当前位置:文档之家› 脉冲压力条件下PVDF 压电薄膜的动态晌应特性————APOLLO传感器

脉冲压力条件下PVDF 压电薄膜的动态晌应特性————APOLLO传感器

脉冲压力条件下PVDF 压电薄膜的动态晌应特性————APOLLO传感器
脉冲压力条件下PVDF 压电薄膜的动态晌应特性————APOLLO传感器

压电式传感器的应用

压电式压力传感器原理及应用 解宝存 201120204038摘要: 压电式压力传感器可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。本文主要讨论压电式压力传感器原理及压电式压力传感器的光纤传输技术应用在内弹道试验研究中的使用。 关键词:压电式传感器压力内弹道试验 压电式压力传感器(piezoelectric type pressure transducer) 1.0 压电效应 某些离子型晶体电介质(如石英、酒石酸钾钠、钛酸钡等)沿着某一个方向受力而发生机械变形(压缩或伸长)时,其内部将发生极化现象,而在其某些表面上会产生电荷。当外力去掉后,它又会重新回到不带电的状态,此现象称为“压电效应”。压电式传感器的原理是基于某些晶体材料的压电效应。 1.1 压电式压力传感器的特点 压电式压力传感器是基于压电效应的传感器。是一种自发电式和机电转换式传感器。它的敏感元件由压电材料制成。压电材料受力后表面产生电荷。此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。压电式压力传感器用于测量力和能变换为力的非电物理量,如压力、加速度等(见压电式压力传感器、加速度计)。压电式压力传感器是利用压电材料的压电效应将被测压力转换为电信号的。由压电材料制成的压电元件受到压力作用时产生的电荷量与作用力之间呈线性关系:Q=kSp 式中 Q为电荷量;k为压电常数;S为作用面积;p为压力。通过测量电荷量可知被测压力大小。 压电式压力传感器的工作原理与压电式加速度传感器和力传感器基本相同,不同的是弹性元件是由膜片等把压力转换成集中力,再传给压电元件。为了保证静态特性及稳定性,通常多采用压电晶片并联。在压电式压力传感器中常用的压电材料有石英晶体和压电陶瓷,其中石英晶体应用得最为广泛。下面是采用石英晶片的膜片式压电压力传感器图。

(完整版)四种压力传感器的基本工作原理及特点

(1) 1 dR d R dA A 四种压力传感器的基本工作原理及特点 一:电阻应变式传感器 1 1电阻应变式传感器定义 被测的动态压力作用在弹性敏感元件上, 使它产生变形,在其变形的部位粘 贴有电阻应变片,电阻应变片感受动态压力的变化,按这种原理设计的传感器称 为电阻应变式压力传感器。 1.2电阻应变式传感器的工作原理 电阻应变式传感器所粘贴的金属电阻应变片主要有丝式应变片与箔式应变片 箔式应变片是以厚度为0.002―― 0.008mm 的金属箔片作为敏感栅材料,,箔 栅宽度为0.003――0.008mm 。丝式应变片是由一根具有高电阻系数的电阻丝 (直 径0. 015--0. 05mm ),平行地排成栅形(一般2――40条),电阻值60――200 ?, 通常为 120 ?,牢贴在薄纸片上,电阻纸两端焊有引出线,表面覆一层薄纸,即 制成了纸基的电阻丝式应变片。测量时,用特制的胶水将金属电阻应变片粘贴于 待测的弹性敏感元件表面上,弹性敏感元件随着动态压力而产生变形时, 电阻片 也跟随变形。如下图所示。B 为栅宽,L 为基长。 I 绘式应吏片 b )笹式应变片 材料的电阻变化率由下式决定:

式中; R—材料电阻2

3 —材料电阻率 由材料力学知识得; K —金属电阻应变片的敏感度系数 式中K 对于确定购金属材料在一定的范围内为一常数,将微分 dR 、dL 改写成增 量出、/L,可得 由式(2)可知,当弹性敏感元件受到动态压力作用后随之产生相应的变形 而形应变值可由丝式应变片或箔式应变片测出,从而得到了 ZR 的变化,也就得 到了动态压力的变化,基于这种应变效应的原理实现了动态压力的测量。 1.3电阻应变式传感器的分类及特点 「测低压用的膜片式压力传感器 常用的电阻应变式压力传感器包括彳测中压用的膜片一一应变筒式压力传感器 -测高压用 的应变筒式压力传感器 1.3.1膜片一一应变筒式压力传感器的特点 该传感器的特点是具有 较高的强度和抗冲击稳定性,具有优良的静态特性、 动态特性和较高的自震频率,可达30khz 以上,测量的上限压力可达到9.6mp a 。 适于测量高频脉动压力,又加上强制水冷却。也适于高温下的动态压力测量,如 火箭发动机的压力测量,内燃机、压气机等的压力测量。 1.3.2膜片式应变压力传咸器的特点 A 这种膜片式应变压力传感器不宜测量较大的压力,当变形大时,非线性 较大。但小压力测量中由于变形很小,非线性误差可小于 0.5%,同时又有较高 的灵敏度,因此在冲击波的测量中,国内外都用过这种膜片式压力传感器。 B 这种传感器与膜片一应变筒式压力传感器相比, 自振频率较低,因此在低dR "R [(1 2 ) C(1 2 )]

压电薄膜传感器在医疗监护床垫的应用

压电薄膜传感器在医疗监护床垫的应用传感器,非常适合应用于人体皮肤表面或植入人体内部的生命信号监测。一些薄膜元件灵敏到足以隔着外套探测出人体脉搏和呼吸心跳动作等关键生命特征。本文着重介绍了压电薄膜传感器在医疗监护床垫的应用。 随着人口老龄化的加剧,越来越多的老年人和病患需要得到看护。有关报告指出,到2015年,我国60岁以上的人口将达到亿,失能半失能的老年患者将达到2400万,其他各种疾病老年患者达6000万。我国的医疗健康机构和家庭迫切需要有效的工具来满足庞大的护理需求。基于压电薄膜PVDF原理开发的SSD-10非接触式医疗监护床垫用传感器诞生了。 利用SSD-10,看护人员在履行日常工作职责的同时可通过各种移动终端(智能手机,iPads,等)和非移动终端(计算机,工作站)全天候监控一群患者,实时查看病患的健康数据和接受警告信息。通过云服务器,医护人员可通过对长期趋势数据的分析来判断病患的睡眠模式,安静时的心率和呼吸率以及睡眠质量来确认病患的不利变化并及早制定干预措施。 SSD-10非接触式医疗监护床垫用传感器的主要功能。 心率监视:监视安静时的心率,跟踪长期趋势,识别健康状况和新药的影响 呼吸率监视:监视安静时呼吸率,与长期的平均值对比,识别健康状况和新药的影响。 压疮管理:根据设定的时间间隔和上次动作发生的时间,自动生成短消息提醒看护人员给患者再次移动。 跌倒照顾:跟踪患者的在床和不在床信息,给护理人员提供即时的报警信息,护理人员能够给患者提供即时的帮助,减少跌倒造成的伤害。 睡眠分析:通过与长期趋势和医护标准在睡眠时间、躁动、夜间心率和呼吸率的对比来监控夜间睡眠质量。 起床活动:护理人员可以通过追踪病患的在床时间来监视需要日常活动的康复疗程。 睡眠呼吸暂停监视:通过监视患者的呼吸率来判断呼吸暂停状况并即时向医护人员报警。 夜间离床监视:通过监视患者夜间离床的时间点和长短来确定患者的异常离床情况并即时向医护人员报警。 痉挛发作监视:通过监视患者阵发性抽搐来监视患者痉挛发作并即时向医护人员报警。 急重病预警:通过监视患者的心率和呼吸率来判断心力衰竭或呼吸衰竭等急重病情况并即时向医护人员报警。 SSD-10非接触式医疗监护床垫用传感器的主要特点。 非接触式关键生命特征信号获取 对患者不可见,无需连接物体到患者身 体积小,携带方便 结构简单,安装方便 专用加密算法,保证数据安全 SSD-10非接触式医疗监护床垫用传感器的主要参数。 指标

压电式传感器的发展与应用

HEFEI UNIVERSITY 自动检测技术报告 题目压电式传感器的应用与发展 系别 ***级自动化 班级 **班 姓名 ********************** 指导老师***** 完成时间 2011-11-28

前言:压电式传感器是以某些电介质的压电效应为基础,在外力作用下,在电介质的表面上产生电荷,从而实现非电量测量。压电传感元件是力敏感元件,所以它能测量最终能变换为力的那些物理量,例如力、压力、加速度等。压电式传感器具有响应频带宽、灵敏度高、信噪比大、结构简单、工作可靠、重量轻等优点。近年来,由于电子技术的飞速发展,随着与之配套的二次仪表以及低噪声、小电容、高绝缘电阻电缆的出现,使压电传感器的使用更为方便。因此,在工程力学、生物医学、石油勘探、声波测井、电声学等许多技术领域中获得了广泛的应用。本文重点介绍压电式传感器的工作原理,在航空发动机中的应用及发展趋势。 关键字:传感器压电效应测振 正文:压电式传感器的发展及应用压电式传感器是一种自发电式和机电转换式传感器。它的敏感元件由压电材料制成。压电材料受力后表面产生电荷。此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。压电式传感器用于测量力和能变换为力的非电物理量。它的优点是频带宽、灵敏度高、信噪比高、结构简单、工作可靠和重量轻等。缺点是某些压电材料需要防潮措施,而且输出的直流响应差,需要采用高输入阻抗电路或电荷放大器来克服这一缺陷。 压电效应可分为正压电效应和逆压电效应。正压电效应是指:当晶体受到某固定方向外力的作用时,内部就产生电极化现象,同时在某两个表面上产生符号相反的电荷;当外力撤去后,晶体又恢复到不带电的状态;当外力作用方向改变 时,电荷的极性也随之改变;晶体受力所产生的电荷量 与外力的大小成正比。压电式传感器大多是利用正压电 效应制成的。逆压电效应是指对晶体施加交变电场引起 晶体机械变形的现象,又称电致伸缩效应。用逆压电效 应制造的变送器可用于电声和超声工程。压电敏感元件 的受力变形有厚度变形型、长度变形型、体积变形型、 厚度切变型、平面切变型5种基本形式(见图)。压电 晶体是各向异性的,并非所有晶体都能在这5种状态下产生压电效应。例如石英晶体就没有体积变形压电效应,但具有良好的厚度变形和长度变形压电效应。 压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。 压电传感器主要应用在加速度、压力和力等的测量中。压电式加速度传感器是一种常用的加速度计。它具有结构简单、体积小、重量轻、使用寿命长等优异的特点。压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别是航空和宇航领域中更有它的特殊地位。压电式传感器也可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。 压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广泛。

压力传感器的灵敏度产品

一、传感器的定义 国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 二、传感器的分类 目前对传感器尚无一个统一的分类方法,但比较常用的有如下三种: 1、按传感器的物理量分类,可分为位移、力、速度、温度、流量、气体成份等传感器2、按传感器工作原理分类,可分为电阻、电容、电感、电压、霍尔、光电、光栅、热电偶等传感器。 3、按传感器输出信号的性质分类,可分为:输出为开关量(“1”和"0”或“开”和“关”)的开关型传感器;输出为模拟型传感器;输出为脉冲或代码的数字型传感器。 关于传感器的分类: 1.按被测物理量分:如:力,压力,位移,温度,角度传感器等; 2.按照传感器的工作原理分:如:应变式传感器、压电式传感器、压阻式传感器、电感式传感器、电容式传感器、光电式传感器等; 3.按照传感器转换能量的方式分: (1)能量转换型:如:压电式、热电偶、光电式传感器等; (2)能量控制型:如:电阻式、电感式、霍尔式等传感器以及热敏电阻、光敏电阻、湿敏电阻等; 4.按照传感器工作机理分: 结构型:如:电感式、电容式传感器等; (2)物性型:如:压电式、光电式、各种半导体式传感器等; 5.按照传感器输出信号的形式分: (1)模拟式:传感器输出为模拟电压量; (2)数字式:传感器输出为数字量,如:编码器式传感器。 三、传感器的静态特性

压电薄膜传感器及其在心脏监测中的应用

压电薄膜传感器及其在心脏监测中的应用 压电薄膜传感器及其在心脏监测中的应用 一、引言 心脏疾病是造成病残和死亡的常见疾病,在发达国家中,心血管系统疾病已成为最为常见的疾病和致死的重要原因,而随着我国人口老龄化,心血管疾病的比例也一年比一年高。心血管诊断除了临床外,主要依靠医疗器械。心电和心音是检测心血管疾病的两种不同的手段,心电主要应用于心率失常及心肌缺血的定性与定量分析诊断,心血管药物的疗效评价。心音图能够有效的弥补心脏听诊的不足,将心脏听诊不能记录的心音信号或不容易分辨的信号用图形的形式记录下 来,供医生分析使用[1]。心音图结合心电图,能够大大提高心血管疾病的鉴别 和诊断水平,对于了解心血管功能,选择治疗,判断病理以及研究某些疾病的机理都提供了很有价值的资料,应用日益广泛。对人体微弱生理信号的有效采集和处理一直是医疗器械领域的研究热点。目前有多种用于人体微弱信号采集的传感器,如压电陶瓷传感器、多普勒效应传感器等,但在结构和成本上都存在一定的问题。目前有一种采用新型高分子压电材料聚偏氟乙烯研制的压电传感器,其结构简单,灵敏度高,能准确测量微弱的人体信号。我们将其应用于对人体心音信号的采集,研制了两通道的综合微型记录仪,分别动态记录心音信号和心电信号。实验表明,该薄膜传感器与整机之间结构、性能匹配,该心音心电监测系统能够比较准确地监测分析人体心音心电信号,为系统以后的产品化奠定了基础。 二、压电薄膜传感器的设计 PVDF压电薄膜是一种新型的高分子压电材料,在医用传感器中应用很普遍 [2,3]。它既具有压电性又有薄膜柔软的机械性能,用它制作压力传感器,具有设计精巧、使用方便、灵敏度高、频带宽、与人体接触安全舒适,能紧贴体壁,以及声阻抗与人体组织声阻抗十分接近等一系列特点[4],可用于脉搏心音等人 体信号的检测。脉搏心音信号携带有人体重要的生理参数信息,通过对该信号的有效处理,可准确得到波形、心率次数等可为医生提供可靠的诊断依据。 压电薄膜传感器的设计主要考虑了传感器的灵敏度和信噪比,根据测量信号 的频率和响应幅度,我们设计薄膜传感器的结构有如同图1所示的几种。在采 集人体心音的信号时,由于心音的频响范围较宽,同时其输出的物理信号值也很微弱,采用硬质衬底和中空的设计。这样可以提高传感器中薄膜在收到心音信号时的形变量,从而提高信号强度。这样结构设计的缺点是结构不牢固,使用时间 长了需要校正。PVDF压电薄膜的压电常数一般为D33=15×10-12C/N,g值比较高,但是具有很高的内阻抗,一般高达1012Ω,制作出的传感器的输出阻抗较大,不利于后面的信号采集和放大。为防止信号的衰减,我们采

压电薄膜传感器工作原理以及应用

压电薄膜传感器工作原理以及应用 压电薄膜拥有独一无二的特性,作为一种动态应变传感器,非常适合应用于人体皮肤表面或植入人体内部的生命信号监测。一些薄膜元件灵敏到足以隔着外套探测出人体脉搏。本文将着重介绍几种压电薄膜在生命特征监护方面的典型应用。 工作原理当你拉伸或弯曲一片压电聚偏氟乙烯PVDF高分子膜(压电薄膜),薄膜上下电极表面之间就会产生一个电信号(电荷或电压),并且同拉伸或弯曲的形变成比例。一般的压电材料都对压力敏感,但对于压电薄膜来说,在纵向施加一个很小的力时,横向上会产生很大的应力,而如果对薄膜大面积施加同样的力时,产生的应力会小很多。因此,压电薄膜对动态应力非常敏感,28μm厚的PVDF的灵敏度典型值为10~15mV/微应变(长度的百万分率变化)。 使用‘动态应力’这个术语是因为形变产生的电荷会从与薄膜连接的电路流失,所以压电薄膜并不能探测静态应力。当需要探测不同水平的预应力时,这反而成为压电薄膜的优势所在。薄膜只感受到应力的变化量,最低响应频率可达0.1Hz。 压电薄膜传感器简介压电薄膜传感器拥有独一无二的特性,作为一种动态应变传感器,非常适合应用于人体皮肤表面或植入人体内部的生命信号监测。一些薄膜元件灵敏到足以隔着外套探测出人体脉搏。工采网将着重介绍几种压电薄膜在生命特征监护方面的典型应用。 压电薄膜传感器工作原理当你拉伸或弯曲一片压电聚偏氟乙烯PVDF高分子膜(压电薄膜),薄膜上下电极表面之间就会产生一个电信号(电荷或电压),并且同拉伸或弯曲的形变成比例。一般的压电材料都对压力敏感,但对于压电薄膜来说,在纵向施加一个很小的力时,横向上会产生很大的应力,而如果对薄膜大面积施加同样的力时,产生的应力会小很多。因此,压电薄膜对动态应力非常敏感,28μm厚的PVDF的灵敏度典型值为10~15mV/微应变(长度的百万分率变化)。 使用‘动态应力’这个术语是因为形变产生的电荷会从与薄膜连接的电路流失,所以压电薄膜并不能探测静态应力。当需要探测不同水平的预应力时,这反而成为压电薄膜的优势

压电式传感器

摘要 (1) 一、引言 (1) 二、压电式传感器原理 (1) 2.1压电传感器所应用的原理 (1) 2.2压电效应的产生 (2) 2.3石英晶体的压电效应 (3) 三、压电传感器在汽车上的应用 (4) 3.1压电式爆震传感器 (4) 3.1.1共振型压电式爆震传感器 (4) 3.1.2非共振型压电式传感器 (5) 3.2碰撞传感器 (6) 3.3压电式加减速传感器 (6) 四、压电式传感器的发展趋势 (7) 参考文献 (7)

压电式传感器及应用 摘要 近年来,由于电子技术的飞速发展,随着与之配套的二次仪表以及低噪声、小电容、高绝缘电阻电缆的出现,使得压电传感器在工程力学、生物医学、石油勘探、声波测井、电声学等许多技术领域中获得了广泛的应用。本文将以压电式传感器的应用与发展为核心,首先对压电效应的原理进行介绍,紧接着是在行业、具体工程方面尤其是在汽车领域的应用以及应用的方法,最后介绍了压电式式传感器未来的发展趋势。 关键字:压电式传感器;压电效应;应用;发展 一、引言 传感器是指那些对被测对象的某一确定的信息具有感受与检出功能, 并使之按照一定规律转换与之对应有用输出信号的元器件或装置,是新技术革命和信息社会的重要技术基础,是现代科技的开路先锋,美国早在80年代就声称世界已进入传感器时代,日本则把传感器技术列为十大技术之创立。 压电式传感器是基于压电效应的传感器。是一种自发电式和机电转换式传感器它的敏感元件由压电材料制成。压电材料受力后表面产生电荷。此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。压电式传感器用于测量力和能变换为力的非电物理量。它的优点是频带宽、灵敏度高、信噪比高、结构简单、工作可靠和重量轻等。缺点是某些压电材料需要防潮措施,而且输出的直流响应差,需要采用高输入阻抗电路或电荷放大器来克服这一缺陷。 二、压电式传感器原理 2.1压电传感器所应用的原理 压电式传感器所采用的是压电效应,即,当沿着一定方向对某些物质加力而使其变形时,

压力传感器静态特性与动态特性的对比有什么不同

传感器有很多特性,所谓特性也就是传感器所独有的性质,压力传感器作为传感器中最普遍的一种传感器也有很多特性,压力传感器的特性一般可分为静态特性和动态特性。 压力传感器的静态特性是指对静态的输入信号,压力传感器的输出量与输入量之间所具有相互关系。因为这时输入量和输出量都和时间无关,所以它们之间的关系,即压力传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。表征压力传感器静态特性的主要参数有:线性度、灵敏度、分辨力和迟滞等。 所谓动态特性,是指压力传感器在输入变化时,它的输出的特性。在实际工作中,压力传感器的动态特性常用它对某些标准输入信号的响应来表示。这是因为压力传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。最常用的标准输入信号有阶跃信号和正弦信号两种,所以压力传感器的动态特性也常用阶跃响应和频率响应来表示。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.doczj.com/doc/7411746478.html,/

压力传感器(大学物理)

一、实验目的 1. 了解应变压力传感器的组成、结构及工作参数。 2. 了解非电量的转换及测量方法——电桥法。 3. 掌握非平衡电桥的测量技术。 4. 掌握应变压力传感器灵敏度及物体重量的测量。 5. 了解多个应变压力传感器的线性组成、调整与定标。 二、实验原理 压力传感器是把一种非电量转换成电信号的传感器。弹性体在压力(重量)作用下产生形变(应变),导致(按电桥方式联接)粘贴于弹性体中的应变片,产生电阻变化的过程。 压力传感器的主要指标是它的最大载重(压力)、灵敏度、输出输入电阻值、工作电压(激励电压)(VIN)、输出电压(VOUT)范围。 压力传感器是由特殊工艺材料制成的弹性体、电阻应变片、温度补偿电路组成;并采用非平衡电桥方式联接,最后密封在弹性体中。 弹性体: 一般由合金材料冶炼制成,加工成S 型、长条形、圆柱型等。为了产生一定弹性,挖空或部分挖空其内部。 电阻应变片: 金属导体的电阻R 与其电阻率ρ、长度L 、截面A 的大小有关。 A L R ρ = (1) 导体在承受机械形变过程中,电阻率、长度、截面都要发生变化,从而导致其电阻变化。 A A L L R R ?- ?+ ?=?ρ ρ (2) 这样就把所承爱的应力转变成应变,进而转换成电阻的变化。因此电阻应变片能将弹性体上应力的变化转换为电阻的变化。 电阻应变片的结构:电阻应变片一般由基底片、敏感栅、引线及履盖片用粘合剂粘合而成。 电阻应变片的结构如图1所示: 1-敏感栅(金属电阻丝) 2-基底片 3-覆盖层 4-引出线 图1 电阻丝应变片结构示意图 敏感栅:是感应弹性应变的敏感部分。敏感栅由直径约0.01~0.05毫米高电阻系数的细丝弯曲成栅状,它实际上是一个电阻元件,是电阻应变片感受构件应变的敏感部分.敏感栅用粘合剂固定在基底片上。b ×l 称为应变片的使用面积(应变片工作宽度,应变片标距(工作基长)l ),应变片的规格一般以使用面积和电阻值来表示,如3×10平方毫米,350欧姆。 基底片:基底将构件上的应变准确地传递到敏感栅上去.因此基底必须做得很薄,一般为0.03~0.06毫米,使它能与试件及敏感栅牢固地粘结在一起,另外它还具有良好的绝缘性、抗潮性和耐热性.基底材料有纸、胶膜和玻璃纤维布等。 引出线的作用是将敏感栅电阻元件与测量电路相连接,一般由0.1-0.2毫米低阻镀锡钢丝制成,并与敏感栅两输出端相焊接,覆盖片起保护作用.

压电式传感器论文

自动检测换技术 相关知识: 电感式传感器的概述; 电感式传感器的基本工作原理; 电感式传感器的测量转换电路; 典型事例; 电感式传感器的应用领域;

电感式传感器 电感式传感器是一种利用线圈自感或互感的变化来实现测量的一种传感器装置,常用来测量位移、振动、力、应变、流量、加速度等物理量。 电感式传感器是基于电磁感应原理来进行测量的。 电感式传感器的分类 自感型——变磁阻式传感器; 互感型——差动变压器式传感器; 涡流式传感器——自感型和互感型都有; 高频反射式——自感型; 低频透射式——互感型电感式传感器; 电感式传感器的概述: 由铁心和线圈构成的将直线或角位移的变化转换为线圈电感量变化的传感器,又称电感式位移传感器。这种传感器的线圈匝数和材料导磁系数都是一定的,其电感量的变化是由于位移输入量导致线圈磁路的几何尺寸变化而引起的。当把线圈接入测量电路并接通激励电源时,就可获得正比于位移输入量的电压或电流输出。常用电感式传感器有变间隙型、变面积型和螺管插铁型。在实际应用中,这三种传感器多制成差动式,以便提高线性度和减小电磁吸力所造成的附加误差。 为什么电感式传感器,一般采用差动形式?

采用差动式结构:1、可以改善非线性、提高灵敏度,提高了测量的准确性。2、电源电压、频率的波动及温度变化等外界影响也有补偿作用,作用在衔铁上的电磁力,由于是两个线圈磁通产生的电磁力之差,所以对电磁吸力有一定的补偿作用,提高抗干扰性。 目录 1 简介 2 特点 3 种类

电感式传感器- 简介 由铁心和线圈构成的将直线或角位移的变化转换为线圈电感量变化的传感器,又称电感式位移传感器。这种传感器的线圈匝数和材料导磁系数都是一定的,其电感量的变化是由于位移输入量导致线圈磁路的几何尺寸变化而引起的。当把线圈接入测量电路并接通激励电源时,就可获得正比于位移输入量的电压或电流输出。 电感式传感器- 特点 ①无活动触点、可靠度高、寿命长; ②分辨率高; ③灵敏度高; ④线性度高、重复性好; ⑤测量范围宽(测量范围大时分辨率低); ⑥无输入时有零位输出电压,引起测量误差; ⑦对激励电源的频率和幅值稳定性要求较高; ⑧不适用于高频动态测量。电感式传感器主要用于位移测量和可以转换成位移变化的机械量(如力、张力、压力、压差、加速度、振动、应变、流量、厚度、液位、比重、转矩等)的测量。 电感式传感器- 种类 常用电感式传感器有变间隙型、变面积型和螺管插铁型。在实际应用中,这三种传感器多制成差动式,以便提高线性度和减小电磁吸

压电传感器的应用

压电传感器的应用 摘要:传感器是获取自然和生产领域中信息的主要途径与手段。在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。传感器的种类非常广泛,其中压电传感器是基于材料的压电效应而制成的器件,其有较长的发展历史。压电材料的种类由最初的压电晶体发展到压电陶瓷、进而发展到压电聚合物及其复合材料。随着物理学、材料科学与各个学科的交叉发展,压电材料被用以研制成了多种用途的传感器,被广泛应用于工程技术各领域,在测量技术中被用来测量力和加速度。 Abstract:Sensor is the main ways and means to obtain information in the field of natural and production . In modern industrial production, especially automated production process, useing a variety of sensors to monitor and control the production process of various parameters,which enable the device to work in a normal state or the best condition, and to achieve the best quality products. Types of sensors is very broad, of which the piezoelectric sensor is based on the piezoelectric effect devices made of material which has a long history of development. Types of piezoelectric material from the initial development of the piezoelectric ceramic piezoelectric crystal, and thus the development of piezoelectric polymers and their composites. With the development of cross-physics, materials science and various disciplines, piezoelectric materials are used for research into a variety of uses sensors are widely used in various

压力传感器原理【详解】

压力传感器原理 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 一.压力传感器原理 一些常用传感器原理及其应用: 1、应变片压力传感器原理与应用 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们主要介绍这类传感器。 在了解压阻式力传感器时,我们首先认识一下电阻应变片这种元件。电阻应变片是一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变传感器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D转换和CPU)显示或执行机构。

金属电阻应变片的内部结构 1、应变片压力传感器原理 如图1所示,是电阻应变片的结构示意图,它由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成。根据不同的用途,电阻应变片的阻值可以由设计者设计,但电阻的取值范围应注意:阻值太小,所需的驱动电流太大,同时应变片的发热致使本身的温度过高,不同的环境中使用,使应变片的阻值变化太大,输出零点漂移明显,调零电路过于复杂。而电阻太大,阻抗太高,抗外界的电磁干扰能力较差。一般均为几十欧至几十千欧左右。 电阻应变片的工作原理 金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。金属导体的电阻值可用下式表示: 式中:ρ——金属导体的电阻率(Ω?cm2/m) S——导体的截面积(cm2) L——导体的长度(m) 我们以金属丝应变电阻为例,当金属丝受外力作用时,其长度和截面积都会发生变化,从上式中可很容易看出,其电阻值即会发生改变,假如金属丝受外力作用而伸长时,其长

压力传感器原理

目录 1 概述 2 工作原理 1. 2.1 电阻应变片 2. 2.2 陶瓷型 3 选型要点 4 常见故障 5 四个无法避免的误差 6 抗干扰措施 7 八大发展趋势 将压力转换为电信号输出的传感器。通常把压力测量仪表中的电测式仪表称为压力传感器。压力传感器一般由弹性敏感元件和位移敏感元件(或应变计)组成。弹性敏感元件的作用是使被测压力作用于某个面积上并转换为位移或应变,然后由位移敏感元件或应变计转换为与压力成一定关系的电信号。有时把这两种元件的功能集于一体。压力传感器广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业。 力学传感器的种类繁多,但常用的压力传感器有电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器,光纤压力传感器等。应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。 压力传感器是使用最为广泛的一种传感器。传统的压力传感器以机械结构型的器件为主,以弹性元件的形变指示压力,但这种结构尺寸大、质量轻,不能提供电学输出。随着半导体技术的发展,半导体压力传感器也应运而生。其特点是体积小、质量轻、准确度高、温度特性好。特别是随着MEMS技术的发展,半导体传感器向着微型化发展,而且其功耗小、可靠性高。 压阻式应变压力传感器的主要由电阻应变片按照惠斯通电桥原理组成。 电阻应变片

一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变传感器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变 电阻应变片内部结构 片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变, 使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D转换和CPU)显示或执行机构。 金属电阻应变片的内部结构 如图所示,是电阻应变片的结构示意图,它由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成。根据不同的用途,电阻应变片的阻值可以由设计者设计,但电阻的取值范围应注意:阻值太小,所需的驱动电流太大,同时应变片的发热致使本身的温度过高,不同的环境中使用,使应变片的阻值变化太大,输出零点漂移明显,调零电路过于复杂。而电阻太大,阻抗太高,抗外界的电磁干扰能力较差。一般均为几十欧至几十千欧左右。 惠斯通原理

(完整版)四种压力传感器的基本工作原理及特点

四种压力传感器的基本工作原理及特点 一:电阻应变式传感器 1 1电阻应变式传感器定义 被测的动态压力作用在弹性敏感元件上,使它产生变形,在其变形的部位粘贴有电阻应变片,电阻应变片感受动态压力的变化,按这种原理设计的传感器称为电阻应变式压力传感器。 1.2 电阻应变式传感器的工作原理 电阻应变式传感器所粘贴的金属电阻应变片主要有丝式应变片与箔式应变片。 箔式应变片是以厚度为0.002——0.008mm 的金属箔片作为敏感栅材料,,箔栅宽度为0.003——0.008mm 。丝式应变片是由一根具有高电阻系数的电阻丝(直径0.015--0.05mm),平行地排成栅形(一般2——40条),电阻值60——200 ?,通常为120 ?,牢贴在薄纸片上,电阻纸两端焊有引出线,表面覆一层薄纸,即制成了纸基的电阻丝式应变片。测量时,用特制的胶水将金属电阻应变片粘贴于待测的弹性敏感元件表面上,弹性敏感元件随着动态压力而产生变形时,电阻片也跟随变形。如下图所示。B 为栅宽,L 为基长。 材料的电阻变化率由下式决定: d d d R A R A ρρ=+ (1) 式中; R —材料电阻

由材料力学知识得; [(12)(12)]dR R C K μμεε=++-= (2) K —金属电阻应变片的敏感度系数 式中K 对于确定购金属材料在一定的范围内为一常数,将微分dR 、dL 改写成增量ΔR 、ΔL,可得 R L K K R L ε??== (3) 由式(2)可知,当弹性敏感元件受到动态压力作用后随之产生相应的变形ε,而形应变值可由丝式应变片或箔式应变片测出,从而得到了ΔR 的变化,也就得到了动态压力的变化,基于这种应变效应的原理实现了动态压力的测量。 1.3电阻应变式传感器的分类及特点 测低压用的膜片式压力传感器 常用的电阻应变式压力传感器包括 测中压用的膜片——应变筒式压力传感器 测高压用的应变筒式压力传感器 1.3.1膜片——应变筒式压力传感器的特点 该传感器的特点是具有较高的强度和抗冲击稳定性,具有优良的静态特性、动态特性和较高的自震频率,可达30khz 以上,测量的上限压力可达到9.6mp a 。适于测量高频脉动压力,又加上强制水冷却。也适于高温下的动态压力测量,如火箭发动机的压力测量,内燃机、压气机等的压力测量。 1.3.2 膜片式应变压力传咸器的特点 A 这种膜片式应变压力传感器不宜测量较大的压力,当变形大时,非线性较大。但小压力测量中由于变形很小,非线性误差可小于0.5%,同时又有较高的灵敏度,因此在冲击波的测量中,国内外都用过这种膜片式压力传感器。 B 这种传感器与膜片—应变筒式压力传感器相比,自振频率较低,因此在低ρ—材料电阻率

压电式传感器实验报告

压电式传感器测振动实验 一、实验目的:了解压电传感器的测量振动的原理和方法。 二、基本原理:压电式传感器由惯性质量块和受压的压电片等组成。(观察实验用压电加 速度计结构)工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。三、需用器件与单元:振动台、压电传感器、检波、移相、低通滤波器模板、压电式传感 器实验模板。双踪示波器。 四、实验步骤: 1、压电传感器装在振动台面上。 2、将低频振荡器信号接入到台面三源板振动源的激励源插孔。 3、将压电传感器输出两端插入到压电传感器实验模板两输入端,与传感器外壳相连的接线端接地,另一端接R1。将压电传感器实验模板电路输出端V o1,接R6。将压电传感器实验模板电路输出端V02,接入低通滤波器输入端Vi,低通滤波器输出V0与示波器相连。

3、合上主控箱电源开关,调节低频振荡器的频率和幅度旋钮使振动台振动,观察示波器 波形。 4、改变低频振荡器的频率,观察输出波形变化。

光纤式传感器测量振动实验 一、实训目的:了解光纤传感器动态位移性能。 二、实训仪器:光纤位移传感器、光纤位移传感器实验模块、振动源、低频振荡器、通信接口(含上位机软件)。 三、相关原理:利用光纤位移传感器的位移特性和其较高的频率响应,用合适的测量电路即可测量振动。 四、实训内容与操作步骤 1、光纤位移传感器安装如图所示,光纤探头对准振动平台的反射面,并避开振动平台中间孔。 2、根据“光纤传感器位移特性试验”的结果,找出线性段的中点,通过调节安装支架高度将光纤探头与振动台台面的距离调整在线性段中点(大致目测)。 3、参考“光纤传感器位移特性试验”的实验连线,Vo1与低通滤波器中的Vi相接,低通输出Vo接到示波器。 4、将低频振荡器的幅度输出旋转到零,低频信号输入到振动模块中的低频输入。

传感器原理及工程应用——压电式传感器原理及应用(已通过)

传感器原理及工程应用 题目:压电式传感器 系部: 专业: 班级: 姓名: 学号: 年月日

前言 基于压电效应的传感器。是一种自发电式和机电转换式传感器。它的敏感元件由压电材料制成。压电材料受力后表面产生电荷。此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。压电式传感器用于测量力和能变换为力的非电物理量。它的优点是频带宽、灵敏度高、信噪比高、结构简单、工作可靠和重量轻等。缺点是某些压电材料需要防潮措施,而且输出的直流响应差,需要采用高输入阻抗电路或电荷放大器来克服这一缺陷。 传感器广泛应用于工程测试中,是一种获取信息的装置。在现代科学技术发展中,传感器起着越来越重要的地位。传感器技术是关于传感器设计,制造及应用的综合技术。它是信息技术的三大支柱之一,位于信息技术的最前端。传感器的种类繁多,有力传感器,速度传感器,加速度传感器,温度传感器等等,本文主要就压电式传感器进行探讨。 一、压电式传感器特性 压电式传感器具有尺寸小、重量轻、工作频率宽,信噪比大等特点,可以测量变化很快的动态压力、加速度、振动等,但不能用于静态参数的测量。在自然界中大多数晶体具有压电效应, 但压电效应十分微弱。石英晶体、钛酸钡、锆钛酸铅等材料是性能优良的压电材料。 二、压电式传感器的基本原理 1、压电效应 压电式传感器是基于压电效应的传感器。是一种自发电式和机电转换式传感器。它的敏感元件由压电材料制成。压电材料受力后表面产生电荷。此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。常见有以下几种压电效应模型(见图1)

图1 压电效应可分为正压电效应和逆压电效应。正压电效应是指:当晶体受到某固定方向外力的作用时,内部就产生电极化现象,同时在某两个表面上产生符号相反的电荷;当外力撤去后,晶体又恢复到不带电的状态;当外力作用方向改变时,电荷的极性也随之改变;晶体受力所产生的电荷量与外力的大小成正比。压电式传感器大多是利用正压电效应制成的。逆压电效应是指对晶体施加交变电场引起晶体机械变形的现象,又称电致伸缩效应。用逆压电效应制造的变送器可用于电声和超声工程。压电敏感元件的受力变形有厚度变形型、长度变形型、体积变形型、厚度切变型、平面切变型 5种基本形式(见图2) 图2

压力传感器的工作原理及特点

压力传感器是一种把非电量转变成电信号的器件,而检测仪表在模拟电子技术条件下,一般是包括传感器、检测点取样设备及放大器(进行抗干扰处理及信号传输),当然还有电源及现场显示部分(可选择),电信号一般为连续量、离散量两种,实际上还可分成模拟量、开关量、脉冲量等,模拟信号传输采用统一信号(4-20mADC等)。 数字化过程中,检测仪表变化比较大,经过几个阶段,近来多采用ASIC专用集成电路,而且把传感器和微处理器及网络接口封装在一个器件中,完成信息获取、处理、传输、存贮等功能。在自动化仪表中经常把检测仪表称为变送器,如温度变送器、压力变送器等。 压力传感器工作原理 1 、应变片压力传感器原理 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。 在了解压阻式力传感器时,我们首先认识一下电阻应变片这种元件。电阻应变片是一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变传感器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D 转换和CPU )显示或执行机构。 电阻应变片的工作原理 金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。金属导体的电阻值可用下式表示: 式中:ρ——金属导体的电阻率(Ω。cm2/m ) S ——导体的截面积(cm2 ) L ——导体的长度(m ) 2 、陶瓷压力传感器原理 抗腐蚀的陶瓷压力传感器没有液体的传递,压力直接作用在陶瓷膜片的前表面,使膜片产生微小的形变,厚膜电阻印刷在陶瓷膜片的背面,连接成一个惠斯通电桥(闭桥),由于压敏电阻的压阻效应,使电桥产生一个与压力成正比的高度线性、与激励电压也成正比的电压信号,标准的信号根据压力量程的不同标定为2.0 / 3.0 / 3.3 mV/V等,可以和应变式传感器相兼容。 3 、扩散硅压力传感器原理 工作原理被测介质的压力直接作用于传感器的膜片上(不锈钢或陶瓷),使膜片产生与介质压力成正比的微位移,使传感器的电阻值发生变化,和用电子线路检测这一变化,并转换输出一个对应于这一压力的标准测量信号。

相关主题
文本预览
相关文档 最新文档