当前位置:文档之家› 氧化应激与衰老研究进展_原慧萍

氧化应激与衰老研究进展_原慧萍

氧化应激与衰老研究进展_原慧萍
氧化应激与衰老研究进展_原慧萍

细胞氧化应激基本概念讲解

1、细胞氧化 细胞生命活动过程中所需的能量约有95%是来自于线粒体,其来源是将细胞内的供能物质氧化、分解、释放能量,并排出CO2和H2O,这一过程称之为细胞氧化(cellular oxidation),又称细胞呼吸(cellular respiration)。其基本步骤有:糖酵乙酰辅酶A(CoA)的形成、进行三羧酸循环及电子传递和化学渗透偶联磷酸化作用。酶能使细胞的氧化过程在此比较低的温度下进行,并释放出仅仅使细胞能够扑获和储存的能量。这个受生物学控制的氧化结果起初就和简单的燃烧现象一样:复杂的分子被降解为水,二氧化碳,并释放能量。这个过程中一些经过交换的电子永久地逃离细胞的呼吸或从呼吸中心遗漏掉并同周围的氧分子相互作用,产生有毒性氧分子—自由基。在细胞呼吸的过程中,估计有2-5%的电子转化为过氧化物分子和其他类型的氧化自由基,自由基的持续增加就对机体组织造成大量的氧化压力。自由基被认为与大约60种(而且至少是60种)疾病的发生有关,科学有证据证实,抗氧化剂能停止甚至逆转(在某些疾病中)由于自由基所导致的损伤。自由基与机体细胞发生作用后,给机体留下了毁灭性的灾难。在细胞膜上留下了许多微笑的孔洞,使细胞的分子结构发生改变,破坏了细胞的蛋白和脂类分子。一旦我们机体细胞内有足够的抗氧化剂储备,我们就能将自由基对机体的损伤程度降到最低。 2、OS 氧化应激(Oxidative Stress,OS)是指体内氧化与抗氧化作用失衡,倾向于氧化,导致中性粒细胞炎性浸润,蛋白酶分泌增加,产生大量氧化中间产物。氧化应激是由自由基在体内产生的一种负面作用,并被认为是导致衰老和疾病的一个重要因素。指机体在内外环境有害刺激的条件下,体内产生活性氧自由基(Reactive Oxygen Species,ROS)和活性氮自由基(Reactive Ntrogen Species,RNS)所引起的细胞和组织的生理和病理反应。ROS有超氧阴离子(.O2-)、羟自由基(.OH-)和过氧化氢(H2O2)等等;RNS有一氧化氮(NO)、二氧化碳(CO2)和过氧亚硝酸盐(.ONOO-)等等。由于它们可以直接或间接氧化或损伤DNA、蛋白质和脂质,可诱发基因的突变、蛋白质变性和脂质过氧化,被认为是人体衰老和各种重要疾病如肿瘤、心脑血管疾病、神经退行性疾病(老年痴呆)、糖尿病-最重要的危氧化应激和抗氧化不单纯是一种生化反应,它更有着极其复杂的细胞和分子机制,包括膜氧化、线粒体代谢、内质网应激、核的重构、DNA损伤修复、基因转录表达、泛素和泛素化、自吞和溶酶体、细胞外基质、信号传递、蛋白折叠等多重的细胞和分子改变。 3、ROS 需氧细胞在代谢过程中产生一系列活性氧簇( reactive oxygen species, ROS),包括:O2 -·、H2O2 及HO2·、·OH 等。 4、细胞凋亡 细胞凋亡(apoptosis )是维持正常组织形态和一定功能的主动自杀过程,是在基因控制下按照一定程序进行的细胞死亡,故又称为程序性细胞死亡( PCD ) 5、SOD 超氧化物歧化酶Orgotein (Superoxide Dismutase, SOD),别名肝蛋白、奥谷蛋白,简称:SOD。SOD 是一种源于生命体的活性物质,能消除生物体在新陈代谢过程中产生的有害物质。对人体不断地补充SOD 具有抗衰老的特殊效果。是生物体内重要的抗氧化酶,广泛分布于各种生物体内,如动物,植物,微生物等。SOD具有特殊的生理活性,是生物体内清除自由基的首要物质。SOD在生物体内的水平高低意味着衰老与死亡的直观指标;现已证实,由氧自由基引发的疾病多达60多种。它可对抗与阻断因氧自由基对细胞造成的损害,并及时修复受损细胞,复原因自由基造成的对细胞伤害。

氧化应激与心肌

氧化应激与心肌 1957年美国克里夫兰临床中心,首先将大隐静脉搭桥术应用于冠心病病人,此后冠状动脉粥样硬化性心脏病血运重建治疗快速发展。冠状动脉溶栓术、经皮冠状动脉成形术、冠状动脉支架植入术、冠状动脉旁路手术已成为挽救缺血心肌的重要治疗方式。但血流恢复本身也会引起显著的损伤,部分患者在血供恢复后,出现细胞超微结构变化、细胞代谢障碍、细胞内外环境改变,导致缺血再灌注损伤(ischemia/reperfusion-associated tissue injury,IRI),临床表现为心律失常、心力衰竭等。IRI也出现在心脏手术、心脏移植、心肺复苏等临床情况后。目前研究表明细胞IRI的机制主要包括:氧自由基含量增多、细胞内钙超载、线粒体膜去极化等。氧化还原失衡是IRI发生的重要起始因素,但其机制和细胞中存在的保护机制尚不完全明确,本文重点对氧化应激与心肌IRI的研究进展做一综述。 1.氧化应激和ROS 氧化应激(oxidative stress,OS)主要是由于内源性和(或)外源性刺激引起机体代谢异常而骤然产生大量活性氧簇(ROS)。ROS是指在外层电子轨道含有一个或多个不配对电子的原子、原子团或分子,包括超氧阴离子(O2- ·)、过氧化氢(H2O2)、过氧亚硝酸盐(ONOO-)和羟基自由基(·OH)。ROS作为第二信使介导了许多生理性与病理性细胞事件,包括细胞分化、过度生长、增殖及凋亡。超氧化物歧化酶、谷胱甘肽过氧化物酶和过氧化氢酶作为体内清除自由基的重要物质,在维持体内氧化还原平衡方面发挥重要的作用。但在IRI过程中,参与合成ROS的酶体系增多,且活性更强,如NADPH氧化酶、线粒体黄素酶、黄嘌呤氧化酶、未偶联的一氧化氮合酶、细胞色素P450、脂氧合酶、环氧合酶和过氧化物酶体,ROS的生成量明显高于细胞内的清除能力,导致氧化还原失衡。ROS虽然半衰期很短,但具有极强的氧化活性,与细胞内脂质、蛋白质、核酸等生物大分子发生过氧化反应,造成细胞结构损伤和代谢障碍。 2.ROS的主要来源 NADPH氧化酶是细胞内ROS的最主要来源,是由催化亚基gp91phox或其同系物,即非吞噬细胞氧化酶1~4(NOX1~4) 、双功能氧化酶1~2(Duox1~2) ,跨膜亚基p22phox,胞浆亚基p47phox、p67phox等蛋白分子共同组成的多亚基蛋白复合体。NOX家族蛋白亚型与跨膜亚基、胞浆亚基结合并组装成有活性的复合体后发挥其生物学功能。活化的NADPH氧化酶复合物与NADPH结合并释放2个电子,通过黄素腺嘌呤二核苷(FAD)传递给亚铁血红素,与细胞膜的外侧的2个氧分子结合生成O2-,最后生成H2O2、过氧化硝酸盐(ONOO-) 、羟基团(-OH) 及其它基团[1,2]。NOX源性的ROS在维持机体稳态中是把双刃剑,NOX源性ROS 一方面在氧化还原信号通路中起到了第二信使作用,参与多种细胞生理功能;另一方面,在高血压、动脉粥样硬化以及心肌IRI的病程中发挥了重要作用,因此单一抑制NOX活性对治疗心肌IRI并不是最好的选择。Vincent等[3]研究发现在30分钟缺血-24小时再灌注小鼠模型中,NOX4基因敲除组与NOX1和NOX2敲除组相比,表现出更大面积的心肌梗死,提示内源性NOX4 在H/R损伤中可能发挥着心肌细胞保护作用。 黄嘌呤氧化酶(XO)是IRI中ROS产生的另一重要来源,与合成抗氧化剂尿酸的黄嘌呤还原酶(XDH)作用相反。XDH/XO活力受细胞因子、细胞内化学物质及激素的调节。细胞缺血时XO活力升高,并且A TP分解产物次黄嘌呤积聚,再灌注时O2大量介入,次黄嘌呤和氧在XO作用下反应生成O2- ·和H2O2。有研究指出,XO不仅通过合成ROS参与心肌缺血再灌注损伤,XO本身可以与白细胞产生相互作用,造成微循环阻塞,导致再灌注的无复流现象。此外,XO可以直接损伤血管内皮细胞(EC)或通过ROS间接损害EC,影响心肌血流再灌注[4]。 3.ROS与细胞损伤

炎症和氧化应激

炎症和氧化应激 炎症可以引起氧化应激,氧化应激也可以引起炎症。首先我们要清楚一些概念。如:炎症、炎症细胞。 炎症细胞指炎症反应时参与炎症反应、浸润炎症组织局部的细胞。如巨噬细胞、淋巴细胞、中性粒细胞和嗜酸性粒细胞以及参与炎症反应的血小板和内皮细胞等。 一、炎症定义:炎症是机体对各种物理、化学、生物等有害刺激所产生的一种以防御为主的病理反应,是一种具有血管系统的活体组织对损伤因子的防御性反应。血管反应是炎症过程的中心环节。在炎症过程中,一方面损伤因子直接或间接造成组织和细胞的破坏,另一方面通过炎症充血和渗出反应,以稀释、杀伤和包围损伤因子。同时通过实质和间质细胞的再生使受损的组织得以修复和愈合。因此可以说炎症是损伤和抗损伤的统一过程。炎症以局部血管为中心,典型特征是红、肿、热、痛和功能障碍,炎症可参与清除异物和修补组织等。(一)根据持续时间不同分为急性和慢性。急性炎症以发红、肿胀、疼痛等为主要征候,即以血管系统的反应为主所构成的炎症。局部血管扩张,血液缓慢,血浆及中性白细胞等血液成分渗出到组织内,渗出主要是以静脉为中心,但象蛋白质等高分子物质的渗出仅仅用血管内外的压差和胶体渗透压的压差是不能予以说明的,这里能够增强血管透性的种种物质的作用受到重视。这种物质主要有:(1)组织胺、5-羟色胺等胺类物质可导致炎症刺激后所出现的即时反应。(2)以舒缓激肽(bradykinin)、赖氨酰舒缓激肽(kallidin)、甲硫氨酰-赖氨酰-舒缓激肽(methio-nyl-lysyl-bradykinin)为代表的多肽类。其共同的特征是可使血管透性亢进、平滑肌收缩、血管扩张,促进白细胞游走。(3)血纤维溶解酶(plasmin)、激肽释放酶(kallikrein)、球蛋白透性因子(globulin-PF)等蛋白酶(protease),其本身并不能成为血管透性的作用物质。但可使激肽原(kininoge)变为激肽(kinin)而发挥作用。然而上述这些物质作用于血管的那个部位以及作用机制多属不明。在组织学上可以看到发生急性炎症时出现的血管渗出反应和修复过程混杂在一起的反应。并可见有巨噬细胞、淋巴细胞、浆细胞的浸润和成纤维细胞的增生。 (二)从炎症的主要的组织变化可分类如下:(1)变质性炎症。(2)渗出性炎症(浆液性炎、纤维素性炎、化脓性炎、出血性炎、坏死性炎、卡他性炎)。(3)增生性炎症。(4)特异性炎症。 二、炎症的成因:(一)感染性:细菌毒素病毒等病原微生物感染,如呼吸道、消化道感染,创面感染等。严重的如胸腔内、腹腔内感染、胆道感染等。 (1)被病原体入侵所激活的中性粒细胞在吞噬活动时耗氧量增加,其摄入O2的70-90%在NADPH氧化酶和NADH氧化酶的催化下接受电子形成氧自由基,用于杀灭病原微生物。氧化应激引起高凝状态组织缺血激活补体系统,或产生多种具有趋化活性的物质,如C3片段、白三烯等,吸引、激活中性粒细胞。再灌注期组织重新获得O2供应,氧自由基爆发。 (2)病原体入侵机体后,机体处于应激状态,如《伤寒论》:“太阳之为病,脉浮、头项强痛而恶寒”脉浮,是由交感兴奋引起,儿茶酚胺增加释放,由于儿茶酚胺的自氧化,可以产生大量的氧自由基,氧化应激造成高凝状态使组织缺血,激活补体系统,或产生多种具有趋化活性的物质,如C3片段、白三烯等,吸引、激活中性粒细胞。再灌注期组织重新获

动物热应激的生理变化机制

文献综述题目:动物热应激的生理变化机制

动物热应激的生理变化机制 摘要:随着畜牧业产业化和集约化的逐步深入畜禽应激方面的研究已成为动物研究领域中的一个热点,有关动物应激机理的研究则更加引人注目。因此只有彻底弄清楚HSPs的调控机制才有可能了解应激的作用本质,为应激的研究提供参考,从而为动物生产中的应激监测系统提供科学依据。 热应激蛋白(heat shock proteins HSPs)是动物在不良因素作用下所产生的一组特异性蛋白质,任何应激均可诱导机体的HSPs合成增加,它能使动物迅速适应环境变化,保护机体不受或少受损害。HSPs作为应激的调控蛋白对阐明动物的应激机理有着非常重要的作用。 热应激反应的最大特点是在应激蛋白(heat shock proteins HSPs)合成增加,而正常蛋白质的合成则受到抑制。从而对机体的生长代谢、免疫功能等造成影响。文章综述畜禽热应激发生机制的国内外研究现状,运用系统动物营养学的思维方法,从动态和整体的角度探讨畜禽热应激生理变化规律。 关键词:畜禽;热应激;生理变化;系统动物营养学 热应激是指动物机体处于高温环境中所做出的非特异性生理反映的总和。随着集约化高密度饲养方式的迅速发展,热应激对畜禽生产造成的危害越来越受到人们的关注。大量研究显示,热应激严重影响机体呼吸、循环、消化、免疫和内分泌等系统的功能,使机体新陈代谢发生改变。但有关畜禽热应激发生发展规律的研究多从静态和局部的角度出发,少有以机体整体为研究对象,动态的研究热应激发生发展规律的报道。文章运用系统动物营养学的思维方法,以众多学者的研究成果为基础,从动态和整体的角度探讨畜禽热应激生理变化规律。 1.畜禽热应激生理变化规律探讨 在大量的试验研究中,对温热环境强度量化和统一的困难,可能也是造成各试验结论不一致甚至相悖的原因之一。能量代谢与物质代谢是机体新陈代谢的2个方面,热刺激下机体散热受阻导致能量代谢失衡,引起物质代谢失衡,机体便做出一系列反映来维持新陈代谢的动态平衡。运动着的事物都有一个发生、变化和发展的过程,因此可推测机体对热应激的调节同样有一个发生、变化和发展的过程。 1.1开始阶段 只有能量代谢平衡受到破坏。当温热环境最开始作用于机体时,抑制了机体的散热,在很短时间内(也许是数十分钟到数小时)无法散发的热量在体内蓄积,引起体温的细微变化,作用于体内的温度感受器(如颈动脉窦的温度感受器)感受器发出神经冲动,与体表神经末梢由于温热刺激而产生的神经冲动一同传至中枢神经;中枢首先从行为调节与加强机体散热上做出反映,机体表现出一系列有利于散热的行为与生理变化,如静止、伸展四肢及轻微喘息等[1]。正如Zhou和Yamamoto(1997)的研究表明,温度升高使肉鸡呼吸频率升高,此时机体的物质代谢平衡没有受到影响。

动物氧化应激研究进展

动物氧化应激研究进展 中国农业科学院饲料研究所姚浪群 北京爱绿生物科技有限公司胡红军 随着我国畜牧业特别是现代养殖业集约化程度的提高以及人们对动物福利意识的增强,动物应激医学已成为动物医学的重要组成部分。在动物应激医学研究中,动物氧化应激又逐渐成为国内外学者的热点研究课题。 1 氧化应激概念与起因 1.1 氧化应激概念 动物在正常生理代谢过程中,会产生许多自由基,这些自由基通常不会导致组织细胞的损伤,机体依靠自身体内的抗氧化防御体系,主要包括抗氧化酶类(包括超氧化物歧化酶SOD、过氧化氢酶CAT、谷胱甘肽过氧化物酶GSH-Px、谷胱甘肽硫转酶GST等)以及非酶类的抗氧化剂(包括维生素C、维生素E、谷胱甘肽、褪黑素、a-硫辛酸、类胡萝卜素、微量元素铜、锌、硒等),可以保护机体组织和细胞防止自由基的损伤。当动物机体细胞内产生的自由基的水平高于细胞的抗氧化防御能力时,氧化还原状态失衡,过量的自由基存在于组织或细胞内,即诱发氧化应激,并导致氧化损伤。因此,氧化应激(Oxidative Stress)是机体应答内外环境,通过氧化还原反应对机体进行多层次应激性调节和信号转导,同时造成氧化损伤的重要生命过程。器官和组织对氧化应激的易感性依赖于它的抗氧化系统的状态和氧化剂与抗氧化之间的动态平衡。 氧化应激可导致细胞膜磷脂过氧化、蛋白质过氧化(受体和酶)以及DNA的氧化损伤。脂质、蛋白质和DNA的氧化会对机体造成不同程度的危害,从而影响机体的生长、发育、衰老等过程。急性和慢性的应激都能通过产生自由基诱导胃肠道、免疫系统等多方面的氧化应激。 1.2 氧化应激的起因 1.2.1 自由基的产生 细胞在正常新陈代谢和先天免疫反应过程中,都会产生活性氧代谢物(ROM)——自由基。首先,肠上皮细胞的主动新陈代谢本身就是ROM的来源,其生成与电子传递链的活性有关。所产生的活性物质包括超氧化物阴离子(O2-)、过氧化氢(H2O2)和羟基自由基(·OH),它们都是线粒体中氧化磷酸化不可避免的产物。其次,另一个内源性氧化应激源自于肠道先天及获得性免疫系统在与许多共生物和病原微生物反应过程中产生的一氧化氮(NO),其在食物和水的吸收过程中不可避免的会产生。 当动物遭受应激刺激或患病时,机体代谢出现异常而骤然产生大量自由基,过量的自由基数

动物应激反应

一、应激反应的概念 (一)应激反应:是指机体在受到体内外各种强烈因素(即应激原)刺激时,所出现的交感神经兴奋和垂体——肾上腺皮质分泌增多为主的一系列神经内分泌反应,以及由此而引起的各种机能和代谢的改变。 任何对动物机体或情绪的刺激,只要达到一定的强度,都可以成为应激原。当这种应激反应真正威胁到动物的健康时,动物就会觉得不适。根据动物是否感到不适这一标准可将应激反应分为良性应激和不良性应两类。 (二)良性应激:是指使动物感到愉快的应激,是对动物的有益应激。如猪有玩耍时的奔跑行为和交配行为。 (三)恶性应激:是指那些危及动物福利和健康的应激,常使动物感到无聊、压抑和紧张。恶性应激是引发一种或多种疾病发生的原因。 另外,也有人将应激反应分为免疫应激反应和非免疫应激反应。 二、养殖生产中常见的应激因素 (一)气候因素 过冷、过热、强光照射.湿度过大都会对动物产生应激反应,有资料表明,低温影响猪的生长发育,若舍内温度低l 0℃以下,就会引起猪的应激反应,尤其仔猪会冻死,低温伴有通风不良或贼风侵袭,湿度过大,会进一步加重猪的应激反应。在高温环境下,几乎所有规模化猪场都造成

母猪采食量下降,临产期、围产期死亡及仔猪死亡,母猪发情率降低,返情率提高20%~30%,窝产仔数、仔猪初生重、成活率也受到不同程度的影响,经济损失达到20%以上。 (二)有毒有害气体 冬天畜舍中的氨、硫化氢、二氧化碳等有毒有害气体会对动物产生刺激,产生应激反应,浓度过高,就会损伤呼吸道粘膜,使抗病力下降,呼吸系统发病。 (三)惊吓等环境因素 如噪音、突然断电,强辐射、奇光、外人入舍、饲养规程变更、饲养员突然更换或衣着及工作程序的变化等都会引起动物的应激反应。 (四)饲养管理因素 在饲养管理过程中,饲养员的粗暴对待、去势、断尾、打号、断喙.接种疫苗、注射药物、保定等,此时动物处于一种"戒备"状态,呼吸心跳加快,血压升高,通过这些变化来动员机体的防御机能,应付环境的急剧变化。 (五)营养因素 主要指饲料中营养不平衡、营养不良或营养过剩都会对动物产生不利的影响,在饲养管理中,饲喂时间、饲喂次数、饲喂量、突然更换饲料、饮水不足和水质不卫生或水温过低都会造成应激。

炎症和氧化应激

。 炎症和氧化应激 炎症可以引起氧化应激,氧化应激也可以引起炎症。首先我们要清楚一些概念。如:炎症、炎症细胞。 炎症细胞指炎症反应时参与炎症反应、浸润炎症组织局部的细胞。如巨噬细胞、淋巴细胞、中性粒细胞和嗜酸性粒细胞以及参与炎症反应的血小板和内皮细胞等。 一、炎症定义:炎症是机体对各种物理、化学、生物等有害刺激所产生的一种以防御为主的病理反应,是一种具有血管系统的活体组织对损伤因子的防御性反应。血管反应是炎症过程的中心环节。在炎症过程中,一方面损伤因子直接或间接造成组织和细胞的破坏,另一方面通过炎症充血和渗出反应,以稀释、杀伤和包围损伤因子。同时通过实质和间质细胞的再生使受损的组织得以修复和愈合。因此可以说炎症是损伤和抗损伤的统一过程。炎症以局部血管为中心,典型特征是红、肿、热、痛和功能障碍,炎症可参与清除异物和修补组织等。(一)根据持续时间不同分为急性和慢性。急性炎症以发红、肿胀、疼痛等为主要征候,即以血管系统的反应为主所构成的炎症。局部血管扩张,血液缓慢,血浆及中性白细胞等血液成分渗出到组织内,渗出主要是以静脉为中心,但象蛋白质等高分子物质的渗出仅仅用血管内外的压差和胶体渗透压的压差是不能予以说明的,这里能够增强血管透性的种种物质的作用受到重视。这种物质主要有:(1)组织胺、5-羟色胺等胺类物质可导致炎症刺激后所出现的即时反应。(2)以舒缓激肽(bradykinin)、赖氨酰舒缓激肽(kallidin)、甲硫氨酰-赖氨酰-舒缓激肽(methio-nyl-lysyl-bradykinin)为代表的多肽类。其共同的特征是可使血管透性亢进、平滑肌收缩、血管扩张,促进白细胞游走。(3)血纤维溶解酶(plasmin)、激肽释放酶(kallikrein)、球蛋白透性因子(globulin-PF)等蛋白酶(protease),其本身并不能成为血管透性的作用物质。但可使激肽原(kininoge)变为激肽(kinin)而发挥作用。然而上述这些物质作用于血管的那个部位以及作用机制多属不明。在组织学上可以看到发生急性炎症时出现的血管渗出反应和修复过程混杂在一起的反应。并可见有巨噬细胞、淋巴细胞、浆细胞的浸润和成纤维细胞的增生。 (二)从炎症的主要的组织变化可分类如下:(1)变质性炎症。(2)渗出性炎症(浆液性炎、纤维素性炎、化脓性炎、出血性炎、坏死性炎、卡他性炎)。(3)增生性炎症。(4)特异性炎症。 二、炎症的成因:(一)感染性:细菌毒素病毒等病原微生物感染,如呼吸道、消化道感染,创面感染等。严重的如胸腔内、腹腔内感染、胆道感染等。 (1)被病原体入侵所激活的中性粒细胞在吞噬活动时耗氧量增加,其摄入O2的70-90%在NADPH 氧化酶和NADH氧化酶的催化下接受电子形成氧自由基,用于杀灭病原微生物。氧化应激引起高凝状态组织缺血激活补体系统,或产生多种具有趋化活性的物质,如C3片段、白三烯等,吸引、激活中性粒细胞。再灌注期组织重新获得O2供应,氧自由基爆发。 (2)病原体入侵机体后,机体处于应激状态,如《伤寒论》:“太阳之为病,脉浮、头项强痛而恶寒”脉浮,是由交感兴奋引起,儿茶酚胺增加释放,由于儿茶酚胺的自氧化,可以产生大量的

维生素A对动物氧化应激的减缓作用机制

动物营养学报2019,31(6):2458?2464ChineseJournalofAnimalNutrition 一 doi:10.3969/j.issn.1006?267x.2019.06.002 维生素A对动物氧化应激的减缓作用机制 石惠宇1,2一闫素梅1? (1.内蒙古农业大学动物科学学院,呼和浩特010018;2.海南大学动物科技学院,海口570228) 摘一要:花生四烯酸(ARA)二活性氧和一氧化氮(NO)过量产生可以引起细胞氧化损伤三维生素A可以有效地调控ARA和NO的生成,在减缓氧化应激方面发挥着重要作用三本文主要从提高硒蛋白谷胱甘肽过氧化物酶(GPx)和硫氧还蛋白还原酶(TrxR)的表达和活性二通过TrxR/丝裂原活化蛋白激酶(MAPK)途径和核因子E2相关因子2(Nrf2)/GPx1/核转录因子-κB(NF?κB)途径对ARA及NO进行调节2个方面综述了维生素A对动物氧化应激的减缓作用机制,为深入研究维生素A对氧化应激的调节机制提供理论依据三关键词:维生素A;动物;氧化应激;调节机制 中图分类号:S816一一一一文献标识码:A一一一一文章编号:1006?267X(2019)06?2458?07收稿日期:2018-12-10 基金项目:国家自然科学基金项目(31160466) 作者简介:石惠宇(1988 ),女,蒙古族,内蒙古清水河人,讲师,博士,从事动物矿物质与维生素营养研究三E?mail:shihuiyu2017@163.com?通信作者:闫素梅,教授,博士生导师,E?mail:yansmimau@163.com 一一动物的产奶量高低和乳品质优劣与乳腺的健康状况密切相关[1]三乳腺组织作为动物体内新陈代谢最为旺盛的功能部位,在泌乳期间需氧代谢活动明显加剧,存在生成过量自由基的风险,如活性氧(ROS)二过氧化氢(H2O2)二一氧化氮(NO)以及花生四烯酸(ARA)等生成过量三对高产奶牛而言,围产后期和泌乳前期尤为明显三在正常生理状态下,机体自由基的生成与清除速率维持动态平衡三当自由基生成速率大于清除速率时,则自由基大量累积并与细胞DNA二蛋白质二类脂膜等发生氧化反应[2-3],会降低奶牛乳腺上皮细胞(BMEC)的抗氧化机能二免疫功能及炎症应答能力,增强奶牛对疾病的易感性,进而影响泌乳功能,最终导致产奶量和乳品质下降[4]三乳腺氧化应激水平的进程性提高会使乳腺免疫功能发生障碍,进而导致乳房炎发病率和严重程度提高[5]三因此,减缓乳腺细胞氧化应激二保持细胞氧化还原平衡,对维持动物健康及高产具有重要意义[6]三研究表明,维生素A可以有效调控ARA及NO的生成,具有提高机体抗氧化和清除自由基的能力, 防御细胞炎症及氧化应激的发生三本文主要综述了维生素A对动物抗氧化功能的调节作用及其机制的研究进展,对深入开展维生素A调节机制的研究二科学补充维生素A及增强动物的抗氧化功能具有重要的理论与实际意义三 1一维生素A对氧化应激的减缓作用 一一抗氧化指标超氧化物歧化酶(SOD)二过氧化氢酶(CAT)二谷胱甘肽过氧化物酶(GPx)和硫氧还蛋白还原酶(TrxR)的活性与总抗氧化能力(T?AOC)等以及脂质过氧化产物丙二醛(MDA)的含量是反映机体抗氧化水平的重要指标三本课题组的前期试验结果显示,维生素A具有提高抗氧化功能二减缓氧化应激的作用,可增强奶牛血清中SOD和GPx的活性并降低MDA的含量[7];另有报道指出,在NRC(2001)推荐量的基础上提高维生素A水平到220IU/kgBW,可以显著提高奶牛的抗氧化功能[7]三LeBlanc等[8]的研究显示,血清视黄醇含量每增加100ng/mL,临床性乳腺炎风险相对降低60%三利用体外法的研究也发现,维

动物氧化应激研究进展

动物氧化应激研究进展

动物氧化应激研究进展 随着我国 畜牧业 特别是现代养殖业集约化程度的提高以及人们对动物福利意识的增 强,动物 应激医学已成为动物医学的重要组成部分。在动物应激医学研究中,动物氧化应 激又逐渐成为国内外学者的热点研究课题。 1 氧化应激概念与起因 1.1 氧化应激概念 动物在正常生理代谢过程中,会产生许多自由基,这些自由基通常不会导致组织细胞 的损伤,机体依靠自身体内的抗氧化防御体系,主要包括抗氧化酶类(包括超氧化物歧化 酶 SOD 、过氧化氢酶 CAT 、谷胱甘肽过氧化物酶 GSH-Px 、谷胱甘肽硫转酶 GST 等) 及非酶类的抗氧化剂(包括 维生素 C 、维生素 E 、谷胱甘肽、褪黑素、 a- 硫辛酸、类胡萝 卜素、微量元素 铜、锌、硒等),可以保护机体组织和细胞防止自由基的损伤。当动物机 体细胞内产生的自由基的水平高于细胞的抗氧化防御能力时,氧化还原状态失衡,过量的 自由基存在于组织或细胞内,即诱发氧化应激,并导致氧化损伤。因此,氧化应激 (Oxidative Stress) 是机体应答内外环境, 通过氧化还原反应对机体进行多层次应激性调节 和信号转导,同时造成氧化损伤的重要生命过程。器官和组织对氧化应激的易感性依赖于 它的抗氧化系统的状态和氧化剂与抗氧化之间的动态平衡。 氧化应激可导致细胞膜磷脂过氧化、蛋白质过氧化 (受体和酶 )以及 DNA 的氧化损伤。 脂质、 蛋白质和 DNA 的氧化会对机体造成不同程度的危害,从而影响机体的生长、发育、 衰老等过程。急性和慢性的应激都能通过产生自由基诱导胃肠道、免疫系统等多方面的氧 化应激。 1.2 氧化应激的起因 1.2.1 自由基的产生 细胞在正常新陈代谢和先天免疫反应过程中, 基。首先,肠上皮细胞的主动新陈代谢本身就是 性有关。所产生的活性物质包括超氧 化物阴离子 ( · OH) ,它们都是线粒体中氧化磷酸化不可避免的 产物。其次,另一个内源性氧化应激源 自于肠道先天 及获得性免疫系统在与许多共生物和病原微生物反应过程中产生的一氧化 氮 (NO) ,其在食物和水的吸收过程中不可避免的会产生。 当动物遭受应激刺激或患病时,机体代谢出现异常而骤然产生大量自由基,过量的自 由基数量 将超过抗氧化体系的还原能力, 使机体处于氧化应激状态, 结果会导致机体损伤。 目前研究表明主要有四种致细胞损伤机制: 1) 对脂类和细胞膜的破坏,从而导致细胞死亡。 2) 对蛋白质、酶的损伤,从而导致蛋白质变性,功能丧失和酶失活。 3) 对核酸和染色体的破坏,从而导致 DNA 链的断裂,染色体的畸变和断裂。 4) 对细胞外基质的破坏,从而使细胞外基质变得疏松,弹性降低。 1.2.2 氧化应激的起因 1.2.2.1 外源性因素 1.2.2.1.1 日粮 营养因素 营养缺乏或不良可能使体内自由基增加,而且还影响抗氧化酶生物合成及 内源性抗氧 都会产生活性氧代谢物 (ROM) ——自由 ROM 的来源,其生成与电子传递链的活 (O2-) 、过氧化氢 (H2O2) 和羟基自由基

氧化应激

氧化应激 本综述由解螺旋学员穿山甲说了什么负责整理(2017年12月) 氧化应激(oxidative stress, OS)是指体内氧化与抗氧化作用失衡,倾向于氧化而导致的组织损伤。1, 2一旦发生氧化应激,许多细胞生物分子,如DNA、脂质和蛋白质就会容易受到自由基引起的氧化损伤,从而导致细胞和最终的组织器官功能障碍。氧化应激与多种疾病有关。 1.心血管疾病 过多的氧化应激反应物的堆积对血管系统有害1,它们会损伤内皮和平滑肌细胞膜,减少NO水平,氧化四氢生物蝶呤(BH4)作为一氧化氮合酶(NOS)的辅助因子,促进不对称二甲基精氨酸(ADMA)的合成,产生NOS抑制物,抑制鸟苷环化酶。其中的一个机制是低密度脂蛋白(LDL)中的多不饱和脂肪酸氧化成氧化低密度脂蛋白(oxLDL),这也是动脉粥样硬化的一个中间产物。3-5ROS依赖的信号通路引起转录和表观遗传失调,导致慢性低度炎症、血小板活化和内皮功能障碍。4, 6心血管疾病与心肌细胞活性氧族(ROS)的过多有关。7, 8 2.神经退行性疾病9-11 图1. 氧化应激与各种神经退行性疾病的关系 3.系统性红斑狼疮(SLE) SLE的特点是产生有害的自身抗原,炎症因子的过度作用,以及破坏性的组织和器官损

伤。所有这些紊乱都会因活性氧的异常消耗和过量生成而增强或减弱。12氧化应激在SLE中增加,导致免疫系统失调、细胞死亡信号的异常激活和处理、自身抗体的产生和致死性并发症。自身抗原的氧化修饰引起自身免疫,血清蛋白的氧化修饰程度与SLE的疾病活动和器官损害密切相关。13 4.慢性阻塞性肺疾病(COPD) 有证据表明COPD患者存在氧化和羰基应激,特别是在急性加重期。14COPD患者的肺泡巨噬细胞更活跃,释放更多的活性氧,表现为超氧自由基和过氧化氢。15COPD患者激活的外周血中性粒细胞释放的活性氧增加,特别是在病情恶化期间。14COPD常加重期患者体内内源性抗氧化物谷胱甘肽的浓度低于稳定期患者。16 5.高血压病 ROS影响高血压发展的过程包括氧化还原敏感信号通路的激活,尤其是在血管系统中,血管扩张剂NO减少,ROS生成增加。17, 18 OS与多种疾病有关,但研究最多的还是心血管疾病。针对OS与各疾病的关系,已经出现了抗OS的治疗方案。 参考文献 1. Annuk M, Zilmer M, Fellstrom B. Endothelium-dependent vasodilation and oxidative stress in chronic renal failure: impact on cardiovascular disease. Kidney Int Suppl 2003; (84): S50-3. 2. Al Shahrani M, Heales S, Hargreaves I, Orford M. Oxidative Stress: Mechanistic Insights into Inherited Mitochondrial Disorders and Parkinson's Disease. J Clin Med 2017; 6(11). 3. Heinecke JW. Oxidants and antioxidants in the pathogenesis of atherosclerosis: implications for the oxidized low density lipoprotein hypothesis. Atherosclerosis 1998; 141(1): 1-15. 4. Santilli F, D'Ardes D, Davi G. Oxidative stress in chronic vascular disease: From prediction to prevention. Vascul Pharmacol 2015; 74: 23-37. 5. He F, Zuo L. Redox Roles of Reactive Oxygen Species in Cardiovascular Diseases. Int J Mol Sci 2015; 16(11): 27770-80. 6. Santilli F, Guagnano M, Vazzana N, La Barba S, Davi G. Oxidative stress drivers

氧化应激与自噬

动物营养学报2016,28(9):2673-2680C hi ne s e J our nal of A ni m al N ut r i t i on d o i :10.3969/j .i ssn .1006-267x.2016.09.002 氧化应激与自噬 吴艳萍 王 阳 李雅丽 曹雪芳 李卫芬 * ( 浙江大学动物科学学院饲料科学研究所,教育部动物分子营养学重点实验室,杭州310058) 摘 要:自噬是细胞依赖溶酶体对蛋白质和细胞器进行降解的过程,能帮助细胞适应各种不良 刺激,在维持细胞内环境稳态和实现自我更新中起着重要作用。氧化应激是机体氧化和抗氧化系统之间的稳态被破坏而造成的应激状态。大量研究表明,氧化应激中产生的活性氧能诱导自噬产生,而自噬能缓解氧化应激造成的损伤,从而保护细胞存活。本文主要对自噬的形成过程、氧化应激诱导自噬产生机制以及自噬缓解氧化应激的途径等进行综述,以期为畜牧生产中通过调控自噬缓解氧化应激提供理论依据。 关键词:氧化应激;自噬;A t g ;活性氧;氧化损伤中图分类号:Q 26 文献标识码:A 文章编号:1006-267X (2016)09-2673-08收稿日期:2016-03-21 基金项目:国家863计划项目(2013A A 102800);国家自然科学基金项目(31472128) 作者简介:吴艳萍(1991—),女,江西吉安人,博士研究生,从事益生菌与动物肠道健康研究。E -m a i l :ypw u0902@163.c om *通信作者:李卫芬,教授,博士生导师,E -m a i l :w f l i @z j u.e du.c n 活性氧(r e a c t i ve oxyge n s pe c i e s ,R O S )是生物体中的主要自由基,包括羟自由基(·O H )、超氧阴离子(O -2 ·)、过氧化氢(H 2 O 2 )及由此衍生的有机过氧化物自由基烷氧基(R O ·)和烷过氧基(R O O ·)等物质,其作为体内正常氧化还原反应的产物,参与杀菌、解毒及多种代谢途径的调节[1] 。正常生理状态下,机体的抗氧化系统会及 时清除R O S ,从而维持体内氧化与抗氧化平衡。但当机体处于不同应激原刺激或病原菌感染时,体内产生的R O S 水平高于细胞的抗氧化防御能力,氧化还原状态失衡。过量的R O S 存在于组织或细胞内,诱发氧化应激,导致氧化损伤,如D N A 羟基化、蛋白质变性和组织损伤等。为阻止进一步的氧化损伤,生物体能激活一系列的防御应答,如提高体内抗氧化酶活性和启动溶酶体降解途径。此外,近年来大量研究证明,氧化应激中产生 的R O S 能诱导自噬(a ut opha gy )发生[2] 。自噬是广泛存在于真核细胞内的一种自食(s e l f -e a t i n g )现象,通过降解细胞内长寿命蛋白质和受损伤细胞器,使细胞在应激条件下循环利用营养物质继续生存的细胞修复重要途径之一[3] 。研究发现,自噬能清除氧化应激损伤的线粒体、内质网、过氧化物酶体及蛋白质,减缓细胞死亡;而当自噬过程被阻断时,将使毒性蛋白质聚集和线粒体功能损伤,从而进一步加剧氧化应激[4-6] 。由此可见,氧化应激与自噬之间存在着密切联系。 1 自噬 1.1 自噬的分类 根据底物种类、转运方式和调控机制的不同,可将自噬分为大自噬、小自噬和分子伴侣介导的自噬[3] 。大自噬指来源于内质网的双层膜将待降解物包裹形成自噬体后与溶酶体融合并降解其内容物的过程,通常所说的自噬即为大自噬。小自噬是指溶酶体的膜直接将包裹的物质降解。分子伴侣介导的自噬则是指胞质内的可溶蛋白质分子与分子伴侣结合后被转运到溶酶体腔中被降解的过程。长期以来,人们认为自噬对降解底物无选择性,但随着研究的深入,发现在特定情况下自噬会选择性降解某类大分子和细胞器,这类自噬叫

氧化应激对猪肠道损伤机制的研究进展

动物营养学报2018?30(8):2887 ̄2893ChineseJournalofAnimalNutrition 一 doi:10.3969/j.issn.1006 ̄267x.2018.08.002 氧化应激对猪肠道损伤机制的研究进展 陈凤鸣一陈佳亿一彭一伟一韦良开一李颖慧一黄兴国? (湖南农业大学动物科学技术学院?长沙410128) 摘一要:畜牧业生产过程中出现的种畜繁殖障碍二幼畜成活率低和发病率高二畜产品品质下降等都与氧化应激有关?氧化应激已经成为动物健康与营养研究的热点?本文对肠道氧自由基产生来源二氧化应激影响肠上皮细胞增殖分化机制及猪生产中氧化应激对肠道氧化损伤进行了综述? 关键词:氧自由基?氧化应激?肠上皮细胞 中图分类号:S856.4一一一一文献标识码:A一一一一文章编号:1006 ̄267X(2018)08 ̄2887 ̄07收稿日期:2018-02-06 基金项目:国家自然科学基金项目(31772617)?国家重点研发计划项目(2017YFD0500500) 作者简介:陈凤鸣(1991 )?男?安徽桐城人?博士研究生?从事饲料资源开发利用研究?E ̄mail:cfming@stu.hunau.edu.cn?通信作者:黄兴国?教授?博士生导师?E ̄mail:huangxi8379@aliyun.com 一一机体氧化还原反应是许多生物化学反应途径以及细胞功能的基础[1]?其稳态的维持主要是依赖于机体氧化系统和抗氧化系统之间的动态平衡?活性氧自由基(reactiveoxygenspecies?ROS)产生过量或者机体抗氧化系统遭到破坏?就会打破这种动态平衡?引起氧化应激(oxidativestress?OX)[2]?ROS过量产生或抗氧化剂系统清除ROS 不足都会引起氧化应激?导致肠道细胞凋亡和组织损伤 [3] ?肠道黏膜屏障遭到破坏将会迅速激活 先天性免疫?引起固有层急性炎症反应?一旦肠道黏膜屏障被破坏?免疫细胞和肠上皮细胞与致病因子发生反应?并产生炎症介质和ROS?进而破坏DNA二蛋白质和脂质 [4] ?最终导致破坏肠上皮细胞 层凋亡途径的激活?目前有关ROS在细胞中的作用都是针对一定水平范围而言的?低水平的ROS促进细胞有益反应?高水平的ROS导致氧化应激?造成细胞损伤和死亡?然而?不同的ROS产生系统也可能导致不同的响应?例如?在线粒体中产生的ROS更容易引起细胞损伤和凋亡[5-6]?而在膜上产生的ROS更有助于细胞增殖分化的信号传导[7]?当然?这样区别也不是绝对的?线粒体产生的ROS也被证明对细胞增殖二迁移和转移有积极作用[8-9]?而还原型烟酰胺腺嘌呤二核苷酸磷酸 (NADPH)氧化酶产生的ROS也可诱导细胞凋亡[10]?ROS在生理水平范围内参与许多信号传导途径?包括基因转录二蛋白激酶活化等?从而实现对细胞因子分泌的调节和细胞运动性的协调[11]?因此?ROS的两面性增加了使用抗氧化剂用量的难度? 1一肠道ROS产生的来源 一一动物肠道自由基按照来源可分为内源性自由基和外源性自由基?内源性自由基主要来源于线粒体呼吸链(mETC)二NADPH氧化酶及黄嘌呤氧化酶等氧化酶酶促反应途径?肠道中的过渡金属离子通过芬顿反应也会产生自由基?肠道共生菌也会诱导肠上皮细胞产生自由基?此外?机体内巨噬细胞和过氧化物酶也会产生自由基?环境因素(高温二低温二过高的饲养密度等)二疾病因素(细菌或病毒感染二寄生虫球虫等)二饲粮因素(不饱和脂肪的氧化二霉菌毒素等)等因素导致机体产生外源性自由基?形成氧化损伤? 1.1一mETC和NADPH氧化酶酶促反应 一一线粒体内膜上有由辅酶Q二外周蛋白以及细胞色素c等组成的线粒体呼吸链酶复合物(MRC)?MRCⅠ和Ⅲ的电子泄露导致分子氧的还

第二章 第三节 动物应激与应激性疾病

应激(Stress) 应激(Stress)是机体受到强烈刺激或处于紧张状态时出现的一系列非特异性的全身反应。全球损失800-1000亿美元。 应激原(stressor):引起应激的刺激叫应激原,其种类很多,概括起来可分为非损伤性和损伤性两大类。 应激原 一非损伤性应激原主要有: 神经性刺激:如动物分群,断奶,更换饲料,驱赶,捉捕,运输,剪毛,去势,声光刺激,疼痛刺激等等。 温度如环境过热,过冷。 本讲所涉及的反应主要是指由非损伤应激原所引起的急性或慢性应激。 二、损伤性激原 创伤,烧伤,中毒,感染,寄生虫侵袭等物理,化学和生物学刺激因素。 损伤和非损伤两类应激原所引起的应激反应的主要区别在于是否伴有组织细胞的坏死,炎症反应,以及由此而引起的急性期反应(acute phase response) 一、应激及应激性疾病的危害性 有人估计,我国牧区每个冬季天寒草寒枯死草的家畜不下500万头,未死的活重下降1/3。两者相加,约相当于全国收购量的5-6倍(姚旦,1988)。 我省几个集约化鸡场每年死于应激的肉鸡约占死亡鸡数的20-30%。 美国和联邦德国,苍白,松软渗出性猪肉(Pale soft exudative, PSE)占屠宰猪的10-20%,肉价低5-10%(Kolata,J.A. 1986)。 另有报导(Jopel ,D.G.1975),美国有1/3以上的猪场发生应激综合症,35%发生PSE肉。 欧美及日本,猪胃溃疡很普遍;我国长春、北京、武汉等地调查,发生率84%(徐英泉等,1980).我校调查湖南省的发生率也很高(朱1994)。 应激性疾病的危害性 乳牛群的光热和噪音应激,导致日本均产奶量下降38.4%,怀孕率下降22.5%,流产率升高18%(袁绵和,1988);蛋鸡在抓捕,惊吓等应激下,产软壳蛋,双黄蛋、小蛋、蛋包蛋,其产蛋率、受精率下降,甚至出现腹膜炎,卵巢囊种等(Mills, A. D. etal,1987)。 其它影响,如影响免疫反应,降低抵抗力,如低温诱致幼畜的大肠杆菌性肠炎发病率升高,家禽对新城疫,出血性肠炎,马立克病,禽败血霉形体,球虫病等疾病的抵抗力降低,牛运输热的发病(病原体至少有10种细菌和8种病态)也必须有应激因子的存在,才能复制等等(姚旦,1988) 二、应激的机理及代谢改变 在对应激研究的发展过程中,形成了三个独立的研究领域。 (一)神经内分泌反应 (二)血浆蛋白的研究 (三)基因表达的研究 (一)神经内分泌反应 这是经典的应激反应学说,20年代Cannon提出了紧急学说(emergency theory),30年代内分泌学家Sely提出了全身适应征候群学说(general adaptation Syndrome),按此思路,深入全面的研究已得到很大发展,最重要,最突出的神经内分泌反应是交感—肾上腺髓质反应和下丘脑—垂体—肾上腺皮质反应。 1.交感—肾上腺髓质反应 交感神经兴奋—肾上腺素,去甲肾上腺素和多巴胺浓度血液升高。

相关主题
文本预览
相关文档 最新文档