当前位置:文档之家› 第四篇同步电机

第四篇同步电机

第四篇同步电机

第12章同步电机的基本工作原理和主要结构第13章同步发电机的运行原理

第14章同步发电机的并联运行

第15章三相同步电动机

第16章同步发电机的不对称运行和突然短路

第12章同步电机的基本工作原理

和主要结构

12.1 同步电机的基本工作原理

12.2 同步电机的主要结构

12.3 同步电机的额定值

第12章同步电机的基本工作原理和主要

结构

12.1 同步电机的基本工作原理

如图12-1,同步电机的定子装有三相对称绕组。旋转的部分称为转子,转子绕组通直流电。转子旋转时,定子导体交替地为N极和S极磁

场所切割,因此每根导体中的感应电势方向是交变的。(动画1)

磁通首先切割A相导体,当转子转过120°

及240°后,磁通再依次切割B相导体和C相导体。三相电势为大小相等,相位互差120°的

对称电动势。

12.2 同步电机的主要结构

同步电机也是由定子及转子两大部分所组成.

300MW 水氢冷发电机结构

12.2.1 定子

同步电机的定子有时也称为电枢,由定子铁芯、电枢三相绕组、机座和端盖等部件所组成。

同步电机的定子铁芯是由硅钢片冲制后叠装而成。

当大型同步电机冲片外圆的直径大于1m 时,由于材料标准尺寸的限制,必须做成扇形冲片(图12-2)。

12.2.2转子

同步电机的转子有两种结构型式,即凸极式和隐极式。

图12-3 同步电机的转子结构

转子的磁极铁芯是由普通的薄钢片冲制成。磁极铁芯上放置集中的励磁绕组。整个磁极利用T形尾部固定在磁轭上。

磁极的表面常装设类似笼型感应电机转子上的短路绕组,在发电机中称为阻尼绕组,在电动机中称为起动绕组。

图12-4磁极冲片

图12-5 凸极同步电机磁极装配

1—阻尼绕祖;2—磁极铁心;

3—励磁绕组;4—磁轭;

5—磁极T形尾固定部分。

凸极结构转子的优点是制造方便,缺点是机械强度较差,因此多用在离心力较小,转速较低的中小型电机中或用在水轮发电机中。隐极转子的优点是机械强度好,但是制造工艺较复杂,因此多用在离心力较大、转速较高的电机中。例如汽轮发电机多采用隐极结构。

图12-6 同步电机转子上

图12-7空心导线的阻尼绕阻1—导线绝缘;

2—铜线;

3—空心

汽轮发电机和水轮发电机在结构上有较大的差别,下面再分别介绍。

1、汽轮发电机结构(1)定子铁心

(2)定子绕组

2、水轮发电机结构

(1)立式水轮发电机(2)卧式水轮发电机

(3)灯泡贯流式水轮发电机

(4)转子结构

10000kw水轮机转子

12.2.3 冷却问题简述:

在大型汽轮发电机中,为了提高其冷却效率,往往用氢气冷却,因氢气的比重比空气小,在旋转时产风的摩擦损耗减小;同时氢气的导热率比空气大,散热也良好。氢气与空气混合后,有爆炸危险,必须有一套控制设备来保证外界空气不会渗入到电机内部。

在更大容量的发电机中,可以采用导线内部直接冷却。例如采用空心导体,冷却介质直接在导体中流通把热量带走。所采用的冷却介质一般有氢气及水等。

12.3 同步电机的额定值:

1)额定电压:正常运行时,按照制造厂的规定,定子三相绕组上的线电压。电压的单位用V 或kV 表示。

2)额定电流:在正常运行时,按制造厂的规定,流过定子绕组的线电流。电流的单位用A 表示。

N U N I

3)额定功率:在正常运行时,电机的输出功率。对于发电机是指输出的电功率;对于电动机是指输出的机械功率。

?额定功率与额定电压、额定电流之间的关系:

?发电机?电动机?额定功率的单位为kW 。

N P 310

cos -?=N N N N I U P ?33

10cos -?=N N N N N I U P ?η3

?4)相数m :一般m=3。

?5)额定频率

:我国额定工业频率规定

50Hz.?6)额定转速:额定转速即为电机的同步速,在一定极数及频率时,它的转速是定值

N f p

f n N N 60

永磁同步电机基础的知识

(一) PMSM 的数学模型 交流电机是一个非线性、强耦合的多变量系统。永磁同步电机的三相绕组分布在定子上,永磁体安装在转子上。在永磁同步电机运行过程中,定子与转子始终处于相对运动状态,永磁体与绕组,绕组与绕组之间相互影响,电磁关系十分复杂,再加上磁路饱和等非线性因素,要建立永磁同步电机精确的数学模型是很困难的。为了简化永磁同步电机的数学模型,我们通常做如下假设: 1) 忽略电机的磁路饱和,认为磁路是线性的; 2) 不考虑涡流和磁滞损耗; 3) 当定子绕组加上三相对称正弦电流时,气隙中只产生正弦分布的磁势, 忽略气隙中的高次谐波; 4) 驱动开关管和续流二极管为理想元件; 5) 忽略齿槽、换向过程和电枢反应等影响。 永磁同步电机的数学模型由电压方程、磁链方程、转矩方程和机械运动方程组成,在两相旋转坐标系下的数学模型如下: (l)电机在两相旋转坐标系中的电压方程如下式所示: d d s d d c q q q s q q c d di u R i L dt di u R i L dt ωψωψ?=+-????=++?? 其中,Rs 为定子电阻;ud 、uq 分别为d 、q 轴上的两相电压;id 、iq 分别为d 、q 轴上对应的两相电流;Ld 、Lq 分别为直轴电感和交轴电感;ωc 为电角速度;ψd 、ψq 分别为直轴磁链和交轴磁链。 若要获得三相静止坐标系下的电压方程,则需做两相同步旋转坐标系到三相

静止坐标系的变换,如下式所示。 cos sin 22 cos()sin() 33 22 cos()sin() 33 a d b q c u u u u u θθ θπθπ θπθπ ?? ? - ??? ?? ?? =--- ? ?? ?? ?? ?? ? +-+ ?? (2)d/q轴磁链方程: d d d f q q q L i L i ψψ ψ =+ ?? ? = ?? 其中,ψf为永磁体产生的磁链,为常数,0 f r e ω ψ=,而c r p ω ω=是机械角速度,p为同步电机的极对数,ωc为电角速度,e0为空载反电动势,其值为每项 倍。 (3)转矩方程: 3 2 e d q q d T p i i ψψ ?? =- ?? 把它带入上式可得: 3 () 2 33 () 22 e f q d q d q f q d q d q T p i L L i i p i p L L i i ψ ψ ?? =+- ?? =+- 对于上式,前一项是定子电流和永磁体产生的转矩,称为永磁转矩;后一项是转子突极效应引起的转矩,称为磁阻转矩,若Ld=Lq,则不存在磁阻转矩,此时,转矩方程为: 3 2 e f q t q T p i k i ψ == 这里, t k为转矩常数, 3 2 t f k pψ =。

2012-2013电机学课堂测验5-同步电机

重庆大学电机学(1)第4次课堂测验 2012~2013学年第一学期 考试方式: 测验日期:2012.12.28 测验时间: 45 分钟 一、 单项选择题(每小题2分,共20分) 1.同步发电机的额定功率指额定状态下 B 。 A .电枢端口输入的电功率; B .电枢端口输出的电功率; C .转轴上输入的机械功率; D .转轴上输出的机械功率。 2.同步发电机带三相对称负载稳定运行时,转子励磁绕组 D 。 A .感应低频电动势; B .感应基频电动势; C .感应直流电动势; D .不感应电动势。 3.同步发电机稳态运行时,若所带负载性质为感性,则其电枢反应的性质 为 C 。 A .交磁电枢反应; B .直轴去磁电枢反应; C .直轴去磁与交磁电枢反应; D .直轴增磁与交磁电枢反应。 4.同步电抗表征同步电机三相对称稳定运行时 C 。 A .电枢反应磁场的一个综合参数; B .气隙合成磁场的一个综合参数; C .电枢反应磁场和电枢漏磁场的一个综合参数; D .励磁磁场和励磁漏磁场的一个综合参数。 5.在对称稳态运行时,凸极同步发电机电抗大小的顺序排列为 D 。 A .q aq d ad X X X X X >>>>σ; B .σX X X X X q aq d ad >>>>; C .σX X X X X ad d aq q >>>>;D .σX X X X X aq q ad d >>>>。 6.判断同步发电机是过励磁运行状态的依据是 D 。 A .0E ? 超前于U ? ; B .0E ?滞后于U ?; C .I ?超前于U ?;D .I ?滞后于U ? 。 7.一台并联于无穷大电网的同步发电机,若保持励磁电流不变,在cos 0.8 ?=滞后的情况下,减小输出的有功功率,此时 A 。 A .功率角减小,功率因数下降; B .功率角增大,功率因数下降; C .功率角减小,功率因数增加; D .功率角增大,功率因数增加。 8.并联于无穷大电网的同步发电机,欲提高其静态稳定性,应 B 。 A .减小励磁电流,减小发电机的输出功率; B .增大励磁电流,减小发电机的输出功率; C .减小励磁电流,增大发电机的输出功率; D .增大励磁电流,增大发电机的输出功率。 9.一台运行于无穷大电网的同步发电机,在电流超前于电压一相位角时,原动机转矩不变,逐渐增加励磁电流,则电枢电流 D 。 A .渐大; B .先增大后减小; C .渐小; D .先减小后增大。 10.同步补偿机的作用是 B 。 A .补偿电网电力不足; B .改善电网功率因数; C .作为用户的备用电源; D .作为同步发电机的励磁电源。 二、 填空题(每空1分,共20分) 1.汽轮发电机转子一般为隐极式,水轮发电机转子一般为凸极式。 2.同步发电机内功率因数角Ψ0=0°时,电枢反应的性质为交轴电枢反应,此时电磁转矩将对转子产生制动作用。 3.在隐极同步电机中,同步电抗X s 的大小正比于电枢绕组每相串联匝数的平方、主磁路的磁导和电枢电流的频率。 4.在不计磁路饱和的情况下,如增加同步发电机的转速,则空载电压增大;如增加励磁电流,则空载电压增大。如励磁电流增加10%,而速度减小10%,则空载电压不变。 5.同步发电机并网的条件是:(1)发电机相序与电网一致;(2)发电机频率与电网相同;(3)发电机的激磁电动势与电网电压大小相等、相位相同。 6.同步发电机在过励时向电网发出滞后的无功功率,产生直轴去磁的电枢反应;同步电动机在过励时向电网吸收超前的无功功率,产生直轴 增磁的电枢反应。 7.与其它旋转电机类似,同步电机运行是可逆的,它即可作发电机运行,又可作电动机运行,还可作补偿机运行。 三、 简答题(共30分) 学院电气工程学院专业、班年级学号姓名 公平竞争、诚实守信、严肃考纪、拒绝作弊 封 线 密

多电机速度同步控制

多电机速度同步控制 在传统的传动系统中,要保证多个执行元件间速度的一定关系,其中包括保证其间的速度同步或具有一定的速比,常采用机械传动刚性联接装置来实现。但有时若多个执行元件间的机械传动装置较大,执行元件间的距离较远时,就只得考虑采用独立控制的非刚性联接传动方法。下面以两个例子分别介绍利用PLC和变频器实现两个电机间速度同步和保持速度间一定速比的控制方法。 薄膜吹塑及印刷机组的主要功能是,利用挤出吹塑的方法进行塑料薄膜的加工,然后经过凹版印刷机实现对薄膜的印刷,印刷工艺根据要求不同可以采用单面单色、单面多色、双面单色或双面多色等方法。在整个机组中,有多个电机的速度需要进行控制,如挤出主驱动电机、薄膜拉伸牵引电机、印刷电机以及成品卷绕电机等。电机间的速度有一定的关系,如:挤出主电机的速度由生产量要求确定,但该速度确定之后,根据薄膜厚度,相应的牵引速度也就确定,因此挤出速度和牵引速度之间有一确定的关系;同时,多组印刷胶辘必须保证同步,印刷电机和牵引电机速度也必须保持同步,否则,将影响薄膜的质量、印刷效果以及生产的连续性;卷绕电机的速度受印刷速度的限制,作相应变化,以保证经过印刷的薄膜能以恒定的张力进行卷绕。 在上述机组的传动系统中,多组印刷胶辘的同步驱动可利用刚性的机械轴联接,整个印刷胶辘的驱动由一台电机驱动,这样就保证了它们之间的同步。印刷电机的速度必须保证与牵引电机的速度同步,否则,在此两道工艺之间薄膜会出现过紧或过松的现象,影响印刷质量和生产的连续性。但是印刷生置与牵引装置相距甚远,无法采用机械刚性联接的方法。为实现牵引与印刷间的同步控制,牵引电机和印刷电机各采用变频器进行调速,再用PLC对两台变频器直接控制。 牵引电机和印刷电机采用变频调速,其控制框图如图1所示。在这个闭环控制中,以牵引辘的速度为目标,由印刷电机变频器调节印刷辘速度来跟踪牵引辘的速度。利用旋转编码器1和旋转编码器2分别采集上述两个电机的脉冲信号(编码器位置参见图3),并送到PLC的高速计数口或接在CPU的IR00000~IR00003。以这两个速度信号数据为输入量,进行比例积分(PI)控制算法,运算结果作为输出信号送PLC的模拟量模块,以控制印刷电机的变频器。这样,就可以保证印刷速度跟踪牵引速度的变化而发生变化,使两个速度保持同步。

(整理)永磁同步电动机的应用.

一、 概述 众所周知,直流电动机有优良的控制性能,其机械特性和调速特性均为平行的直线,这是各类交流电动机所没有的特性。此外,直流电动机还有起动转矩大、效率高、调速方便、动态特性好等特点。优良的控制特性使直流电动机在70年代前的很长时间里,在有调速、控制要求的场合,几乎成了唯一的选择。但是,直流电动机的结构复杂,其定子上有激磁绕组产生主磁场,对功率较大的直流电动机常常还装有换向极,以改善电机的换向性能。直流电机的转子上安放电枢绕组和换向器,直流电源通过电刷和换向器将直流电送入电枢绕组并转换成电枢绕组中的交变电流,即进行机械式电流换向。复杂的结构限制了直流电动机体积和重量的进一步减小,尤其是电刷和换向器的滑动接触造成了机械磨损和火花,使直流电动机的故障多、可靠性低、寿命短、保养维护工作量大。换向火花既造成了换向器的电腐蚀,还是一个无线电干扰源,会对周围的电器设备带来有害的影响。电机的容量越大、转速越高,问题就越严重。所以,普通直流电动机的电刷和换向器限制了直流电动机向高速度、大容量的发展。 在交流电网上,人们还广泛使用着交流异步电动机来拖动工作机械。交流异步电动机具有结构简单,工作可靠、寿命长、成本低,保养维护简便。但是,与直流电动机相比,它调速性能差,起动转矩小,过载能力和效率低。其旋转磁场的产生需从电网吸取无功功率,故功率因素低,轻载时尤甚,这大增加了线路和电网的损耗。长期以来,在不要求调速的场合,例如风机、水泵、普通机床的驱动中,异步电动机占有主导地位,当然这类拖动中,无形中损失了大量电能。 过去的电力拖动中,很少彩同步电动机,其主要原因是同步电动机不能在电网电压下自行起动,静止的转子磁极在旋转磁场的作用下,平均转矩为零。人们亦知道变频电源可解决同步电动机的起动和调速问题,但在70年代以前,变频电源是可想而不可得的设备。所以,过去的电力拖动中,很少看到用同步电动机作原动机。在大功率范围内,偶尔也有同步电动机运行的例子,但它往往是用来改善大企业的电网功率因数。 自70年代以来,科学技术的发展极大地推动了同步电动机的发展和应用,主要的原因有: 1、高性能永磁材料的发展 永磁材料近年来的开发很快,现有铝镍钴、铁氧体和稀土永磁体三大类。稀土永磁体又有第一代钐钴1:5,第二代钐钴2:17和第三钕铁硼。铝镍钴是本世纪三十年代研制成功的永磁材料,虽其具有剩磁感应强度高,热稳定性好等优点,但它矫顽力低,抗退磁能力差,而且要用贵重的金属钴,成本高,这些不足大大限制了它在电机中的应用。铁氧体磁体是本世纪五十年代初开发的永磁材料,其最大的特点是价格低廉,有较高的矫顽力,其不足是剩磁感应强度和磁能积都较低。钐钴稀土永磁材料在六十年代中期问世,它具有铝镍钴一样高的剩磁感应强度,矫顽力比铁氧体高,但钐稀土材料价格较高。80年代初钕铁硼稀土永磁材料的出现,它具有高的剩磁感应强度,高的矫顽力,高的磁能积,这些特点特别适合在电机中使用。它们不足是温度系数大,居里点低,容易氧化生锈而需涂复处理。经过这几年的不断改进提高,这些缺点大多已经克服,现钕铁硼永磁材料最高的工作温度已可达180℃,一般也可达150℃,已足以满足绝大多数电机的使用要求。表1是各种永磁材料性能比较。 表1各种永磁材料的性能比较 永磁材料剩磁(T)Br(T) 矫顽力HcB(KA/m) 内禀矫顽力Hcj(KA/m) 最大磁能积(BH)m(KJ/m3)剩磁可逆温度系数αB(%C) 居里温度Tc8(C) 中等水平钕铁硼`` 1.26 967 955 310 -0.12 350 较高水平的钐钴1.00 746 766 210 -0.03 850

同步电机的控制原理

同步电机的控制原理 一、控制原理 主机结构,包括定子、转子以及控制系统。 定子和异步电机完全相同。转子和线绕异步电机转子相同,有三个线圈,其中两个是励磁绕组,一个是阻尼绕组。励磁绕组通直流电,形成和定子对应的转子磁极,转子磁极在定子旋转磁场的作用下旋转,和定子保持同步。阻尼绕组的作用是防止已进入同步运转的电机失步。 启动状态下,转子的三个绕组起异步启动作用,产生感应电流,使电机逐步升速,直到接近于投磁前的亚同步状态。电机被拉入同步以前,两个励磁绕组经凸轮控制器串联,阻尼绕组经线路转换开关自成回路,这时通入直流电,把异步运转的电机强行拉入同步。 同步运转状态下,阻尼绕组和旋转磁场之间没有相对运动,不产生电流;失步状态下,阻尼绕组和旋转磁场之间有相对运动,产生电流和电动力,电动力的方向刚好和电机失步的方向相反,因此能起到阻止电机失步的作用。 控制系统包括一次系统控制回路和二次系统控制回路两部分。 一次系统控制回路主要是一台六氟化硫开关和一系列保护。有差动保护,过流保护,低电压保护,接地方向保护。 差动保护针对的是定子内部的短路或接地,定子内部短路或接地时,差动保护动作。过流保护主要保护电机的过载,在过载情况下动作。低电压保护在电网出现较长时间低电压情况下动作。接地方向保护在6kV单相完全接地或不完全接地情况下动作。各种保护动作,在切断主回路的同时,也切断直流回路。 二次回路包括励磁控制和启动回路。励磁控制是一套可控硅系统,功能和直流电机控制系统类似而较为简单,没有那么多反馈控制环,只有一个电流反馈控制环; 另外有联锁回路和失步、失磁、过激保护回路。励磁投入必须具备一定条件,如各种保护都没有动作,慢动电机处于脱开的位置,电机启动已进入亚同步状态的信号已送出,等。根据这些条件来准备控制可控硅的投入时间就是连锁,相应的回路称为连锁回路。 相对于一次回路的保护而言,失步、失磁和过激保护属于二次回路的保护。失步保护保护电动的失步。电机失步的破坏性很大,形成的异步力量能剪切转子线圈,所以这个保护功能必须可靠,否则一旦发生失步,后果很严重。该回路检测定子电流、电压。 众所周知,电机运行在功率因数超前状态,定子电流比定子电压滞后;运行在功率因数滞后状态,定子电流比定子电压超前。不论超前还是滞后,6kV回路的电流波和电压波之间都没有相对运动。如果电机失步,电机的电流波和电压波之间立即产生来来回回的相对运动,失步检测回路即捕捉此电流波和电压波来回运动时重合的脉冲。重合一次证明失步一次,重合两次失步保护动作。 失磁是欠激的极限状态,不清楚为什么有失磁保护而没有欠激保护,请各位探讨。失磁信号和过激信号的确定都通过比较放大器实现,比较放大器的给定可以调整。 二、启动过程 同步电机启动必须满足三个条件:1、继电器30C不激磁(过电流保护50/51未动作,接地方向继电器67G未动作,差动继电器87未动作,欠压继电器27未动作,故障继电器86X未动作,激磁变压器一次侧空气开关未跳,故障包括:失磁,失步,过激,启动限时,凸轮控制器及线路转换开关过载保护49AX,慢动电机总空气开关,慢动抱闸空气开关,慢动热保护49I,可控硅风机开关,及其热保护49FX,

永磁同步电机基础知识

(一) P M S M 的数学模型 交流电机是一个非线性、强耦合的多变量系统。永磁同步电机的三相绕组分布在定子上,永磁体安装在转子上。在永磁同步电机运行过程中,定子与转子始终处于相对运动状态,永磁体与绕组,绕组与绕组之间相互影响,电磁关系十分复杂,再加上磁路饱和等非线性因素,要建立永磁同步电机精确的数学模型是很困难的。为了简化永磁同步电机的数学模型,我们通常做如下假设: 1) 忽略电机的磁路饱和,认为磁路是线性的; 2) 不考虑涡流和磁滞损耗; 3) 当定子绕组加上三相对称正弦电流时,气隙中只产生正弦分布的磁势,忽略气隙中的高次谐波; 4) 驱动开关管和续流二极管为理想元件; 5) 忽略齿槽、换向过程和电枢反应等影响。 永磁同步电机的数学模型由电压方程、磁链方程、转矩方程和机械运动方程组成,在两相旋转坐标系下的数学模型如下: (l)电机在两相旋转坐标系中的电压方程如下式所示: 其中,Rs 为定子电阻;ud 、uq 分别为d 、q 轴上的两相电压;id 、iq 分别为d 、q 轴上对应的两相电流;Ld 、Lq 分别为直轴电感和交轴电感;ωc 为电角速度;ψd 、ψq 分别为直轴磁链和交轴磁链。 若要获得三相静止坐标系下的电压方程,则需做两相同步旋转坐标系到三相静止坐标系的变换,如下式所示。 (2)d/q 轴磁链方程: 其中,ψf 为永磁体产生的磁链,为常数,0f r e ωψ=,而c r p ωω=是机械角速度,p 为同步电机的极对数,ωc 为电角速度,e0为空载反电动势,其值为每项 倍。 (3)转矩方程: 把它带入上式可得: 对于上式,前一项是定子电流和永磁体产生的转矩,称为永磁转矩;后一项是转 子突极效应引起的转矩,称为磁阻转矩,若Ld=Lq ,则不存在磁阻转矩,此时,转矩方程为: 这里,t k 为转矩常数,32 t f k p ψ=。 (4)机械运动方程: 其中,m ω是电机转速,L T 是负载转矩,J 是总转动惯量(包括电机惯量和负载惯量),B 是摩擦系数。 (二) 直线电机原理 永磁直线同步电机是旋转电机在结构上的一种演变,相当于把旋转电机的定子和动子沿轴向剖开,然后将电机展开成直线,由定子演变而来的一侧称为初级,转子演变而来的一侧称为次级。由此得到了直线电机的定子和动子,图1为其转变过程。

多台电机同步调速器的应用

多台电机同步调速器的应用 (TB-4同步控制器使用说明书) 同步控制是工业控制中常见的控制方式,传统的机械同步控制由于精度和可调性差而逐渐减少,我所开发的TB-4 同步控制器由于控制精度高,输出模拟量可选性多,能多台同步器并联使用, 等优点而在电线电缆, 皮革, 钢铁, 纺织, 造纸, 等一些需要电机同步同速和同步非同速控制的行业被大量应用。TB-4 同步控制器就其工作原理而言,实际上是一台具有4 路直流模拟量(电压或电流)控制信号输出的信号发生器。 技术参数; 自动控制输入:0-5VDC 。0-10V DC 手动控制:主调10K 电位器 模拟量输出四组电压型;0-5VDC . 1-5VDC. 0-10V . 2-10V 。 模拟量输出四组电压型:0-10ma. 0-20ma .2-10ma.4-20ma 软启动时间调节:0-60 秒 控制电机台数;4-48 台 可接口调速器:力矩电机控制器,直流电机调速器,变频器,电磁电机调速器,等可调速电机控制器。 外型尺寸 原理示意图

同步器的技术及其特点 TB-4 同步器,内部采用MAXI 公司的是最新12 位D/A ,A/D 转换电路,他能通过主调电位器同时输出 4 组电压量或电流量信号,这四组信号可通过4 个多圈微调电位器,在原有主调电位器调节输出的(电压或电流)基础上增加或衰减,以达到多台电机的同步同速和同步非同速控制。 软启动曲线图 该控制器具有输出模拟量(电压或电流)随时间线性上升功能,调节机器内部电位器W1 可使上升时间,0-60秒线性调节(图 1 ) 注:V/I 输出电压和电流,ms 启动时间 应用举例:

浅析两台异步电机的同步控制

龙源期刊网 https://www.doczj.com/doc/7711866793.html, 浅析两台异步电机的同步控制 作者:殷雄 来源:《科技资讯》2012年第02期 摘要:在两台异步电机(分别命名为1#,2#,下同)的控制中,以1#电机为基准,采用基 于PLC技术的变频控制,根据根据负载需要,不断改变1#电机的转速,为了达到两台异步电机的同步运行,以1#电机的转速为给定量,2#电机的转速为随动量,也采用基于PLC技术的闭环变频控制。从而实现两台异步电机的精确同步运行,也达到了节能之目的。 关键词:异步电机同步控制节能 中图分类号:TPO文献标识码:A文章编号:1672-3791(2012)01(b)-0134-01 随着国民经济的发展,生产过程中的机械化程度不断提高,而机械化程度的不断提高与电机特别是异步电机的广泛应用和精确控制是密不可分的。在海绵、塑料制品和钢铁行业生产过程中,对异步电机的同步控制要求十分高。例如:在海绵发泡过程中,必须保证两台电机转速的同步,如果2#电机的转速大于1#电机的转速,就会造成切断机刀架拉坏,如果2#电机的转速小于1#电机的转速就不能切断海绵。这两种情况在实际生产中是不允许的,因为这会造成 设备的损坏和产品的报废,从而造成经济损失,影响企业的效益。本文依据负载需要对两台电机采用闭环PLc变频控制,从而实现两台异步电机的转速同步控制,以满足工业生产的需要。 1基于PLC技术的1#电机转速变频控制的实现 先令1#电机以最低频率(35Hz)进行启动,当电机启动后,依据生产需要,不断改变电机转速的给定值,并将给定值输入PLC相应模块,与1#电机的相连的测速电机对1#电机进行测速,并将所测的速度值也输入PLC相应模块,让PLC进行判断。如果测速电机所测的速度大于给定速度时,那么PLC向1#电机的变频器发出无极降速的指令,从而让1#电机的变频器降低频率进而降低转速;如果测速电机所测的速度小于给定速度时,那么PLC向1#电机的变频器发出无极升速的指令,从而让1#电机的变频器提高频率进而升高转速。其PLC闭环控制原理图如图1所示,其PLC闭环控制流程图如图2所示。

同步电机练习试题和答案解析

第六章 同步电机 一、填空 1. ★在同步电机中,只有存在 电枢反应才能实现机电能量转换。 答 交轴 2. 同步发电机并网的条件是:(1) ;(2) ;(3) 。 答 发电机相序和电网相序要一致,发电机频率和电网频率要相同,发电机电压和电网电压大小要相等、相位要一致 3. ★同步发电机在过励时从电网吸收 ,产生 电枢反应;同步电动机在过励时向电网输出 ,产生 电枢反应。 答 超前无功功率,直轴去磁,滞后无功功率,直轴增磁 4. ★同步电机的功角δ有双重含义,一是 和 之间的夹角;二是 和 空间夹角。 答 主极轴线,气隙合成磁场轴线,励磁电动势,电压 5. 凸极同步电机转子励磁匝数增加使q X 和d X 将 。 答 增加 6. 凸极同步电机气隙增加使q X 和d X 将 。 答 减小 7. ★凸极同步发电机与电网并联,如将发电机励磁电流减为零,此时发电机电磁转矩为 。 答 δs i n 2)X 1X 1( mU d q 2 - 二、选择 1. 同步发电机的额定功率指( )。 A 转轴上输入的机械功率; B 转轴上输出的机械功率; C 电枢端口输入的电功率; D 电枢端口输出的电功率。 答 D 2. ★同步发电机稳态运行时,若所带负载为感性8.0cos =?,则其电枢反应的性质为( )。 A 交轴电枢反应; B 直轴去磁电枢反应; C 直轴去磁与交轴电枢反应; D 直轴增磁与交轴电枢反应。 答 C 3. 同步发电机稳定短路电流不很大的原因是( )。 A 漏阻抗较大; B 短路电流产生去磁作用较强; C 电枢反应产生增磁作用; D 同步电抗较大。 答 B

4. ★对称负载运行时,凸极同步发电机阻抗大小顺序排列为( )。 A q aq d ad X X X X X >>>>σ; B σX X X X X q aq d ad >>>>; C σX X X X X ad d aq q >>>>; D σX X X X X aq q ad d >>>>。 答 D 5. 同步补偿机的作用是( )。 A 补偿电网电力不足; B 改善电网功率因数; C 作为用户的备用电源; D 作为同步发电机的励磁电源。 答 B 三、判断 1. ★负载运行的凸极同步发电机,励磁绕组突然断线,则电磁功率为零 。 ( ) 答 错 2. 同步发电机的功率因数总是滞后的 。 ( ) 答 错 3. 一并联在无穷大电网上的同步电机,要想增加发电机的输出功率,必须增加原动机的输入功率,因此原动机输入功率越大越好 。 ( ) 答 错 4. 改变同步发电机的励磁电流,只能调节无功功率。 ( ) 答 错 5. ★同步发电机静态过载能力与短路比成正比,因此短路比越大,静态稳定性越好。( ) 答 错 6. ★同步发电机电枢反应的性质取决于负载的性质。 ( ) 答 错 7. ★同步发电机的短路特性曲线与其空载特性曲线相似。 ( ) 答 错 8. 同步发电机的稳态短路电流很大。 ( ) 答 错 9. 利用空载特性和短路特性可以测定同步发电机的直轴同步电抗和交轴同步电抗。( ) 答 错 10. ★凸极同步电机中直轴电枢反应电抗大于交轴电枢反应电抗。 ( ) 答 对 11. 与直流电机相同,在同步电机中,U E >还是U E <是判断电机作为发电机还是电动机运行的依据之一。 ( ) 答 错 12. ★在同步发电机中,当励磁电动势0 E 与I 电枢电流同相时,其电枢反应的性质为直轴电枢反应 。 ( ) 答 错 四、简答 1. ★测定同步发电机的空载特性和短路特性时,如果转速降至0.951n ,对试验结果有什么影

伺服电机同步控制技术在印刷行业的应用

伺服电机同步控制技术在印刷行业的应用 在印刷机械行业中,多电机的同步控制是一个非常重要的问题。由于印刷产品的特殊工艺要求,尤其是对于多色印刷,为了保证印刷套印精度(一般≤0.05mm),要求各个电机位置转差率很高(一般≤0.02%)。在传统的印刷机械中,以往大都采用以机械长轴作为动力源的同步控制方案,但机械长轴同步控制方案易出现振荡现象,各个机组互相干扰,而且系统中有许多机械零件,不方便系统维护和使用。随着机电一体化技术的发展,现场总线技术不断应用到各个领域并得到了广泛的应用。本文针对机组式印刷机械的同步需求,提出了一种基于CAN现场总线的同步控制解决方案,并得以验证。 一、无轴传动印刷机控制系统的同步需求 机组式卷筒印刷机一般由给纸机组、印刷机组、张力机组、加工机组和复卷机组等机组组成。在传统的有轴传动印刷机中,动力源由异步电机通过皮带轮带动一根机械长轴(约10-20m),然后通过长轴带动各机组的齿轮、凸轮、连杆等传动元件,再通过传动元件带动设备的执行元件完成设备的输人、输出任务。 卷筒印刷机要求印刷速度为300m/min,套印精度≤0.03mm,为了满足套印精度,要求在各个机组定位精度≤0.03 mm。在印刷机印刷过程中,要求各机组轴与机械长轴保持一定的同步运动关系,能否很好的实现各个机组轴的同步关系,将直接影响到印刷速度、套印精度等。其中,给纸机组、印刷机组要求与主轴转动速度成一定的比例关系,张力机组根据不同的印刷速度调整张力系数,加工机组需要与主轴保持凸轮运动关系,而复卷机组的运动规律,要求随着纸卷直径的增大而减小。 我们把机械长轴作为主轴(参考轴),各印刷机组轴为从动轴,如图1,各从动轴与主轴要满足同步关系θ1=f1(θ),θ2=f2(θ),θ3=f3(θ)···,其中,θ为主轴位置转角,θ1、θ2、θ3···为从动轴位置转角。 二、同步控制系统设计

同步磁阻电机及其控制技术的发展和应用

同步磁阻电机及其控制技术的发展和应用 摘要:本文简单介绍了同步磁阻电机(SynRM)的运行原理。追溯同步磁阻电机的发展历史,总结了同步磁阻电机的结构和运行特点。根据同步磁阻电机的特点结合目前国内外研究现状讨论了同步磁阻电机现有的几种高性能控制方法。最后根据同步磁阻电机当前的研究进展结合其取得的优越性能介绍了其在电动汽车和高速发电等领域的应用。 关键词:同步磁阻电机 1同步磁阻电机的原理 SynRM 运行原理与传统的交、直流电动机有着根本的区别,它不像传统电动机那样依靠定、转子绕组电流产生磁场相互作用形成转矩,而遵循磁通总是沿着磁阻最小路径闭合的原理,通过转子在不同位置引起的磁阻变化产生的磁拉力形成转矩。 SynRM 在dq 轴系下的电压、磁链、电磁转矩和机械运动方程为: 电压方程: (1)磁链方程: (2) 电磁转矩方程: (3) Ld、Lq为绕组d、q轴电感;Rs为定子绕组相电阻;ωr为转子电角速度;ψd、ψq为定子d、q 轴磁链,p n为电机极对数;β为电流综合矢量与d轴之间的夹角[1]。 2同步磁阻电机的发展历史 早在二十世纪二十年代Kostko J K等人提出了反应式同步电机理论[2],M.Doherty 和Nickle 教授提出磁阻电机的概念,此后国外关于许多专家和学者对同步磁阻电机的的能、转子结构和控制方法进行较深入研究。早期的同步磁阻电机由一个无绕组凸级转子和一个与异步电机类似的定子组成。在转子轭q轴方向加上两道气隙, 以增加q 轴磁阻。利用d -q 轴的磁阻差来产生磁阻转矩。转子周边插上鼠笼条以产生异步起动转矩。然而, 由于该异步转

矩的作用, 又将引起转子震荡而难以保证电机正常运行。六十年代初, 出现了第二代同步磁阻电机它利用块状转子结构来增加d-q 轴磁阻差, 同时不用鼠笼条来起动转矩, 而直接靠逆变器变频来起动, 从而减轻了转子震荡现象[3]。然而, 为产生足够的磁阻转矩, 需要定子侧有较大的励磁电流, 致使该电机功率因素和效率都很低, 从而影响了该种电机的推广使用。为尽可能增大d-q 轴磁阻差, 同时减小励磁电流, 增大功率因素, 在七十年代初期产生了第三代同步磁阻电机, 采用轴向多层迭片结构, 以获得最大的d 轴电感和最小q 轴电感, 而得到最大磁阻转矩[4]。采用该转子结构后, d-q 轴电感之比可以达到20, 其输出功率可以达到同尺寸大小的异步电机输出功率。1991 年美国威斯康星大学T.A.Lipo教授对同步磁阻电机的转子结构进行进一步优化,发表文章提出SynRM 在交流调速驱动系统中替代异步电动机的可能性的问题[5,6]。1993 年英国的https://www.doczj.com/doc/7711866793.html,ler 教授指导的课题组对SynRM 不同转子结构的磁路进行了分析和研究,试图寻找更优化的转子结构提高电机的凸极率,并重点对轴向叠片转子结构SynRM 转子叠片层数、绝缘占有率进行了优化,得到优化后的样机在最大转矩电流比控制时功率因数为0.7 左右[7,8]。文献[9]对冲片叠压式SynRM 转子空气层做了较为深入的分析,通过有限元和仿真实验设计优化了转子结构,主要分析了转子空气层含有率、位置、个数,转子气隙以及电机饱和对电机电磁参数的影响,指出了空气层含有率、转子气隙、电机饱和对电机性能影响较大,同时优化后的样机其功率因数为0.72,对SynRM的电磁设计与分析具有很好的参考价值。文献[10]对冲片叠压式SynRM 三种转子结构的磁场分布进行了分析和比较,指出转子空气层之间的连接处将会给d 轴磁通提供较小磁阻磁路,去掉转子空气层之间的连接处将明显提高电机的功率因数。文献[11,12]提出了采用有限元和罚函数法,通过比较冲片叠压式SynRM 凸极率和交、直轴电感差值,自动ACAD 绘图、剖分和数据存储来快速优化转子结构提高电机力能指标的方法。 我国对SynRM 的研究起步较晚。1994 年,华中科技大学辜承林教授指导的课题组设计制作出国内第一台两极的ALA 转子样机,其样机的凸极率和功率因数分别达到了11和0.85 左右,但其结构加工较复杂[13-17]。文献[18]根据能量平衡的观点,以异步电机为参照,分析了SynRM交、直轴电感以及凸极率对电机性能的影响,并指出对于确定的凸极率理论上有最大的功率因数与之对应,反之对于确定的功率因数理论上有最小的凸极率与之对应。在SynRM 设计时凸极率应根据电机的过载能力和功率因数的要求而正确选择,单纯追求增大凸极率是不适当的。指出在电机应用中,功率因数小于0.85且容量较小时,SynRM 可与异步电机匹敌。文献[19]介绍了SynRM 的结构及仿真设计。电机转子采用栅格叠片结构,驱动控制器采用电流矢量控制方式,指出SynRM 与感应电动机相比,具有效率高、功率密度大等优点;与永磁同步电动机相比,在同等功率条件下大大降低了电机的成本,同时拓宽了电机的使用范围,提高了电机运行的可靠性。 2011年ABB公司在同步磁阻电机转子设计方面取得突破性进展,如今已经有了应用于工业应用中的商业化产品。 3同步磁阻电机的性能特点 3.1相比于传统电机的优点 与传统直流电动机相比,SynRM 没有电刷和滑环,维修简单方便。与异步机相比,SynRM 转子上没有绕组,则没有转子铜耗,基本上不存在转子发热问题,提高了电机的运行效率和安全性,另外由于转子上没有阻尼绕组电机响应不受转子时间常数的限制,动态响应速度快。与开关磁阻电机相比,SynRM可以做到转子表面光滑、磁阻变化较为连续,避免了开关磁阻电机运行时转矩脉动和噪声大的问题。由于磁阻正弦变化使得矢量控制能够被用于同步磁阻电机以便于取得很好的控制性能。与永磁同步电机相比,SynRM 转子上没有

永磁同步电动机的应用前景

一、概述 众所周知,直流电动机有优良的控制性能,其机械特性和调速特性均为平行的直线,这是各类交流电动机所没有的特性。此外,直流电动机还有起动转矩大、效率高、调速方便、动态特性好等特点。优良的控制特性使直流电动机在70年代前的很长时间里,在有调速、控制要求的场合,几乎成了唯一的选择。但是,直流电动机的结构复杂,其定子上有激磁绕组产生主磁场,对功率较大的直流电动机常常还装有换向极,以改善电机的换向性能。直流电机的转子上安放电枢绕组和换向器,直流电源通过电刷和换向器将直流电送入电枢绕组并转换成电枢绕组中的交变电流,即进行机械式电流换向。复杂的结构限制了直流电动机体积和重量的进一步减小,尤其是电刷和换向器的滑动接触造成了机械磨损和火花,使直流电动机的故障多、可靠性低、寿命短、保养维护工作量大。换向火花既造成了换向器的电腐蚀,还是一个无线电干扰源,会对周围的电器设备带来有害的影响。电机的容量越大、转速越高,问题就越严重。所以,普通直流电动机的电刷和换向器限制了直流电动机向高速度、大容量的发展。 在交流电网上,人们还广泛使用着交流异步电动机来拖动工作机械。交流异步电动机具有结构简单,工作可靠、寿命长、成本低,保养维护简便。但是,与直流电动机相比,它调速性能差,起动转矩小,过载能力和效率低。其旋转磁场的产生需从电网吸取无功功率,故功率因素低,轻载时尤甚,这大增加了线路和电网的损耗。长期以来,在不要求调速的场合,例如风机、水泵、普通机床的驱动中,异步电动机占有主导地位,当然这类拖动中,无形中损失了大量电能。 过去的电力拖动中,很少彩同步电动机,其主要原因是同步电动机不能在电网电压下自行起动,静止的转子磁极在旋转磁场的作用下,平均转矩为零。人们亦知道变频电源可解决同步电动机的起动和调速问题,但在70年代以前,变频电源是可想而不可得的设备。所以,过去的电力拖动中,很少看到用同步电动机作原动机。在大功率范围内,偶尔也有同步电动机运行的例子,但它往往是用来改善大企业的电网功率因数。 自70年代以来,科学技术的发展极大地推动了同步电动机的发展和应用,主要的原因有:1、高性能永磁材料的发展 永磁材料近年来的开发很快,现有铝镍钴、铁氧体和稀土永磁体三大类。稀土永磁体又有第一代钐钴1:5,第二代钐钴2:17和第三钕铁硼。铝镍钴是本世纪三十年代研制成功的永磁材料,虽其具有剩磁感应强度高,热稳定性好等优点,但它矫顽力低,抗退磁能力差,而且要用贵重的金属钴,成本高,这些不足大大限制了它在电机中的应用。铁氧体磁体是本世纪五十年代初开发的永磁材料,其最大的特点是价格低廉,有较高的矫顽力,其不足是剩磁感应强度和磁能积都较低。钐钴稀土永磁材料在六十年代中期问世,它具有铝镍钴一样高的剩磁感应强度,矫顽力比铁氧体高,但钐稀土材料价格较高。80年代初钕铁硼稀土永磁材料的出现,它具有高的剩磁感应强度,高的矫顽力,高的磁能积,这些特点特别适合在电机中使用。它们不足是温度系数大,居里点低,容易氧化生锈而需涂复处理。经过这几年的不断改

第四章同步电机

第十一章三相交流同步发电机 在使用交流电制的船舶中,均采用三相交流同步发电机作为主电源设备。交流同步发电机是一种能量转换装置,它将原动装置发出的机械能转换成电能。根据原动机的形式,通常有中速柴油机发电机组,有的也配有转速较高的汽轮机发电机组。随着现代船舶的大型化,船用发电机的单机容量不断增大,船舶自动化程度大幅提高,对发电机运行的稳定性及可靠性提出了更高的要求。 4.1三相交流同步电机的构造与工作原理 4.1.1三相交流同步电机的构造 三相交流同步电机是由定子部分及转子部分组成。定子铁芯、转子铁芯和定转子间的气隙构成同步电机的磁路。以转子绕组形式分类,有旋转电枢式和旋转磁极式。对于高压、大容量的同步电机,通常采用旋转磁极式结构,即主磁极装设在转子上,电枢装设在定子上。由于励磁部分的容量和电压较电枢少得多,电刷和集电环的负载就大为减轻,工作条件得以改善。目前,旋转磁极式结构已经成为包括船舶发电机在内的中、大型同步电机的基本结构形式。 1 定子电枢构造: 定子电枢的同步电机,定子铁心是由硅钢片叠成。定子铁心槽内嵌放的三相对称绕组也是依次相差120空间电角度或120空间机械角度,其中p为极对数。三相绕组又称电枢绕组,电力发电机基本上都采用Y联接。 定子结构由铁芯、电枢三相绕组、机座和端盖等部件所组成,与异步电机定子基本相同。甚至相同机座号时,若与异步机互换定子,仍然可以运行。与异步电机的主要区别是尺寸方面,相同外形情况下,同步电机通常容量较大,而同步机的容量相对较小。从表面上看,同步机机壳表面较光,无散热片,而异步机表面带有散热槽。 2 转子: 旋转磁极式同步电机的转子有两种结构形式:一种有明显的磁极,成为凸极式,另一种转子为一个圆柱体,表面上开有槽,无明显的磁极,称为隐极式。而这两种转子绕组均时直流绕组,通以直流电流,产生恒定的磁极主磁通,并随原动机的运转而形成旋转磁动势。 同步发电机的转子可以采用凸极式和隐极式。由于水轮机、低速柴油机的转速较低(1000r/min及以下),通常把发电机的转子做成凸极式的;对于汽轮发电机,包括中高速柴油机发电机,由于转速较高(1500r/min乃至3000r/min以上),为了很好地固定励磁绕组,通常把发电机的转子做成隐极式的。无论是隐极式转子还是凸极式转子,其磁极均以N—S —N—S机顺序排放,励磁绕组的两个出线端分别接到固定的转轴上彼此绝缘的两个滑环上或旋转整流器的直流侧上,以产生磁极主磁通。对应的励磁供电可以通过固定的电刷装置与滑环的滑动接触将直流电流引入励磁绕组中,或通过自带的励磁机整流后向励磁绕组供电。 为了降低转子表面线速度,隐极式转子通常制成细长的圆柱体。隐极式转子的磁极一般为一对极或二对极。通常凸极式同步发电机的转子可制成一对极、二对极、三对极等,每个磁极上套放励磁绕组。 4.1.2三相交流同步电机的工作原理 当同步发电机的转子在原动机的拖动下达到同步转速n0时,由于转子绕组是由直流电流I f励磁,所以转子绕组在气隙中所建立的磁场相对于定子来说是一个与转子旋转方向相同、转速大小相等的旋转磁场。该磁场切割定子上开路的三相对称绕组,在三相对称绕组中产生三相对称空载感应电动势E0。若改变励磁电流的大小则可相应地改变感应电动势的大小,此时同步发电机处于空载运行。 当同步发电机带负载后,定子绕组构成闭合回路,产生定子电流,该电流是三相对称电

第五篇同步电机·第二十章概述·第一节同步电机的基本结构和额定值

第五篇同步电机·第二十章概述·第一节同步电机的基本结构和额定值 1.转子本体与基波旋转磁场同速的电机称为同步机。对 2.转子本体与基波旋转磁场异速的电机称为同步机。错 3.实际应用的同步机多是转枢式。错 4.同步电机实际运行状态取决于定、转子磁场的相对位置。对 5. 无刷励磁需要刷-环机构。错 第五篇同步电机·第二十一章同步发电机的运行原理·第一节同步发电机的空载运行1. 空载电势又叫励磁电势。对 第五篇同步电机·第二十一章同步发电机的运行原理·第二节对称负载时的电枢反应 1.电枢反应改变的是主极磁场。对 2.内功因角是空载电势与电枢电流之间的夹角。对 3. 电枢反应与内功因角无关。错 第五篇同步电机·第二十一章同步发电机的运行原理·第三节隐极同步发电机的数学模型 1.计及饱和时,可以引入电枢反应电抗的概念。错 2. 不计饱和时,电枢反应电势可以写成负的电抗压降形式。对 第五篇同步电机·第二十一章同步发电机的运行原理·第四节凸极同步发电机的数学模型 1.计及饱和时,可以应用双反应理论。错 2.引入虚拟电势后,可以画出凸极同步发电机的等效电路。对 3.直轴同步电抗下雨交轴同步电抗。对

第五篇同步电机·第二十一章同步发电机的运行原理·第五节同步发电机的功率和转 矩 1.对同步发电机言,输入功率扣掉铁耗、机耗,剩下的就是电磁功率。对 2.对同步发电机言,电磁功率就是空载电势发出的电功率。对 3.对同步发电机言,空载转矩对应铁耗与机耗之和,电磁转矩对应电磁功率。对 4. 功率角既是空载电势与端电压之间的夹角,又近似地是主磁场与合成磁场之间的夹角。对 第五篇同步电机·第二十二章同步发电机的特性·第一节同步发电机的基本特性 1.空载特性反映了定子量与转子量之间的关系。错 2.短路特性不是直线。错 3. 零功率因数负载特性和空载特性之间相差一个特性三角形。对 第五篇同步电机·第二十二章同步发电机的特性·第二节同步发电机的参数测定 1.短路试验时磁路是饱和的。错 2.短路比反映了一定条件下短路电流的大小。对 3.短路比等于饱和直轴同步电抗的倒数。对 4.零功率因数特性的实测曲线要比理想曲线高。错 5. 坡梯漏抗比实际漏抗略大。对 第五篇同步电机·第二十二章同步发电机的特性·第三节同步发电机的运行特性 1.感性负载的调整特性是降低的。错 2.感性负载的外特性是升高的。错 3. 额定效率是同步发电机的性能指标之一。对、、 第五篇同步电机·第二十三章同步发电机的并联运行·第一节投入并联运行的条件和方法

同步电机原理和结构

每相感应电势的有效值为

(15.2) ◆ 交变性与对称性:由于旋转磁场极性相间,使得感应电势的极性交变;由于电枢绕组的对称性,保证了感应电势的三相对称性。 同步转速 ◆同步转速 从供电品质考虑,由众多同步发电机并联构成的交流电网的频率应该是一个不变的值,这就要求发电机的频率应该和电网的频率一致。我国电网的频率为50Hz ,故有: (15.3) ◆要使得发电机供给电网50Hz 的工频电能,发电机的转速必须为某些固定值,这些固定值称为同步转速。例如2极电机的同步转速为3000r/min ,4极电机的同步转速为1500r/min ,依次类推。只有运行于同步转速,同步电机才能正常运行,这也是同步电机名称的由来。 运行方式 ◆同步电机的主要运行方式有三种,即作为发电机、电动机和补偿机运行。 作为发电机运行是同步电机最主要的运行方式,作为电动机运行是同步电机的另一种重要的运行方式。同步电动机的功率因数可以调节,在不要求调速的场合,应用大型同步电动机可以提高运行效率。近年来,小型同步电动机在变频调速系统中开始得到较多地应用。 同步电机还可以接于电网作为同步补偿机。这时电机不带任何机械负载,靠调节转子中的励磁电流向电网发出所需的感性或者容性无功功率,以达到改善电网功率因数或者调节电网电压的目的。 ? 西安交通大学电机教研室 版权所有,侵权必究 2000.12?

水轮发电机 水轮发电机的特点是:极数多,直径大,轴向长度短,整个转子在外形上与汽轮发电机大不相同。大多数水轮发电机为立式。水轮发电机的直径很大,定子铁心由扇形电工钢片拼装叠成。为了散热的需要,定子铁心中留有径向通风沟。转子磁极由厚度为1~2mm 的钢片叠成;磁极两端有磁极压板,用来压紧磁极冲片和固定磁极绕组。有些发电机磁极的极靴上开有一些槽,槽内放上铜条,并用端环将所有铜条连在一起构成阻尼绕组,其作用是用来拟制短路电流和减弱电机振荡,在电动机中作为起动绕组用。磁极与磁极轭部采用 T 形或鸽尾形连接,如图15.4所示。 隐极式转子 隐极式转子上没有凸出的磁极,如图15.2b 所示。沿着转子本体圆周表面上,开有许多槽,这些槽中嵌放着励磁绕组。在转子表面约1/3部分没有开槽,构成所谓大齿,是磁极的中心区。励磁绕组通入励磁电流后,沿转子圆周也会出现 N 极和 S 极。在大容量高转速汽轮发电机中,转子圆周线速度极高,最大可达170米/秒。为了减小转子本体及转子上的各部件所承受的巨大离心力,大型汽轮发电机都做成细长的隐极式圆柱体转子。考虑到转子冷却和强度方面的要求,隐极式转子的结构和加工工艺较为复杂。

相关主题
文本预览
相关文档 最新文档