当前位置:文档之家› EXAFS数据拟合程序ARTEMIS

EXAFS数据拟合程序ARTEMIS

MATLAB中如何直接曲线拟合

MATLAB中如何直接曲线拟合,而不使用cftool的GUI 界面 我们知道在MATLAB中有个很方便的曲线拟合工具:cftool 最基本的使用方法如下,假设我们需要拟合的点集存放在两个向量X和Y中,分别储存着各离散点的横坐标和纵坐标,则在MATLAB中直接键入命令 cftool(X,Y) 就会弹出Curve Fitting Tool的GUI界面,点击界面上的fitting即可开始曲线拟合。 MATLAB提供了各种曲线拟合方法,例如:Exponential, Fourier, Gaussing, Interpolant, Polynomial, Power, Rational, Smoothing Spline, Sum of Functions, Weibull等,当然,也可以使用 Custom Equations. cftool不仅可以绘制拟合后的曲线、给出拟合参数,还能给出拟合好坏的评价 参数(Goodness of fit)如SSE, R-square, RMSE等数据,非常好用。但是如果我们已经确定了拟合的方法,只需要对数据进行计算,那么这种GUI的操作方式就不太适合了,比如在m文件中就不方便直接调用cftool。 MATLAB已经给出了解决办法,可以在cftool中根据情况生成特定的m文件,让我们直接进行特定的曲线拟合并给出参数。具体方法在帮助文件的如下文档中" \ Curve Fitting Toolbox \ Generating M-files From Curve Fitting Tool " ,以下简单举例说明: 以双色球从第125期到第145期蓝球为Y值: Y=[12 15 4 1 7 11 5 7 1 6 16 1 1 14 2 12 9 13 10 12 11]; X=1:1:21; cftool(X,Y); 点击Fitting选择最常用的多项式拟合(Polynomial),选择3次多项式拟合(cubic),然后就会出现如下拟合图形: 然后在Curve Fitting Tool窗口中点击 " \ File \ Generate M-file " 即可生成能直接曲线拟合的m函数文件,其中使用的拟合方法就是刚才使用的三次多项式拟合,文件中这条语句证明了这一点: ft_ = fittype('poly3'); 保存该m文件(默认叫做createFit.m),调用方法和通常的m文件一样,使用不同的X和Y值就能拟合出不同的曲线。但是,这种调用方法只能看到一个拟合出的图形窗口,拟合参数以及Goodness of fit参数都看不到了,因此需要在刚才的m文件中稍作修改。 找到这句话: cf_ = fit(X(ok_),Y(ok_),ft_); 修改为: [cf_,gof] = fit(X(ok_),Y(ok_),ft_); 然后将函数声明 function createFit(X,Y) 修改为 function [cf_,gof] = createFit(X,Y) ,这样我们再调用试试看: Y=[12 15 4 1 7 11 5 7 1 6 16 1 1 14 2 12 9 13 10 12 11]; X=1:1:21;

最小二乘法曲线拟合 原理及matlab实现

曲线拟合(curve-fitting ):工程实践中,用测量到的一些离散的数据},...2,1,0),,{(m i y x i i =求一个近似的函数)(x ?来拟合这组数据,要求所得的拟合曲线能最好的反映数据的基本趋势(即使)(x ?最好地逼近()x f ,而不必满足插值原则。因此没必要取)(i x ?=i y ,只要使i i i y x -=)(?δ尽可能地小)。 原理: 给定数据点},...2,1,0),,{(m i y x i i =。求近似曲线)(x ?。并且使得近似曲线与()x f 的偏差最小。近似曲线在该点处的偏差i i i y x -=)(?δ,i=1,2,...,m 。 常见的曲线拟合方法: 1.使偏差绝对值之和最小 2.使偏差绝对值最大的最小 3.使偏差平方和最小 最小二乘法: 按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。 推导过程: 1. 设拟合多项式为: 2. 各点到这条曲线的距离之和,即偏差平方和如下: 3. 问题转化为求待定系数0a ...k a 对等式右边求i a 偏导数,因而我们得到 了: ....... 4、 把这些等式化简并表示成矩阵的形式,就可以得到下面的矩阵: 5. 将这个范德蒙得矩阵化简后可得到:

6. 也就是说X*A=Y,那么A = (X'*X)-1*X'*Y,便得到了系数矩阵A,同时,我们也就得到了拟合曲线。 MATLAB实现: MATLAB提供了polyfit()函数命令进行最小二乘曲线拟合。 调用格式:p=polyfit(x,y,n) [p,s]= polyfit(x,y,n) [p,s,mu]=polyfit(x,y,n) x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。x必须是单调的。矩阵s包括R(对x进行QR分解的三角元素)、df(自由度)、normr(残差)用于生成预测值的误差估计。 [p,s,mu]=polyfit(x,y,n)在拟合过程中,首先对x进行数据标准化处理,以在拟合中消除量纲等影响,mu包含标准化处理过程中使用的x的均值和标准差。 polyval( )为多项式曲线求值函数,调用格式: y=polyval(p,x) [y,DELTA]=polyval(p,x,s) y=polyval(p,x)为返回对应自变量x在给定系数P的多项式的值。 [y,DELTA]=polyval(p,x,s) 使用polyfit函数的选项输出s得出误差估计Y DELTA。它假设polyfit函数数据输入的误差是独立正态的,并且方差为常数。则Y DELTA将至少包含50%的预测值。 如下给定数据的拟合曲线: x=[0.5,1.0,1.5,2.0,2.5,3.0], y=[1.75,2.45,3.81,4.80,7.00,8.60]。 解:MATLAB程序如下: x=[0.5,1.0,1.5,2.0,2.5,3.0]; y=[1.75,2.45,3.81,4.80,7.00,8.60]; p=polyfit(x,y,2) x1=0.5:0.05:3.0; y1=polyval(p,x1); plot(x,y,'*r',x1,y1,'-b') 运行结果如图1 计算结果为: p =0.5614 0.8287 1.1560 即所得多项式为y=0.5614x^2+0.08287x+1.15560 图1 最小二乘法曲线拟合示例 对比检验拟合的有效性: 例:在[0,π]区间上对正弦函数进行拟合,然后在[0,2π]区间画出图形,比较拟合区间和非拟合区间的图形,考察拟合的有效性。 在MATLAB中输入如下代码: clear x=0:0.1:pi; y=sin(x); [p,mu]=polyfit(x,y,9)

曲线拟合的方法及过程

一、课程设计题目: 对于函数 x e x x f --=)( 从00=x 开始,取步长1.0=h 的20个数据点,求五次最小二乘拟合多项式 5522105)()()()(x x a x x a x x a a x P -++-+-+= 其中 ∑ ===19 95.020 i i x x 二、原理分析 (1)最小二乘法的提法 当数据量大且由实验提供时,不宜要求近似曲线)(x y φ=严格地经过所有数据点),(i i y x ,亦即不应要求拟合函数)(x ?在i x 处的偏差(又称残差) i i i y x -=)(φδ (i=1,2,…,m) 都严格的等于零,但是,为了使近似曲线能尽量反应所给数据点的变化趋势,要求偏差i δ适当的小还是必要的,达到这一目标的途径很多,例如,可以通过使最大偏差i δmax 最小来实现,也可以通过使偏差绝对值之和∑i i δ最小来实 现……,考虑到计算方便等因素,通常用使得偏差平方和∑i i 2δ最小(成为最小 二乘原则)来实现。 按最小二乘原则选择近似函数的方法称为最小二乘法。 用最小二乘法求近似函数的问题可以归结为:对于给定数据),(i i y x (i=1,2,…,m),要求在某个函数类Φ中寻求一个函数)(x * ?,使 [][]2 1 )(2 1 * )()(mi n ∑∑=Φ∈=-=-m i i i x m i i i y x y x ??? (1-1) 其中)(x ?为函数类Φ中任意函数。 (1)确定函数类Φ,即确定)(x ?的形式。这不是一个单纯的数学问题,还与其他领域的一些专业知识有关。在数学上,通常的做法是将数据点),(i i y x 描

matlab多项式拟合

matlab_最小二乘法数据拟合 (2012-10-21 12:19:27) 转载▼ 标签: matlab 最小二乘 数据拟合 定义: 最小二乘法(又称最小平方法)是一种数学优化技术。它通过最 小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可 以简便地求得未知的数据,并使得这些求得的数据与实际数据之 间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一 些优化问题也可通过最小化能量或最大化熵用最小二 乘法来表 达。 最小二乘法原理: 在我们研究两个变量(x,y)之间的相互关系时,通 常可以得到一系列成对的数据(x1,y1.x2,y2... xm,ym);

将这些数据描绘在x -y直角坐标系中,若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。 Yj= a0 + a1 X (式1-1) 其中:a0、a1 是任意实数 1.多项式曲线拟合:polyfit 1.1常见拟合曲线: 直线:y=a0X+a1 多项式: 一般次数不易过高2 3 双曲线:y=a0/x+a1 指数曲线:y=a*e^b 1.2 matlab中函数 P=polyfit(x,y,n) [P S mu]=polyfit(x,y,n) polyval(P,t):返回n次多项式在t处的值 注:其中x y已知数据点向量分别表示横纵坐标,n 为拟合多项 式的次数,结果返回:P-返回n次拟合多项式系数从高到低 依次存放于向量P中,S-包含三个值其中normr是残差平方

和,mu-包含两个值mean(x)均值,std(x)标准差。 1.3举例 1. 已知观测数据为: X:0 1 2 3 4 5 6 7 8 9 1 Y:-0.447 1.987 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.3 11.2 用三次多项式曲线拟合这些数据点: x=0:0.1:1 y=[- 0.447,1.978,3.28,6.16,7.08,7.34,7.66,9.56,9.48,9.3,1 1. 2] plot(x,y,'k.','markersize',25) hold on axis([0 1.3 -2 16]) p3=polyfit(x,y,3) t=0:0.1:1.2: S3=polyval(P3,t); plot(t,S3,'r');

曲线拟合最小二乘法c++程序

课题八曲线拟合的最小二乘法 实验目标: 在某冶炼过程中,通过实验检测得到含碳量与时间关系的数据如下,试求含碳量y与时间t #include #include<> using namespace std; int Array(double ***Arr, int n){ double **p; int i; p=(double **)malloc(n*sizeof(double *)); if(!p)return 0; for(i=0;i>n; cout<<"请输o入¨节¨2点ì值|ì(ê?§Xi)ê:êo"<>X[i]; } cout<<"请输o入¨节¨2点ì函?¥数oy值|ì(ê?§Yi)ê:êo"<>Y[i]; } if(!Array(&A,3)) cout<<"内¨2存?分¤配失o?ì败?¨1!ê"; else { for(i=0;i<3;i++){ for(j=0;j<3;j++){ A[i][j]=0; } } for(i=0;i

Matlab最小二乘法曲线拟合的应用实例

MATLAB机械工程 最小二乘法曲线拟合的应用实例 班级: 姓名: 学号: 指导教师:

一,实验目的 通过Matlab上机编程,掌握利用Matlab软件进行数据拟合分析及数据可视化方法 二,实验内容 1.有一组风机叶片的耐磨实验数据,如下表所示,其中X为使用时间,单位为小时h,Y为磨失质量,单位为克g。要求: 对该数据进行合理的最小二乘法数据拟合得下列数据。 x=[10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 2 0000 21000 22000 23000]; y=[24.0 26.5 29.8 32.4 34.7 37.7 41.1 42.8 44.6 47.3 65.8 87.5 137.8 174. 2] 三,程序如下 X=10000:1000:23000; Y=[24.0,26.5,29.8,32.4,34.7,37.7,41.1,42.8,44.6,47.3,65.8,87.5,137.8,17 4.2] dy=1.5; %拟合数据y的步长for n=1:6 [a,S]=polyfit(x,y,n); A{n}=a;

da=dy*sqrt(diag(inv(S.R′*S.R))); Da{n}=da′; freedom(n)=S.df; [ye,delta]=polyval(a,x,S); YE{n}=ye; D{n}=delta; chi2(n)=sum((y-ye).^2)/dy/dy; end Q=1-chi2cdf(chi2,freedom); %判断拟合良好度 clf,shg subplot(1,2,1),plot(1:6,abs(chi2-freedom),‘b’) xlabel(‘阶次’),title(‘chi2与自由度’) subplot(1,2,2),plot(1:6,Q,‘r’,1:6,ones(1,6)*0.5) xlabel(‘阶次’),title(‘Q与0.5线’) nod=input(‘根据图形选择适当的阶次(请输入数值)’); elf,shg, plot(x,y,‘kx’);xlabel(‘x’),ylabel(‘y’); axis([8000,23000,20.0,174.2]);hold on errorbar(x,YE{nod},D{nod},‘r’);hold off title(‘较适当阶次的拟合’) text(10000,150.0,[‘chi2=’num2str(chi2(nod))‘~’int2str(freedom(nod))])

最小二乘拟合平面和直线matlab

利用Matlab实现直线和平面的拟合 1、直线拟合的matlab代码 % Fitting a best-fit line to data, both noisy and non-noisy x = rand(1,10); n = rand(size(x)); % Noise y = 2*x + 3; % x and y satisfy y = 2*x + 3 yn = y + n; % x and yn roughly satisfy yn = 2*x + 3 due to the noise % Determine coefficients for non-noisy line y=m1*x+b1 Xcolv = x(:); % Make X a column vector Ycolv = y(:); % Make Y a column vector Const = ones(size(Xcolv)); % Vector of ones for constant term Coeffs = [Xcolv Const]\Ycolv; % Find the coefficients m1 = Coeffs(1); b1 = Coeffs(2); % To fit another function to this data, simply change the first % matrix on the line defining Coeffs % For example, this code would fit a quadratic % y = Coeffs(1)*x^2+Coeffs(2)*x+Coeffs(3) % Coeffs = [Xcolv.^2 Xcolv Const]\Ycolv; % Note the .^ before the exponent of the first term % Plot the original points and the fitted curve figure plot(x,y,'ro') hold on x2 = 0:0.01:1; y2 = m1*x2+b1; % Evaluate fitted curve at many points plot(x2, y2, 'g-') title(sprintf('Non-noisy data: y=%f*x+%f',m1,b1)) % Determine coefficients for noisy line yn=m2*x+b2 Xcolv = x(:); % Make X a column vector Yncolv = yn(:); % Make Yn a column vector Const = ones(size(Xcolv)); % Vector of ones for constant term NoisyCoeffs = [Xcolv Const]\Yncolv; % Find the coefficients m2 = NoisyCoeffs(1); b2 = NoisyCoeffs(2); % Plot the original points and the fitted curve figure plot(x,yn,'ro')

Boltzmann 函数曲线拟合的 Lisp 程序

Boltzmann 函数曲线拟合的Lisp 程序 1 原程序在计算机中,将以下原代码写入记事本中并保存文件名为“bzlm.lsp” (setq smx (lambda ( / k wi a1 a2 b1 b2 c1 c2 sx) (setq wi (mapcar '(lambda ( x / ) (expt 2.718282 (/ (- x m3) m4))) xi) k 0 a1 (apply '+ (mapcar '(lambda ( y / w) (setq w (nth k wi) k (1+ k)) (/ y (+ 1 w))) yi)) k 0 a2 (apply '+ (mapcar '(lambda ( y / w) (setq w (nth k wi) k (1+ k)) (/ (* y w) (+ 1 w))) yi)) b1 (apply '+ (mapcar '(lambda ( w / ) (/ 1 (expt (+ 1 w) 2))) wi)) b2 (apply '+ (mapcar '(lambda ( w / ) (/ w (expt (+ 1 w) 2))) wi)) c1 b2 c2 (apply '+ (mapcar '(lambda ( w / ) (expt (/ w (+ 1 w)) 2)) wi)) m1 (/ (- (* a1 c2) (* a2 c1)) (- (* b1 c2) (* b2 c1))) m2 (/ (- (* b1 a2) (* b2 a1)) (- (* b1 c2) (* b2 c1))) k 0 sx (apply '+ (mapcar '(lambda ( x / y w) (setq w (nth k wi) y (nth k yi) k (1+ k)) (expt (- y (+ (/ (- m1 m2) (+ 1 w)) m2)) 2)) xi)) ) (if (car s_min) (if (< sx (car s_min)) (setq s_min (list sx m1 m2 m3 m4)) nil) (setq s_min (list sx m1 m2 m3 m4))) ) ) (setq mmc (lambda (range / m1 m2 s_min m3 m4 rm3 rm4 tm4 q3 q4) (setq rm3 (abs range) rm4 rm3 q3 rm3 q4 rm4 m3 0 m4 0) (repeat 5 (setq rm3 (+ m3 q3) m3 (- m3 q3) rm4 (+ m4 q4) m4 (- m4 q4) tm4 m4 q3 (* q3 0.1) q4 (* q4 0.1)) (while (<= m3 rm3) (while (<= m4 rm4) (if (>= m4 1) (smx)) (setq m4 (+ m4 q4))) (setq m3 (+ m3 q3) m4 tm4) ) (setq m3 (nth 3 s_min) m4 (last s_min)) ) s_min ) ) (setq cy (lambda ( / m1 m2 m3 m4) (if sc (progn (setq m1 (nth 1 sc) m2 (nth 2 sc) m3 (nth 3 sc) m4 (nth 4 sc) yc (+ (/ (- m1 m2) (+ 1 (expt 2.718282 (/ (- xc m3) m4)))) m2) ) (set_tile "cy" (vl-princ-to-string yc)) )))) (setq cx (lambda ( / m1 m2 m3 m4 tm) (if sc (progn (setq m1 (nth 1 sc) m2 (nth 2 sc) m3 (nth 3 sc) m4 (nth 4 sc)) (if (and (< y m2) (> (setq tm (- (/ (- m1 m2) (- yc m2)) 1)) 0)) (progn (setq xc (+ m3 (* m4 (log tm))))

最小二乘法的多项式拟合matlab实现

最小二乘法的多项式拟 合m a t l a b实现 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

用最小二乘法进行多项式拟合(matlab 实现) 西安交通大学 徐彬华 算法分析: 对给定数据 (i=0 ,1,2,3,..,m),一共m+1个数据点,取多项式P(x),使 函数P(x)称为拟合函数或最小二乘解,令似的 使得 其中,a0,a1,a2,…,an 为待求未知数,n 为多项式的最高次幂,由此,该问题化为求 的极值问题。由多元函数求极值的必要条件: j=0,1,…,n 得到: j=0,1,…,n 这是一个关于a0,a1,a2,…,an 的线性方程组,用矩阵表示如下:

因此,只要给出数据点 及其个数m ,再给出所要拟合的参数n ,则即可求出未知数矩阵(a0,a1,a2,…,an ) 试验题1 编制以函数 为基的多项式最小二乘拟合程序,并用于对下列数据作三次多项式最小二乘拟合(取权函数wi ≡1) x i y i 总共有7个数据点,令m=6 第一步:画出已知数据的的散点图,确定拟合参数n; x=::;y=[,,,,,,]; plot(x,y,'*') xlabel 'x 轴' ylabel 'y 轴' title '散点图' hold on {} n k k x 0=

因此将拟合参数n设为3. 第二步:计算矩阵 A= 注意到该矩阵为(n+1)*(n+1)矩阵, 多项式的幂跟行、列坐标(i,j)的关系为i+j-2,由此可建立循环来求矩阵的各个元素,程序如下: m=6;n=3; A=zeros(n+1); for j=1:n+1 for i=1:n+1 for k=1:m+1 A(j,i)=A(j,i)+x(k)^(j+i-2) end end

matlab曲线拟合实例

曲线拟合 求二次拟合多项式 解:(一)最小二乘法MA TLAB编程: function p=least_squar(x,y,n,w) if nargin<4 w=1 end if nargin<3 n=1 end m=length(y); X=ones(1,m) if m<=n error end for i=1:n X=[(x.^i);X] end A=X*diag(w)*X';b=X*(w.*y)';p=(A\b)' 输入: x=[1 3 5 6 7 8 9 10]; y=[10 5 2 1 1 2 3 4] p=least_squar(x,y,2) 运行得: p = 0.2763 -3.6800 13.4320 故所求多项式为:s(x)=13.432-3.68x+0.27632x (二)正交多项式拟合MATLAB编程: function p=least_squar2(x,y,n,w) if nargin<4 w=1; end if nargin<3 n=1; end m=length(x); X=ones(1,m); if m<=n error end for i=1:n X=[x.^i;X]; end A=zeros(1,n+1);

A(1,n+1)=1; a=zeros(1,n+1); z=zeros(1,n+1); for i=1:n phi=A(i,:)*X;t=sum(w.*phi.*phi); b=-sum(w.*phi.*x.*phi)/t a(i)=sum(w.*y.*phi)/t; if i==1 c=0;else c=-t/t1; end t1=t for j=1:n z(j)=A(i,j+1); end z(n+1)=0 if i==1 z=z+b*A(i,:); else z=z+b*A(i,:)+c*A(i-1,:); end A=[A;z]; end phi=A(n+1,:)*X;t=sum(w.*phi.*phi); a(n+1)=sum(w.*y.*phi)/t; p=a*A; 输入: x=[1 3 5 6 7 8 9 10]; y=[10 5 2 1 1 2 3 4]; p=least_squar2(x,y,2) 运行得: b = -6.1250 t1 = 8 z = 0 1 0 b = -4.9328 t1 = 64.8750 z = 1.0000 -6.1250 0 p = 0.2763 -3.6800 13.4320 故所求多项式为:s(x)=13.432-3.68x+0.27632x

MATLAB程序(线性拟合)

1、一元线性拟合 求HNO 3的正常沸点温度T b 及摩尔汽化热。 程序如下: >> t=[0 20 40 50 70 80 90 100]; >> t=t+273.15; >> p=[1919.52 6385.07 17728.9 27726.4 62251.1 89311 124902.1 170890.6] p = 1.0e+005 * 0.0192 0.0639 0.1773 0.2773 0.6225 0.8931 1.2490 1.7089 >> subplot 121 >> plot(t,p,'o',t,p) >> t1=1./t;p2=log(p); >> pp=polyfit(t1,p2,1) pp = 1.0e+003 * -4.5691 0.0243 >> subplot 122 >> plot(t1,p2,'o',t1,p2) >> gtext('p/pa'),gtext('T/K'),GTEXT('lnP/Pa'),gtext('T^-^1/K') 由克拉贝龙-克劳修斯方程式,~ ln v H P C RT ?=-+ 作1 ln ~P T -得一直线:3 1 ln 4.5691024.30P T -=-?+ 斜率为:~ 3 4.56910v H R ?-?=-

所以摩尔汽化热为:~ 314.569108.31437.99()v H kJ mol -?=??=? 并根据拟合方程,求得一大气压时 1 32.8010T --=? 则正常沸点为:357b T K = 2、多元线性拟合: 某气体混合物由四种气体组成,在常压或低压下其粘度η与各组分摩尔分数x 1,x 2,x 3,x 4之间有如下线性关系:011223344b b x b x b x b x η=++++ 试根据下表所列实验数据用最小二乘法确定上式中的各个系数,并计算其复相关系数。 Matlab 程序如下: >> a=[1.0 0.402 0.153 0.058 0.387;1.0 0.503 0.301 0.183 0.013; 1.0 0.306 0.109 0.224 0.361; 1.0 0.296 0.365 0.009 0.330; 1.0 0.309 0.405 0.109 0.177; 1.0 0.055 0.153 0.506 0.289] a = 1.0000 0.4020 0.1530 0.0580 0.3870 1.0000 0.5030 0.3010 0.1830 0.0130 1.0000 0.3060 0.1090 0.2240 0.3610 1.0000 0.2960 0.3650 0.0090 0.3300 1.0000 0.3090 0.4050 0.1090 0.1770 1.0000 0.0550 0.1530 0.5060 0.2890 >> y=[0.00625 0.00826 0.01182 0.01944 0.02372 0.03243]' y = 0.0063 0.0083 0.0118 0.0194 0.0237 0.0324 >> b=a.'*a

Matlab的应用-多项式函数及多项式拟合

Matlab的应用-多项式函数及多项式拟合 本节将向大家简要介绍matlab 在多项式处理方面的应用。 多项式函数主要有: roots 求多项式的根 poly 特征多项式 polyval 多项式的计算 poly2str(p,'x')多项式代换 polyfit 多项式曲线拟合 conv 多项式乘法 deconv 多项式除法 polyder 微分多项式 下面我们将介绍这些函数的用法: 1,roots---求多项式的根 格式:roots(c) 说明:它表示计算一个多项式的根,此多项式系数是向量c的元素.如果c有n+1个元素,那么此多项式为: c(1)*x^n+c(2)*x^(n-1)+c(3)*x^(n-2)+--+c(n)*x+c(n+1) 2,poly---特征多项式 格式:poly(a) 说明:(1)如果a是一个n阶矩阵,poly(a)是一个有n+1个元素的行向量,这n+1个元素是特征多项式的系数(降幂排列). (2)如果a是一个n维向量,则poly(a)是多项式(x-a(1))*(x-a(2))*..(x-a(n)),即该多项式以向量a的元素为根。 3,polyval—多项式计算 格式:polyval(v,s) 说明: 如果v是一个向量,它的元素是一个多项式的系数,那麽polyval(v,s)是多项式在s处的值. 如果s是一个矩阵或是一个向量,则多项式在s中所有元素上求值 例如: v=*1 2 3 4+;vv=poly2str(v,’s’)

(即v=s^3+2*s^2+3*s+4) s=2; x=polyval(v,s) x = 26 例如: v=[1 2 3 4]; s=[2 4]; polyval(v,s) ans=26 112 4,conv-多项式乘法 例:as=[1 2 3] as = 1 2 3 >> az=[2 4 2 1] az = 2 4 2 1 >> conv(as,az) ans = 2 8 16 17 8 3 conv(az,as) ans = 2 8 16 17 8 3 5,deconv-多项式除法 例:deconv(az,as)%返回结果是商式的系数 ans = 2 0 [awwq,qw]=deconv(az,as)%awwq是商式的系数,qw是余式的系数 awwq = 2 0 qw = 0 0 -4 1 6,polyder 微分多项式 polyder(as) ans = 2 2 7,polyfit--多项式曲线拟合 格式::polyfit(x,y,n) 说明:polyfit(x,y,n)是找n次多项式p(x)的系数,这些系数满足在最小二乘法意义下p(x(i)) ~= y(i). “人口问题”是我国最大社会问题之一,估计人口数量和发展趋势是我们制定一系列相关政策的基础。有人口统计年鉴,可查到我国从1949年至1994年人口数据资料如下: 年份 1949

Matlab多项式拟合曲线

?MATLAB软件提供了基本的曲线拟合函数的命令. 1 多项式函数拟合:a=polyfit(xdata,ydata,n) 其中n表示多项式的最高阶数,xdata,ydata为将要拟合的数据,它是用数组的方式输入.输出参数a 为拟合多项式的系数 多项式在x处的值y可用下面程序计算. y=polyval(a,x) 2 一般的曲线拟合:p=curvefit(‘Fun’,p0,xdata,ydata) 其中Fun表示函数Fun(p,data)的M函数文件,p0表示函数的初值.curvefit()命令的求解问题形式是若要求解点x处的函数值可用程序f=Fun(p,x)计算. 例如已知函数形式,并且已知数据点要确定四个未知参数a,b,c,d. 使用curvefit命令,数据输入;初值输;并且建立函数的M文件(Fun.m).若定义,则输出 又如引例的求解,MATLAB程序: t=[l:16];%数据输人 y=[ 4 6.4 8 8.4 9.28 9.5 9.7 9.86 10.2 10.32 10.42 10.5 10.55 1 0.58 10.6] ; plot(t,y,’o’) %画散点图 p=polyfit(t,y,2) (二次多项式拟合) 计算结果: p=-0.0445 1.0711 4.3252 %二次多项式的系数 由此得到某化合物的浓度y与时间t的拟合函数。 ?zjxdede | 2008-10-17 12:10:06 ?MATLAB软件提供了基本的曲线拟合函数的命令. 1 多项式函数拟合:a=polyfit(xdata,ydata,n) 其中n表示多项式的最高阶数,xdata,ydata为将要拟合的数据,它是用数组的方式输入.输出参数a为拟合多项式的系数 多项式在x处的值y可用下面程序计算. y=polyval(a,x) 2 一般的曲线拟合:p=curvefit(‘Fun’,p0,xdata,y data) 其中Fun表示函数Fun(p,data)的M函数文件,p0表示函数的初值.curvefit()命令的求解问题形式是 若要求解点x处的函数值可用程序f=Fun(p,x)计算. 例如已知函数形式,并且已知数据点要确定四个未知参数a,b,c,d. 使用curvefit命令,数据输入;初值输;并且建立函数的M文件(Fun.m).若定义,则输出 又如引例的求解,MATLAB程序: t=[l:16];%数据输人 y=[ 4 6.4 8 8.4 9.28 9.5 9.7 9.86 10.2 10.32 10.42 10.5 1 0.55 10.58 10.6] ;

Matlab数据拟合程序

课程设计名称:设计二:数据拟合指导教师:张莉 课程设计时数: 6 课程设计设备:安装了Matlab、C++软件的计算机 课程设计日期:实验地点:第五教学楼北902 课程设计目的: 1. 了解最小二乘拟合的原理,掌握用MA TLAB作最小二乘拟合的方法; 2. 学会利用曲线拟合的方法建立数学模型。 课程设计准备: 1.在开始本实验之前,请回顾相关内容; 2.需要一台准备安装Windows XP Professional操作系统和装有数学软件的计算机。 课程设计内容及要求 要求:设计过程必须包括问题的简要叙述、问题分析、实验程序及注释、实验数据及结果分析和实验结论几个主要部分。 1. 用切削机床进行金属品加工时,为了适当地调整机床,需要测定刀具的磨损速度,在一定的时间测量刀具的厚度,得数据如表所示,请选用合适的函数来描述切削时间与刀具厚度的关系。 首先对数据进行分析,画出离散的点,观察点近似的曲线: t=0:1:15; y=[30.0 29.1 29.8 28.1 28.0 27.7 27.5 27.2 27.0 26.8 26.5 26.3 26.1 25.7 25.3 24.8]; plot(t,y,'r*')

判断出曲线是近似直线函数,所以对数据进行测试可以做三次函数拟合: t=0:1:15; y=[30.0 29.1 29.8 28.1 28.0 27.7 27.5 27.2 27.0 26.8 26.5 26.3 26.1 25.7 25.3 24.8]; %plot(t,y,'r*') A=polyfit(t,y,3) z=polyval(A,t); plot(t,y,'r*',t,z,'b') 051015 拟合结果: A = -0.3099 29.5676 拟合函数为:y=-0.3099t+29.5676

MATLAB软件基本的曲线拟合函数命令

MATLAB软件提供了基本的曲线拟合函数的命令。 曲线拟合就是计算出两组数据之间的一种函数关系,由此可描绘其变化曲线及估计非采集数据对应的变量信息。 1.线性拟合函数:regress() 调用格式: b = regress(y,X) [b,bint,r,rint,stats] = regress(y,X) [b,bint,r,rint,stats] = regress(y,X,alpha) 说明:b=[ε; β],regress(y,X)返回X与y的最小二乘拟合的参数值β、ε,y=ε+βX。β是p′1的参数向量;ε是服从标准正态分布的随机干扰的n′1的向量;y为n′1的向量;X为n′p矩阵。 bint返回β的95%的置信区间。 r中为形状残差,rint中返回每一个残差的95%置信区间。Stats向量包含R2统计量、回归的F值和p值。 例: x=[ones(10,1) (1:10)']; y=x*[10;1]+normrnd(0,0.1,10,1); [b,bint]=regress(y,x,0.05) 结果得回归方程为:y=9.9213+1.0143x 2.多项式曲线拟合函数:polyfit() 调用格式: p = polyfit(x,y,n) [p,s] = polyfit(x,y,n) 说明:n:多项式的最高阶数; x,y:将要拟合的数据,用数组的方式输入; p:为输出参数,即拟合多项式的系数; 多项式在x处的值y可用下面程序计算: y=polyval(p,x) 例: x=1:20; y=x+3*sin(x); p=polyfit(x,y,6) xi=linspace(1,20,100); z=polyval(p,xi); % 多项式求值函数

曲线拟合C语言程序

^ #include<> #include<> void nihe(); void gs(); void main() { int i,j,m,n; float o[50]; \ float x[50] , y[50] ,a[50][50]; printf("输入数据节点数 n = ",n); scanf("%d",&n); for( i=1;i<=n;i++) { printf(" i = %d\n",i); } printf("各节点的数据 x[i] \n"); 、 for(i=1;i<=n;i++) { printf("x[%d] = ",i); scanf("%f",&x[i]); } printf("各节点的数据 y[i] \n"); for(i=1;i<=n;i++) { ¥ printf("y[%d] = ",i); scanf("%f",&y[i]); } printf("\n"); printf("拟合的多项式次数 m = ", m); scanf("%d",&m); ¥ } void nihe(float x[50], float y[50], int m ,int n) { int i,j,k=0,c=1,w=1;

float f,a[50][50] , o[50];; ~ do { f=0; for(i=1;i<=n;i++) { f=f+pow( x[i] , k)*pow( x[i] , k); } … a[c][c]=f ; a[c+1][c-1]=f; a[c-1][c+1]=f; c++; k++; }while(k<=m); , k=1;c=1; do { f=0; for(i=1;i<=n;i++) { f=f+pow( x[i] , k); } * a[c+1][c]=f; a[c][c+1]=f; c++; k++; k++; }while(k<=m+1); ) k=0;c=1; do { f=0; for(i=1;i<=n;i++)

MATLAB中简单的数据拟合方法与应用实例①

MATLAB中简单的数据拟合方法与应用实例 仅供努力学习matlab的同学们参考参考,查阅了M多资料,总结了以下方法 按步骤做能够基本学会matlab曲线拟合的 1.1数据拟合方法 1.1.1多项式拟合 1.多项式拟合命令 polyfit(X,Y,N):多项式拟合,返回降幂排列的多项式系数。 Polyval(P,xi):计算多项式的值。 其中,X,Y是数据点的值;N是拟合的最高次幂;P是返回的多项式系数;xi是要求的横坐标 拟合命令如下: x=[1 2 3 4 5 6 7 8 9]; y=[9 7 6 3 -1 2 5 7 20]; P=polyfit(x,y,3); xi=0:.2:10; yi=polyval(P,xi); plot(xi,yi,x,y,'r*'); 拟合曲线与原始数据如图1-1 图1-1 2图形窗口的多项式拟合 1)先画出数据点如图1-2 x=[1 2 3 4 5 6 7 8 9]; y=[9 7 6 3 -1 2 5 7 20]; plot(x,y,'r*');

图1-2 2)在图形窗口单击Tools—Basic Fitting,如图1-3勾选. 图1-3 图1-3右方分别是线性、二阶、三阶对数据进行多项式拟合。下面的柱状图显示残差,可以看出,三阶多项式的拟合效果是最好的。 1.1.2指定函数拟合 已知M组数据点和对应的函数形式f t (t)=acos(kt)e X Y 编写M文件:

syms t x=[0;0.4;1.2;2;2.8;3.6;4.4;5.2;6;7.2;8;9.2;10.4;11.6;12.4;13.6;14.4;15]; y=[1;0.85;0.29;-0.27;-0.53;-0.4;-0.12;0.17;0.28;0.15;-0.03;-0.15;-0.071;0.059;0.08;0.032;-0.015;-0.02]; f=fittype('a*cos(k*t)*exp(w*t)','independent','t','coefficients',{'a','k','w'}); cfun=fit(x,y,f) xi=0:.1:20; yi=cfun(xi); plot(x,y,'r*',xi,yi,'b-'); 图1-4 运行程序,在命令窗口可达到以下运行结果,图像如图1-4 Warning: Start point not provided, choosing random start point. > In fit>handlewarn at 715 In fit at 315 In Untitled2 at 5 cfun = General model: cfun(t) = a*cos(k*t)*exp(w*t) Coefficients (with 95% confidence bounds): a = 0.9987 ( 0.9835, 1.014) k = 1.001 (0.9958, 1.006) w = -0.2066 (-0.2131, -0.2002) 从结果可以看出,拟合的曲线为: (0.2066) ()0.9987cos(1.001)*t f t t e- =。拟 合曲线给出了数据大致趋势,并给出了各参数的置信区间。

相关主题
文本预览
相关文档 最新文档