就是物相定性分析的基本原理与方法。 2.物相定性分析的基本步骤 (1) 制备待分析物质样品,用衍射仪获得样品衍射花样。 (2) 确定各衍射线条d值及相对强度I/I1值(Il为最强线强度)。 (3) 检索PDF卡片。 PDF卡片检索有三种方式: 1)检索纸纸卡片 物相均为未知时,使用数值索引。将各线条d值按强度递减顺序排列;按三强线条d1、d2、d3的d—I/I1数据查数值索引;查到吻合的条目后,核对八强线的d—I/I1值;当八强线基本符合时,则按卡片编号取出PDF卡片。若按d1、d2、d3顺序查找不到相应条目,则可将d1、d2、d3按不同顺序排列查找。查找索引时,d值可有一定误差范围:一般允许

X射线荧光光谱分析基本原理

X射线荧光光谱分析 X射线是一种电磁辐射,其波长介于紫外线和γ射线之间。它的波长没有一个严格的界限,一般来说是指波长为0.001-50nm的电磁辐射。对分析化学家来说,最感兴趣的波段是0.01-24nm,0.01nm左右是超铀元素的K系谱线,24nm则是最轻元素Li的K系谱线。1923年赫维西(Hevesy, G. Von)提出了应用X射线荧光光谱进行定量分析,但由于受到当时探测技术水平的限制,该法并未得到实际应用,直到20世纪40年代后期,随着X射线管、分光技术和半导体探测器技术的改进,X荧光分析才开始进入蓬勃发展的时期,成为一种极为重要的分析手段。 1.1 X射线荧光光谱分析的基本原理 当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为10-12-10-14s,然后自发地由能量高的状态跃迁到能量低的状态。这个过程称为驰豫过程。驰豫过程既可以是非辐射跃迁,也可以是辐射跃迁。当较外层的电子跃迁到空穴时,所释放的能量随即在原子内部被吸收而逐出较外层的另一个次级光电子,此称为俄歇效应,亦称次级光电效应或无辐射效应,所逐出的次级光电子称为俄歇电子。它的能量是特征的,与入射辐射的能量无关。当较外层的电子跃入内层空穴所释放的能量不在原子内被吸收,而是以辐射形式放出,便产生X射线荧光,其能量等于两能级之间的能量差。因此,X射线荧光的能量或波长是特征性的,与元素有一一对应的关系。图1-1给出了X射线荧光和俄歇电子产生过程示意图。

K层电子被逐出后,其空穴可以被外层中任一电子所填充,从而可产生一系列的谱线,称为K系谱线:由L层跃迁到K层辐射的X射线叫Kα射线,由M层跃迁到K层辐射的X射线叫Kβ射线……。同样,L层电子被逐出可以产生L系辐射(见图1-2)。

X射线光电子能谱模板

第二十三章 X射线光电子能谱 1954年以瑞典Siegbahn教授为首的研究小组观测光峰现象,不久又发现了原子内层电子能级的化学位移效应,于是提出了ESCA(化学分析电子光谱学)这一概念。由于这种方法使用了铝、镁靶材发射的软X射线,故也称为X-光电子能谱(X-ray Photoelectron Spectroscopy)。X光电子能谱分析技术已成为表面分析中的常规分析技术,目前在催化化学、新材料研制、微电子、陶瓷材料等方面得到了广泛的应用。 23.1 基本原理 固体表面分析,特别是对固体材料的分析和元素化学价态分析,已发展为一种常用的仪器分析方法。目前常用的表面成分分析方法有:X射线光电子能谱(XPS), 俄歇电子能谱(AES),静态二次离子质谱(SIMS)和离子散射谱(ISS)。AES分析主要应用于物理方面的固体材料(导电材料)的研究,而XPS的应用面则广泛得多,更适合于化学领域的研究。SIMS 和ISS由于定量效果较差,在常规表面分析中的应用相对较少。但近年随着飞行时间二次离子质谱(TOF-SIMS)的发展,使得质谱在表面分析上的应用也逐渐增加。 X射线光电子能谱最初是由瑞典科学家K.Siegbahn等经过约20年的努力而建立起来的,因在化学领域的广泛应用,被称为化学分析用电子能谱(ESCA)。由于最初的光源采用了铝、镁等的特性软X射线,该技术又称为X射线光电子能谱(XPS)。1962年,英国科学家D.W.Turner等建造出以真空紫外光作为光源的光电子能谱仪,在分析分子内价电子的状态方面获得了巨大成功,同时又用于固体价带的研究,与X射线光电子能谱相对照,该方法称为紫外光电子能谱(UPS) XPS的原理是基于光的电离作用。当一束光子辐射到样品表面时,样品中某一元素的原子轨道上的电子吸收了光子的能量,使得该电子脱离原子的束缚,以一定的动能从原子内部发射出来,成为自由电子,而原子本身则变成处于激发态的离子,如图23-1所示。在光电离过程中,固体物质的结合能可用下面的方程式表示: E b=hγ- E k -φs(23-1) 式中: E k为射出的光子的动能;hγ为X射线源的能量;E b为特定原子轨道上电子的电离能或结合能(电子的结合能是指原子中某个轨道上的电子跃迁到表面Fermi能级(费米能级)所需要的能量);φs为谱仪的功函数。 由于φs是由谱仪的材料和状态决定,对同一台谱仪来说是一个常数,与样品无关,其平均值为3 eV ~4eV。因此,(1)式可简化为: E b =hγ- E k’ (23-2) 由于E k’可以用能谱仪的能量分析器检出,根据式(23-2)就可以知道E b。在XPS分析中,由于X射线源的能量较高,不仅能激发出原子轨道中的价电子,还可以激发出内层轨道电子,所射出光子的能量仅与入射光子的能量及原子轨道有关。因此,对于特定的单色激发光源及特定的原子轨道,其光电子的能量是特征性的。当固定激发光源能量时,其光子的能量仅与元素的种类和所电离激发的原子轨道有关,对于同一种元素的原子,不同轨道上的电子的结合能不同。所以可用光电子的结合能来确定元素种类。图23-1表示固体材料表面受X射线激发后的光电离过程[1]。

XRF分析技术原理

第一讲 X 射线荧光及其分析原理 1、X 射线 X 射线是一种电磁波,根据波粒二相性原理,X 射线也是一种粒子,其每个粒子根据下列公式可以找到其能量和波长的一一对应关系。 E =hv=h c/λ 式中h 为普朗克常数,v 为频率,c 为光速,λ为波长。 可见其能量在0.1 ~100(kev )之间。 γ X 紫 可 红 微 短 长 射 射 外 见 线 线 线 光 外 波 波 波 波长 X 射线的产生有几种 1、高速电子轰击物质,产生韧致辐射和标识辐射。其产生的韧致辐射的X 射线的能量取决于 电子的能量,是一个连续的分布。而标识辐射是一种能量只与其靶材有关的X 射线。 E kev A o ().() = 123964 λ

常见的X射线光管就是采用的这种原理。其X射线能量分布如下: 能量 2、同位素X射线源。 同位素在衰变过程中,其原子核释放的能量,被原子的内层电子吸收,吸收后跳出内层轨道,形成内层轨道空位。但由于内层轨道的能级很低,外层电子前来补充,由于外层电子的能量较高,跳到内层后,会释放出光能来,这种能就是X射线。这就是我们常见的同位素X射线源。由于电子的能级是量化的,故释放的射线的能量也是量化的,而不是连续的。

能量 3、同步辐射源。 电子在同步加速器中运动,作园周运动,有一个恒定的加速度,电子在加速运动时,会释放出X射线,所以用这种方法得到的X射线叫同步辐射X射线。 2、X射线荧光 实际上,有很多办法能产生X射线,例如用质子、α射线、λ射线等打在物质上,都可以产生X射线,而人们通常把X射线照射在物质上而产生的次级X射线叫X射线荧光(X—Ray Fluorescence),而把用来照射的X射线叫原级X射线。所以X射线荧光仍是X射线。 3、特征X射线 有人会问,为什么可以用X射线来分析物质的成分呢?这些都归功于特征X射线。 早在用电子轰击阳极靶而产生X射线时,人们就发现,有几个强度很高的X射线,其能量并没有随加速电子用的高压变化,而且不同元素的靶材,其特殊的X射线的能量也不一样,人们把它称为特征X射线,它是每种元素所特有的。莫塞莱(Moseley)发现了X射线能量与原子序数的关系。 E∝(z-σ) E是特征X射线能量,Z是原子序数,σ是修正因子。 这就是著名的莫塞莱定律,它开辟了X射线分析在元素分析中的应用。 为什么会有特征X射线的出现呢?这可以从玻尔的原子结构理论找到答案。原子中的电子都在一个个电子轨道上运行,而每个轨道的能量都是一定的,叫能级。内层轨道能级较低,外层轨道能级较高,当内层的电子受到激发(激发源可以是电子、质子、α粒子、λ射线、X射线等),有足够的能量跳出内层轨道,那么,较外层的电子跃迁到内层的轨道进行补充,由于是从高能级上跳往低能级上,所以会释放出能量,其能量以光的形式放出,这就是特征X射线。 M层 Lα较高能级

2021年X射线荧光分析的基本原理

X射线荧光分析的基本原理 欧阳光明(2021.03.07) 1. 绪论 物质是由各种元素按照不同的构成方式构成的。各种元素的原子是由原子核和一定数目的核外电子构成。不同元素的原子,原子核中质子和中子的数量不同,核外电子数也不同,具有不同的原子结构。核外电子的能量也各不相同,这些能量不同的原子按能量大小分层排列,离原子核最近的电子层称为K电子层,其外依次为L,M,N,O…层。K层上的电子能量最低,由里向外,电子的能量逐渐升高。原子在未接受足够的能量时,处于基态,即稳定状态,此时,K层最多容纳2个电子,L层最多容纳8个电子,M层最多容纳18个电子……。当使用高能射线(如X射线)照射物质时,物质中的原子的内层电子被高能射线逐出原子之外,在内层电子层上即出现一个“空穴”。具有较高能量的外层电子立即补充这一“空穴”而发生跃迁。发生跃迁的电子将多余的能量(两个电子层能量之差)释放出来。释放出来的能量以电磁波的形式向四周发射,其波长恰好在X射线的波长范围内(0.001~10nm)。为了与照射物质的X射线(初级X射线)相区别,将被照射物质发出的X射线(二次X射线)称为荧光X射线(荧光即光致发光之意)。对于K 层电子而言,L层电子向K层电子跃迁时放射出的荧光X射线称为Kα谱线,M层电子向K层电子跃迁时放射出的荧光X射线称为Kβ谱线,其他层的电子发生跃迁时的情况依此类推(如图 1.1所示)。利用被测物质发出的荧光X射线进行物质化学成分的定性分析或定量分析,称为X射线荧光光谱分析。 图1.1原子结构示意图 在形成的线系中,各谱线的相对强度是不同的,这是由于跃迁几率不同。对K层电子而言,特定元素的荧光X射线Kα>Kβ,对于同一种元素而言,强谱线只有1-2条,特征谱线比较简单,易于分析,光谱干扰小。 2. X射线与固体之间的相互作用

X射线光电子能谱(XPS)谱图分析

一、X光电子能谱分析的基本原理 X光电子能谱分析的基本原理:一定能量的X光照射到样品表面,和待测物质 发生作用,可以使待测物质原子中的电子脱离原子成为自由电子。该过程可用 下式表示: hn=Ek+Eb+Er (1) 其中:hn:X光子的能量;Ek:光电子的能量;Eb:电子的结合能;Er:原子的 反冲能量。其中Er很小,可以忽略。 对于固体样品,计算结合能的参考点不是选真空中的静止电子,而是选用费米 能级,由内层电子跃迁到费米能级消耗的能量为结合能Eb,由费米能级进入真 空成为自由电子所需的能量为功函数Φ,剩余的能量成为自由电子的动能Ek,式(1)又可表示为: hn=Ek+Eb+Φ(2) Eb=hn-Ek-Φ(3)仪器材料的功函数Φ是一个定值,约为 4 eV,入射X光子能量已知,这样, 如果测出电子的动能Ek,便可得到固体样品电子的结合能。各种原子,分子的 轨道电子结合能是一定的。因此,通过对样品产生的光子能量的测定,就可以 了解样品中元素的组成。元素所处的化学环境不同,其结合能会有微小的差别,这种由化学环境不同引起的结合能的微小差别叫化学位移,由化学位移的大小 可以确定元素所处的状态。例如某元素失去电子成为离子后,其结合能会增加,如果得到电子成为负离子,则结合能会降低。因此,利用化学位移值可以分析 元素的化合价和存在形式。 二、电子能谱法的特点 (1)可以分析除H和He以外的所有元素;可以直接测定来自样品单个能级光电 发射电子的能量分布,且直接得到电子能级结构的信息。(2)从能量范围看,如果把红外光谱提供的信息称之为“分子指纹”,那么电子能谱提供的信息可称 作“原子指纹”。它提供有关化学键方面的信息,即直接测量价层电子及内层 电子轨道能级。而相邻元素的同种能级的谱线相隔较远,相互干扰少,元素定 性的标识性强。 (3)是一种无损分析。 (4)是一种高灵敏超微量表面分析技术,分析所需试样约10-8g即可,绝对灵敏

案例解析X射线光电子能谱(XPS)八大应用!

【干货】玩转XPS丨案例解析X射线光电子能谱(XPS)八大应用! 表面分析技术 (Surface Analysis)是对材料外层(the Outer-Most Layers of Materials (<100nm))的研究的技术。 X射线光电子能谱简单介绍 XPS是由瑞典Uppsala大学的K. Siegbahn及其同事历经近20年的潜心研究于60年代中期研制开发出的一种新型表面分析仪器和方法。鉴于K. Siegbahn教授对发展XPS领域做出的重大贡献,他被授予1981年诺贝尔物理学奖。 X射线激发光电子的原理 XPS现象基于爱因斯坦于1905年揭示的光电效应,爱因斯坦由于这方面的工作被授予1921年诺贝尔物理学奖; X射线是由德国物理学家伦琴(Wilhelm Conrad R?ntgen,l845-1923)于1895年发现的,他由此获得了1901年首届诺贝尔物理学奖。

X射线光电子能谱(XPS ,全称为X-ray Photoelectron Spectroscopy)是一种基于光电效应的电子能谱,它是利用X射线光子激发出物质表面原子的内层电子,通过对这些电子进行能量分析而获得的一种能谱。 这种能谱最初是被用来进行化学分析,因此它还有一个名称,即化学分析电子能谱(ESCA,全称为Electron Spectroscopy for Chemical Analysis)。XPS谱图分析中原子能级表示方法 XPS谱图分析中原子能级的表示用两个数字和一个小字母表示。例如:3d5/2(1)第一个数字3代表主量子数(n); (2)小写字母代表角量子数; (3)右下角的分数代表内量子数j

X射线能谱分析

X射线能谱分析简介 导言: 早在二十世纪年代中期就开始了X射线能谱分析课题的研究。例如,Parrish和Kohler(1956)曾指出用分解正比计数器脉冲高度谱的方法进行X射线能量分析的可能性。后来Dolby(1959、1960)发展了这种方法并且获得了Be、C、O等超轻元素的扫描X射线图像。同年,Duncumb提出一种用纯元素的标准谱拟合实际谱进行分析的方法。而Birks等人用正比计数器和一台400道多道分析器配合,在电子探针中首次进行了能谱分析。到了1968年,Fitzgerald、Keil和Heinrich等人开始把锂漂移硅探测器用到了电子探针中。 由于锂漂移硅探测器有一些独到的优点,得到了有关专家的广泛重视。在1963年和1970年,美国材料试验学会先后两次就能谱分析技术进行了专门的讨论,促进了能谱技术的发展。例如,在1966年,锂漂移硅探测器的能量分辨率还只能达到约800eV,但是到了1970年,就迅速提高到约150eV。探测器分辨率的提高,反过来促进了能谱分析方法及其相关技术的迅速发展。 目前,能谱分析系统已成为电子探针和扫描电镜/透射电镜微区分析的一项标准设备,同时与其相关的波谱分析、电子被散射衍射等有机结合,愈来愈成为微区分析中不可或缺的分析手段。 锂漂移硅探测器简述: 能谱分析系统的心脏是一只硅晶体二极管,它是由一块p型硅晶片经锂(向硅中)扩散和飘移后制成的,因此称为锂漂移硅探测器

(Lithium Drifted Silicon Detector),通常缩写为Si(Li)探测器。 我们知道硅是一种典型的半导体材料。硅晶体的结晶结构与金刚石结构相同,即为面心立方体结构,每个晶胞含有两个硅原子,每个硅原子有四个价电子(两个3s电子,两个3p电子)。在晶体中,每个原子与相邻四个原子构成四条共价键。根据能带理论,四个价电子形成四个能带,由于每个格点上有8个价电子,因此,如果格点数为N,则四个能带上将填满8N个电子,这种能带称为满带。满带的上方有一个能隙,称为禁带,禁带中不可能有任何电子,或者说,不可能存在其能量相当于禁带能量的电子。在禁带上面有很多可能的能带-----导带。在纯净而完整的晶体中,导带中没有电子,因此呈绝缘体特性。但是,即使纯度非常高的硅单晶,仍有极少量的杂质存在,而且难免有些晶格缺陷,加上硅的禁带宽度较小(~1.1eV),在热骚动下可能有极少量的电子进入导带,因此硅晶体有一定程度的导电性。温度愈高,由于热骚动而进入导带的电子愈多,晶体的导电性就愈强,因而使硅晶体成为一种典型的半导体。 半导体的导电率取决于杂质的类型和含量。杂质的作用是这样的:假如有一种五价杂质(P,As等)参入硅中,它将取代硅原子的位置,用四个价电子与相邻的四个硅原子结合而维持原来的四条共价键,并把多余的一个电子释放出去,被释放的电子很可能进入导带,使晶体呈电子性导电,这种晶体就称为n型半导体。如果掺入的杂质是三价原子,那么这些杂质将会俘获满带中的电子而使满带中出现空穴,从而使晶体成为p型半导体。在硅中常见的一种杂质是硼(B),它的

X射线衍射的基本原理

三.X 射线衍射的基本原理 3.1 Bragg 公式 晶体的空间点阵可划分为一族平行而等间距的平面点阵,两相邻点阵平面的间距为d hkl 。晶体的外形中每个晶面都和一族平面点阵平行。 当X 射线照射到晶体上时,每个平面点阵都对X 射线射产生散射。取晶体中任一相邻晶面P 1和P 2,如图3.1所示。两晶面的间距为d ,当入射X 射线照射到此晶面上时,入射角为θ,散射X 射线的散射角也同样是θ。这两个晶面产生的光程差是: θsin 2d OB AO =+=? 3.1 当光程差为波长λ 的整数倍时,散射的X 射线将相互加强,即衍射: λθn d hkl =sin 2 3.2 上式就是著名的Bragg 公式。也就是说,X 射线照射到晶体上,当满足Bragg 公式就产生衍射。式中:n 为任意正整数,称为衍射级数。入射X 射线的延长线与衍射X 射线的夹角为2θ(衍射角)。为此,在X 射线衍射的谱图上,横坐标都用2θ 表示。 图3.1 晶体对X 射线的衍射 由Bragg 公式表明:d hkl 与θ 成反比关系,晶面间距越大,衍射角越小。晶面间距的变化直接反映了晶胞的尺寸和形状。每一种结晶物质,都有其特定的结构参数,包括点阵类型、晶胞大小等。晶体的衍射峰的数目、位置和强度,如同人的指纹一样,是每种物质的特征。尽管物质的种类有成千上万,但几乎没有两种衍射谱图完全相同的物质,由此可以对物质进行物相的定性分析。

3.2 物相分析 物相的定义是物质存在的状态,如同素异构体SiO2、TiO2分别有22种和5种晶体结构。除了单质元素构成的物质如铜、银等以外,X射线衍射分析的是物相(或化合物),而不是元素成分。 对于未知试样,为了了解和确定哪些物相时,需要定性的物相分析。 正如前述,晶体粉末衍射谱图,如人的指纹一样,有它本身晶体结构特征所决定。因而,国际上有一个组织——粉末衍射标准联合会(JCPDS)后改名为JCPDS-衍射数据国际中心专门负责收集、校订、编辑和发行粉末衍射卡片(PDF)的工作。自1941年以来,共发行衍射卡片近20万个。为了使大量的卡片方便进行人工物相鉴定,还出版了对这些卡片进行检索的索引。PDF卡片的标准形式如图3.2所示,对应此图编号的内容说明如表3.1所示。 图 图3.2 PDF卡片的标准形式 每一张卡片上不一定包括表3.1所述的所有内容,但有效数据都将一一列出。 物相分析的方法就是将未知试样与标准卡片上数据进行对比,由此来确定物相。先测试未知试样,然后按图3.3所示的步骤从PDF索引中查找。找出该物相的卡片号后,按卡片号查该物相的卡片,仔细核对后再判定该物相。

(完整word版)X射线能谱仪工作原理及谱图解析1X射线能谱仪分析原理X射线能谱

X射线能谱仪工作原理及谱图解析 1、X射线能谱仪分析原理 X射线能谱仪作为扫描电镜的一个重要附件,可被看成是扫描电镜X射线 信号检测器。其主要对扫描电镜的微区成分进行定性、定量分析,可以分析元素周期表中从B-U的所有元素信息。其原理为:扫描电镜电子枪发出的高能电子进入样品后,受到样品原子的非弹性散射,将能量传递给该原子。该原子内壳层的电子被电离并脱离,内壳层上出现一个空位,原子处于不稳定的高能激发态。在激发后的10-12s内原子便恢复到最低能量的基态。在这个过程中,一系列外层 电子向内壳层的空位跃迁,同时产生X射线,释放出多余的能量。对任一原子而言,各个能级之间的能量差都是确定的,因此各种原子受激发而产生的X射线的能量也都是确定的(图1)。 X射线能谱仪收集X射线,并根据其能量对其记数、分类,从而对元素进 行定性、定量分析。 图1. 粒子间相互作用产生特征X射线 本所能谱仪型号为:BRUKER X-Flash 5010,有四种检测模式:点扫描,区域扫描,线扫描,面扫描。 2、能谱仪检测模式介绍及参数解读 2.1 点扫描及区域扫描模式

图2 X射线能谱仪点扫描(A)、选区扫描(B)报告 点扫描与选区扫描主要用于对元素进行定性和定量分析,确定选定的点或区域范围内存在的所有元素种类,并对各种元素的相对含量进行计算。能谱检测对倍数要求不高,不同倍数条件下检测结果差异不大,关键在于选取检测的部位。一般选择较大的块体在5000倍以下检测,因为X射线出射深度较深,除金属或陶瓷等非常致密的材料外,一般的块体在20kV加速电压下,X射线出射深度2μm左右,且点扫描的范围也在直径2μm左右。因此块体太小或倍数过大,都会造成背景严重,测量准确度下降。 此外,最好选择比较平整的区域检测,因为电子打在坑坑洼洼的样品表面,X射线出射深度差别较大,定量信息不够准确。特别低洼的区域,几乎检测不到信号,或信号很弱,得到的结果也便不准确。 第三,电子束与轻元素相会作用区域较大,干扰更强,因此轻元素的定量比重元素更加不准确。如C、N等元素,定量结果可能偏差较大。 点扫描与区域扫描测试报告相似,均由三部分组成,一张样品表面形貌照片,

X射线衍射分析原理及其应用

X射线衍射分析 摘要: X射线衍射分析是一种重要的晶体结构和物相分析技术,广泛应用于冶金、石油、化工、科研、航空航天、教学、材料生产等领域。本文简要介绍X射线衍射原理,X射线衍射仪器的结构、原理,及其在地质学、医学等自然科学领域中的应用。 前言: 1895年伦琴发现X射线,又称伦琴射线。德国科学家劳厄于1912年发现

了X射线衍射现象,并推导出劳厄晶体衍射公式。随后,英国布拉格父子又将此衍射关系用简单的布拉格方程表示出来。到上世纪四、五十年代,X射线衍射的原理、方法及在其他各方面的应用逐渐建立。在各种测量方法中,X射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点。X射线衍射技术可以探究晶体存在的普遍性和特殊性能,使得其在冶金、石油、岩石矿物、科研、航空航天、材料生产等领域的被广泛应用。 关键词:方法,衍射,原理,应用 X射线衍射仪的原理 1.X射线衍射原理 当X射线沿某方向入射某一晶体的时候,晶体中每个原子的核外电子产生的相干波彼此发生干涉。当每两个相邻波源在某一方向的光程差等于波长λ的整数倍时,它们的波峰与波峰将互相叠加而得到最大限度的加强,这种波的加强叫做衍射,相应的方向叫做衍射方向,在衍射方向前进的波叫做衍射波。光程差为0的衍射叫零级衍射,光程差为λ的衍射叫一级衍射,光程差为nλ的衍射叫n级衍射。n不同,衍射方向的也不同。 由于常用的X射线波长约在2.5A~0.5A之间,与晶体中的原子间距(1A)数量级相同,因此可以用晶体作为X射线的衍射光栅,这就使得用X射线衍射进行晶体结构分析成为可能。 在晶体的点阵结构中,具有周期性排列的原子或电子散射的次生X射线间相互干涉的结果,决定了X射线在晶体中衍射的方向,所以通过对衍射方向的测定,可以得到晶体的点阵结构、晶胞大小和形状等信息。 晶体结构=点阵+结构基元,点阵又包括直线点阵,平面点阵和空间点阵。在x 射线作用下晶体的散射线来自若干层原子面,除同一层原子面的散射线互相干涉外,各原子面的散射线之间还要互相干涉。 光栅衍射 当光程差(BD+BF)=2dsinθ等于波长的整数倍nλ时,相邻原子面散射波干涉加强,即干涉加强条件为: 2dsinθ=nλ 一、X射线衍射法

X射线的基本原理

第一章 第一讲 X 射线荧光及其分析原理 1、X 射线 X 射线是一种电磁波,根据波粒二相性原理,X 射线也是一种粒子,其每个粒子根据下列公式可以找到其能量和波长的一一对应关系。 E =hv=h c/λ 式中h 为普朗克常数,v 为频率,c 为光速,λ为波长。 可见其能量在0.1 ~100(kev )之间。 γ X 紫 可 红 微 短 长 射 射 外 见 线 线 线 光 外 波 波 波 波长 X 射线的产生有几种 1、高速电子轰击物质,产生韧致辐射和标识辐射。其产生的韧致辐射的X 射线的能量取决于 电子的能量,是一个连续的分布。而标识辐射是一种能量只与其靶材有关的X 射线。 常见的X 射线光管就是采用的这种原理。其X 射线能量分布如下: E kev A o ().() = 123964 λ

能量 2、同位素X射线源。 同位素在衰变过程中,其原子核释放的能量,被原子的内层电子吸收,吸收后跳出内层轨道,形成内层轨道空位。但由于内层轨道的能级很低,外层电子前来补充,由于外层电子的能量较高,跳到内层后,会释放出光能来,这种能就是X射线。这就是我们常见的同位素X射线源。由于电子的能级是量化的,故释放的射线的能量也是量化的,而不是连续的。 能量 3、同步辐射源。 电子在同步加速器中运动,作园周运动,有一个恒定的加速度,电子在加速运动时,会释放出X射线,所以用这种方法得到的X射线叫同步辐射X射线。 2、X射线荧光 实际上,有很多办法能产生X射线,例如用质子、α射线、λ射线等打在物质上,都可以产生X射线,而人们通常把X射线照射在物质上而产生的次级X射线叫X射线荧光(X—Ray Fluorescence),而把用来照射的X射线叫原级X射线。所以X射线荧光仍是X射线。 3、特征X射线 有人会问,为什么可以用X射线来分析物质的成分呢?这些都归功于特征X射线。 早在用电子轰击阳极靶而产生X射线时,人们就发现,有几个强度很高的X射线,其能量并没有随加速电子用的高压变化,而且不同元素的靶材,其特殊的X射线的能量也不一样,人们把它称为特征X射线,它是每种元素所特有的。莫塞莱(Moseley)发现了X射线能量与原子序数的关系。 E∝(z-σ)"

X射线衍射分析

X射线衍射分析 1 实验目的 1、了解X衍射的基本原理以及粉末X衍射测试的基本目的; 2、掌握晶体和非晶体、单晶和多晶的区别; 3、了解使用相关软件处理XRD测试结果的基本方法。 2 实验原理 1、晶体化学基本概念 晶体的基本特点与概念:①质点(结构单元)沿三维空间周期性排列(晶体定义),并有对称性。②空间点阵:实际晶体中的几何点,其所处几何环境和物质环境均同,这些“点集”称空间点阵。 ③晶体结构=空间点阵+结构单元。非晶部分主要为无定形态区域,其内部原子不形成排列整齐有规律的晶格。 对于大多数晶体化合物来说,其晶体在冷却结晶过程中受环境应力或晶核数目、成核方式等条件的影响,晶格易发生畸变。分子链段的排列与缠绕受结晶条件的影响易发生改变。晶体的形成过程可分为以下几步:初级成核、分子链段的 图1 14种Bravais 点阵 表面延伸、链 松弛、链的重吸收 页脚内容1

结晶、表面成核、分子间成核、晶体生长、晶体生长完善。Bravais提出了点阵空间这一概念,将其解释为点阵中选取能反映空间点阵周期性与对称性的单胞,并要求单胞相等棱与角数最多。满足上述条件棱间直角最多,同时体积最小。1848年Bravais证明只有14种点阵。 晶体内分子的排列方式使晶体具有不同的晶型。通常在结晶完成后的晶体中,不止含有一种晶型的晶体,因此为多晶化合物。反之,若严格控制结晶条件可得单一晶型的晶体,则为单晶。 2、X衍射的测试基本目的与原理 X射线是电磁波,入射晶体时基于晶体结构的周期性,晶体中各个电子的散射波可相互干涉。散射波周相一致相互加强的方向称衍射方向。衍射方向取决于晶体的周期或晶胞的大小,衍射强度是由晶胞中各个原子及其位置决定的。由倒易点阵概念导入X射线衍射理论, 倒易点落在Ewald 球上是产生衍射必要条件。 1912年劳埃等人根据理论预见,并用实验证实了X射线与晶体相遇时能发生衍射现象,证明了X射线具有电磁波的性质,成为X射线衍射学的第一个里程碑。当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关。这就是X射线衍射的基本原理。衍射线空间方位与晶体结构的关系可用布拉格方程表示: θn λ d= 2 sin 式中d为晶面间距;n为反射级数;θ为掠射角;λ为X射线的波长。布拉格方程是X射线衍射分析的根本依据。 X 射线衍射(XRD)是所有物质,包括从流体、粉末到完整晶体,重要的无损分析工具。对材料学、物理学、化学、地质、环境、纳米材料、生物等领域来说,X射线衍射仪都是物质结构表征,以性能为导向研制与开发新材料,宏观表象转移至微观认识,建立新理论和质量控制不可缺少的方法。其主要分 页脚内容2

相关主题
文本预览
相关文档 最新文档