当前位置:文档之家› 2020届高三高考物理复习专题突破:带电粒子在组合场中的运动

2020届高三高考物理复习专题突破:带电粒子在组合场中的运动

2020届高三高考物理复习专题突破:带电粒子在组合场中的运动
2020届高三高考物理复习专题突破:带电粒子在组合场中的运动

带电粒子在组合场中的运动

1.(2018·河南省驻马店市第二次质检)如图所示,平面直角坐标系的第二象限内存在着垂直纸面向外、磁感应强度大小为2B 的匀强磁场,第三象限内存在着垂直纸面向里、磁感应强度大小为B 的匀强磁场.一带负电的粒子从原点O 以某一速度沿与y 轴成30°角方向斜向上射入磁场,且在第二象限运动时的轨迹圆的半径为R ,已知带电粒子的质量为m ,所带电荷量为q ,且所受重力可以忽略.则( )

A.粒子在第二象限和第三象限两磁场中运动的轨迹圆半径之比为1∶2

B.粒子完成一次周期性运动的时间为2πm 3qB

C.粒子从O 位置入射后第二次经过x 轴时的位置到坐标原点的距离为33R

D.若仅将粒子的入射速度大小变为原来的2倍,则粒子完成一次周期性运动的时间将减少

2.(多选)(2019·山西省晋城市第一次模拟)足够大的空间内存在着竖直向上的匀强磁场和匀强电场,有一带正电的小球在电场力和重力作用下处于静止状态.现将磁场方向顺时针旋转30°,同时给小球一个垂直磁场方向斜向下的速度v (如图2所示),则关于小球的运动,下列说法正确的是( )

A.小球做类平抛运动

B.小球在纸面内做匀速圆周运动

C.小球运动到最低点时电势能增加

D.整个运动过程中机械能不守恒

3.(2019·江西省十所省重点高中二模)如图所示,在纸面内有两个磁感应强度大小均为B 、方向相反的匀强磁场,虚线等边三角形ABC 为两磁场的理想边界.已知三角形ABC 边长为L ,虚线三角形内为方向垂直纸面向外的匀强磁场,三角形外部的足够大空间为方向垂直纸面向里的匀强磁场.一电荷量为+q 、质量为m 的带正电粒子从AB 边中点P 垂直AB 边射入三角形外部磁场,不计粒子的重力和一切阻力,试求:

(1)要使粒子从P 点射出后在最短时间内通过B 点,则从P 点射出时的速度v 0为多大?

(2)满足(1)问的粒子通过B后第三次通过磁场边界时到B的距离是多少?

(3)满足(1)问的粒子从P点射入外部磁场到再次返回到P点的最短时间为多少?画出粒子的轨迹并计算.

4.(2019·河南省商丘市模拟)如图所示,在xOy坐标系的第二象限内有水平向右的匀强电场,第四象限内有竖直向上的匀强电场,两个电场的场强大小相等,第四象限内还有垂直于纸面的匀强磁场,让一个质量为m、带电荷量为q 的粒子在第二象限内的P(-L,L)点由静止释放,结果粒子沿直线运动到坐标原点并进入第四象限,粒子在第四象限内运动后从x轴上的Q(L,0)点进入第一象限,重力加速度为g,求:

(1)粒子从P点运动到坐标原点的时间;

(2)匀强磁场的磁感应强度的大小和方向。

5.(2018·山东省日照市一模)如图所示,在坐标系xOy平面的x>0区域内,存在电场强度大小E=2×105N/C、方向垂直于x轴的匀强电场和磁感应强度大小B=0.2 T、方向与xOy平面垂直向外的匀强磁场.在y轴上有一足够长的荧光屏PQ,在x轴上的M(10,0)点处有一粒子发射枪向x轴正方向连续不断地发射大量质量m=

6.4×10-27kg、电荷量q =3.2×10-19C的带正电粒子(重力不计),粒子恰能沿x轴做匀速直线运动.若撤去电场,并使粒子发射枪以M点为轴在xOy平面内以角速度ω=2π rad/s顺时针匀速转动(整个装置都处在真空中).

(1)判断电场方向,求粒子离开发射枪时的速度;

(2)带电粒子在磁场中运动的轨迹半径;

(3)荧光屏上闪光点的范围距离;

(4)荧光屏上闪光点从最低点移动到最高点所用的时间.

6.(2019·福建省南平市适应性检测)如图,在平面直角坐标系xOy中,x轴上方存在沿y轴负方向的匀强电场,电场强度为E,x轴下方存在垂直坐标系平面向外的匀强磁场,磁感应强度为B.一个静止的带正电粒子位于y轴正半轴的A(0,h)点,某时刻由于内部作用,分裂成两个电荷量都为+q的粒子a和b,分别沿x轴正方向和负方向进入电场.已知粒子a的质量为m,粒子a进入第一象限的动量大小为p.设分裂过程不考虑外力的作用,在电场与磁场中的运动过程不计粒子重力和粒子间的相互作用.求:

(1)粒子a第一次通过x轴时离原点O的距离x;

(2)粒子a第二次通过x轴时与第一次通过x轴时两点间的距离L.

7.(2017·全国卷Ⅲ·24)如图,空间存在方向垂直于纸面(xOy平面)向里的磁场.在x≥0 区域,磁感应强度的大小为B0;x<0区域,磁感应强度的大小为λB0(常数λ>1).一质量为m、电荷量为q(q>0)的带电粒子以速度v0从坐标原点O 沿x轴正向射入磁场,此时开始计时,当粒子的速度方向再次沿x轴正向时,求:(不计重力)

(1)粒子运动的时间;

(2)粒子与O点间的距离.

8.(2018·高考全国卷Ⅰ)如图,在y>0的区域存在方向沿y轴负方向的匀强电场,场强大小为E;在y<0的区域存在方向垂直于xOy平面向外的匀强磁场.一个氕核11H和一个氘核21H先后从y轴上y=h点以相同的动能射出,速度方向沿x轴正方向.已知11H进入磁场时,速度方向与x轴正方向的夹角为60°,并从坐标原点O处第一次射出磁场.11H的质量为m,电荷量为q.不计重力.求

(1)11H第一次进入磁场的位置到原点O的距离;

(2)磁场的磁感应强度大小;

(3)21H第一次离开磁场的位置到原点O的距离.

9.(2019·湖南怀化高考一模)如图所示,在平面直角坐标系xOy中的第一象限内存在磁感应强度大小为B、方向垂直于坐标平面向里的有界矩形匀强磁场区域(图中未画出);在第二象限内存在沿x轴负方向的匀强电场。一粒子源固

定在x轴上坐标为(-L,0)的A点,粒子源沿y轴正方向释放出速度大小为v0的电子,电子通过y轴上的C点时速度方向与y轴正方向成α=45°角,电子经过磁场偏转后恰好垂直通过第一象限内与x轴正方向成β=15°角的射线OM。已知电子的质量为m,电荷量为e,不考虑粒子的重力和粒子之间的相互作用。求:

(1)匀强电场的电场强度E的大小;

(2)电子在电场和磁场中运动的总时间t;

(3)矩形磁场区域的最小面积S min。

10.(2019·广东省韶关市调研)如图所示,在无限长的竖直边界AC和DE间,上、下部分分别充满方向垂直于平面ADEC 向外的匀强磁场,上部分区域的磁感应强度大小为B0,OF为上、下磁场的水平分界线.质量为m、带电荷量为+q的粒子从AC边界上与O点相距为a的P点垂直于AC边界射入上方磁场区域,经OF上的Q点第一次进入下方磁场区域,Q与O点的距离为3a.不考虑粒子重力.

(1)求粒子射入时的速度大小;

(2)要使粒子不从AC边界飞出,求下方磁场区域的磁感应强度B1应满足的条件;

(3)若下方区域的磁感应强度B=3B0,粒子最终垂直DE边界飞出,求边界DE与AC间距离的可能值.

参考答案

1.(2018·河南省驻马店市第二次质检)如图所示,平面直角坐标系的第二象限内存在着垂直纸面向外、磁感应强度大小为2B 的匀强磁场,第三象限内存在着垂直纸面向里、磁感应强度大小为B 的匀强磁场.一带负电的粒子从原点O 以某一速度沿与y 轴成30°角方向斜向上射入磁场,且在第二象限运动时的轨迹圆的半径为R ,已知带电粒子的质量为m ,所带电荷量为q ,且所受重力可以忽略.则( )

A.粒子在第二象限和第三象限两磁场中运动的轨迹圆半径之比为1∶2

B.粒子完成一次周期性运动的时间为2πm 3qB

C.粒子从O 位置入射后第二次经过x 轴时的位置到坐标原点的距离为33R

D.若仅将粒子的入射速度大小变为原来的2倍,则粒子完成一次周期性运动的时间将减少 【答案】 AC

【解析】 由半径公式r =mv

qB 知,轨迹圆半径与磁感应强度B 成反比,所以粒子在第二象限和第三象限两磁场中运

动的轨迹圆半径之比为1∶2,故A 正确;粒子在磁场中运动一个周期的轨迹如图所示:

在第二象限的周期T 1=2πm q ·2B =πm qB ,圆心角为120°,运动时间t 1=120°360°T 1=πm 3qB ,在第三象限运动的周期T 2=2πm

qB ,

圆心角为120°,运动时间t 2=120°360°T 2=2πm 3qB ,所以粒子完成一次周期性运动的时间t 0=t 1+t 2=πm

qB ,故B 错误;粒子

在第三象限轨迹圆的半径为R 2=2R ,从O 点入射后第一次经过x 轴的距离x 1=3R 1=3R ,第二次圆弧的弦长x 2=3R 2=23R ,所以粒子从O 位置入射后第二次经过x 轴时的位置到坐标原点的距离为x =x 1+x 2=33R ,故C 正确;若仅将粒子的入射速度变为原来的2倍,周期T =2πm

qB 与速度无关,圆心角不变,所以在磁场中运动时间t

θ

T 不变,故D 错误. 2.(多选)(2019·山西省晋城市第一次模拟)足够大的空间内存在着竖直向上的匀强磁场和匀强电场,有一带正电的小球在电场力和重力作用下处于静止状态.现将磁场方向顺时针旋转30°,同时给小球一个垂直磁场方向斜向下的速度v (如图2所示),则关于小球的运动,下列说法正确的是( )

A.小球做类平抛运动

B.小球在纸面内做匀速圆周运动

C.小球运动到最低点时电势能增加

D.整个运动过程中机械能不守恒 【答案】 CD

【解析】 小球在复合电磁场中处于静止状态,只受两个力作用,即重力和电场力且两者平衡,当把磁场顺时针方向旋转30°,且给小球一个垂直磁场方向的速度v ,则小球受到的合力就是洛伦兹力,且与速度方向垂直,所以小球在垂直于纸面的倾斜平面内做匀速圆周运动,选项A 、B 错误;小球从开始到最低点过程中克服电场力做功,电势能增加,选项C 正确;整个运动过程中机械能不守恒,选项D 正确.

3.(2019·江西省十所省重点高中二模)如图所示,在纸面内有两个磁感应强度大小均为B 、方向相反的匀强磁场,虚线等边三角形ABC 为两磁场的理想边界.已知三角形ABC 边长为L ,虚线三角形内为方向垂直纸面向外的匀强磁场,三角形外部的足够大空间为方向垂直纸面向里的匀强磁场.一电荷量为+q 、质量为m 的带正电粒子从AB 边中点P 垂直AB 边射入三角形外部磁场,不计粒子的重力和一切阻力,试求:

(1)要使粒子从P 点射出后在最短时间内通过B 点,则从P 点射出时的速度v 0为多大? (2)满足(1)问的粒子通过B 后第三次通过磁场边界时到B 的距离是多少?

(3)满足(1)问的粒子从P 点射入外部磁场到再次返回到P 点的最短时间为多少?画出粒子的轨迹并计算. 【答案】 (1)qBL 4m (2)3L 4

(3)见解析

【解析】 (1)当粒子运动半个圆周到达B 点时所用时间最短,此时粒子做圆周运动半径r =L

4,根据洛伦兹力提供

向心力可得r =mv 0qB ,解得v 0=qBL

4m

(2)粒子做圆周运动半径r =L

4

,由几何关系可知:

设过B 点后第三次通过磁场边界时到B 点的距离为s ,s =3r =3L

4;

(3)粒子运动轨迹如图

粒子在磁场中运动的周期T =2πm qB ,由图可知从P 点射入外部磁场到再次返回到P 点的最短时间为t min =256T =25πm

3qB

4.(2019·河南省商丘市模拟)如图所示,在xOy 坐标系的第二象限内有水平向右的匀强电场,第四象限内有竖直向上的匀强电场,两个电场的场强大小相等,第四象限内还有垂直于纸面的匀强磁场,让一个质量为m 、带电荷量为q 的粒子在第二象限内的P (-L ,L )点由静止释放,结果粒子沿直线运动到坐标原点并进入第四象限,粒子在第四象限内运动后从x 轴上的Q (L,0)点进入第一象限,重力加速度为g ,求:

(1)粒子从P 点运动到坐标原点的时间; (2)匀强磁场的磁感应强度的大小和方向。 【答案】 (1)

2L g (2)2m

q

2g

L

方向垂直纸面向里 【解析】 (1)粒子在第二象限内做直线运动,因此电场力和重力的合力方向沿PO 方向,则粒子带正电. 由运动学知识可得mg =qE 1=qE 2,2mg =ma ,2L =1

2

at 2,解得t =

2L g

(2)设粒子从O 点进入第四象限的速度大小为v ,由动能定理可得mgL +qE 1L =1

2

mv 2

解得v =2gL ,方向与x 轴正方向成45°角,由于粒子在第四象限内受到电场力与重力等大反向,因此粒子在洛伦兹力作用下做匀速圆周运动,由于粒子做匀速圆周运动后从x 轴上的Q (L,0)点进入第一象限,根据左手定则可以判断,磁场方向垂直于纸面向里.

粒子做匀速圆周运动的轨迹如图,由几何关系可知

粒子做匀速圆周运动的轨迹半径为R =

22

L 由牛顿第二定律可得Bqv =m v 2R ,解得B =

2m

q

2g L

5.(2018·山东省日照市一模)如图所示,在坐标系xOy 平面的x >0区域内,存在电场强度大小E =2×105N/C 、方向垂直于x 轴的匀强电场和磁感应强度大小B =0.2 T 、方向与xOy 平面垂直向外的匀强磁场.在y 轴上有一足够长的荧光屏PQ ,在x 轴上的M (10,0)点处有一粒子发射枪向x 轴正方向连续不断地发射大量质量m =

6.4×10-27

kg 、电荷量q

=3.2×10

-19

C 的带正电粒子(重力不计),粒子恰能沿x 轴做匀速直线运动.若撤去电场,并使粒子发射枪以M 点为

轴在xOy 平面内以角速度ω=2π rad/s 顺时针匀速转动(整个装置都处在真空中).

(1)判断电场方向,求粒子离开发射枪时的速度; (2)带电粒子在磁场中运动的轨迹半径; (3)荧光屏上闪光点的范围距离;

(4)荧光屏上闪光点从最低点移动到最高点所用的时间. 【答案】 见解析

【解析】 (1)带正电粒子(重力不计)在复合场中沿x 轴做匀速直线运动,据左手定则判定洛伦兹力方向向下,所以电场力方向向上,电场方向向上 有qE =qvB

速度v =E B =2×105

0.2 m/s =106 m/s

(2)撤去电场后,有qvB =m v 2

R

所以粒子在磁场中运动的轨迹半径 R =mv qB =6.4×

10-

27×1063.2×10-

19×0.2

m =0.1 m (3)粒子运动轨迹如图所示,若粒子在荧光屏上能最上端打在B 点,最下端打在A 点

由图可知:d OA =R tan 60°=3R d OB =R

所以荧光屏上闪光点的范围距离为d AB =(3+1)R ≈0.273 m

(4)因为粒子在磁场中做圆周运动的周期T =2πm qB ≈6.28×10-7 s ,所以粒子在磁场中运动的时间可以忽略不计

闪光点从最低点移到最高点的过程中,粒子发射枪转过的圆心角φ=5π

6

所用的时间t =φω=5π62π s =5

12

s≈0.42 s

6.(2019·福建省南平市适应性检测)如图,在平面直角坐标系xOy 中,x 轴上方存在沿y 轴负方向的匀强电场,电场强度为E ,x 轴下方存在垂直坐标系平面向外的匀强磁场,磁感应强度为B .一个静止的带正电粒子位于y 轴正半轴的A (0,h )点,某时刻由于内部作用,分裂成两个电荷量都为+q 的粒子a 和b ,分别沿x 轴正方向和负方向进入电场.已知粒子a 的质量为m ,粒子a 进入第一象限的动量大小为p .设分裂过程不考虑外力的作用,在电场与磁场中的运动过程不计粒子重力和粒子间的相互作用.求:

(1)粒子a 第一次通过x 轴时离原点O 的距离x ;

(2)粒子a 第二次通过x 轴时与第一次通过x 轴时两点间的距离L . 【答案】 见解析

【解析】 (1)如图所示,粒子a 在电场中只受电场力,做类平抛运动

由平抛运动规律可得:x =v 0t ①

qE =ma ③ p =mv 0④

联立①②③④解得:x =p

2h mEq

(2)粒子a 进入磁场时,设速度为v ,与x 轴正方向成θ角,y 轴方向的速度为v y ,则 v y =at ⑤ v y =v sin θ⑥

粒子a 在磁场中做匀速圆周运动,设轨迹半径为r ,有 qvB =mv 2

r ⑦

由几何知识得: L =2r sin θ⑧

联立②③⑤⑥⑦⑧式解得: L =

2B

2mEh

q

7.(2017·全国卷Ⅲ·24)如图,空间存在方向垂直于纸面(xOy 平面)向里的磁场.在x ≥0 区域,磁感应强度的大小为B 0;x <0区域,磁感应强度的大小为λB 0(常数λ>1).一质量为m 、电荷量为q (q >0)的带电粒子以速度v 0从坐标原点O 沿x 轴正向射入磁场,此时开始计时,当粒子的速度方向再次沿x 轴正向时,求:(不计重力)

(1)粒子运动的时间; (2)粒子与O 点间的距离.

【答案】 (1)πm B 0q (1+1λ) (2)2mv 0B 0q (1-1λ

)

【解析】 (1)在匀强磁场中,带电粒子做匀速圆周运动.设在x ≥0区域,圆周半径为R 1;在x <0区域,圆周半径为R 2.由洛伦兹力公式及牛顿运动定律得 qB 0v 0=m v 2

0R 1①

qλB 0v 0=m v 2

0R 2

设粒子在x ≥0区域运动的时间为t 1,则 t 1=

πR 1

v 0

③ 粒子在x <0区域运动的时间为t 2,则

联立①②③④式得,所求时间为 t =t 1+t 2=πm B 0q (1+1

λ

)⑤

(2)由几何关系及①②式得,所求距离为 d =2(R 1-R 2)=2mv 0B 0q (1-1

λ

)

8.(2018·高考全国卷Ⅰ)如图,在y >0的区域存在方向沿y 轴负方向的匀强电场,场强大小为E ;在y <0的区域存

在方向垂直于xOy 平面向外的匀强磁场.一个氕核 1

1H 和一个氘核 21H 先后从y 轴上y =h 点以相同的动能射出,

速度方向沿x 轴正方向.已知 11H 进入磁场时,速度方向与x 轴正方向的夹角为60°,并从坐标原点O 处第一次射出磁场.11H 的质量为m ,电荷量为q .不计重力.求

(1)11H 第一次进入磁场的位置到原点O 的距离; (2)磁场的磁感应强度大小;

(3)21H 第一次离开磁场的位置到原点O 的距离. 【答案】 见解析

【解析】 (1)11H 在电场中做类平抛运动,在磁场中做圆周运动,运动轨迹如图所示.设11H 在电场中的加速度大小

为a 1,初速度大小为v 1,它在电场中的运动时间为t 1,第一次进入磁场的位置到原点O 的距离为s 1.由运动学公式有

s 1=v 1t 1 ① h =12a 1t 21

由题给条件,11H 进入磁场时速度的方向与x 轴正方向夹角θ1=60°.11H 进入磁场时速度的y 分量的大小为 a 1t 1=v 1tan θ1 ③

联立以上各式得 s 1=

23

3

h . ④ (2)11H 在电场中运动时,由牛顿第二定律有

qE =ma 1

设11H 进入磁场时速度的大小为v ′1,由速度合成法则有

v ′1=v 21+(a 1t 1)2

设磁感应强度大小为B ,11H 在磁场中运动的圆轨道半径为R 1,由洛伦兹力公式和牛顿第二定律有 qv ′1B =mv ′21R 1

由几何关系得 s 1=2R 1sin θ1 ⑧ 联立以上各式得 B =

6mE

qh

. ⑨ (3)设21H 在电场中沿x 轴正方向射出的速度大小为v 2,在电场中的加速度大小为a 2,由题给条件得 12(2m )v 22=12mv 21 ⑩

由牛顿第二定律得 qE =2ma 2

○11 设21H 第一次射入磁场时的速度大小为v ′2,速度的方向与x 轴正方向夹角为θ2,入射点到原点的距离为s 2,在电场中运动的时间为t 2.由运动学公式有 s 2=v 2t 2 ○12 h =12a 2t 22

○13 v ′2=v 2

2+(a 2t 2)2

○14 sin θ2=

a 2t 2

v ′2

○15

联立以上各式得 s 2=s 1,θ2=θ1,v ′2=

22v ′1

○16

设21H 在磁场中做圆周运动的半径为R 2,由⑦○16式及粒子在匀强磁场中做圆周运动的半径公式得 R 2=(2m )v ′2

qB

=2R 1

○17

所以出射点在原点左侧.设21H 进入磁场的入射点到第一次离开磁场的出射点的距离为s ′2,由几何关系有 s ′2=2R 2sin θ2

○18

联立④⑧○16○17○18式得,21H 第一次离开磁场时的位置到原点O 的距离为 s ′2-s 2=

23

3

(2-1)h . 9.(2019·湖南怀化高考一模)如图所示,在平面直角坐标系xOy 中的第一象限内存在磁感应强度大小为B 、方向垂直于坐标平面向里的有界矩形匀强磁场区域(图中未画出);在第二象限内存在沿x 轴负方向的匀强电场。一粒子源固定在x 轴上坐标为(-L,0)的A 点,粒子源沿y 轴正方向释放出速度大小为v 0的电子,电子通过y 轴上的C 点时速度

方向与y 轴正方向成α=45°角,电子经过磁场偏转后恰好垂直通过第一象限内与x 轴正方向成 β=15°角的射线OM 。已知电子的质量为m ,电荷量为e ,不考虑粒子的重力和粒子之间的相互作用。求:

(1)匀强电场的电场强度E 的大小; (2)电子在电场和磁场中运动的总时间t ; (3)矩形磁场区域的最小面积S min 。

【答案】 (1)mv 20

2eL (2)2L v 0+2πm 3eB

(3)32

0??? ??eB mv 【解析】 (1)电子从A 到C 的过程中,由动能定理得: eEL =12mv 2C -12mv 2

0, 又有v C cos α=v 0,

联立解得:E =mv 2

2eL

(2)电子在电场中做类平抛运动,沿电场方向有: L =v C sin α2t 1,

其中v C =v 0

cos α

由数学知识知电子在磁场中的速度偏向角等于圆心角:θ=π-α-β=2π

3,

电子在磁场中的运动时间:t 2=θ

2πT ,

其中T =2πm

eB

电子在电场和磁场中运动的总时间t =t 1+t 2, 联立解得:t =2L v 0+2πm

3eB

(3)电子在磁场中做匀速圆周运动,洛伦兹力提供向心力,则有ev C B =m v 2C

r

最小矩形区域如图所示,

由数学知识得:CD =2r ·sin θ2,CQ =r -r cos θ

2,

矩形区域的最小面积:S min =CD ·CQ ,

联立解得:S min =32

0??

?

??eB mv 。

10.(2019·广东省韶关市调研)如图所示,在无限长的竖直边界AC 和DE 间,上、下部分分别充满方向垂直于平面ADEC 向外的匀强磁场,上部分区域的磁感应强度大小为B 0,OF 为上、 下磁场的水平分界线.质量为 m 、带电荷量为+q 的粒子从 AC 边界上与 O 点相距为 a 的 P 点垂直于 AC 边界射入上方磁场区域,经 OF 上的 Q 点第一次进入下方磁场区域,Q 与 O 点的距离为 3a .不考虑粒子重力.

(1)求粒子射入时的速度大小;

(2)要使粒子不从AC 边界飞出,求下方磁场区域的磁感应强度B 1应满足的条件;

(3)若下方区域的磁感应强度 B =3B 0,粒子最终垂直 DE 边界飞出,求边界 DE 与AC 间距离的可能值. 【答案】 (1)5aqB 0m (2)B 1>8B 0

3 (3)4na (n =1,2,3,…)

【解析】 (1)粒子在OF 上方的运动轨迹如图所示,

设粒子做圆周运动的半径为R ,由几何关系可知R 2-(R -a )2=(3a )2,R =5a 由牛顿第二定律可知:qvB 0=m v 2R ,解得:v =5aqB 0

m

(2)当粒子恰好不从AC 边界飞出时,运动轨迹如图所示,设粒子在OF 下方做圆周运动的半径为r 1,

由几何关系得:r 1+r 1cos θ=3a ,cos θ=35,所以r 1=15a 8,根据qvB 1=mv 2r 1,解得:B 1=8B 03,当B 1>8B 0

3时,粒子不

会从AC 边界飞出;

(3)当B =3B 0时,粒子的运动轨迹如图所示,粒子在OF 下方的运动半径为:r =5

3a ,设粒子的速度方向再次与射入

磁场时的速度方向一致时的位置为P 1,则P 与P 1的连线一定与OF 平行,根据几何关系知:PP 1=4a ,所以若粒子最终垂直DE 边界飞出,边界DE 与AC 间的距离为:L =n PP 1=4na (n =1,2,3,…).

高中物理运动学经典习题30道 带答案

一.选择题(共28小题) 1.(2014?陆丰市校级学业考试)某一做匀加速直线运动的物体,加速度是2m/s2,下列关于该物体加速度的理解 D 9.(2015?沈阳校级模拟)一物体从H高处自由下落,经时间t落地,则当它下落时,离地的高度为() D 者抓住,直尺下落的距离h,受测者的反应时间为t,则下列结论正确的是()

∝ ∝ 光照射下,可观察到一个下落的水滴,缓缓调节水滴下落的时间间隔到适当情况,可以看到一种奇特的现象,水滴似乎不再下落,而是像固定在图中的A、B、C、D四个位置不动,一般要出现这种现象,照明光源应该满足(g=10m/s2)() 地时的速度之比是 15.(2013秋?忻府区校级期末)一观察者发现,每隔一定时间有一滴水自8m高的屋檐落下,而且看到第五滴水 D

17.(2014秋?成都期末)如图所示,将一小球从竖直砖墙的某位置由静止释放.用频闪照相机在同一底片上多次曝光,得到了图中1、2、3…所示的小球运动过程中每次曝光的位置.已知连续两次曝光的时间间隔均为T,每块砖的厚度均为d.根据图中的信息,下列判断正确的是() 小球下落的加速度为 的速度为 :2 D: 2 D O点向上抛小球又落至原处的时间为T2在小球运动过程中经过比O点高H的P点,小球离开P点至又回到P 23.(2014春?金山区校级期末)一只气球以10m/s的速度匀速上升,某时刻在气球正下方距气球6m处有一小石 2

v0v0D 27.(2013?洪泽县校级模拟)一个从地面竖直上抛的物体,它两次经过同一较低a点的时间间隔为T a,两次经 g(T a2﹣T b2)g(T a2﹣T b2)g(T a2﹣T b2)D g(T a﹣T b) 28.(2013秋?平江县校级月考)在以速度V上升的电梯内竖直向上抛出一球,电梯内观者看见小球经t秒后到 h=

高考物理曲线运动试题汇编

高考物理曲线运动试题汇编 平抛运动: (xx 年全国理综)19.在抗洪抢险中,战士驾驶摩托艇救人,假设江岸是平直的,洪水沿江向下游流去,水流速度为1v ,摩托艇在静水中的航速为2v ,战士救人的地点A 离岸边最近处O 的距离为d ,如战士想在最短时间内将人送上岸,则摩托艇登陆的地点离O 点的距离为 A .21222 v v dv B .0 C .21v dv D .1 2v dv (xx 年天津理综)16.在平坦的垒球运动场上,击球手挥动球棒将垒球水平击出,垒球飞行一段时间后落地.若不计空气阻力,则 A .垒球落地时瞬时速度的大小仅由初速度决定 B .垒球落地时瞬时速度的方向仅击球点离地面的高度决定 C .垒球在空中运动的水平位移仅由初速度决定 D .垒球在空中运动的时间仅由击球点离地面的高度决定 (xx 年上海物理)16.(4分)右图为用频闪摄影方法拍 摄的研究物体作平抛运动规律的照片,图中A 、B 、C 为 三个同时由同一点出发的小球,AA /为A 球在光滑水平 面上以速度运动的轨迹;BB /为B 球以速度v 被水平抛 出后的运动轨迹;CC /为C 球自由下落的运动轨迹,通 过分析上述三条轨迹可得出结论: 。 答案:作平抛运动的物体在水平方向作匀速直线运动,在竖直方向作自由落体运动(或平抛运动是水平方向的匀速直线运动和竖直方向的自由落体运动的合成)。

(xx 年春季物理)13.质量为10.0=m kg 的小钢球以 100=v m/s 的水平速度抛出,下落0.5=h m 时撞击一钢板,撞后速度恰好反向,则钢板与水平面的夹角 =θ_____________.刚要撞击钢板时小球动量的大小为 _________________.(取2/10s m g =) (xx 年全国物理)10.图为一空间探测器的示 意图, P 1、P 2、P 3、P 4是四个喷气发动机, P 1、P 3的连线与空间一固定坐标系的x轴平 行,P 2、P 4的连线与y 轴平行,每台发动机 开动时,都能向探测器提供推力,但不会使 探测器转动,开始时,探测器以恒定的速率 v 0向正x 方向平动,要使探测器改为向正x 偏负y 60o的方向以原来的速率v 0平动,则 可 A .先开动P 1适当时间,再开动P 4 B .先开动P 3适当时间,再开动P 2 C .先开动P 4适当时间,再开动P 2 D .先开动P 3适当时间,再开动P 4 (xx 年上海物理)20.(10分)如图所示,一高度为h =0.2m 的水平面在A 点处与一倾角为θ=30°的斜面连接,一小球以v 0=5m/s 的速度在平面上向右运动.求小球从A 点运动到地面所需的时间(平面与斜面均光滑,取g =10m/s 2).某同学对此题的解法为: 小球沿斜面运动,则 t g t v h ?+=θθsin 21sin 0,由此可求得落地时间t . 问:你同意上述解法吗?若同意,求出所需时间; 若不同意则说明理由并求出你认为正确的结果. 答案:不同意。小球应在A 点离开平面做平抛运动,而不是沿斜面下滑。正确做法为:落地点与A 点的水平距离 )(110 2.025200m g h v t v s =??=== ① A h v 0 θ

高中物理 运动学经典试题

1.如图所示,以匀速行驶的汽车即将通过路口,绿灯还有2 s 将熄灭,此时汽车距离 停车线18m 。该车加速时最大加速度大小为,减速时最大加速度大小为。 此路段允许行驶的最大速度为,下列说法中正确的有 A .如果立即做匀加速运动,在绿灯熄灭前汽车可能通过停车线 B .如果立即做匀加速运动,在绿灯熄灭前通过停车线汽车一定超速 C .如果立即做匀减速运动,在绿灯熄灭前汽车一定不能通过停车线 D .如果距停车线处减速,汽车能停在停车线处 2.甲、乙两车在公路上沿同一方向做直线运动,它们的 v -t 图象如图所示.两图象在t =t 1时 相交于P 点,P 在横轴上的投影为Q ,△OPQ 的面积为S .在t =0时刻,乙车在甲车前面,相距为 d .已知此后两车相遇两次,且第一次相遇的时刻为t ′,则下面四组t ′和d 的组合可能的是 ( ) A . B . C . D . 3.A 、B 两辆汽车在笔直的公路上同向行驶,当B 车在A 车前84 m 处时,B 车速度为4 m/s ,且以2 m/s 2的加速度做匀加速运动;经过一段时间后,B 车加速度突然变为零.A 车一直以20 m/s 的速度做匀速运动,经过12 s 后两车相遇.问B 车加速行驶的时间是多少? 4. 已知O 、A 、B 、C 为同一直线上的四点.AB 间的距离为l 1,BC 间的距离为l 2,一物体自O 点 由静止出发,沿此直线做匀加速运动,依次经过A 、B 、C 三点,已知物体通过AB 段与BC 段所用的时间相等.求O 与A 的距离. 5. 甲乙两辆汽车在平直的公路上沿同一方向作直线运动,t =0时刻同时经过公路旁的同一 个路标.在描述两车运动的v -t 图中(如图),直线a 、b 分别描述了甲乙两车在0~20秒的 运动情况.关于两车之间的位置关系,下列说法正确的是 ( ) A .在0~10秒内两车逐渐靠近 B .在10~20秒内两车逐渐远离 C .在5~15秒内两车的位移相等 D .在t =10秒时两车在公路上相遇 6.如图是一娱乐场的喷水滑梯.若忽略摩擦力,人从滑梯顶 端滑下直到入水前,速度大小随时间变化的关系最接近图 8m/s 22m/s 25m/s 12.5m/s 5m S d t t ==',1S d t t 41,211=='S d t t 2 1,211=='S d t t 43,211=='

2018年高考物理复习天体运动专题练习(含答案)

2018年高考物理复习天体运动专题练习(含答 案) 天体是天生之体或者天然之体的意思,表示未加任何掩盖。查字典物理网整理了天体运动专题练习,请考生练习。 一、单项选择题(本题共10小题,每小题6分,共60分.) 1.(2014武威模拟)2013年6月20日上午10点神舟十号航天员首次面向中小学生开展太空授课和天地互动交流等科 普教育活动,这是一大亮点.神舟十号在绕地球做匀速圆周运动的过程中,下列叙述不正确的是() A.指令长聂海胜做了一个太空打坐,是因为他不受力 B.悬浮在轨道舱内的水呈现圆球形 C.航天员在轨道舱内能利用弹簧拉力器进行体能锻炼 D.盛满水的敞口瓶,底部开一小孔,水不会喷出 【解析】在飞船绕地球做匀速圆周运动的过程中,万有引

力充当向心力,飞船及航天员都处于完全失重状态,聂海胜做太空打坐时同样受万有引力作用,处于完全失重状态,所以A错误;由于液体表面张力的作用,处于完全失重状态下的液体将以圆球形状态存在,所以B正确;完全失重状态下并不影响弹簧的弹力规律,所以拉力器可以用来锻炼体能,所以C正确;因为敞口瓶中的水也处于完全失重状态,即水对瓶底部没有压强,所以水不会喷出,故D正确. 【答案】 A 2.为研究太阳系内行星的运动,需要知道太阳的质量,已知地球半径为R,地球质量为m,太阳与地球中心间距为r,地球表面的重力加速度为g,地球绕太阳公转的周期T.则太阳的质量为() A.B. C. D. 【解析】地球表面质量为m的物体万有引力等于重力,即G=mg,对地球绕太阳做匀速圆周运动有G=m.解得M=,D正确.

【答案】 D 3.(2015温州质检)经国际小行星命名委员会命名的神舟星和杨利伟星的轨道均处在火星和木星轨道之间.已知神舟星平均每天绕太阳运行1.74109 m,杨利伟星平均每天绕太阳运行1.45109 m.假设两行星都绕太阳做匀速圆周运动,则两星相比较() A.神舟星的轨道半径大 B.神舟星的加速度大 C.杨利伟星的公转周期小 D.杨利伟星的公转角速度大 【解析】由万有引力定律有:G=m=ma=m()2r=m2r,得运行速度v=,加速度a=G,公转周期T=2,公转角速度=,由题设知神舟星的运行速度比杨利伟星的运行速度大,神舟星的轨道半径比杨利伟星的轨道半径小,则神舟星的加速度比杨利伟星的加速度大,神舟星的公转周期比杨利伟星的公转周期小,神舟星的公转角速度比杨利伟星的公转角速度大,故选

2020高考物理运动学专题练习

直线运动规律及追及问题 一 、 例题 例题1.一物体做匀变速直线运动,某时刻速度大小为4m/s ,1s 后速度的大小变为10m/s ,在这1s 内该物体的 ( ) A.位移的大小可能小于4m B.位移的大小可能大于10m C.加速度的大小可能小于4m/s D.加速度的大小可能大于10m/s 析:同向时2201/6/14 10s m s m t v v a t =-=-= m m t v v s t 71210 4201=?+=?+= 反向时2202/14/14 10s m s m t v v a t -=--=-= m m t v v s t 312 10 4202-=?-=?+= 式中负号表示方向跟规定正方向相反 答案:A 、D 例题2:两木块自左向右运动,现用高速摄影机在同一底片上多次曝光,记录下木快每次曝光时的位置,如图所示,连续两次曝光的时间间隔是相等的,由图可知 ( ) A 在时刻t 2以及时刻t 5两木块速度相同 B 在时刻t1两木块速度相同 C 在时刻t 3和时刻t 4之间某瞬间两木块速度相同 D 在时刻t 4和时刻t 5之间某瞬间两木块速度相同 解析:首先由图看出:上边那个物体相邻相等时间内的位移之差为恒量,可以判定其做匀变速直线运动;下边那个物体很明显地是做匀速直线运动。由于t 2及t 3时刻两物体位置相同,说明这段时间内它们的位移相等,因此其中间时刻的即时速度相等,这个中间时刻显然在t 3、t 4之间 答案:C 例题3 一跳水运动员从离水面10m 高的平台上跃起,举双臂直立身体离开台面,此时中心位于从手到脚全长的中点,跃起后重心升高0.45m 达到最高点,落水时身体竖直,手先入水(在此过程中运动员水平方向的运动忽略不计)从离开跳 台到手触水面,他可用于完成空中动作的时间是多少?(g 取10m/s 2 结果保留两位数字) 解析:根据题意计算时,可以把运动员的全部质量集中在重心的一个质点,且忽略其水平方向 的运动,因此运动员做的是竖直上抛运动,由g v h 22 0=可求出刚离开台面时的速 度 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 1 t 2 t 3 t 4 t 5 t 6 t 7

高考物理曲线运动试题(有答案和解析)含解析

高考物理曲线运动试题(有答案和解析)含解析 一、高中物理精讲专题测试曲线运动 1.如图所示,倾角为45α=?的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为 b ,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H =3r 的d 处无初速下滑进入圆环轨道,接着小滑块从最高点a 水平飞出,恰好击中导轨上与圆心O 等高的 c 点. 已知圆环最低点为e 点,重力加速度为g ,不计空气阻力. 求: (1)小滑块在a 点飞出的动能; ()小滑块在e 点对圆环轨道压力的大小; (3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号) 【答案】(1)12k E mgr =;(2)F ′=6mg ;(3)42μ-= 【解析】 【分析】 【详解】 (1)小滑块从a 点飞出后做平拋运动: 2a r v t = 竖直方向:2 12 r gt = 解得:a v gr = 小滑块在a 点飞出的动能211 22 k a E mv mgr = = (2)设小滑块在e 点时速度为m v ,由机械能守恒定律得: 2211 222 m a mv mv mg r =+? 在最低点由牛顿第二定律:2 m mv F mg r -= 由牛顿第三定律得:F ′=F 解得:F ′=6mg (3)bd 之间长度为L ,由几何关系得:() 221L r =

从d 到最低点e 过程中,由动能定理21 cos 2 m mgH mg L mv μα-?= 解得42 14 μ-= 2.如图所示,一箱子高为H .底边长为L ,一小球从一壁上沿口A 垂直于箱壁以某一初速度向对面水平抛出,空气阻力不计。设小球与箱壁碰撞前后的速度大小不变,且速度方向与箱壁的夹角相等。 (1)若小球与箱壁一次碰撞后落到箱底处离C 点距离为,求小球抛出时的初速度v 0; (2)若小球正好落在箱子的B 点,求初速度的可能值。 【答案】(1) (2) 【解析】 【分析】 (1)将整个过程等效为完整的平抛运动,结合水平位移和竖直位移求解初速度;(2)若小球正好落在箱子的B 点,则水平位移应该是2L 的整数倍,通过平抛运动公式列式求解初速度可能值。 【详解】 (1)此题可以看成是无反弹的完整平抛运动, 则水平位移为:x = =v 0t 竖直位移为:H =gt 2 解得:v 0= ; (2)若小球正好落在箱子的B 点,则小球的水平位移为:x′=2nL (n =1.2.3……) 同理:x′=2nL =v′0t ,H =gt′2 解得: (n =1.2.3……) 3.如图所示,水平转盘可绕竖直中心轴转动,盘上放着A 、B 两个物块,转盘中心O 处固定一力传感器,它们之间用细线连接.已知1kg A B m m ==两组线长均为

高三物理曲线运动知识点总结

高三物理曲线运动知识点总结 高三物理曲线运动知识点 1.曲线运动:物体的轨迹是一条曲线,物体所作的运动就是曲线运动。 作曲线运动物体的速度方向就是曲线那一点的切线方向,而曲线上各点的切线方向不同,也就是运动物体的速度在不断地改变,所以作曲线运动的物体速度是变化的,物体作变速运动。 运动物体的轨迹是它在平面坐标系中的运动图像,与作直线运动物体的位移与时间图像是有着本质的不同,前者是运动的轨迹,后者是其位移随时间变化的规律;前者各点的切线方向是运动物体的速度方向,切线的斜率是运动物体的速度方向与某一方向的夹角的正切,后者各点的切线的斜率是运动物体的速度大小,但它只反映作直线运动物体的速度情况,而不能反映作曲线运动的速度情况。 物体作曲线运动的条件:物体所受的合外力与物体的速度不在一条直线上(也就是合外力沿与速度垂直的方向上有分量,该分量时刻在改变着运动物体的速度方向) 2.运动的合成与分解:运动的合成与分解就是矢量的合成与分解,它涉及运动学中的位移、速度、加速度三个矢量的合成与分解。 两个互相垂直方向上的直线运动合成后可能是直线运

动,也可能是曲线运动,反过来,两个方向的直线运动合成后可能是曲线,这就提供了研究曲线运动的途径——将曲线运动转化为直线运动进行研究。 运动的独立作用原理:如同力的独立作用原理一样,运动的合成与分解也是建立在各个方向分运动独立的基础上。 3.研究曲线运动的方法:利用速度、位移、加速度和力这些物理量的矢量性,进行合成与分解。 (1)在恒力的作用下的曲线运动:这种运动是匀速运动。一般将运动物体的初速度沿着力的方向和与力垂直的方向 上分解,在沿力的方向上物体作匀变速直线运动,在与力垂直的方向上物体作匀速直线运动。 若所求方向与速度和力均不在一条直线上,将速度和力均沿求解问题的方向和与求解问题垂直的方向进行分解。 (2)在变力作用下的曲线运动:这种运动是非匀变速运动。一般将物体受到的力沿运动方向和与运动垂直的方向分解。与运动方向一致的力改变速度的大小,与运动方向垂直的力改变运动的方向。 生活中的曲线运动举例 子弹射出枪膛,离弦的箭,抛铅球,投篮,过河的船等等都属于曲线运动。 高三物理平抛运动 1.平抛运动的特点:

高三物理复习〈运动学〉测试题

1.(07北京理综18)图示为高速摄影机拍摄到的子弹穿透苹果瞬间的照片.该照片经放大后分析出,在曝光时间内,子弹 影像前后错开的距离约为子弹长度的1%~2%.已知子弹飞 行速度约为500 m/s,由此可估算出这幅照片的曝光时间最 接近() A.10-3 s B.10-6 s C.10-9 s D.10-12 s 2.(1)在测定匀变速直线运动加速度的实验中,将以下步骤的代号按合理顺序填空写在横线上:_____________. (A)拉住纸带,将小车移至靠近打点计时器处,先接通电源,后放开纸带; (B)将打点计时器固定在平板上,并接好电路; (C)把一条细绳拴在小车上,细绳跨过定滑轮,下面吊着重量适当的钩码; (D)断开电源,取下纸带; (E)将平板一端抬高,轻推小车,使小车恰能在平板上作匀速运动; (F)将纸带固定在小车尾部,并穿过打点计时器的限位孔; (G)换上新的纸带,再重复做两三次. (2)某同学利用打点计时器所 记录的纸带来研究做匀变速 直线运动小车的运动情况, 实验中获得一条纸带,如图 三所示,其中两相邻计数点 间有四个点未画出。已知所 用电源的频率为50H Z,则打A点时小车运动的速度v A=_______m/s,小车运动的加速度a=_______m/s2。(结果要求保留三位有效数字) 3.如右图所示,甲、乙两个同学在平直跑道上练习“4×100m” 接力,他们在奔跑时具有相同的最大速度。乙从静止开始全力奔跑需跑出25m才能达到最大速度,这一过程可视为匀变速运动。现在甲手持接力棒以最大速度向乙奔来,乙在接力区伺机全力奔出。若要 求乙接棒时奔跑速度达到最大速度的80%,试求: ⑴乙在接力区须奔跑多少距离? ⑵乙应在距离甲多远处时起跑?5.(07全国卷Ⅰ23)甲乙两运动员在训练交接棒的过程中发现:甲经短距离加速后能保 持9 m/s 的速度跑完全程;乙从起跑后到接棒前的运动是匀加速的.为了确定乙起跑的时机,需在接力区前适当的位置设置标记.在某次练习中,甲在接力区前s0=13.5 m 处作了标记,并以v=9 m/s 的速度跑到此标记时向乙发出起跑口令.乙在接力区的前端听到口令时起跑,并恰好在速度达到与甲相同时被甲追上,完成交接棒.已知接力区的长度为L=20 m.求: (1)此次练习中乙在接棒前的加速度 a. (2)在完成交接棒时乙离接力区末端的距离. 6.(08·四川理综·23)A、B两辆汽车在笔直的公路上同向行驶,当B车在A车前84 m 处时,B 车速度为 4 m/s,且以2 m/s2的加速度做匀加速运动;经过一段时间后,B车加速度突然变为零.A车一直以20 m/s的速度做匀速运动,经过12 s后两车相遇.问B车加速行驶的时间是多少? .如图所示,直线MN表示一条平直公路,甲、乙两辆汽车原来停在A、B两处, A、B间的距离为85m,现甲车先开始向右做匀加速直线运动,加速度a1=2.5m/s2, 甲车运动 6.0s时,乙车立即开始向右做匀加速直线运动,加速度a2=5.0m/s2,求两 辆汽车相遇处距A处的距离. 8.火车A以速度v1匀速行驶,司机发现正前方同一轨道上相距s处有另一火车B沿同方向以速度v2(对地,且v2小于v1)做匀速运动,A车司机立即以加速度(绝对值)a紧急刹车,为使两车不相撞,a应满足什么条件?

2012届高考物理知识点总结复习 物体的运动22

2012届高考物理知识点总结复习物体的运动 知识要点: 机械运动 质点 位移和路程:主要讲述质点和位移等, 它是描述物体运动和预备知识。 匀速直线运动、速度 匀速直线运动的图象:主要讲述速度的概念和匀速直线运动的规律。 变速直线运动、平均速度、瞬时速度:主要讲述变速直线运动的平均速度和瞬时速度的概念。 (七)匀变速直线运动加速度。 (八)匀变速直线运动的速度 (九)匀变直线运动的位移:主要讲述匀变直线运动的加速度概念, 以及匀变速直 线运动的速度公式和位移公式。 (十)匀变速运动规律的应用。 (十一)自由落体运动。 (十二)竖直上抛运动主要讲述匀变速直线运动的特例。 (十三)系统、综合全章知识结构培养分析综合解决问题的能力。 为了掌握一个较完整的关于物体运动的知识, 重点概念是: 位移、速度、加速度。重要规律则是: 匀速直线运动和匀变速直线运动。 重点、难点: (一)、机械运动、平动和转动 知道机械运动是最普遍的自然现象。是指一个物体相对于别的物体的位置改变。为了说明物体的运动情况, 必须选择参照物——是在研究物体运动时, 假定不动的物体, 参照它来确定其他物体的运动。我们说汽车是运动的, 楼房是静止的是以地面为参照物, 我们说, 卫星在运动, 是以地球为参照物。“闪闪红星”歌曲中唱的“小小竹排江中游, 巍巍青山两岸走”说明坐在竹排上的人选择不同的参照物观察的结果常常是不同的, 选河岸为参照物, 竹排是运动的, 选竹排为参照物, 竹排是静止的, 河岸上的青山是后退的。这既说明选参照物的重要性, 又说明运动的相对性。如果选太阳为参照物地球及地球上的一切物体都在绕太阳运动, 若以天上的银河为参照物, 太阳是运动……, 进而得出没有不运动的物体, 从而说明运动是绝对的, 静止是相对的。还应指出的是: 在研究地面上物体运动时, 为了研究问题方便, 常取地球为参照物。 运动无论多么复杂, 都是由平动和转动组成, 或只有平动, 或只有转动, 或既有平动, 又有转动。如判断物体是平动或是转动, 必须抓住, 物体上各点的运动情况都相同, 这种运动叫平动。物体上的各点都绕一点(圆心)或一轴做圆周运动, 这样的运动叫转动。如果运动按运动轨迹分类, 可为直线或曲线运动, 而平动可沿直线运动, 也可沿曲线运动。只要保持物体上各运动情况相同即可。 (二)、质点 质点是一种抽象化的研究物体运动的理想模型。理想模型是为了便于着手研究物理学采

高考物理专题复习--21运动学图像专题知识要点

运动学图像专题 主标题:运动学图像专题 副标题:剖析考点规律,明确高考考查重点,为学生备考提供简洁有效的备考策略。 关键词:匀变速直线运动,图像 难度:3 重要程度:3 内容: 1、考点剖析:运动图像是高考中的热点,多以选择题出现(在计算题中也有应用),难度中等。高考较注重学生对图像的理解,有些题目利用图像分析求解能使问题简化,深刻理解运动图像的物理意义,能从图像中获得有效信息,灵活运用运动学规律公式是解决此类问题的关键。 2、知识点:利用图像法可直观地反映物理规律,分析物理问题。图像法是物理研究中常用的一种重要方法,运动学中常用的图像为v-t图像。在理解图像物理意义的基础上,用图像法分析解决有关问题(如往返运动、定性分析等)会显示出独特的优越性,解题既直观又方便。 3、题型分类:(主要讨论v-t图像和s-t图像,其他图像的意义在例题中说明) 点:即图像的各种交点;v-t图像中表示该时刻两物体的速度相同;s-t图像中表示该时刻两物体的位移相同 线:即图像的斜率;v-t图像中表示该时刻物体的加速度;s-t图像中表示该时刻物体的速度 面:即图像的面积;v-t图像中表示一段时间内的位移;s-t图像中无意义; 例1、如图所示是某质点做直线运动的v-t图像,由图可知这个质点的运动情况是( ) A、前5s做的是匀速运动 B、5s~15s内做匀加速运动,加速度为1m/s2 C、15s~20s内做匀减速运动,加速度为3.2m/s2 D、质点15s末离出发点最远,20秒末回到出发点 【解析】由图像可知前5s做的是匀速运动,选项A正确;5~15s内做匀加速度运动,加速度为0.8m/s2,选项B错误;15s~20s做匀减速运动,加速度为-3.2m/s2,选项C错,质点一直做单方向的直线运动,在20s末离出发点最远,选项D错误。 【答案】A 例2、如图所示是甲、乙两物体从同一点出发的位移-时间(x-t)图像,由图像可以看出在0~4s这段时间内( )

2018高考物理真题曲线运动分类汇编

2018年全真高考+名校模拟物理试题分项解析 真题再现 1.某弹射管每次弹出的小球速度相等.在沿光滑竖直轨道自由下落过程中,该弹射管保持水平,先后弹出两只小球.忽略空气阻力,两只小球落到水平地面的() A. 时刻相同,地点相同 B. 时刻相同,地点不同 C. 时刻不同,地点相同 D. 时刻不同,地点不同 【来源】2018年全国普通高等学校招生统一考试物理(江苏卷) 【答案】 B 点睛:本题以平抛运动为背景考查合运动与分运动的关系及时刻和位置的概念,解题时要注意弹射管沿光滑竖直轨道向下做自由落体运动,小球弹出时在竖直方向始终具有跟弹射管相同的速度。 2.根据高中所学知识可知,做自由落体运动的小球,将落在正下方位置。但实际上,赤道上方200m处无初速下落的小球将落在正下方位置偏东约6cm处,这一现象可解释为,除重力外,由于地球自转,下落过程小球还受到一个水平向东的“力”,该“力”与竖直方向的速度大小成正比,现将小球从赤道地面竖直上抛,考虑对称性,上升过程该“力”水平向西,则小球 A. 到最高点时,水平方向的加速度和速度均为零 B. 到最高点时,水平方向的加速度和速度均不为零 C. 落地点在抛出点东侧 D. 落地点在抛出点西侧 【来源】2018年全国普通高等学校招生统一考试物理(北京卷) 【答案】 D 【解析】AB、上升过程水平方向向西加速,在最高点竖直方向上速度为零,水平方向上有向西的水平速度,且有竖直向下的加速度,故AB错; CD、下降过程向西减速,按照对称性落至地面时水平速度为0,整个过程都在向西运动,所以落点在抛出点的西

侧,故C错,D正确; 故选D 点睛:本题的运动可以分解为竖直方向上的匀变速和水平方向上的变加速运动,利用运动的合成与分解来求解。3.滑雪运动深受人民群众的喜爱,某滑雪运动员(可视为质点)由坡道进入竖直面内的圆弧形滑道AB,从滑道的A点滑行到最低点B的过程中,由于摩擦力的存在,运动员的速率不变,则运动员沿AB下滑过程中 A. 所受合外力始终为零 B. 所受摩擦力大小不变 C. 合外力做功一定为零 D. 机械能始终保持不变 【来源】2018年全国普通高等学校招生同一考试理科综合物理试题(天津卷) 【答案】 C 【点睛】考查了曲线运动、圆周运动、动能定理等;知道曲线运动过程中速度时刻变化,合力不为零;在分析物体做圆周运动时,首先要弄清楚合力充当向心力,然后根据牛顿第二定律列式,基础题,难以程度适中.

高中物理运动学测精彩试题(附答题卷和问题详解)

运动学测试(附答案) 一.不定项选择题(5分×12=60分) 1. 一物体以初速度0v 、加速度a 做匀加速直线运动,若物体从t 时刻起,加速度a 逐渐减小至零,则物体从t 时刻开始 ( ) A.速度开始减小,直到加速度等于零为止 B.速度继续增大,直到加速度等于零为止 C.速度一直增大 D.位移继续增大,直到加速度等于零为止 2.某人欲估算飞机着陆时的速度,他假设飞机停止运动前在平直跑道上做匀减速运动,飞机在跑道上滑行的距离为x ,从着陆到停下来所用的时间为t ,则飞机着陆时的速度为( ) A.x t B.2x t C.x 2t D.x t 到2x t 之间的某个值 3.2009年7月16日,中国海军第三批护航编队16日已从某军港启航,于7月30日抵达亚丁湾、索马里海域如图1-1-1所示,此次护航从启航,经东海、海峡、南海、马六甲海峡,穿越印度洋到达索马里海域执行护航任务,总航程五千多海里.关于此次护航,下列说确的是( ) A .当研究护航舰艇的运行轨迹时,可以将其看做质点 B .“五千多海里”指的是护航舰艇的航行位移 C .“五千多海里”指的是护航舰艇的航行路程 D .根据题中数据我们可以求得此次航行的平均速度 4.一质点沿直线Ox 方向做变速运动,它离开O 点的距离随时间变化的关系为x =5+2t 3(m),它的速度随时间t 变化关系为v =6t 2(m/s).该质点在t =0到t =2 s 间的平均速度和t =2 s 到t =3 s 间的平均速度大小分别为( ) A .12 m/s ,39 m/s B .8 m/s ,38 m/s C .12 m/s ,19.5 m/s D .8 m/s ,12 m/s 5. 机车在高速公路上行驶,车速超过100 km/h 时,应当与同车道前车保持100 m 以上的距离.从驾驶员看见某一情况到采取制动动作的时间里,汽车仍要通过一段距离(称为反应距离);从采取制动动作到车完全停止的时间里,汽车又要通过一段距离(称为制动距离),如表所示给出了汽车在不同速度下的反应距离和制动距离的部分数据.如果驾驶员的反应时间一定,路面情况相同 A .驾驶员的反应时间为1.5 s B .汽车制动的加速度大小为2 m/s 2 C .表中Y 为49 D .表中X 为32 6. 在某可看做直线的高速公路旁安装有雷达探速仪,可以精确抓拍超速的汽车,以及测量汽车运动过程中的加速度.若B 为测速仪,A 为汽车,两者相距345 m ,此时刻B 发出超声波,同时A 由于紧急情况而急刹车,当B 接收到反射回来的超声波信号时,A 恰好停止,且此时A 、B 相距325 m ,已知声速为340 m/s ,则汽车刹车过程中的加速度大小为( ) A. 20 m/s 2 B. 10 m/s 2 C. 5 m/s 2 D. 1 m/s 2 7.一人看到闪电12.3 s 后又听到雷声.已知空气中的声速为330 m/s ~340 m/s ,光速为3×108 m/s ,于是他用12.3除以3很快估算出闪电发生位置到他的距离为4.1 km.根据你所学的物理知识可以判断( ) A .这种估算方法是错误的,不可采用 B .这种估算方法可以比较准确地估算出闪电发生位置与观察者间的距离 C .这种估算方法没有考虑光的传播时间,结果误差很大

高考物理二轮专题复习 模型讲解 运动学模型

2013年高考二轮专题复习之模型讲解 运动学模型 【模型概述】 在近年的高考中对各类运动的整合度有所加强,如直线运动之间整合,曲线运动与直线运动整合等,不管如何整合,我们都可以看到共性的东西,就是围绕着运动的同时性、独立性而进行。 【模型回顾】 一、两种直线运动模型 匀速直线运动:两种方法(公式法与图象法) 匀变速直线运动:2 002 1at t v s at v v t +=+=,,几个推论、比值、两个中点速度和一个v-t 图象。 特例1:自由落体运动为初速度为0的匀加速直线运动,a=g ;机械能守恒。 特例2:竖直上抛运动为有一个竖直向上的初速度v 0;运动过程中只受重力作用,加速度为竖直向下的重力加速度g 。特点:时间对称(下上t t =)、速率对称(下上v v =);机械能守恒。 二、两种曲线运动模型 平抛运动:水平匀速、竖直方向自由落体 匀速圆周运动: ωωmv mr r mv ma F F =====22 向向法 【模型讲解】 一、匀速直线运动与匀速直线运动组合 例1.一路灯距地面的高度为h ,身高为l 的人以速度v 匀速行走,如图1所示。 (1)试证明人的头顶的影子作匀速运动; (2)求人影的长度随时间的变化率。

图1 解法1:(1)设t=0时刻,人位于路灯的正下方O 处,在时刻t ,人走到S 处,根据题意有OS=vt ,过路灯P 和人头顶的直线与地面的交点M 为t 时刻人头顶影子的位置,如图2所示。OM 为人头顶影子到O 点的距离。 图2 由几何关系,有 OS OM l OM h -= 联立解得t l h hv OM -= 因OM 与时间t 成正比,故人头顶的影子作匀速运动。 (2)由图2可知,在时刻t ,人影的长度为SM ,由几何关系,有SM=OM-OS ,由以上各式得 t l h lv SM -= 可见影长SM 与时间t 成正比,所以影长随时间的变化率l h lv k -= 。 解法2:本题也可采用“微元法”。设某一时间人经过AB 处,再经过一微小过程)0(→??t t ,则人由AB 到达A ’B ’,人影顶端C 点到达C ’点,由于t v S AA ?=?'则人影顶端的移动速度:

2014-2018高考物理曲线运动真题

专题四曲线运动 (2017~2018年) 201701 15.发球机从同一高度向正前方依次水平射出两个速度不同的乒乓球(忽略空气的影响)。速度较大的球越过球网,速度较小的球没有越过球网,其原因是A.速度较小的球下降相同距离所用的时间较多 B.速度较小的球在下降相同距离时在竖直方向上的速度较大 C.速度较大的球通过同一水平距离所用的时间较少 D.速度较大的球在相同时间间隔内下降的距离较大 201803 4.在一斜面顶端,将甲乙两个小球分别以v和的速度沿同一方向水平抛出,两球都落在该斜面上。甲球落至斜面时的速率是乙球落至斜面时速率的 A.2倍 B.4倍 C.6倍 D.8倍

(2016~2014年) 1.(2016·全国卷Ⅰ,18,6分)(难度★★)(多选)一质点做匀速直线运动,现对其施加一恒力,且原来作用在质点上的力不发生改变,则() A.质点速度的方向总是与该恒力的方向相同 B.质点速度的方向不可能总是与该恒力的方向垂直 C.质点加速度的方向总是与该恒力的方向相同 D.质点单位时间内速率的变化量总是不变 2.(2016·全国卷Ⅱ,16,6分)(难度★★★)小球P和Q用不可伸长的轻绳悬挂在天花板上,P球的质量大于Q球的质量,悬挂P球的绳比悬挂Q球的绳短。将两球拉起,使两绳均被水平拉直,如图所示。将两球由静止释放。在各自轨迹的最低点() A.P球的速度一定大于Q球的速度 B.P球的动能一定小于Q球的动能 C.P球所受绳的拉力一定大于Q球所受绳的拉力 D.P球的向心加速度一定小于Q球的向心加速度

3.(2016·江苏单科,2,3分)(难度★★)有A、B两小球,B的质量为A的两倍,现将它们以相同速率沿同一方向抛出,不计空气阻力,图中①为A的运动轨迹,则B的运动轨迹是() A.①B.②C.③D.④ 4.(2015·安徽理综,14,6分)图示是α粒子(氦原子核)被重金属原子核散射的运动轨迹,M、N、P、Q是轨迹上的四点,在散射过程中可以认为重金属原子核静止不动.图中所标出的α粒子在各点处的加速度方向正确的是() A.M点B.N点C.P点D.Q点

2014-2018高考物理运动学真题

专题一质点的直线运动 (2017~2018年) 201803 4.在一斜面顶端,将甲乙两个小球分别以v和的速度沿同一方向水平抛出,两球都落在该斜面上。甲球落至斜面时的速率是乙球落至斜面时速率的 A.2倍 B.4倍 C.6倍 D.8倍 5.甲乙两车在同一平直公路上同向运动,甲做匀加速直线运动, 乙做匀速直线运动。甲乙两车的位置x随时间t的变化如图所示。 下列说法正确的是 A.在t1时刻两车速度相等 B.从0到t1时间内,两车走过的路程相等 C.从t1到t2时间内,两车走过的路程相等 D.从t1到t2时间内的某时刻,两车速度相等 6.地下矿井中的矿石装在矿车中,用电机通过竖井运送至地面。某竖井中矿车提升的速度大小v随时间t的变化关系如图所示,其中图线①②分别描述两次不同的提升过程,它们变速阶段加速度的大小都相同;两次提升的高度相同,提升的质量相等。不考虑摩擦阻力和空气阻力。对于第①次 和第②次提升过程, A.矿车上升所用的时间之比为4:5 B.电机的最大牵引力之比为2:1 C.电机输出的最大功率之比为2:1 D.电机所做的功之比为4:5

201802 6.甲、乙两汽车同一条平直公路上同向运动,其速度—时间图像分别如图中甲、乙两条曲线所示。已知两车在t2时刻并排行驶,下列说法正确的是() A.两车在t1时刻也并排行驶 B.t1时刻甲车在后,乙车在前 C.甲车的加速度大小先增大后减小 D.乙车的加速度大小先减小后增大 (2016~2014年) 1.(2016·全国卷Ⅲ,16,6分)(难度★★)一质点做速度逐渐增大的匀加速直线运动,在时间间隔t内位移为s,动能变为原来的9倍。该质点的加速度为() A.s t2 B.3s 2t2 C.4s t2 D.8s t2 2.(2016·全国卷Ⅰ,21,6分)(难度★★★)(多选)甲、乙两车在平直公路上同向行驶,其v-t图象如图所示。已知两车在t=3s时并排行驶,则() A.在t=1s时,甲车在乙车后 B.在t=0时,甲车在乙车前7.5m C.两车另一次并排行驶的时刻是t=2s D.甲、乙车两次并排行驶的位置之间沿公路方向的距离为40m

高考物理曲线运动常见题型及答题技巧及练习题(含答案)

高考物理曲线运动常见题型及答题技巧及练习题(含答案) 一、高中物理精讲专题测试曲线运动 1.如图所示,一位宇航员站一斜坡上A 点,沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点B ,斜坡倾角为α,已知该星球的半径为R ,引力常量为G ,求: (1)该星球表面的重力加速度g ; (2)该星球的密度ρ . 【答案】(1)02tan v t α (2)03tan 2v RtG α π 【解析】 试题分析:平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据平抛运动的规律求出星球表面的重力加速度.根据万有引力等于重力求出星球的质量,结合密度的公式求出星球的密度. (1)小球做平抛运动,落在斜面上时有:tanα== = 所以星球表面的重力加速度为:g=. (2)在星球表面上,根据万有引力等于重力,得:mg=G 解得星球的质量为为:M= 星球的体积为:V=πR 3. 则星球的密度为:ρ= 整理得:ρ= 点晴:解决本题关键为利用斜面上的平抛运动规律:往往利用斜面倾解的正切值进行求得星球表面的重力加速度,再利用mg=G 和ρ=求星球的密度. 2.如图所示,一轨道由半径2R m =的四分之一竖直圆弧轨道AB 和水平直轨道BC 在B 点平滑连接而成.现有一质量为1m Kg =的小球从A 点正上方 2 R 处的O '点由静止释放,小

球经过圆弧上的B 点时,轨道对小球的支持力大小18N F N =,最后从C 点水平飞离轨道,落到水平地面上的P 点.已知B 点与地面间的高度 3.2h m =,小球与BC 段轨道间的动摩擦因数0.2μ=,小球运动过程中可视为质点. (不计空气阻力, g 取10 m/s 2). 求: (1)小球运动至B 点时的速度大小B v (2)小球在圆弧轨道AB 上运动过程中克服摩擦力所做的功f W (3)水平轨道BC 的长度L 多大时,小球落点P 与B 点的水平距最大. 【答案】(1)4? /B v m s = (2)22?f W J = (3) 3.36L m = 【解析】 试题分析:(1)小球在B 点受到的重力与支持力的合力提供向心力,由此即可求出B 点的速度;(2)根据动能定理即可求出小球在圆弧轨道上克服摩擦力所做的功;(3)结合平抛运动的公式,即可求出为使小球落点P 与B 点的水平距离最大时BC 段的长度. (1)小球在B 点受到的重力与支持力的合力提供向心力,则有:2 B N v F mg m R -= 解得:4/B v m s = (2)从O '到B 的过程中重力和阻力做功,由动能定理可得: 21022f B R mg R W mv ? ?+-=- ??? 解得:22f W J = (3)由B 到C 的过程中,由动能定理得:221122 BC C B mgL mv mv μ-=- 解得:22 2B C BC v v L g μ-= 从C 点到落地的时间:020.8h t s g = = B 到P 的水平距离:2202B C C v v L v t g μ-= + 代入数据,联立并整理可得:214445 C C L v v =- + 由数学知识可知,当 1.6/C v m s =时,P 到B 的水平距离最大,为:L=3.36m

高考物理复习运动的合成与分解专题训练(有答案)

2019年高考物理复习运动的合成与分解专 题训练(有答案) 物理学是一种自然科学,注重于研究物质、能量、空间、时间,尤其是它们各自的性质与彼此之间的相互关系。以下是查字典物理网整理的运动的合成与分解专题训练,请考生仔细练习。 一、选择题(本大题共10小题,每小题7分,共70分。每小题至少一个答案正确,选不全得3分) 1.质点仅在恒力F的作用下,由O点运动到A点的轨迹如图所示,在A点时速度的方向与x轴平行,则恒力F的方向可能沿() A.x轴正方向 B.x轴负方向 C.y轴正方向 D.y轴负方向 2.(2019庆阳模拟)在无风的情况下,跳伞运动员从水平飞行的飞机上跳伞,下落过程中受到空气阻力,下列描述下落速度的水平分量大小vx、竖直分量大小vy与时间t的图像,可能正确的是() 3.如图所示,船从A处开出后沿直线AB到达对岸,若AB 与河岸成37角,水流速度为4m/s,则船从A点开出的最小速度为() A.2 m/s B.2.4 m/s C.3 m/s D.3.5 m/s

4.关于做平抛运动的物体,正确的说法是() A.速度始终不变 B.加速度始终不变 C.受力始终与运动方向垂直 D.受力始终与运动方向平行 5.(2019蚌埠模拟)如图所示,在A点有一个小球,紧靠小球的左方有一个点光源S。现将小球从A点正对着竖直墙水平抛出,不计空气阻力,则打到竖直墙之前,小球在点光源照射下的影子在墙上的运动是() A.匀速直线运动 B.自由落体运动 C.变加速直线运动 D.匀减速直线运动 6.有一个物体在h高处,以水平初速度v0抛出,落地时的速度为vt,竖直分速度为vy,下列公式能用来计算该物体在空中运动时间的是() A. B. C. D. 7.(2019黄浦模拟)如图所示,河的宽度为L,河水流速为v 水,甲、乙两船均以静水中的速度v同时渡河。出发时两船相距2L,甲、乙船头均与岸边成60角,且乙船恰好能直达正对岸的A点。则下列判断正确的是() A.甲船正好也在A点靠岸 B.甲船在A点左侧靠岸

高考物理力学,运动学实验题

课时作业(二十六)[第26讲本单元实验] 基础热身 1.在验证机械能守恒定律的实验中: (1)下列实验操作顺序正确合理的一项是________(填序号) A.先将固定在重物上的纸带穿过打点计时器,再将打点计时器固定在铁架台上 B.先用手提着纸带,使重物静止在打点计时器下方,再接通电源 C.先放开纸带让重物下落,再接通打点计时器的电源 D.先取下固定在重物上的打好点的纸带,再切断打点计时器的电源 (2)质量m=1kg的重锤自由下落,在纸带上打出了一系列的点,如图K26-1所示,相邻计数点时间间隔为0.02s,长度单位是cm,g取9.8m/s2.则(保留3位有效数字): ①打点计时器打下计数点B时,重锤的速度v B=__________m/s; ②从点O到打下计数点B的过程中,重锤重力势能的减少量ΔE p=______________J,动能的增加量ΔE k=__________________J; ③实验结论是________________________________________________________________________ ________________________________________________________________________. 图K26-1 2.在用如图K26-2所示的装置做“探究动能定理”的实验时,下列说法正确的是() 图K26-2 A.通过改变橡皮筋的条数改变拉力做功的数值 B.通过改变橡皮筋的长度改变拉力做功的数值 C.通过打点计时器打下的纸带来测定小车加速过程中获得的最大速度 D.通过打点计时器打下的纸速来测定小车加速过程中获得的平均速度 技能强化 3.2011·德州模拟关于“探究动能定理”的实验,下列叙述正确的是() A.每次实验必须设法算出橡皮筋对小车做功的具体数值 B.每次实验中,橡皮筋拉伸的长度没有必要保持一致 C.放小车的长木板应该尽量水平 D.先接通电源,再让小车在橡皮筋的作用下弹出 图K26-3 4.2010·安徽卷利用如图K26-3所示装置进行验证机械能守恒定律的实验时,需要测量物体由静止开始自由下落到某点时的瞬时速度v0和下落高度h.某班同学利用实验得到的纸带,设计了以下四种测量方案. A.用刻度尺测出物体下落的高度h,并测出下落时间t,通过v=gt计算出瞬时速度v0 B.用刻度尺测出物体下落的高度h,并通过v=2gh计算出瞬时速度v0

相关主题
文本预览
相关文档 最新文档