当前位置:文档之家› 基于神经网络的目标识别模型验证方法研究

基于神经网络的目标识别模型验证方法研究

ComputerEngineering矾dApplications计算机工程与应用2010,46(7)145

基于神经网络的目标识别模型验证方法研究

周延延,吴晓燕

ZHOUYan-yan.WUXiao—yan

空军工程大学导弹学院,陕西三原713800

TheMissileInstitute,AirForceEngineeringUniversity,Sanyuan,Shaanxi713800,China

E—mail:zhouyanyan1226@yahoo.corn.cn

ZHOUYan-yan.WUXiao—yan.Studyonvalidationmethodoftargetrecognitionmodelsbasedonneuraln咖rk.Corn-puterEngineeringandApplications。2010。46(7):145一147.

Abstract:Aimingatthevalidationproblemofmulti—sensortargetrecognitionmodels.theproblemofvalidatingtargetrecognitionmodelsusingmulti-neural—networksbythelayeredandorderlywayispresented,whichusestheabilityofself-organizationandserf-learningofneuralnetworks.Aneural—network-basedmethodisproposedthatfirstlearnskeypropertiesofthebehaviourofalternativetargetrecognitionsimulationmodels,thenclassifiesrealsystembehaviourascomingfromoneofthemodels。andgivesthecredibilityevaluationtothemodels.Simulationresultsshowthefeasibilityandvalidityofthismethod.

Keywords:neuralnetworks;targetrecognition;modelvalidation

摘要:针对多传感器目标识另lj仿真模型的验证问题,提出了一种基于多神经网络的“分层有序”的模型验证方法。该方法利用神经网络的自组织和自学习能力,通过对各种目标识别模型关键行为特性的学习,将实际系统行为归类为其中的一种模型。从而对模型的可信性做出评估。仿真结果进一步说明了该方法的可行,l生和有效性。

关键词:神经网络;目标gg另,l;模型验证

DOI:10.3778/j.issn.1002-8331.2010.07.044文章编号:1002-8331(2010)07-0145--03文献标识码:A中图分类号:TP319.9

随着仿真技术的发展和人们对仿真技术应用价值认识的不断提高,其应用领域越来越广泛。与此同时,对仿真正确性和可信度的要求也越来越高。只有保证仿真的正确性和可信度,最终得到的仿真结果才具有实际应用的价值和意义l“。近年来,多传感器信息融合理论及其应用技术研究得到了快速的发展,已经成为—个重要的研究领域,其中信息融合的目标识别技术更成为国内外研究的热点121。由于图像目标识别是空问侦察与监视的关键技术,已成为目标i}{别的一个重要研究方向.因此所建立的目标识别模型是否有效尤为重要。对于空问多传感器目标以别模型的验证,采用传统的验证方法如置信区间法、假设检验法等131,需要进行大样本的统计试验【41,因而制约了目标识别模型的应用范围。人工神经网络(ANN)具有分布式存储和并行处理方式、自组织和自学习的功能及很强的容错性和鲁棒性,在模式识别和分类中具有独特的优势,因而得到了广泛的应用。提出一种利用多神经网络“分层有序”验证目标识别模型的方法,给出具体的实现步骤,并通过仿真实验说明了该方法的有效性。

1基于神经网络的模礁验证

神经网络具有自组织、自适应、自学习性以及自主的推理能力和可训练性,它是通过所研究系统历史的数据记录进行训练的,—个经过适当洲练的神经网络具有归纳全部数据的能力,因此,神经网络非常适合于处理不确定的知识。神经网络可以从数据中自动地获取知识,逐步地把新知识结合到其映射函数中去,这种固有的非线性映射(变换)能力给模式识别中的非线性分类带来新的突破,这正适应了模型验证中对于大量非线性特征匹配的要求。

神经网络中目前应用最广、最直观的是多层反向传播神经网络(BackPropagationNetwork。BPNo如图1所示,它是具有三层或三层以上的阶层型神经网络,网络按有导师的方式进行学习。因其结构简单和实现方便,被广泛应用于模式识别、图像处理、系统辨洪、函数拟合、优化计算、最优预测和自适应控制等领域,并已形成了较为成熟的理论和工具体系。

输入层隐含层输出层

图1BPN结构图

用神经网络处理仿真模型的验证问题闭,其思想是使用一个模式分类器一神经嘲络。分类即把数据项映射到其中—个事先定义的类中的学习过程。采用神经网络作为分类器的原理

基金项目:陕西省自然科学基础研究计划资助项目(N02007F40)。

作者简介:周延延(1976-),女,讲师,主要从事自动控制及仿真研究;吴晓燕(1957一),女,博士生导师,教授,主要从事系统建模与仿真研究。收稿H期:2008—08-07修回13期:2008—10-21

万方数据

基于BP神经网络的预测模型

基于BP神经网络的国际黄金价格预测模型 公文易文秘资源网顾孟钧张志和陈友2009-1-2 13:35:26我要投稿添加到百度搜藏 [摘要] 为了寻找国际黄金价格与道琼斯工业指数、美国消费者指数,国际黄金储备等因素之间的内在关系,本文对1972年~2006年间的各项数据首先进行归一化处理,利用MATLAB神经网络工具箱进行模拟训练,建立了基于BP神经网络的国际黄金价格预测模型 [摘要] 为了寻找国际黄金价格与道琼斯工业指数、美国消费者指数,国际黄金储备等因素之间的内在关系,本文对1972年~2006年间的各项数据首先进行归一化处理,利用MATLAB神经网络工具箱进行模拟训练,建立了基于BP神经网络的国际黄金价格预测模型。 [关键词] MATLAB BP神经网络预测模型数据归一化 一、引言 自20世纪70年代初以来的30多年里,世界黄金价格出现了令人瞠目的剧烈变动。20 世纪70年代初,每盎司黄金价格仅为30多美元。80年代初,黄金暴涨到每盎司近700美元。本世纪初,黄金价格处于每盎司270美元左右,此后逐年攀升,到2006年5月12日达到了26年高点,每盎司730美元,此后又暴跌,仅一个月时间内就下跌了约160美元,跌幅高达21.9%。最近两年,黄金价格一度冲高到每盎司900多美元。黄金价格起伏如此之大,本文根据国际黄金价格的影响因素,通过BP神经网络预测模型来预测长期黄金价格。 二、影响因素 刘曙光和胡再勇证实将观察期延长为1972年~2006年时,则影响黄金价格的主要因素扩展至包含道琼斯指数、美国消费者价格指数、美元名义有效汇率、美国联邦基金利率和世界黄金储备5个因素。本文利用此观点,根据1972年~2006年各因素的值来建立神经网络预测模型。 三、模型构建

安全模型Read

Windows 安全模型:每个驱动程序作者都需要了解的内容 Updated: July 7, 2004 On This Page 简介 W indows 安全模型 安全场景:创建一个文件 驱动程序安全责任 行动指南和资源 本文提供关于为 Microsoft Windows 家族操作系统编写安全的内核模式驱动程序的信息。其中描述了如何将 Windows 安全模型应用于驱动程序,并解释驱动程序作者必须采取哪些措施来确保其设备的安全性。 简介 Windows 安全模型基于安全对象。操作系统的每个组件都必须确保其负责的对象的安全性。因此,驱动程序必须保证其设备和设备对象的安全性。 本文总结了如何将 Windows 安全模型应用于内核模式驱动程序,以及驱动程序编写人员必须采取哪些措施来确保其设备的安全性。一些类型的设备适用于附加的设备特定要求。请参阅 Microsoft Windows Driver Development Kit (DDK) 中的设备特定的文档,以了解详细信息。 注意:关于本文中讨论的例程和问题的当前文档,请参见 Windows DDK 最新版本。关于如何获取当前的 DDK 的信息,请参见 https://www.doczj.com/doc/7511039237.html,/whdc/devtools/ddk/default.mspx. Top of page Windows 安全模型 Windows 安全模型主要基于每个对象的权限,以及少量的系统级特权。安全对象包括(但不限于)进程、线程、事件和其它同步对象,以及文件、目录和设备。

对于每种类型的对象,一般的读、写和执行权限都映射到详细的对象特定权限中。例如,对于文件和目录,可能的权限包括读或写文件或目录的权限、读或写扩展的文件属性的权限、遍历目录的权限,以及写对象的安全描述符的权限。更多信息(包括完整的权限列表)请参见 MSDN 库的“安全性”节中的“安全性(常规)”,该库位于https://www.doczj.com/doc/7511039237.html,. 安全模型涉及以下概念: ?安全标识符 (SID) ?存取令牌 ?安全描述符 ?访问控制列表 (ACL) ?特权 安全标识符 (SID) 安全标识符(SID,也称为安全主体)标识一个用户、组或登录会话。每个用户都有一个唯一的 SID,在登录时由操作系统检索。 SID 由一个权威机构(如操作系统或域服务器)分发。一些 SID 是众所周知的,并且具有名称和标识符。例如,SID S-1-1-0 标识所有人(或全世界)。 存取令牌 每个进程都有一个存取令牌。存取令牌描述进程的完整的安全上下文。它包含用户的 SID、用户所属组的 SID、登录会话的 SID,以及授予用户的系统级特权列表。 默认情况下,当进程的线程与安全对象交互时,系统使用进程的主存取令牌。但是,一个线程可以模拟一个客户端帐户。当一个线程模拟客户端帐户时,它除了拥有自己的主令牌之外还有一个模拟令牌。模拟令牌描述线程正在模拟的用户帐户的安全上下文。模拟在远程过程调用 (Remote Procedure Call, RPC) 处理中尤其常见。 描述线程或进程的受限制的安全上下文的存取令牌被称为受限令牌。受限令牌中的 SID 只能设置为拒绝访问安全对象,而不能设置为允许访问安全对象。此外,令牌可以描述一组有限的系统级特权。用户的 SID 和标识保持不变,但是在进程使用受限令牌时,用户的访问权限是有限的。CreateRestrictedToken函数创建一个受限令牌。 受限令牌对于运行不可信代码(例如电子邮件附件)很有用。当您右键单击可执行文件,选择“运行方式”并选择“保护我的计算机和数据不受未授权程序的活动影响”时,Microsoft Windows XP 就会使用受限令牌。

基于神经网络的预测控制模型仿真

基于神经网络的预测控制模型仿真 摘要:本文利用一种权值可以在线调整的动态BP神经网络对模型预测误差进行拟合并与预测模型一起构成动态组合预测器,在此基础上形成对模型误差具有动态补偿能力的预测控制算法。该算法显著提高了预测精度,增强了预测控制算法的鲁棒性。 关键词:预测控制神经网络动态矩阵误差补偿 1.引言 动态矩阵控制(DMC)是一种适用于渐近稳定的线性或弱非线性对象的预测控制算法,目前已广泛应用于工业过程控制。它基于对象阶跃响应系数建立预测模型,因此建模简单,同时采用多步滚动优化与反馈校正相结合,能直接处理大时滞对象,并具有良好的跟踪性能和较强的鲁棒性。 但是,DMC算法在实际控制中存在一系列问题,模型失配是其中普遍存在的一个问题,并会不同程度地影响系统性能。DMC在实际控制中产生模型失配的原因主要有2个,一是诸如建模误差、环境干扰等因素,它会在实际控制的全程范围内引起DMC的模型失配;二是实际系统的非线性特性,这一特性使得被控对象的模型发生变化,此时若用一组固定的阶跃响应数据设计控制器进行全程范围的控制,必然会使实际控制在对象的非建模区段内出现模型失配。针对DMC模型失配问题,已有学者进行了大量的研究,并取得了丰富的研究成果,其中有基于DMC控制参数在线辨识的智能控制算法,基于模型在线辨识的自校正控制算法以及用神经元网络进行模型辨识、在辨识的基础上再进行动态矩阵控制等。这些算法尽管进行在线辨识修正对象模型参数,仍对对象降阶建模误差(结构性建模误差)的鲁棒性不好,并对随机噪声干扰较敏感。针对以上问题,出现了基于误差校正的动态矩阵控制算法。这些文献用基于时间序列预测的数学模型误差代替原模型误差,得到对未来误差的预测。有人还将这种误差预测方法引入动态矩阵控制,并应用于实际。这种方法虽然使系统表现出良好的稳定性,但建立精确的误差数学模型还存在一定的困难。 本文利用神经网络通过训练学习能逼近任意连续有界函数的特点,建立了一种采用BP 神经网络进行预测误差补偿的DMC预测控制模型。其中神经网络预测误差描述了在预测模型中未能包含的一切不确定性信息,可以归结为用BP神经网络基于一系列过去的误差信息预测未来的误差,它作为模型预测的重要补充,不仅降低建立数学模型的负担,而且还可以弥补在对象模型中已简化或无法加以考虑的一切其他因素。 本文通过进行仿真,验证了基于神经网络误差补偿的预测控制算法的有效性及优越性,

安全防护用具的检验方法

安全防护用具的检验方法 姓名:XXX 部门:XXX 日期:XXX

安全防护用具的检验方法 个人安全防护用品常用的安全护具安全鞋,劳保鞋,防静电鞋,绝缘鞋,防护服等等必须认真进行检查、试验。安全网是否有杂物,是否被坠物损坏或被吊装物撞坏。安全帽被物体击打后,是否有裂纹等。经常对安全护具的检查按要求进行 一安全帽:检验周期为每年一次。3kg重的钢球,从5m高处垂直自由坠落冲击下不被破坏,试验时应用木头做一个半圆人头模型,将试验的安全帽内缓冲弹性带系好放在模型上。各种材料制成的安全帽试验都可用此方法。 二安全带:安全带的检验周期为:每次使用安全带之前,必须进行认真的检查。对新安全带使用两年后进行抽查试验,旧安全带每隔6个月进行一次抽检。 国家规定,出厂试验是取荷重120kg的物体,从2~2.8m高架上冲击安全带,各部件无损伤即为合格。一些施工单位经常使用的方法是:采用麻袋,由装木屑刨花等作填充物,再加铁块,以达到试验负荷的重的标准。用专作实验的架子,进行动、静荷重试验。施工单位可根据实际情况,在满足试验负荷重标准情况下,因地制宜采取一些切实可行的办法。锦纶安全带配件极限拉力指标为:腰带1200~1500kg,背带700~1000kg,安全绳1500kg,挂钩圆环1200kg,固定卡子60kg,腿带700kg。安全带的负荷试验要求是:施工单位对安全带应定期进行静负荷试验。试验荷重为225kg,吊挂5min,检查是否变形、破裂等情况,并做好记录。 需要注意的是,凡是做过试验的安全护具,不准再用。 第 2 页共 4 页

三个人防护用品的检查还必须注意: 1产品是否有生产许可证单位生产的产品; 2产品是否有产品合格证书; 3产品是否满足该产品的有关质量要求; 4产品的规格及技术性能是否与作业的防护要求吻合。 第 3 页共 4 页

神经网络一个简单实例

OpenCV的ml模块实现了人工神经网络(Artificial Neural Networks,ANN)最典型的多层感知器(multi-layer perceptrons, MLP)模型。由于ml模型实现的算法都继承自统一的CvStatModel基类,其训练和预测的接口都是train(),predict(),非常简单。 下面来看神经网络CvANN_MLP 的使用~ 定义神经网络及参数: [cpp]view plain copy 1.//Setup the BPNetwork 2. CvANN_MLP bp; 3.// Set up BPNetwork's parameters 4. CvANN_MLP_TrainParams params; 5. params.train_method=CvANN_MLP_TrainParams::BACKPROP; 6. params.bp_dw_scale=0.1; 7. params.bp_moment_scale=0.1; 8.//params.train_method=CvANN_MLP_TrainParams::RPROP; 9.//params.rp_dw0 = 0.1; 10.//params.rp_dw_plus = 1.2; 11.//params.rp_dw_minus = 0.5; 12.//params.rp_dw_min = FLT_EPSILON; 13.//params.rp_dw_max = 50.; 可以直接定义CvANN_MLP神经网络,并设置其参数。BACKPROP表示使用 back-propagation的训练方法,RPROP即最简单的propagation训练方法。 使用BACKPROP有两个相关参数:bp_dw_scale即bp_moment_scale: 使用PRPOP有四个相关参数:rp_dw0, rp_dw_plus, rp_dw_minus, rp_dw_min, rp_dw_max:

BP神经网络预测模型及应用

B P神经网络预测模型及 应用 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

B P神经网络预测模型及应用 摘要采用BP神经网络的原理,建立神经网络的预测模型,并利用建立的人工神经网络训练并预测车辆的销售量,最后得出合理的评价和预测结果。 【关键词】神经网络模型预测应用 1 BP神经网络预测模型 BP神经网络基本理论 人工神经网络是基于模仿生物大脑的结构和功能而构成的一种信息处理系统。该网络由许多神经元组成,每个神经元可以有多个输入,但只有一个输出,各神经元之间不同的连接方式构成了不同的神经网络模型,BP网为其中之一,它又被称为多层前馈神经网络。 BP神经网络预测模型 (1)初始化,给各连接权值(wij,vi)及阐值(θi)赋予随机值,确定网络结构,即输入单元、中间层单元以及输出层单元的个数;通过计算机仿真确定各系数。 在进行BP网络设计前,一般应从网络的层数、每层中的神经元个数、初始值以及学习方法等方面进行考虑,BP网络由输入层、隐含层和输出层组成。隐含层神经元个数由以下经验公式计算: (1)

式中:s为隐层节点数,m为输入层节点数,n为输出层节点数,h为正整数,一般取3―7. BP网络采用了有一定阈值特性的、连续可微的sigmoid函数作为神经元的激发函数。采用的s 型函数为: (2) 式中:s为隐层节点数,m为输入层节点数,n为输出层节点数,h为正整数,一般取3―7.计算值需经四舍五入取整。 (2)当网络的结构和训练数据确定后,误差函数主要受激励函数的影响,尽管从理论分析中得到比的收敛速度快,但是也存在着不足之处。当网络收敛到一定程度或者是已经收敛而条件又有变化的时候,过于灵敏的反映会使得系统产生震荡,难于收敛。因此,对激励函数进行进一步改进,当权值wij (k)的修正值Δwij(k) Δwij(k+1)<0时,,其中a为大于零小于1的常数。这样做降低了系统进入最小点时的灵敏度,减少震荡。 2 应用 车辆销售量神经网络预测模型 本文以某汽车制造企业同比价格差、广告费用、服务水平、车辆销售量作为学习训练样本数据。如表1。 表1 产品的广告费、服务水平、价格差、销售量 月份广告费 (百万元)服务水平价格差

安全防护用具检验方法范本

工作行为规范系列 安全防护用具检验方法(标准、完整、实用、可修改)

编号:FS-QG-13627安全防护用具检验方法 Inspection method of safety protective equipment 说明:为规范化、制度化和统一化作业行为,使人员管理工作有章可循,提高工作效率和责任感、归属感,特此编写。 个人安全防护用品常用的安全护具安全鞋,劳保鞋,防静电鞋,绝缘鞋,防护服等等必须认真进行检查、试验。安全网是否有杂物,是否被坠物损坏或被吊装物撞坏。安全帽被物体击打后,是否有裂纹等。经常对安全护具的检查按要求进行 一安全帽:检验周期为每年一次。3kg重的钢球,从5m 高处垂直自由坠落冲击下不被破坏,试验时应用木头做一个半圆人头模型,将试验的安全帽内缓冲弹性带系好放在模型上。各种材料制成的安全帽试验都可用此方法。 二安全带:安全带的检验周期为:每次使用安全带之前,必须进行认真的检查。对新安全带使用两年后进行抽查试验,旧安全带每隔6个月进行一次抽检。 国家规定,出厂试验是取荷重120kg的物体,从2~2.8m

高架上冲击安全带,各部件无损伤即为合格。一些施工单位经常使用的方法是:采用麻袋,由装木屑刨花等作填充物,再加铁块,以达到试验负荷的重的标准。用专作实验的架子,进行动、静荷重试验。施工单位可根据实际情况,在满足试验负荷重标准情况下,因地制宜采取一些切实可行的办法。锦纶安全带配件极限拉力指标为:腰带1200~1500kg,背带700~1000kg,安全绳1500kg,挂钩圆环1200kg,固定卡子60kg,腿带700kg。安全带的负荷试验要求是:施工单位对安全带应定期进行静负荷试验。试验荷重为225kg,吊挂5min,检查是否变形、破裂等情况,并做好记录。 需要注意的是,凡是做过试验的安全护具,不准再用。 三个人防护用品的检查还必须注意: 1产品是否有“生产许可证”单位生产的产品; 2产品是否有“产品合格证书”; 3产品是否满足该产品的有关质量要求; 4产品的规格及技术性能是否与作业的防护要求吻合。 请输入您公司的名字 Foonshion Design Co., Ltd

BP神经网络模型应用实例

BP神经网络模型 第1节基本原理简介 近年来全球性的神经网络研究热潮的再度兴起,不仅仅是因为神经科学本身取得了巨大的进展.更主要的原因在于发展新型计算机和人工智能新途径的迫切需要.迄今为止在需要人工智能解决的许多问题中,人脑远比计算机聪明的多,要开创具有智能的新一代计算机,就必须了解人脑,研究人脑神经网络系统信息处理的机制.另一方面,基于神经科学研究成果基础上发展出来的人工神经网络模型,反映了人脑功能的若干基本特性,开拓了神经网络用于计算机的新途径.它对传统的计算机结构和人工智能是一个有力的挑战,引起了各方面专家的极大关注. 目前,已发展了几十种神经网络,例如Hopficld模型,Feldmann等的连接型网络模型,Hinton等的玻尔茨曼机模型,以及Rumelhart等的多层感知机模型和Kohonen的自组织网络模型等等。在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。多层感知机神经网络的研究始于50年代,但一直进展不大。直到1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算),实现了Minsky的多层网络

设想,如图34-1所示。 BP 算法不仅有输入层节点、输出层节点,还可有1个或多个隐含层节点。对于输入信号,要先向前传播到隐含层节点,经作用函数后,再把隐节点的输出信号传播到输出节点,最后给出输出结果。节点的作用的激励函数通常选取S 型函数,如 Q x e x f /11)(-+= 式中Q 为调整激励函数形式的Sigmoid 参数。该算法的学习过程由正向传播和反向传播组成。在正向传播过程中,输入信息从输入层经隐含层逐层处理,并 传向输出层。每一层神经元的状态只影响下一层神经

Hopfield神经网络综述

题目:Hopfield神经网络综述 一、概述: 1.什么是人工神经网络(Artificial Neural Network,ANN) 人工神经网络是一个并行和分布式的信息处理网络结构,该网络结构一般由许多个神经元组成,每个神经元有一个单一的输出,它可以连接到很多其他的神经元,其输入有多个连接通路,每个连接通路对应一个连接权系数。 人工神经网络系统是以工程技术手段来模拟人脑神经元(包括细胞体,树突,轴突)网络的结构与特征的系统。利用人工神经元可以构成各种不同拓扑结构的神经网络,它是生物神经网络的一种模拟和近似。主要从两个方面进行模拟:一是结构和实现机理;二是从功能上加以模拟。 根据神经网络的主要连接型式而言,目前已有数十种不同的神经网络模型,其中前馈型网络和反馈型网络是两种典型的结构模型。 1)反馈神经网络(Recurrent Network) 反馈神经网络,又称自联想记忆网络,其目的是为了设计一个网络,储存一组平衡点,使得当给网络一组初始值时,网络通过自行运行而最终收敛到这个设计的平衡点上。反馈神经网络是一种将输出经过一步时移再接入到输入层的神经网络系统。 反馈网络能够表现出非线性动力学系统的动态特性。它所具有的主要特性为以下两点:(1).网络系统具有若干个稳定状态。当网络从某一初始状态开始运动,网络系统总可以收敛到某一个稳定的平衡状态; (2).系统稳定的平衡状态可以通过设计网络的权值而被存储到网络中。 反馈网络是一种动态网络,它需要工作一段时间才能达到稳定。该网络主要用于联想记忆和优化计算。在这种网络中,每个神经元同时将自身的输出信号作为输入信号反馈给其他神经元,它需要工作一段时间才能达到稳定。 2.Hopfiel d神经网络 Hopfield网络是神经网络发展历史上的一个重要的里程碑。由美国加州理工学院物理学家J.J.Hopfield 教授于1982年提出,是一种单层反馈神经网络。Hopfiel d神经网络是反馈网络中最简单且应用广泛的模型,它具有联想记忆的功能。 Hopfield神经网络模型是一种循环神经网络,从输出到输入有反馈连接。在输入的激励下,会产生不断的状态变化。 反馈网络有稳定的,也有不稳定的,如何判别其稳定性也是需要确定的。对于一个Hopfield 网络来说,关键是在于确定它在稳定条件下的权系数。 下图中,第0层是输入,不是神经元;第二层是神经元。

几种信息安全评估模型知识讲解

1基于安全相似域的风险评估模型 本文从评估实体安全属性的相似性出发,提出安全相似域的概念,并在此基础上建立起一种网络风险评估模型SSD-REM 风险评估模型主要分为评估操作模型和风险分析模型。评估操作模型着重为评估过程建立模型,以指导评估的操作规程,安全评估机构通常都有自己的操作模型以增强评估的可实施性和一致性。风险分析模型可概括为两大类:面向入侵的模型和面向对象的模型。 面向入侵的风险分析模型受技术和规模方面的影响较大,不易规范,但操作性强。面向对象的分析模型规范性强,有利于持续评估的执行,但文档管理工作较多,不便于中小企业的执行。针对上述问题,本文从主机安全特征的相似性及网络主体安全的相关性视角出发,提出基于安全相似域的网络风险评估模型SSD-REM(security-similar-domain based riskevaluation model)。该模型将粗粒度与细粒度评估相结合,既注重宏观上的把握,又不失对网络实体安全状况的个别考察,有助于安全管理员发现保护的重点,提高安全保护策略的针对性和有效性。 SSD-REM模型 SSD-REM模型将静态评估与动态评估相结合,考虑到影响系统安全的三个主要因素,较全面地考察了系统的安全。 定义1评估对象。从风险评估的视角出发, 评估对象是信息系统中信息载体的集合。根据抽象层次的不同,评估对象可分为评估实体、安全相似域和评估网络。 定义2独立风险值。独立风险值是在不考虑评估对象之间相互影响的情形下,对某对象进行评定所得出的风险,记为RS。 定义3综合风险值。综合风险值是在考虑同其发生关联的对象对其安全影响的情况下,对某对象进行评定所得出的风险,记为RI。 独立域风险是在不考虑各评估实体安全关联的情况下,所得相似域的风险。独立网络风险是在不考虑外界威胁及各相似域之间安全关联的情况下,所得的网络风险 评估实体是评估网络的基本组成元素,通常立的主机、服务器等。我们以下面的向量来描述{ID,Ai,RS,RI,P,μ} 式中ID是评估实体标识;Ai为安全相似识;RS为该实体的独立风险值;RI为该实体合风险值;P为该实体的信息保护等级,即信产的重要性度量;属性μ为该实体对其所属的域的隶属

几种神经网络模型及其应用

几种神经网络模型及其应用 摘要:本文介绍了径向基网络,支撑矢量机,小波神经网络,反馈神经网络这几种神经网络结构的基本概念与特点,并对它们在科研方面的具体应用做了一些介绍。 关键词:神经网络径向基网络支撑矢量机小波神经网络反馈神经网络Several neural network models and their application Abstract: This paper introduced the RBF networks, support vector machines, wavelet neural networks, feedback neural networks with their concepts and features, as well as their applications in scientific research field. Key words: neural networks RBF networks support vector machines wavelet neural networks feedback neural networks 2 引言 随着对神经网络理论的不断深入研究,其应用目前已经渗透到各个领域。并在智能控制,模式识别,计算机视觉,自适应滤波和信号处理,非线性优化,语音识别,传感技术与机器人,生物医学工程等方面取得了令人吃惊的成绩。本文介绍几种典型的神经网络,径向基神经网络,支撑矢量机,小波神经网络和反馈神经网络的概念及它们在科研中的一些具体应用。 1. 径向基网络 1.1 径向基网络的概念 径向基的理论最早由Hardy,Harder和Desmarais 等人提出。径向基函数(Radial Basis Function,RBF)神经网络,它的输出与连接权之间呈线性关系,因此可采用保证全局收敛的线性优化算法。径向基神经网络(RBFNN)是 3 层单元的神经网络,它是一种静态的神经网络,与函数逼近理论相吻合并且具有唯一的最佳逼近点。由于其结构简单且神经元的敏感区较小,因此可以广泛地应用于非线性函数的局部逼近中。主要影响其网络性能的参数有3 个:输出层权值向量,隐层神经元的中心以及隐层神经元的宽度(方差)。一般径向基网络的学习总是从网络的权值入手,然后逐步调整网络的其它参数,由于权值与神经元中心及宽度有着直接关系,一旦权值确定,其它两个参数的调整就相对困难。 其一般结构如下: 如图 1 所示,该网络由三层构成,各层含义如下: 第一层:输入层:输入层神经元只起连接作用。 第二层:隐含层:隐含层神经元的变换函数为高斯核. 第三层:输出层:它对输入模式的作用做出响应. 图 1. 径向基神经网络拓扑结构 其数学模型通常如下: 设网络的输入为x = ( x1 , x2 , ?, xH ) T,输入层神经元至隐含层第j 个神经元的中心矢 为vj = ( v1 j , v2 j , ?, vIj ) T (1 ≤j ≤H),隐含层第j 个神经元对应输入x的状态为:zj = φ= ‖x - vj ‖= exp Σx1 - vij ) 2 / (2σ2j ) ,其中σ(1≤j ≤H)为隐含层第j个神

神经网络应用实例

神经网络 在石灰窑炉的建模与控制中的应用神经网络应用广泛,尤其在系统建模与控制方面,都有很好应用。下面简要介绍神经网络在石灰窑炉的建模与控制中的应用,以便更具体地了解神经网络在实际应用中的具体问题和应用效果。 1 石灰窑炉的生产过程和数学模型 石灰窑炉是造纸厂中一个回收设备,它可以使生产过程中所用的化工原料循环使用,从而降低生产成本并减少环境污染。其工作原理和过程如图1所示,它是一个长长的金属圆柱体,其轴线和水平面稍稍倾斜,并能绕轴线旋转,所以又 CaCO(碳酸钙)泥桨由左端输入迴转窑,称为迴转窑。含有大约30%水分的 3 由于窑的坡度和旋转作用,泥桨在炉内从左向右慢慢下滑。而燃料油和空气由右端喷入燃烧,形成气流由右向左流动,以使泥桨干燥、加热并发生分解反应。迴转窑从左到右可分为干燥段、加热段、煅烧段和泠却段。最终生成的石灰由右端输出,而废气由左端排出。 图1石灰窑炉示意图 这是一个连续的生产过程,原料和燃料不断输入,而产品和废气不断输出。在生产过程中首先要保证产品质量,包括CaO的含量、粒度和多孔性等指标,因此必须使炉内有合适的温度分布,温度太低碳酸钙不能完全分解,会残留在产品中,温度过高又会造成生灰的多孔性能不好,费燃料又易损坏窑壁。但是在生产过程中原料成分、含水量、进料速度、燃油成分和炉窑转速等生产条件经常会发生变化,而且有些量和变化是无法实时量测的。在这种条件下,要做到稳定生产、高质量、低消耗和低污染,对自动控制提出了很高的要求。 以前曾有人分析窑炉内发生的物理-化学变化,并根据传热和传质过程来建立窑炉的数学模型,认为窑炉是一个分布参数的非线性动态系统,可以用二组偏

Hopfield神经网络综述

题目: Hopfield神经网络综述 一、概述: 1.什么是人工神经网络(Artificial Neural Network,ANN) 人工神经网络是一个并行和分布式的信息处理网络结构,该网络结构一般由许多个神经元组成,每个神经元有一个单一的输出,它可以连接到很多其他的神经元,其输入有多个连接通路,每个连接通路对应一个连接权系数。 人工神经网络系统是以工程技术手段来模拟人脑神经元(包括细胞体,树突,轴突)网络的结构与特征的系统。利用人工神经元可以构成各种不同拓扑结构的神经网络,它是生物神经网络的一种模拟和近似。主要从两个方面进行模拟:一是结构和实现机理;二是从功能上加以模拟。 根据神经网络的主要连接型式而言,目前已有数十种不同的神经网络模型,其中前馈型网络和反馈型网络是两种典型的结构模型。 1)反馈神经网络(Recurrent Network) 反馈神经网络,又称自联想记忆网络,其目的是为了设计一个网络,储存一组平衡点,使得当给网络一组初始值时,网络通过自行运行而最终收敛到这个设计的平衡点上。反馈神经网络是一种将输出经过一步时移再接入到输入层的神经网络系统。 反馈网络能够表现出非线性动力学系统的动态特性。它所具有的主要特性为以下两点:(1).网络系统具有若干个稳定状态。当网络从某一初始状态开始运动,网络系统总可以收敛到某一个稳定的平衡状态; (2).系统稳定的平衡状态可以通过设计网络的权值而被存储到网络中。 反馈网络是一种动态网络,它需要工作一段时间才能达到稳定。该网络主要用于联想记忆和优化计算。在这种网络中,每个神经元同时将自身的输出信号作为输入信号反馈给其他神经元,它需要工作一段时间才能达到稳定。 2.Hopfield神经网络 Hopfield网络是神经网络发展历史上的一个重要的里程碑。由美国加州理工学院物理学家J.J.Hopfield 教授于1982年提出,是一种单层反馈神经网络。Hopfield神经网络是反馈网络中最简单且应用广泛的模型,它具有联想记忆的功能。 Hopfield神经网络模型是一种循环神经网络,从输出到输入有反馈连接。在输入的激励下,会产生不断的状态变化。 反馈网络有稳定的,也有不稳定的,如何判别其稳定性也是需要确定的。对于一个Hopfield 网络来说,关键是在于确定它在稳定条件下的权系数。 下图中,第0层是输入,不是神经元;第二层是神经元。

神经网络模型应用实例

BP 神经网络模型 近年来全球性的神经网络研究热潮的再度兴起,不仅仅是因为神经科学本身取得了巨大的进展.更主要的原因在于发展新型计算机和人工智能新途径的迫切需要.迄今为止在需要人工智能解决的许多问题中,人脑远比计算机聪明的多,要开创具有智能的新一代计算机,就必须了解人脑,研究人脑神经网络系统信息处理的机制.另一方面,基于神经科学研究成果基础上发展出来的人工神经网络模型,反映了人脑功能的若干基本特性,开拓了神经网络用于计算机的新途径.它对传统的计算机结构和人工智能是一个有力的挑战,引起了各方面专家的极大关注. 目前,已发展了几十种神经网络,例如Hopficld 模型,Feldmann 等的连接型网络模型,Hinton 等的玻尔茨曼机模型,以及Rumelhart 等的多层感知机模型和Kohonen 的自组织网络模型等等。在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。多层感知机神经网络的研究始于50年代,但一直进展不大。直到1985年,Rumelhart 等人提出了误差反向传递学习算法(即BP 算),实现了Minsky 的多层网络设想,如图34-1所示。 BP 算法不仅有输入层节点、输出层节点,还可有1个或多个隐含层节点。对于输入信号,要先向前传播到隐含层节点,经作用函数后,再把隐节点的输出信号传播到输出节点,最后给出输出结果。节点的作用的激励函数通常选取S 型函数,如 Q x e x f /11 )(-+= 式中Q 为调整激励函数形式的Sigmoid 参数。该算法的学习过程由正向传播和反向传播组成。在正向传播过程中,输入信息从输入层经隐含层逐层处理,并传向输出层。每一层神经元的状态只影响下一层神经元的状态。如果输出层得不到期望的输出,则转入反向传播,将误差信号沿原来的连接通道返回,通过修改各层神经元的权值,使得误差信号最小。 社含有n 个节点的任意网络,各节点之特性为Sigmoid 型。为简便起见,指定网络只有一个输出y ,任一节点i 的输出为O i ,并设有N 个样本(x k ,y k )(k =1,2,3,…,N ),对某一输入x k ,网络输出为y k 节点i 的输出为O ik ,节点j 的输入为net jk = ∑i ik ij O W 并将误差函数定义为∑=-=N k k k y y E 12 )(21

模型检验(闵应骅)

模型检验(1)(091230) 大家承认,计算机领域的ACM图灵奖相当于自然科学的诺贝尔奖。2007年图灵奖授予Edmund M. Clarke,E. Allen Emerson,和Joseph Sifakis。他们创立了模型检验---一种验证技术,用算法的方式确定一个硬件或软件设计是否满足用时态逻辑表述的形式规范。如果不能满足,则提供反例。他们在1981年提出这个方法,经过28年的发展,已经在VLSI电路、通信协议、软件设备驱动器、实时嵌入式系统和安全算法的验证方面得到了实际应用。相应的商业工具也已出现,估计今后将对未来的硬件和软件产业产生重大影响。 2009年11月CACM发表了三位对模型检验的新的诠释。本人将用几次对他们的诠释做一个通俗的介绍,对我自己也是一个学习的过程。 Edmund M. Clarke现在是美国卡内基梅隆大学(CMU)计算机科学系教授。E. Allen Emerson 是在美国奥斯汀的德州大学计算机科学系教授。Joseph Sifakis是法国国家科学研究中心研究员,Verimag实验室的创立者。 模型检验(2)(091231) 程序正确性的形式验证依靠数学逻辑的使用。程序是一个很好定义了的、可能很复杂、直观上不好理解的行为。而数学逻辑能精确地描述这些行为。过去,人们倾向于正确性的形式证明。而模型检验回避了这种证明。在上世纪60年代,流行的是佛洛伊德-霍尔式的演绎验证。这种办法像手动证明一样,使用公理和推论规则,比较困难,而且要求人的独创性。一个很短的程序也许需要很长的一个证明。 不搞程序正确性证明,可以使用时态逻辑,一种按时间描述逻辑值变化的形式化。如果一个程序可以用时态逻辑来指定,那它就可以用有限自动机来实现。模型检验就是去检验一个有限状态图是否是一个时态逻辑规范的一个模型。 对于正在运行的并发程序,它们一般是非确定性的,像硬件电路、微处理器、操作系统、银行网络、通信协议、汽车电子及近代医学设备。时态逻辑所用的基本算子是F(有时),G(总是),X(下一次),U(直到)。现在叫线性时间逻辑(LTL)。

基于BP神经网络语音识别方法研究

基于BP神经网络语音识别方法研究 摘要:神经网络是近年来信息科学、脑科学、神经心理学等诸多学科共同关注和研究的热点。由于其具有良好的抽象分类特性,现已应用于语音识别系统的研究和开发,并成为解决识别相关问题的有效工具。文章在讲述语音识别过程的基础上重点讨论利用BP神经网络对语音进行识别,用MATLAB完成对神经网络的训练和测试,并获得满意的结果。 关键词:语音识别;模式识别;BP神经网络, 1 绪论 计算机的飞速发展,使人们的生活方式发生了根本性的改变,鼠标、键盘,这些传统的人机接口使人们体会到了生活的便利。科学技术日新月异,假如让“机器”能够听懂人的语言,并根据其信息去执行人的意图,那么这无疑是最理想的人机智能接口方式,因此语音识别作为一门极具吸引力的学科应运而生,很多专家都指出语音识别技术将是未来十年信息技术领域十大重要的科技发展技术之一。 1.1 研究背景及意义 语言在人类的智能组成中充当着很重要的角色,人与人之间的交流和沟通大部分是通过语言的方式有效的完成。作为人与人之问交流最方便、自然、快捷的手段,人们自然希望它成为人与计算机交流的媒介。随着数字信号处理及计算机科学的飞速发展,人们对实现人机对话产生越来越迫切的要求,使得语音识别技术近年来得到了迅速的发展,语音识别技术的研究进入了一个比较成熟的时期。语音识别是一门交叉科学,它综合了声学、语言学、语音学、生理科学、数字信号处理、通信理论、电子技术、计算机科学、模式识别和人工智能等众多学科。也是人机交互最重要的一步。 1.2 语音识别的国内外研究现状 通过语音传递信息是人类最重要,最有效,和最方便的交换信息的形式,语音识别主要指让机器转达人说的话,即在各种情况下,准确的识别出语音的内容,从而根据其信息,执行人的各种意图。 广义的语音识别包括说话人的识别和内容的识别两部分。这里所说的语音识别,是指内容识别方面。采用计算机进行语音识别到现在已经发展了50年。 从特征参数上改进,采用各种办法进行语音增强是一个研究方向,但是到目前为止,还没有一种办法能把语音信号完美地从噪音环境提取出来。语音识别有广泛的商业化运用前景,主要可以分为通用场合和专用场合两个方面。 1.3研究内容 本文研究的主要内容是结合模式识别的基本理论,研究BP神经网络孤立词语音识别的问

人工神经网络应用实例

人工神经网络在蕨类植物生长中的应用 摘要:人工神经网络(ARTIFICIAL NEURAL NETWORK,简称ANN)是目前国际上一门发展迅速的前沿交叉学科。为了模拟大脑的基本特性,在现代神经科学研究的基础上,人们提出来人工神经网络的模型。根据此特点结合蕨类植物的生长过程进行了蕨类植物生长的模拟。结果表明,人工神经网络的模拟结果是完全符合蕨类植物的生长的,可有效的应用于蕨类植物的生长预测。 关键词:人工神经网络;蕨类植物;MATLAB应用 一人工神经网络的基本特征 1、并行分布处理:人工神经网络具有高度的并行结构和并行处理能力。这特别适于实时控制和动态控制。各组成部分同时参与运算,单个神经元的运算速度不高,但总体的处理速度极快。 2、非线性映射:人工神经网络具有固有的非线性特性,这源于其近似任意非线性映射(变换)能力。只有当神经元对所有输入信号的综合处理结果超过某一门限值后才输出一个信号。因此人工神经网络是一种具有高度非线性的超大规模连续时间动力学系统。 3、信息处理和信息存储合的集成:在神经网络中,知识与信息都等势分布贮存于网络内的各神经元,他分散地表示和存储于整个网络内的各神经元及其连线上,表现为神经元之间分布式的物理联系。作为神经元间连接键的突触,既是信号转换站,又是信息存储器。每个神经元及其连线只表示一部分信息,而不是一个完整具体概念。信息处理的结果反映在突触连接强度的变化上,神经网络只要求部分条件,甚至有节点断裂也不影响信息的完整性,具有鲁棒性和容错性。 4、具有联想存储功能:人的大脑是具有联想功能的。比如有人和你提起内蒙古,你就会联想起蓝天、白云和大草原。用人工神经网络的反馈网络就可以实现这种联想。神经网络能接受和处理模拟的、混沌的、模糊的和随机的信息。在处理自然语言理解、图像模式识别、景物理解、不完整信息的处理、智能机器人控制等方面具有优势。 5、具有自组织自学习能力:人工神经网络可以根据外界环境输入信息,改变突触连接强度,重新安排神经元的相互关系,从而达到自适应于环境变化的目的。 二人工神经网络的基本数学模型 神经元是神经网络操作的基本信息处理单位(图1)。神经元模型的三要素为: (1) 突触或联接,一般用,表尔神经元和神经元之间的联接强度,常称之为权值。 (2) 反映生物神经元时空整合功能的输入信号累加器。 图1 一个人工神经元(感知器)和一个生物神经元示意图 (3) 一个激活函数用于限制神经元输出(图2),可以是阶梯函数、线性或者是指数形式的

常用安全护具的检验方法

常用安全护具的检验方法 常用的安全护具必须认真进行检查、试验。 安全网是否有杂物,是否被坠物损坏或被吊装物撞坏。 安全帽被物体击打后,是否有裂纹等。经常对安全护具的检查按要求进行。 (1)安全帽:3kg重的钢球,从5m高处垂直自由坠落冲击下不被破坏,试验时应用木头做一个半圆人头模型,将试验的安全帽内缓冲弹性带系好放在模型上。各种材料制成的安全帽试验都可用此方法。检验周期为每年一次。 (2)安全带:国家规定,出厂试验是取荷重120kg的物体,从2~2.8m高架上冲击安全带,各部件无损伤即为合格。施工单位可根据实际情况,在满足试验负荷重标准情况下,因地制宜采取一些切实可行的办法。一些施工单位经常使用的方法是:采用麻袋,由装木屑刨花等作填充物,再加铁块,以达到试验负荷的重的标准。用专作实验的架子,进行动、静荷重试验。锦纶安全带配件极限拉力指标为:腰带1200~1500kg,背带700~1000kg,安全绳1500kg,挂钩圆环1200kg,固定卡子60kg,腿带700kg.安全带的负荷试验要求是:施工单位对安全带应定期进行静负荷试验。试验荷重为225kg,吊挂 5min,检查是否变形、破裂等情况,并做好记录。安全带的检验周期为:每次使用安全带之前,必须进行认真的检查。对新安全带使用两

年后进行抽查试验,旧安全带每隔6个月进行一次抽检。需要注意的是,凡是做过试验的安全护具,不准再用。 (3)个人防护用品的检查还必须注意: 1)产品是否有“生产许可证”单位生产的产品; 2)产品是否有“产品合格证书”; 3)产品是否满足该产品的有关质量要求; 4)产品的规格及技术性能是否与作业的防护要求吻合。

开题报告(基于神经网络的车牌字符识别方法研究及仿真实现)(可编辑修改word版)

西安科技大学 毕业设计(论文) 开题报告 题目基于神经网络的车牌字符识别方法研究及仿真实现院、系(部) 通信与电子信息工程学院 专业及班级电子信息工程专业 姓名 学号 指导教师 日期

西安科技大学毕业设计(论文)开题报告

[7]陈振学,汪国有,刘成云. 一种新的车牌图像字符分割与识别算法[J]. 微电子学与计算机, 2007,(02) . [8]朱正礼. 基于三层BP 神经网络的字符识别系统的实现[J]. 现代计算机, 2006,(10) . [9]刘静,周静华,苏俊连,付佳. 基于模板匹配的车牌字符识别算法实现[J]. 科技信息(科学教研), 2007,(24) . [10]苏厚胜. 车牌识别系统的设计与实现[J]. 可编程控制器与工厂自动化, 2006,(03) . [11]胡振稳, 尹朝庆. 基于BP 神经网络的车牌字符识别的研究[J]. 电脑知识与技术(学术交流), 2007,(02) [12]蒋良孝, 李超群. 基于 BP 神经网络的函数逼近方法及其 MATLAB 实现[J]. 微型机与应用, 2004,(01) [13]崔屹. 数字图象处理技术与应用. 电子工业出版社. [14]董长虹. MATLAB 图象处理. 国防工业出版社. [15]董长虹. MATLAB 神经网络与应用国防工业出版社. [16]MATLAB6.5 辅助图象处理.飞思科技产品研发科技中心. [17]H. S. Kim et al, "Recognition of a car number plate by a neural network", Proc. of Korea Information Science Society(KISS) fill conference,Vol. 18, NO. 2, pp. 259-262,1991. [18]Jang-Hee You,Byung-Tae Chun and Dong-Pil Shin,“A Neural for Recognizing Characters Extracted form Moving Vehicles”,World Congress On Neural Network, pp162-166,1994. [19]M. Momozawa,M.N omua,T.Namai and K. Morisaki,"Accident Vehicle Automatic Detection System by Image Processing Technique”,pp.566-570, 2004..

相关主题
文本预览
相关文档 最新文档