当前位置:文档之家› 移动无线传感器网络系统在n-Rayleigh信道下的性能分析

移动无线传感器网络系统在n-Rayleigh信道下的性能分析

移动无线传感器网络系统在n-Rayleigh信道下的性能分析
移动无线传感器网络系统在n-Rayleigh信道下的性能分析

移动无线信道多径衰落的仿真

******************* 实践教学 ******************* 兰州理工大学 计算机与通信学院 2011年秋季学期 移动通信课程设计 题目:移动无线信道多径衰落的仿真专业班级: 姓名: 学号: 指导教师: 成绩:

在移动通信迅猛发展的今天,人与人的交流越来越多的依赖于无线通信。而无线信道的好坏直接制约着无线通信质量的提高,因此对无线信道的研究有利于提高通信传输速率。本次课程设计用simulink对移动无线信道多径衰落特性进行了仿真,并且和理想传输环境下的情况进行比较得出了结论。 关键词:移动通信;无线信道;频率选择性衰落;多径传播

移动通信是指双方或至少其中一方在运动状态中进行信息传递的通信方式,是实现通信理想目标的重要手段。移动通信满足了人们在任何时间任何空间上通信的需求,同时,由于集成电路、计算机和软件工程的迅速发展为移动通信的发展提供了技术支持,移动通信的发展速度远远超过了人们的预料。移动通信追求在任何时间任何地方以任何方式与任何人进行通信,也就是移动通信的理想境界——个人通信。要实现这个理想,高效率、高质量是前提。所以,除了研究发射机接收机可以达到目的外,对于无线信道的研究更为重要。无线信道的好坏直接影响无线通信的质量和效率,对无线信道建立数学模型是一种科学的研究方法,通过建模可以了解影响信号传输质量的因素以及解决的方法。无线信道中,小尺度衰落占有重要地位,所以,研究小尺度衰落的特性和建模方法对于无线信道的研究具有重大意义。

第1章移动通信概述 (1) 1.1移动通信的发展史 (1) 1.2移动通信的特点 (2) 第2章无线信道的概念和特性 (4) 2.1 无线信道的定义 (4) 2.2 无线信道的类型 (4) 2.2.1 传播路径损耗模型(Propagation Path Loss Model) (4) 2.2.2 大尺度传播模型(Large Scale Propagation Model) (5) 2.2.3 小尺度传播模型(Small Scale Propagation Model) (5) 2.3 无线移动信道的概念 (5) 2.4 移动信道的特点 (6) 2.4.1 移动通信信道的3个主要特点 (6) 2.4.2 移动通信信道的电磁波传输 (6) 2.4.3 接收信道的3类损耗 (6) 2.4.4 三种快衰落(选择性衰落)产生的原因 (7) 第3章调制解调 (8) 第4章系统仿真及结果分析 (9) 4.1 QPSK 调制解调系统的仿真 (9) 4.2 利用Matlab研究QPSK信号 (11) 总结 (15) 参考文献 (16) 附录一: (17) 附录二: (19)

无线传感器网络期末复习题

《无线传感器网络原理与应用》复习题 一、填空题: 1.无线传感器网络的三个基本要素是:、和。 2.无线传感器网络实现了、? 和的三种功能。 3.无线传感器网络包括四类基本实体对象:目标、观测节点、和 。 4.根据无线传感器网络系统架构,无线传感器网络系统通常包括传感器节点(sensor node)、和。 5.无线传感器节点通常包含四个模块,他们是:数据采集模块、、无线通信模块和。 6.无线传感器网络的协议栈包括物理层、、、传输层 和,还包括能量管理、移动管理和任务管理等平台。 7.无线传感器网络的MAC层和物理层协议采用的是国际电气电子工程师协会(IEEE)制定的协议。 8.无线通信物理层的主要技术包括、、调制技术 和。 9.在无线通信系统中,有三种影响信号传播的基本机制:、绕射和。 10.无线传感器节点处于、接收状态、侦听状态和时单位时间内消耗的能量是依次减少的。 11.无线传感器网络MAC协议根据信道的分配方式可分为、 和混合式三种。 12.根据无线传感器网络不同的应用可以将其路由协议分为五类,你知道的有:、、。(任意给出3种)。 13. IEEE 标准将无线传感器网络的数据链路层分为两个子层,即和。 14. Zigbee的最低两层即物理层和MAC层使用标准,而网络层和应用层由Zigbee联盟制定。 15. Zigbee协议中定义了三种设备,它们是:、和Zigbee终端设备。

16.Zigbee支持三种拓扑结构的网络,它们是:、和。 17.无线传感器网络的时间同步方法有很多,按照网络应用的深度可 以划分三种:、和。 18.无线传感器网络的时间同步方法有很多,按照时间同步的参考时 间可以划分为和。 19.无线传感器网络的时间同步方法有很多,根据需要时间同步的不 同应用需求以及同步对象的范围不同可以划分为和。20.无线传感器网络定位技术大致可以划分为三类:、和 。 21.无线传感器网络典型的非测距定位算法有、APIT算法、 以及等。 22.无线传感器网络的数据融合策略可以分为、以 及。 23.无线传感器网络的故障可以划分为三个层次:、和 。 24. 根据网络提供服务的能力可以将QoS分为3种等级,分别是:、 和。 25. 传感器网络的支撑技术包括:、、及安全机制等。 26. 无线传感器节点的能耗主要集中在模块。 二、名词解释: 1.无线自组织网络 2.无线传感器网络(WSN) 3.基带信号 4.模拟调制 5.数字调制 6.物理信道 7.逻辑信道 8.路由选择 9.路由协议

水下传感器网络的应用和挑战研究

大连理工大学本科外文翻译水下传感器网络的应用和挑战研究 Research Challenges and Applications for Underwater Sensor Networking 学部(院):电子信息与电气工程学部 专业:电子信息工程 学生姓名:张毅男 学号:201081335 指导教师:殷福亮 完成日期:

水下传感器网络的应用和挑战研究 Research Challenges and Applications for Underwater Sensor Networking 信息科学研讨会南加利福尼亚大学 摘要:(原文中如果无摘要,此内容不写) 要求忠于原文,语意流畅。 关键词: (黑体、小四) (此处空一行) 每段落首行缩进2个汉字;或者手动设置成每段落首行缩进2个汉字,字体:宋体,字号:小四,行距:多倍行距 1.25,间距:段前、段后均为0行,取消网格对齐选项。 图、表、公式如果不加入到译文中,则必须在相应位置空一行。标出图名、表名或公式编号。 参考文献:略(翻译到此为止,此行不省略)

摘要:这篇文章研究了水下传感器网络化的因应用和挑战。我们认为它在近海岸油田的地震监测,装备检测和水下机器人方面具有很大的潜在应用。我们把研究方向定位近程声学通讯,测量与控制,时间同步,声学网络的高时延定位协议,网络长时间持续睡眠,数据传输的应用权限。我们把初步研究放在短程声波通讯硬件上,并分析高时延时间同步的结果。 引言:传感器网络是科学,工业,政府等许多方面革新的保证。这种分布在目标周围能被感知的小型物理装置带来了观察和研究世界的新机会。例如对于微生物环境的监测,结构的追踪和工业的应用。今日传感器网络正在被安排应用在地面上,相比之下水下运行仍旧有许多限制。远程控制淹没经常被使用,但是活动和被使用硬件他们的部署是本质上临时的。一些广阔地区的数据收集结果已经有了保证,但是精确程度较低(数以百计的传感器覆盖着地球)甚至当地区性的方法也被考虑过,这些通常都是有线而且昂贵的。 陆上传感器网络科学获从无线的使用,组态设定,每个能源使用效率的最大值获得好处。他们分析了低成本节点(大概100美元)密集分布(大概100米以内)短程,多次反射通讯。相比之下,今日水下声学传感器网络典型的昂贵(10k 美元往上),稀疏的分布(很少节点间隔在千米),典型通讯经过长距离直达基站而不是互相通讯。我们通常探索如何把陆上传感器网络的有点移植到水下声学传感器网络上去。 水下传感器网络有许多潜在应用(在第三部分)在此作为代表性的应用,我们简单的考虑水下油田的地震成像。许多近海岸油田的地震监测任务是在表面上用一艘船拖着一队的地震波检测器。这种技术的花费很高,而地震调查很少能被发现,例如:每二到三年,相比之下,传感器网络节点花费很低而且能够长久的铺设在海底。这样的系统能够使得地震成像频繁的存储(也许几个月),也能够帮助资源勘探和油条开采。 为了实现水下应用我们可以从不间断的地表传感器研究借鉴到许多设计准则和工具。然而有一些挑战是从根本上不同的。第一,无线电波不适合水下通信。因为传输极端受限(微波通常传输50-100cm),而声学遥测对于水下通信来说是很有前途的,现成的声学模型并不适用于具有数以百计节点的水下传感器网络。他们的能量,范围和价格都是为稀疏的,长距离的昂贵的系统而设计的,而不是密集的便宜的传感器节点。第二点,从射频到声学的迁移,改变了物理通讯的速率,从声速(1.5×103m/s)到光速(3×108m/s)——相差五个数量级之多。然而对于短程射频通信传播时延是可以忽略的,在水下通信这是一个重要的事实,这在定位和时间同步上有重要的意义。最后:对于能量的利用水下传感器和陆上传感器是不同的因为传感器会更大而且一些重要的应用会需要大量数据但却很稀少(一周一次或更少)。 因而我们把重点放在这三个方面:硬件,声学传感器网络节点(第四部分),协议,水下传感器网络自我分析,物理层协议设计,时间同步和定位(第五部分)主要运行,能量感知数据储藏和推荐(第五部分)。我们相信低成本能量消耗低的声学模型是可行的,我们将目光聚焦在短程通讯将会避开许多长距离通讯的问题。多路存取的发展和实验容忍协议在完成密集网络是必须的。低成本循环运行和一体化的应用能够成功对抗高时延和带宽受限。 第二部分系统结构 在描述明确的应用前,我们简单的回顾一下我们为水下传感器网络预测的传统结构。 图1是对于我们最近的实验设计我做了一个图。我们预见那种能使传感器具有更大资源的布局。

无线传感器网络试题库附答案

无线传感器网络试题库附答案 《无线传感器网络》 一、填空题(每题4分,共计60分) 1.传感器网络的三个基本要素:传感器、感知对象、用户(观察者) 2.传感器网络的基本功能:协作式的感知、数据采集、数据处理、发布感知信息3、 3.无线传感器节点的基本功能:采集数据、数据处理、控制、通信 4.无线通信物理层的主要技术包括:介质选择、频段选取、调制技术、扩频技术 5.扩频技术按照工作方式的不同,可以分为以下四种:直接序列扩频、跳频、跳时、宽带 线性调频扩频 6.定向扩散路由机制可以分为三个阶段:兴趣扩展阶段、梯度建立阶段、路径加强阶段 7.无线传感器网络特点:大规模网络、自组织网络、可靠的网络、以数据为中心的网络、 应用相关的网络 8.无线传感器网络的关键技术主要包括:网络拓扑控制、网络协议、时间同步、定位技术、 数据融合及管理、网络安全、应用层技术

9.IEEE标准主要包括:物理层。介质访问控制层 10.简述无线传感器网络后台管理软件结构与组成:后台管理软件通常由数据库、数据处理 引擎、图形用户界面和后台组件四个部分组成。 11.数据融合的内容主要包括:多传感器的目标探测、数据关联、跟踪与识别、情况评估和 预测 12.无线传感器网络可以选择的频段有:_800MHz___915M__、、___5GHz 13.传感器网络的电源节能方法:_休眠(技术)机制、__数据融合 14.传感器网络的安全问题:(1)机密性问题。(2)点到点的消息认证问题。(3)完整 性鉴别问题。 15.规定三种帧间间隔:短帧间间隔SIFS,长度为28s a)、点协调功能帧间间隔PIFS长度是SIFS加一个时隙(slot)长度,即78s b)分布协调功能帧间间隔DIFS,DIFS长度=PIFS+1个时隙长度,DIFS的长度为128 s 16.任意相邻区域使用无频率交叉的频道是,如:1、6、11频道。 17.网络的基本元素SSID标示了一个无线服务,这个服务的内容

水下无线传感网

水下无线传感器网络 摘要:水下无线传感器网络是一种包括声、磁场、静电场等的物理网络,它在海洋数据采集、污染预测、远洋开采、海洋监测等方面取得了广泛的应用,将在未来的海军作战中发挥重要的优势。描述了水下无线传感器网络的研究现状,给出了几种典型的水下无线传感器网络的体系结构,并针对水下应用的特点,分析了水下无线传感器网络设计中面临的节点定位、传感器网络能量、目标定位等诸多难题,最后根据应用需求提出了水下无线传感器网络研究的重点。 关键词:水下无线传感器网络;能量;定位 1.引言 水下无线传感器网络是使用飞行器、潜艇或水面舰将大量的(数量从几百到几千个)廉价微型传感器节点随机布放到感兴趣水域,节点通过水声无线通信方式形成的一个多跳的自组织的网络系统,协作地感知、采集和处理网络覆盖区域中感知对象的信息,并发送给接收者。近年来,水下无线传感器网络技术在国内外受到普遍关注,正在被广泛用于海洋数据采集,污染预测,远洋开采,海难避免,海洋监测等。 水下无线传感器网络具有传统传感器技术无法比拟的优点[1]:传感器网络是由密集型、成本低、随机分布的节点组成的,自组织性和容错能力使其不会因为某些节点在恶意攻击中的损坏而导致整个系统的崩溃;分布节点的多角度和多方位的信息融合可以提高数据收集效率并获得更准确的信息;传感网络使用与目标近距离的传感器节

点,从而提高了接收信号的信噪比,因此能提高系统的检测性能;节点中多种传感器的混合应用使搜集到的信息更加全面地反映目标的特征,有利于提高系统定位跟踪的性能;传感器网络扩展了系统的空间和时间的覆盖能力;借助于个别具有移动能力的节点对网络的拓扑结构的调整能力可以有效地消除探测区域内的阴影和盲点。因此,传感器网络能够应用于恶劣的战场环境。在军事领域,通过多传感器系统的密切协调,形成空-舰-陆基传感器构成的多传感器互补监视网络,对目标进行捕获、跟踪和识别。 水下无线传感器网络由于其应用环境的特殊性,要考虑海水盐度、压力、洋流运动、海洋生物、声波衰减等对传感器网络的影响,使水下无线传感器网络的设计比陆地无线传感器网络更难,对硬件的要求更高。 2 水下无线传感器网络的研究现状 由于水下无线传感器网络的巨大应用价值,它已经引起世界许多国家军事部门的极大关注。水下传感器网络技术的发展甚至影响到海军军事战略的变革。由于水下传感器网络技术的发展,未来的海战可充分发挥近海空间优势。 最早开展水下无线传感器网络研究的国家是美国,早在上世纪50 年代,美国就在大西洋和太平洋中耗巨资建设庞大的水声监视系统(SOSUS)。近几年美国水下无线传感器网络的较大的项目有:1999~2004 年美国海军研究办公室的SeaWeb 计划;2004 年哈佛大学启动的CodeBlue 平台研究计划;坛上,披露了“近海水下持续监

《无线传感器网络》试题.

《无线传感器网络》试题 一、填空题(每题4分,共计60分) 1、传感器网络的三个基本要素:传感器,感知对象,观察者 2、传感器网络的基本功能:协作地感知、采集、处理和发布感知信息 3、无线传感器节点的基本功能:采集、处理、控制和通信等 4、传感器网络常见的时间同步机制有: 5、无线通信物理层的主要技术包括:介质的选择、频段的选择、调制技术和扩频技术 6扩频技术按照工作方式的不同,可以分为以下四种: :直接序列扩频、跳频、跳时、宽带线性调频扩频 7、定向扩散路由机制可以分为三个阶段:周期性的兴趣扩散、梯度建立和路径加强 8、无线传感器网络特点:大规模网络、自组织网络、可靠的网络、以数据为中心的网络、应用相关的网络 9、无线传感器网络的关键技术主要包括:网络拓扑控制、网络协议、时间同步、定位技术、数据融合及管理、网络安全、应用层技术等 10、IEEE 802.15.4标准主要包括:物理层和MAC层的标准 11、简述无线传感器网络后台管理软件结构与组成:后台管理软件通常由数据库、数据处理引擎、图形用户界面和后台组件四个部分组成。 12、数据融合的内容主要包括:多传感器的目标探测、数据关联、跟踪与识别、情况评估和预测 13、无线传感器网络可以选择的频段有:868MHZ、915MHZ、2.4GHZ 5GHZ

14、传感器网络的电源节能方法:休眠机制、数据融合等, 15、传感器网络的安全问题:(1) 机密性问题。(2) 点到点的消息认证问题。(3) 完整性鉴别问题。 16、802.11规定三种帧间间隔:短帧间间隔SIFS,长度为28 s 、点协调功能帧间间隔PIFS长度是SIFS 加一个时隙(slot)长度,即78 s 分布协调功能帧间间隔DIFS ,DIFS长度=PIFS +1个时隙长度,DIFS 的长度为128 s 17、任意相邻区域使用无频率交叉的频道是,如:1、6、11频道。 18、802.11网络的基本元素SSID标示了一个无线服务,这个服务的内容包括了:接入速率、工作信道、认证加密方法、网络访问权限等 19、传感器是将外界信号转换为电信号的装置,传感器一般由敏感元件、转换元件、转换电路三部分组成 20、传感器节点由传感器模块、处理器模块、无线通信模块和能量供应模块四部分组成 二、基本概念解释(每题5分,共40分) 1.简述无线网络介质访问控制方法CSMA/CA的工作原理 CSMA/CA机制: 当某个站点(源站点)有数据帧要发送时,检测信道。若信道空闲,且在DIFS时间内一直空闲,则发送这个数据帧。发送结束后,源站点等待接收ACK确认帧。如果目的站点接收到正确的数据帧,还需要等待SIFS时间,然后向源站点发送ACK确认帧。若源站点在规定的时间内接收到ACK确认帧,则说明没有发生冲突,这一帧发送成功。

无线传感器网络知识点归纳

一、无线传感器网络的概述 1、无线传感器网络定义,无线传感器网络三要素,无线传感器网络的任务,无线传感器网 络的体系结构示意图,组成部分(P1-2) 定义:无线传感器网络(wireless sensor network, WSN)是由部署在监测区域内大量的成本很低、微型传感器节点组成,通过无线通信方式形成的一种多跳自组织的网络系统,其目的是协作地感知、采集和处理网络覆盖范围内感知对象的信息,并发送给观察者或者用户 另一种定义:无线传感器网络(WSN)是大量的静止或移动的传感器以自组织和多跳的方式构成的无线网络,目的是协作地采集、处理和传输网络覆盖地域内感知对象的监测信息,并报告给用户 三要素:传感器,感知对象和观察者 任务:利用传感器节点来监测节点周围的环境,收集相关的数据,然后通过无线收发装置采用多跳路由的方式将数据发送给汇聚节点,再通过汇聚节点将数据传送到用户端,从而达到对目标区域的监测 体系结构示意图: 组成部分:传感器节点、汇聚节点、网关节点和基站 2、无线传感器网络的特点(P2-4) (1)大规模性且具有自适应性 (2)无中心和自组织 (3)网络动态性强 (4)以数据为中心的网络 (5)应用相关性 3、无线传感器网络节点的硬件组成结构(P4-6) 无线传感器节点的硬件部分一般由传感器模块、处理器模块、无线通信模块和能量供应模块4部分组成。

4、常见的无线传感器节点产品,几种Crossbow公司的Mica系列节点(Mica2、 Telosb) 的硬件组成(P6) 5、无线传感器网络的协议栈体系结构(P7) 1.各层协议的功能 应用层:主要任务是获取数据并进行初步处理,包括一系列基于监测任务的应用层软件 传输层:负责数据流的传输控制 网络层:主要负责路由生成与路由选择 数据链路层:负责数据成帧,帧检测,媒体访问和差错控制 物理层:实现信道的选择、无线信号的监测、信号的发送与接收等功能 2.管理平台的功能 (1)能量管理平台管理传感器节点如何使用能源。 (2)移动管理平台检测并注册传感器节点的移动,维护到汇聚节点的路由,使得传感器节点能够动态跟踪邻居的位置。 (3)任务管理平台在一个给定的区域内平衡和调度监测任务。 6、无线传感器网络的应用领域(P8-9) (1)军事应用 (2)智能农业和环境监测 (3)医疗健康 (4)紧急和临时场合 (5)家庭应用 (6)空间探索

【2015-12】水下传感器网络综述

1水声通信 由于声音(Acoustic)在水中的衰减低,声波通信成为在水下环境中最通用和应用最广泛的技术,尤其是在热稳定的深水区域。声波通信的主要限制因素是浅水区域中的温度梯度差异、海面噪声和反射折射引起的多径传播;次要的限制因素是水中声速(约为1500米/秒)慢,也限制了其通信效率。所以,水声通信受到严重的带宽限制和干扰限制,难以实现短距离、高带宽通信。综观整个水声通信的发展历程,就是不断地与这些干扰相抗争的过程。例如:根据不同的干扰特点,选择抗干扰能力强的编(解)码方法和调制方式;采用各种抑制干扰的技术;采用分集的办法来抵抗衰落;采用均衡技术抵消信道缺陷引起的畸变;采用自适应技术来适应信道特性的变化以及增加功率等。水声通信在几KHz到几十KHz的带宽下,可以实现1-2000公里距离的通信,在小于1公里范围的短距离通信中,水声通信在几十KHz带宽下,数据传输速率可达100kbps,带宽效率可达几个bits/sec/Hz。 2水下无线通信网络安全关键技术研究 研制低成本、高能效、高可靠性、高安全性的水下无线通信网络对于海洋环境监控、海洋资源开发等研究领域具有重要的理论意义和经济价值。由于受自身特性限制和水声通信环境制约,水下无线通信网络面临各种威胁和攻击,然而现有的水下通信研究多以节省能耗、延长网络寿命为出发点,忽视了潜在的安全问题。因此,研究现有水下无线通信技术存在的安全隐患,针对其面临的安全威胁和安全需求,设计适用于水下无线通信网络的安全技术和安全体系,具有重要的意义。本文对水下无线通信网络的若干安全关键技术进行了研究,并提出了一种适用于水下无线通信网络的安全体系。 无线传感器网络(Wireless Sensor Networks, WSN)最早可以追溯到20 世纪末,它以其低成本、低能耗、自组织和分布式的特点为网络带来了一场信息感知的变革。无线传感器网络在城市管理、环境监测、军事国防、生物医疗等领域都表现出了很好的应用前景。在国际上它被认为是继互联网之后的第二大网络,被评为对人类未来生活产生深远影响的十大新兴技术之首。无线传感器网络具有规模大、自组织、动态性、鲁棒性、应用相关、以数据为中心等特性,能更真实有效的获取客观的物理信息,并将其与现代传输网络紧密结合在一起,因此不断受到越来越多国家学术界和工业界的高度重视和密切关注。 海洋以其70%的地球覆盖率逐渐受到世界各国的重视,海洋的开发与发展被认为是人类生存和不断发展的必经之路。随着无线传感器网络的发展成熟以及各国对海洋权益的日益重视,水下传感器网络以其低成本、高可靠特征逐渐受到世界各国学术界的关注,成为21 世纪一个新的研究热点。水下传感器网络通过部署在指定海域的具有自组织能力的传感器节点获取所需的各种海洋监测信息,然后对其进行一定的处理之后传输给基站,最后经由卫星送达用户。水下传感器网络的应用涵盖多个领域,包括水下开发、灾难预警、水下环境监测、数据收集、辅助导航、海底军事等。 水下传感器网络部署在极为复杂的水下环境中,而无线电波在海水中的衰减十分严重,因此以声波作为信息载体的水声通信成为水下传感器网络的主要通信方式。这也使得水下传感器网络具备许多不同于陆上传感器网络的特性。首先,大多数陆上传感器节点都是静止不动的,而水下传感器节点则随着海水的运动不断移动,通常一个传感器节点每秒随水流移动2-3米;其次,水下传感器节点与陆上传感器节点的能耗不同,一些重要的水下应用需要大量数据,这使得水下传感器节点的体积偏大,对于水下传感器来说电池的更换工作是很困难的,从海底取回节点耗时耗力;第三,水下信道带宽低、数据传输率低,尽管水声通信根据带宽和通信范围分为多个类别,但在短期内,其数据传输率在1km距离内很难超过40kb/s。这些都为水下传感器网络的研究和发展带来了新的挑战。

无线传感器网络课后习题答案

1-2.什么是无线传感器网络? 无线传感器网络是大量的静止或移动的传感器以自组织和多跳的方式构成的无线网络。目的是协作地探测、处理和传输网络覆盖区域内感知对象的监测信息,并报告给用户。 1-4.图示说明无线传感器网络的系统架构。 1-5.传感器网络的终端探测结点由哪些部分组成?这些组成模块的功能分别是什么? (1)传感模块(传感器、数模转换)、计算模块、通信模块、存储模块电源模块和嵌入式软件系统 (2)传感模块负责探测目标的物理特征和现象,计算模块负责处理数据和系统管理,存储模块负责存放程序和数据,通信模块负责网络管理信息和探测数据两种信息的发送和接收。另外,电源模块负责结点供电,结点由嵌入式软件系统支撑,运行网络的五层协议。 1-8.传感器网络的体系结构包括哪些部分?各部分的功能分别是什么? (1)网络通信协议:类似于传统Internet网络中的TCP/IP协议体系。它由物理层、数据链路层、网络层、传输层和应用层组成。 (2)网络管理平台:主要是对传感器结点自身的管理和用户对传感器网络的管理。包括拓扑控制、服务质量管理、能量管理、安全管理、移动管理、网络管理等。 (3)应用支撑平台:建立在网络通信协议和网络管理技术的基础之上。包括一系列基于监测任务的应用层软件,通过应用服务接口和网络管理接口来为终端用户提供各种具体应用的支持。 1-9.传感器网络的结构有哪些类型?分别说明各种网络结构的特征及优缺点。 (1)根据结点数目的多少,传感器网络的结构可以分为平面结构和分级结构。如果网络的规模较小,一般采用平面结构;如果网络规模很大,则必须采用分级网络结构。 (2)平面结构:

《无线传感器网络及应用》模拟题一参考答案

《无线传感器网络及应用》模拟题一参考答案 一、填空题(每小空为1分,总分20分) 1 移动Ad hoc网络无线传感器网络 2 无线电波红外线光波 3 物理位置符号位置 4 处理器单元无线传输单元传感器单元电源管理单元 5802.15.4 6传感器模块处理器模块无线通信模块 7低速率低价格低功耗 8已调信号调制信号 二、选择题(多项选择,每题2分,总分20分) 1 AD 2 AC 3 C 4 BCD 5 AC 6 BCD 7 D 8 ADA 9 D 10 BDA 三、概念题(每题5分总分20分) 1简述无线传感器网络系统工作过程 无线传感器网络(WSN)是大量的静止或移动的传感器以自组织和多跳的方式构成的无线网络,目的是协作地采集、处理和传输网络覆盖地域内感知对象的监测信息,并报告给用户 2 CSMA/CA CSMA/CA机制是指在信号传输之前,发射机先侦听介质中是否有同信道载波,若不存在,意味着信道空闲,将直接进入数据传输状态;若存在载波,则在随机退避一段时间后重新检测信道。这种介质访问控制层的方案简化了实现自组织网络应用的过程。 3 ZigBee技术 ZigBee技术是一种面向自动化和无线控制的低速率、低功耗、低价格的无线网络方案。ZigBee无线设备工作在公共频段上(全球2.4GHz、美国915MHz、欧洲868MHz),传输距离为10~75m,具体数值取决于射频环境和特定应用条件下的输出功耗。ZigBee的通信速率在

2.4GHz时为250kbps,在915MHz时为40kbps,在868MHz时为20kbps。 4跳数 两个节点之间间隔的跳段总数,称为这两个节点间的跳数。 四、简答题(每题10分共20分) 1 无线传感器网络信息安全需求内容包括哪些? ①数据的机密性——保证网络内传输的信息不被非法窃听。 ②数据鉴别——保证用户收到的信息来自己方节点而非入侵节点。 ③数据的完整性——保证数据在传输过程中没有被恶意篡改。 ④数据的实效性——保证数据在时效范围内被传输给用户。 2 目前无线传感器网络采用的主要传输介质有哪些?各有何特点? 目前无线传感器网络采用的主要传输介质包括无线电、红外线和光波等。 ●无线通信的介质包括电磁波和声波。电磁波是最主要的无线通信介质,而声波一般仅 用于水下的无线通信。根据波长的不同,电磁波分为无线电波、微波、红外线、毫米波和光波等,其中无线电波在无线网络中使用最广泛。 ●无线电波是容易产生,可以传播很远,可以穿过建筑物,因而被广泛地用于室内或室 外的无线通信。无线电波是全方向传播信号的,它能向任意方向发送无线信号,所以发射方和接收方的装置在位置上不必要求很精确的对准。 五、详述问答题(总分20) 请列出十种以上的传感器,并说明其用途? 1 温度传感器感知室内温度,感知温室大棚内的温度 2 湿度传感器智能家居中,调节人体舒适度 3 震动传感器军事战场,感知周边敌情,包括人员,车辆 4 声响传感器军事战场,感知周边敌情,包括人员,车辆 5磁性传感器实现对携带武器的人和车辆的探测 6红外传感器战场上运动的人员或车辆感知,也可以用于野生动物探测。 7压力传感器军事战场,感知周边敌情,包括人员,车辆 8超声波距离传感器可以简单地估计出被测物体的距离 9微量气体传感器通过敌方车辆排出气体的气味和含量浓度来判断车辆种类和数量等 10MOS图像传感器利用光电器件的光—电转换功能,将其光面上的所成像转换为与光对应的电信号图像,用以观察战场上声像并存的敌方活动情况 11气体传感器对污染空气的检测 12摄像头传感器感知图像的变化

无线传感器网络课后习题答案解析

- 1-2.什么是无线传感器网络 无线传感器网络是大量的静止或移动的传感器以自组织和多跳的方式构成的无线网络。目的是协作地探测、处理和传输网络覆盖区域内感知对象的监测信息,并报告给用户。 1-4.图示说明无线传感器网络的系统架构。 1-5.传感器网络的终端探测结点由哪些部分组成这些组成模块的功能分别是什么 (1)传感模块(传感器、数模转换)、计算模块、通信模块、存储模块电源模块和嵌入式软件系统 (2)传感模块负责探测目标的物理特征和现象,计算模块负责处理数据和系统管理,存储模块负责存放程序和数据,通信模块负责网络管理信息和探测数据两种信息的发送和接收。另外,电源模块负责结点供电,结点由嵌入式软件系统支撑,运行网络的五层协议。 1-8.传感器网络的体系结构包括哪些部分各部分的功能分别是什么 ) (1)网络通信协议:类似于传统Internet网络中的TCP/IP协议体系。它由物理层、数据链路层、网络层、传输层和应用层组成。 (2)网络管理平台:主要是对传感器结点自身的管理和用户对传感器网络的管理。包括拓扑控制、服务质量管理、能量管理、安全管理、移动管理、网络管理等。 (3)应用支撑平台:建立在网络通信协议和网络管理技术的基础之上。包括一系列基于监测任务的应用层软件,通过应用服务接口和网络管理接口来为终端用户提供各种具体应用的支持。 1-9.传感器网络的结构有哪些类型分别说明各种网络结构的特征及优缺点。 (1)根据结点数目的多少,传感器网络的结构可以分为平面结构和分级结构。如果网络的规模较小,一般采用平面结构;如果网络规模很大,则必须采用分级网络结构。

(2)平面结构: > 特征:平面结构的网络比较简单,所有结点的地位平等,所以又可以称为对等式结构。 优点:源结点和目的结点之间一般存在多条路径,网络负荷由这些路径共同承担。一般情况下不存在瓶颈,网络比较健壮。 缺点:①影响网络数据的传输速率,甚至造成网络崩溃。②整个系统宏观上会损耗巨大能量。③可扩充性差,需要大量控制消息。 分级结构: 特征:传感器网络被划分为多个簇,每个簇由一个簇头和多个簇成员组成。这些簇头形成了高一级的网络。簇头结点负责簇间数据的转发,簇成员只负责数据的采集。 优点:①大大减少了网络中路由控制信息的数量,具有很好的可扩充性。②簇头可以随时选举产生,具有很强的抗毁性。 缺点:簇头的能量消耗较大,很难进人休眠状态。 1-13.讨论无线传感器网络在实际生活中有哪些潜在的应用。 (1)< (2)用在智能家具系统中,将传感器嵌入家具和家电中,使其与执行单元组成无线网络,与因特网连接在一起。 (3)用在智能医疗中,将传感器嵌入医疗设备中,使其能接入因特网,将患者数据传送至医生终端。 (4)用在只能交通中,运用无线传感器监测路面、车流等情况。 2-2.传感器由哪些部分组成各部分的功能是什么 2-5.集成传感器的特点是什么 体积小、重量轻、功能强、性能好。 2-7.传感器的一般特性包括哪些指标 : 灵敏度、响应特性、线性范围、稳定性、重复性、漂移、精度、分辨(力)、迟滞。 2-15.如何进行传感器的正确选型 1.测量对象与环境:分析被测量的特点和传感器的使用条件选择何种原理的传感器。 2.灵敏度:选择较高信噪比的传感器,并选择适合的灵敏度方向。 3.频率响应特性:根据信号的特点选择相应的传感器响应频率,以及延时短的传感器。 4.线性范围:传感器种类确定后观察其量程是否满足要求,并且选择误差小的传感器。 5.稳定性:根据使用环境选择何时的传感器或采用适当的措施减小环境影响,尽量选择稳定性好的传感器。 6.精度:选择满足要求的,相对便宜的传感器。 : 2-17.简述磁阻传感器探测运动车辆的原理。 磁阻传感器在探测磁场的通知探测获得车轮速度、磁迹、车辆出现和运动方向等。使用磁性传感器探测方向、角度或电流值,可以间接测定这些数值。因为这些属性变量必须对相应的磁场产生变化,一旦磁传感器检测出场强变化,则采用一些信号处理办法,将传感器信号转换成需要的参数值。 3-2.无线网络通信系统为什么要进行调制和解调调制有哪些方法 (1)调制和解调技术是无线通信系统的关键技术之一。调制对通信系统的有效性和可靠性有很大的影响。采用什

《无线传感器网络》选修课试题

2007级网络工程本科专业选修课 《无线传感器网络》试题120分钟 一、填空题(每题4分,共计60分) 1、传感器网络的三个基本要素:传感器,感知对象,观察者 2、传感器网络的基本功能:协作地感知、采集、处理和发布感知信息 3、无线传感器节点的基本功能:采集、处理、控制和通信等 4、传感器网络常见的时间同步机制有: 5、无线通信物理层的主要技术包括:介质的选择、频段的选择、调制技术和扩频技术 6扩频技术按照工作方式的不同,可以分为以下四种: :直接序列扩频、跳频、跳时、宽带线性调频扩频 7、定向扩散路由机制可以分为三个阶段:周期性的兴趣扩散、梯度建立和路径加强 8、无线传感器网络特点:大规模网络、自组织网络、可靠的网络、以数据为中心的网络、应用相关的网络 9、无线传感器网络的关键技术主要包括:网络拓扑控制、网络协议、时间同步、定位技术、数据融合及管理、网络安全、应用层技术等 10、IEEE 802.15.4标准主要包括:物理层和MAC层的标准 11、简述无线传感器网络后台管理软件结构与组成:后台管理软件通常由数据库、数据处理引擎、图形用户界面和后台组件四个部分组成。 12、数据融合的内容主要包括:多传感器的目标探测、数据关联、跟踪与识别、情况评估和预测 13、无线传感器网络可以选择的频段有:868MHZ、915MHZ、2.4GHZ 5GHZ 14、传感器网络的电源节能方法:休眠机制、数据融合等, 15、传感器网络的安全问题:(1) 机密性问题。 (2) 点到点的消息认证问题。 (3) 完整性鉴别问题。 16、802.11规定三种帧间间隔:短帧间间隔SIFS,长度为 28 ?s 、点协调功能帧间间隔PIFS长度是 SIFS 加一个时隙(slot)长度,即78 ?s 分布协调功能帧间间隔DIFS ,DIFS长度=PIFS +1个时隙长度,DIFS 的长度为 128 ?s 17、任意相邻区域使用无频率交叉的频道是,如:1、6、11频道。 18、802.11网络的基本元素SSID标示了一个无线服务,这个服务的内容包括了:接入速

水下传感器网络通信问题的思考

水下传感器网络通信问题的思考 目前对于水下传感器的研究已经成为逐渐成为新的讨论热点,在本文中我们首先会对水下传感器的基本概念进行介绍,并对其主要的特点展开研究。同时对于水下传感器网络通信技术我们会进行相关的介绍。 一、引言 水下传感器网络指的是将能耗很低、具有较短通信距离的水下传感器节点部署到指定海域中,利用节点的自组织能力自动建立起网络。我们说水下传感器网络如今的发展是备受关注的,在国际上它是处在前沿领域的,其发展的前景是很广阔的,在多个方面它都具有很大的研究价值。例如说在军事等方面。近年来关于水下传感器网络的研究得到了迅猛的发展,其组成是有多个节点构成的,那么接下来我们会对如何进行有效的推进水下传感器的通信问题进行进一步的探究。传感器网络是目前产生的巨大的影响力的技术之一。我们对于传感器网络的使用,提高了接收信号的提高了接收信号的信噪比,那么对于提高水下传感器通信系统的检测性能我们有以下的几点想法,首先是节点中的多种传感器的混合应用对于搜集信息方面要更加全面周到的反映出其明显特征。其次对于水下传感器的跟踪定位功能我们也进行了一些相关的研究。 二、水下传感器网络通信技术 水下通信方式主要有长波通信、水声通信、水下激光通信,中微子通信等。长波通信所需要设备体积大价格贵而且效率低,目前主要用于基地和潜艇之间的远程通信;而水下激光通信目前主要研究蓝绿激光水下通信系统,其穿透力强,可实现与水下400m以上的潜艇通信,通信频带宽,数据传输能力强,方向性好,不足的是里活性不够,难以用于水下传感器网络,中微子通信时最近新兴的技术,较为复杂,目前尚停留在实验室阶段。 因为声波时唯一一种能在水介质中进行长距离传输的能量形式,因此对于水下传感网络而言,水声通信时目前最合适的通信方式,得带各发达国家和军方的高地重视,它的发展甚至影响到海军军事战略的变革。由于水下传感网络技术的发展,未来海战可充分发挥近海空间优势。 2006奶奶国家自然科学基金将水下移动传感器网络的关键技术列为重点研究方向,中国科学技术大学、沈阳自动化研究所、中科院计算所等多家高校和研究单位均已开展了无限传感器网络相关领域的研究。随着水下无线传感器网络技

移动性无线传感器网络的研究

一、引言 无线传感器网络作为微机电、通信和传感器三种技术相结合的产物,已成为计算机与通信领域的一个研究热点。无线传感器网络的应用前景广阔,能够广泛应用于军事、环境监测和预报、健康护理、智能家居等领域,随着对无线传感器研究的深入和成熟,传感器网络将逐渐深入到人类生活的各个领域。目前,国内外对无线传感器的研究主要针对无线传感器网络能量受限的特点,提出了很多节能的MAC协议和路由协议等。然而多数的研究局限于所有传感器节点都是静止的情况,不满足某些需要移动节点的应用,比如监测野生动物的生活,追踪病人的心跳情况等等,节点总是处于不断的运动中,同时引进移动节点还可以拓宽网络空间的采样能力,例如在应用移动节点收集其他静止节点的数据,作为一种信息收集槽。 无线传感器网络中,可能造成网络能量浪费的主要原因有:传输信息发生冲突、节点接收并处理不必要的数据(串音现象)、过度空闲侦听、控制消息过多等。MAC子层的主要任务就是可靠地控制信道的接入,尽量降低或减少以上的能量浪费。因此,MAC层协议的设计对无线传感器网络能量高效利用有重要的意义。 本文介绍了两种移动性无线传感器网络,一种是普通节点移动型,一种是代理节点(或中继节点)移动型,同时阐述了两者的研究现状,以便对移动性无线传感器进行进一步的研究和改进。 二、移动性无线传感器网络模型 根据移动的节点的功能不同,把移动性无线传感器网络分为两类:一种是普通节点移动型,一种是代理节点(或中继节点)移动型。下面分别对这两种节点进行介绍和分析。 1、普通节点移动型 这种网络模型具有分布式结构,各个节点的功能一样,没有主协调点和次要节点之分,类似于Flat Ad Hoc网络节点,如图1(a)。节点由于某种原因随时可能离开当前的网络,或进入新的网络,就会带来一系列的接入问题:如何判断节点离开/进入一个网络;网络如何适应节点的变化;节点间如何交互等等。对其它的移动网络,例如移动电话或移动Ad Hoc网络,已经有很多很好地解决其移动性的方案,但这些方案并不适用于无线传感器网络,由于无线传感器网络是能量受限型网络,网络协议的设计必须考虑能量损耗的问题。 目前有两种针对这种网络模型的能量高效的MAC接入协议:MS-MAC [1]和MOBMAC [2],这两个协议都是建立在SMAC[3]协议的基础之上,考虑了节点移动性带来的接入和能耗问题。 MS-MAC提出了一种快速建立连接的机制,即根据接收到的信号变化来判断

(完整版)常见移动信道模型

3.1 单状态模型 3.1.1 Rayleigh 模型 在移动无线信道中,瑞利模型是常见的用于描述平坦衰落信号或独立多径分量接收包络统计时变特性的一种经典模型。众所周知,两个正交的正态分布的随机过程之和的包络服从瑞利分布,即设X 和Y 为正态随机过程,则R=X+jY 的包络r =|R |则服从瑞利分布。瑞利分布的概率密度函数(pdf )为[24,27,28]: ?? ???<≥??? ? ??-=0 ,00,2exp )(222 r r r r r p σσ (3-1) 其中,][22r E =σ是包络检波之前的接收信号包络的时间平均功率。R 的相位θ服从0到2π之间的均匀分布,即 ?????≤≤=其他 ,020,21)(πθπ θp (3-2) 则接收信号包络不超过某特定值R 的累计概率分布函数(CDF )为 ????? ??--==≤=R R dr r p R r p R F 0 222exp 1)()()(σ (3-3) 图3-1所示为瑞利模型的概率密度函数曲线图。

123 45678910 00.10.20.30.4 0.5 0.6 0.7 接收信号包络r p d f 瑞利分布包络的概率密度曲线图 图3-1 瑞利模型的概率密度函数曲线图 3.1.2 Ricean 模型 当接收端存在一个主要的静态(非衰落)信号时,如LOS 分量(在郊区和农村等开阔区域中,接收端经常会接收到的)等,此时接收端接收的信号的包络就服从莱斯分布。在这种情况下,从不同角度随机到达的多径分量迭加在静态的主要信号上,即包络检波器的输出端就会在随机的多径分量上迭加一个直流分量。当主要信号分量减弱后,莱斯分布就转变为瑞利分布。莱斯分布的概率密度函数为: ?????<≥≥??? ? ????? ? ?+-=0 ,00,0,2exp )(202222 r r C Cr I C r r r p σσσ (3-4) 其中C 是指主要信号分量的幅度峰值,()0I 是0阶第一类修正贝赛尔函数。为了更好的分析莱斯分布,定义主信号的功率与多径分量方差之比为莱斯因子K ,则K 的表达式可以写为

通信技术题库---移动无线信道

◆移动无线信道: 瑞利衰落:移动通信信道是一种多径衰落信道,发射的信号要经过直射、发射、散射等多条传播路径才能到达接收端,而且随着移动台的移动,各条传播路径上的信号幅度、时延及相位随时随地发生变化,所以接收到的信号的电平是起伏、不稳定的,这些多径信号相互迭加就会形成衰落。迭加后的信号幅度变化符合瑞利分布。 当瑞利衰落随时间急剧变化,称为“快衰落”。 但瑞利衰落的中值场强只发生比较平缓的变化,被称为“慢衰落”,它主要取决于城区中建筑群的密度与平均高度以及郊区中的山丘与从林的宽度等因素。这种衰落随小区域位置变化服从对数正态分布。这种“慢衰落现象”或称之为阴影效应。 ◆信道编码、交织技术、分集接收 信道编码:可以显著改善数字信息在传输过程中由于各种噪声和干扰而造成的误码,提高系统的可靠性。移动通信系统中采用前向纠错FEC(自动纠错)方式中应用卷积码技术。缺点:只能纠正有限连续错误比特。 交织技术:移动通信信道的干扰、衰落等往往产生较长的突发误码,采用交织技术的目的是使误码离散化,使突发差错信道变为离散差错信道,接收端纠正随机离散差错,能够改善整个数据序列传输质量。缺点:有时延 分集接收:是克服多径衰落的一个有效方法。包括频率分集、时间分集、空间分集三种技术。空间分集是天线间距D比移动台空间分集时要大得多,一般D在十个波长以上。D=10*1/(900*1000000)*3*1000000000=3/9=3.3米 ◆GSM数字移动通信系统 发展史:欧洲邮电大会(CEPT)1982年成立标准化实体移动特别小组Group Special Mobile(GSM) 1988年成立欧洲电信标准协议(ESTI)1992年定义 全球移动通信系统GSM(Global System For Mobile Communication) 199X年CCITT改名为国际电信联盟ITU 规范:GSM第二期规范是相对于第一期规范功能的增强,包括半速率话音编码传输、增加新业务(附加业务和传真)、半速率信道上传输数据和设备向上兼容等。 GSM900系统的特点: *具有开放的接口和通用的接口标准。1985年,GSM划分成多个独立工作组(WP),处理各专题工作,WP3受到ISDN原理和接口协议的启发,使用OSI (开放系统互联)分层协议模型,专门完成诸如网络结构、信令协议的技术规范以及开放的网络接口等。GSM以7号信令作为互联标准,与ISDN、ISDN等公共电信网有完备的互通能力,智能网结构便于引入智能业务。GSM的用户接口(Um)采用和ISDN用户-网络接口一致的三层分层能力,易于功能扩充和各种ISDN业务引入。 SIM卡:嵌入式(2.5*1.5平方CM)包含信息: *存储与卡和持卡者特征有关的信息(PIN、PUK)、*GSM网络操作所需的信息(IMSI、TMSI、LAI、加密键Kc、用户密钥Ki、鉴权算法A3、加密算法A5、密键A8等)、*缩位拨号码、网络承载性能、移动台设备参数、短消息业务信息等。

相关主题
文本预览
相关文档 最新文档