当前位置:文档之家› 单晶硅

单晶硅

单晶硅
单晶硅

西部最大单晶硅项目昨在中宁开工建设

宁夏隆基硅材料有限公司单晶硅项目,昨天上午在位于中宁县新堡镇的宁新工业园区开工建设。自治区领导陈建国、任启兴、于革胜、马骏廷、齐同生等参加奠基仪式。

单晶硅是各类晶体管、集成电路板、太阳能电池等众多高科技产品必不可少的原料之一。隆基硅材料有限公司年产2000吨单晶硅建设项目,是中宁县引进西安新盟电子科技有限公司的招商成果,也是西部最大的单晶硅生产项目,决定分3期建设,每期建设周期9个月,计划总投资6.9亿元,全部投产后每年可实现销售收入44亿元、税收1.5亿元。

据介绍,单晶硅的原料生产与产品开发具有较高的科技含量和工业生产附加值,这一低污染的高载能项目建成后,将填补工业生产的又一空白。

电子信息产业朝阳正红

随着全国太阳能级多晶硅技术与市场研讨会于近期在涿鹿县成功举办,国内外专家再次对涿鹿电子信息产业呈现出的宽领域、集群化发展强势给予格外关注。作为一个新兴产业,电子信息产业在涿鹿县的发展可以用突飞猛进来形容。近年来,这县大力实施科技强县战略,把发展电子信息产业项目、构建电子信息产业集群作为切入点,积极发展电子材料、元器件、嵌入式软件和太阳能产品,建设以北大青鸟为龙头的智能型安防产品生产基地、涿鹿中源单晶硅为龙头的半导体材料深加工基地,争作全市信息产业的排头兵,电子信息产业产值正以年均20%以上的速度增长。一个规模庞大、产业链条日益完整的电子信息产业集群,正在这县加速形成。

为使全县经济步入持续健康快速发展轨道,涿鹿县“筑巢引凤”,积极引导企业大力发展市场前景看好的电子信息产业,出台了《关于来涿投资建设高新技术产业项目的优惠条件》、《关于实现科技兴县战略、建设创新型涿鹿的决定》等一系列推动电子信息产业发展的政策措施。对投资500万元以上科技型企业项目兑现优惠条件;对省以上有关部门认定的大专院校、科研单位,可采用高新技术成果作价出资方式,与县龙头企业进行投资合作,使电子信息产业项目履约率达99%。与清华大学达成合作协议,共同建设占地1000亩的高新技术孵化园,建立涿鹿高新技术发展中心。以引进高新技术产业项目为重点,计划今年入园企业10家实现销售收入5000万元,五年内入园高新技术企业100家,实现销售收入50亿元,打造成河北硅谷的目标。该园区完成注册不到2个月,就与高性能陶瓷滤片等两个高新技术项目达成入驻意向。瞄准建设亚洲最大单晶硅信息产业研发生产基地的目标,这县不断完善太阳能光伏产业发展规划,先后拿出6000多万元,为15家相关企业项目提供建设用地1848亩。聘请西安、河北理工大学和北京科研机构专家教授为科技顾问,与中国电子信息产业发展研究所建立长期稳定的科技合作协议,逐步勾勒出单晶硅、多晶硅生产和切片加工,太阳能电池生产、单晶硅冶炼和配套设备制造等系列化信息产业研发生产集群。包

括日本宇宙能源在内的8家单晶硅生产研发企业投入生产,单晶硅冶炼炉发展到32台。总投资2.4亿元的华达秸秆生物热电、投资1.35亿元的京仪世纪自动化设备等20多个重点高新产业项目也正式安家涿鹿。

与此同时,这县专门成立了工业园区管理委员会,强化落实县级领导分包、县直部门帮扶高新产业项目责任制,全力推行一站式审批、保姆式管理等服务承诺机制,积极引导企业建立科研机构,形成电子信息产业项目发展“水美鱼肥”的局面。环宇消防设备、新能源等科技型企业依托北大、清华、国家信息产业研究院等国内一流院所,通过科研手段使产品打入国际市场。总计划投资1.4亿元的北大青鸟电子安防产品生产基地项目,已完成一期扩能技改投资4000万元,年生产安防产品150万只,实现产值1.5亿元,利税将达3000万元。到2007年通过充实线体,可使年生产能力达到300万只,跃居全国同行榜首。力争到2010年完成投资8000万元,开发楼宇智能产品,实现总产值6.5亿元,利税1.5亿元,建成“全国最大安防产品生产基地”。到目前,全县已有5家高新企业建立专门科研机构,10多家企业产品通过ISO9002国际质量体系认证。

报告简介

单晶硅也称硅单晶,是电子信息材料中最基础性材料,属半导体材料类。当今全球超过2000亿美元的电子通信半导体市场中95%以上的半导体器件及99%以上的集成电路都用到硅。单晶硅已渗透到国民经济和国防科技中各个领域,太阳能电能转化、电视、电脑、冰箱、电话、汽车及航天飞机、宇宙飞船、人造卫星都将单晶硅作为原材料之一。2008年,北京“绿色奥运”将展示以单晶硅为主材料的太阳能电池。

目前,全世界单晶硅的产能为1万吨/年,年消耗量约为6000吨~7000吨。“十五”期间,单晶硅的产量实现了30%以上的增长,2005年底,中国单晶硅的产量达到2700吨,其中半导体用约700吨,太阳能电池用2000多吨。在抛光片方面,我国半导体用硅抛光片平均增长超过15%,总用量达到2亿平方英寸。

本报告以严谨的内容、翔实的数据、直观的图表帮助单晶硅制造企业准确把握行业发展动向、正确制定企业竞争战略和投资策略。本报告依据国家信息中心和国家统计局等权威渠道数据,同时采用中心大量产业数据库以及我中心的实地调研,且综合运用定量和定性的分析方法对行业的发展趋势给予了细致和审慎的预测论证。本报告整合了多家权威机构的数据资源和专家资源,从众多数据中提炼出了精当、真正有价值的情报,并结合了行业所处的环境,从理论到实践、宏观与微观等多个角度进行研究分析,其结论和观点力求达到前瞻性、实用性和可行性的统一。这是我们专家小组历时一年精心制作而成,它是业内企业、相关投资公司及政府部门准确把握行业发展趋势,洞悉行业竞争格局、规避经营和投资风险、制定正确竞争和投资战略决策的重要决策依据之一,具有重要的参考价值,是企业制定市场策略的必备精品!。

2007年中国单晶硅行业市场调查与发展分析预测研究报告

第一章单晶硅概况【报告目录】

第一节单晶硅的基本概况

第二节单晶硅基本理化性质

第三节单晶硅的包装、贮存及运输等

第二章全球单晶硅市场发展分析

第一节世界单晶硅行业发展分析

一、行业整体现状

二、基本特点

第二节全球单晶硅市场研究

一、市场规模

二、产品市场结构

三、品牌市场结构

四、区域市场结构

五、渠道市场结构

第三节主要国家和地区发展概要

一、美国

二、亚洲太平洋地区

三、中东地区

四、加拿大

五、欧洲

六、澳州地区

第四节世界单晶硅材料发展趋势

一、单晶硅产品向300mm过渡,大直径化趋势明显

二、硅材料工业发展日趋国际化,集团化,生产高度集中

三、硅基材料成为硅材料工业发展的重要方向

四、硅片制造技术进一步升级

第三章 2006年中国单晶硅的生产现状分析

第一节单晶硅生产现状

一、单晶硅概况

二、我国单晶硅生产现状

三、生产规模与规模相关性分析

第二节国内单晶硅生产主要区域及企业分析

一、洛阳单晶硅厂

二、晶华电子材料有限公司

三、东北太阳能电池用单晶硅生产基地

四、河北宁晋地区太阳能级单晶硅生产基地

第四章 2006-2007年中国单晶硅市场供需监测分析

第一节需求分析

一、全国市场容量

二、国际市场容量

三、产品需求

四、价格需求

五、渠道需求

六、购买需求

第二节供给分析

一、产品供给

二、价格供给

三、渠道供给

四、促销供给

第三节市场特征分析

一、产品特征

二、价格特征

三、渠道特征

四、购买特征

第五章 2006年单晶硅进出口统计

第一节 2006年单晶硅进出口统计

第二节 2006-2007年单晶硅进出口分析与预测

第六章 2007年单晶硅的生产工艺及发展趋势第一节单晶硅生长方法

一、直拉单晶制造法(CZ法)

二、区熔单晶制造法(FZ法)

第二节晶片加工

一、晶片加工方法

二、晶片加工技术

第三节 2007年单晶硅工艺技术进展及发展趋势

一、国外单晶硅工艺技术进展及发展趋势

二、国内单晶硅工艺技术进展及发展趋势

第四节单晶硅质量指标

第七章单晶硅拟建和在建设项目

第一节单晶硅项目投资概况

第二节单晶硅拟建和在建项目统计

一、江西信丰县工业园单晶硅生产项目

二、西宁经济技术开发区单晶硅项目

三、赤壁金山硅业有限责任公司单晶硅项目

四、略。。。。

第八章 2007年中国单晶硅市场发展前景展望第一节影响我国单晶硅发展因素分析

一、政策因素

二、市场因素

三、技术因素

四、资金因素

第二节 2007年中国单晶硅市场趋势预测

一、产品发展趋势

二、价格变化趋势

三、渠道发展趋势

第三节 2007年中国单晶硅市场规模发展预测

一、产品结构

二、产品规模

第四节 2007年单晶硅的应用领域趋势分析

第九章 2007-2008年中国单晶硅产业投资分析第一节投资机会分析

一、单晶硅材料市场依然巨大

二、太阳能电池用单晶硅材料需求分析

第二节投资风险与建议

一、投资风险

二、投资建议

图表目录

图表:单晶硅棒---单晶硅抛光片

图表:单晶硅棒的主要技术参数

图表:单晶硅抛光片的物理性能参数同硅单晶技术参数

图表:单晶硅的理化性质表

图表:单晶硅棒的主要技术参数

图表:直拉单晶制造示意法

图表:1999-2014年国际对硅片关键参数的要求

图表:单晶硅质量指标表

图表:有研硅股200mm与150mm单晶硅抛光片规格指标表

图表:全球不同尺寸硅片产销量的变化表

图表:近年来全球前10位单晶硅硅片供应商及市场占有率

图表:国内主要单晶硅生产企业产品范围情况表

图表:1995-2005年我国单晶硅产能、产量、开工率及增长率

图表:2000-2006年中国单晶硅棒市场需求情况

图表:1995-2005年我国单晶硅产能、产量情况图

图表:2006年国内主要单晶硅棒生产企业统计表

图表:河北晶龙集团2001年—2005年产能产量变化表

图表:近年国际半导体市场的消费量按地区分布表

图表:国际半导体市场地区分布图

图表:近年来我国单晶硅产、供需情况表

图表:近年来我国单晶硅产、供需走势图

图表:近年来我国IC的生产及消耗情况

图表:2000-2006年我国抛光硅片市场需求情况

图表:国内主要IC芯片生产企业及月投片量

图表:2006-2010年国内单晶硅产需预测表

图表:国内部分需求单晶硅企业目录

图表:2002~2006年6月国内单晶硅进出口情况表

图表:2002~2006年6月国内单晶硅进出口走势图

图表:2002~2006年6月国内单晶硅进出口均价表

图表:2002~2006年6月国内单晶硅进出口价格比较图

图表:2006年国内多、单晶硅价格表

图表:2006年国内多、单晶硅价格走势图

图表:近几年我国单晶硅拟建和在建项目统计

图表:近几年我国单晶硅招商项目统计

图表:更多图表。。。。(见报告正文)

光伏电池硅片的生产过程

光伏电池硅片的生产过程主要如下:

一次清洗,即扩散前清洗。主要通过NaOH.HF,HCL等对硅片进行腐蚀处理,完成去损伤层、制绒,去硅酸钠,去金属离子等工艺。

扩散。在高温石英炉管内对硅片进行二次清洗前处理。

周边刻蚀。在工艺室内的一定条件下是硅片的电压达到允许值。

二次清洗,即扩散后清洗。主要完成去磷硅玻璃、漂洗、喷淋、慢拉、烘干等工艺要求。

PECVD。在真空和高温条件下,对硅片去除水分和空气后镀膜。

丝网印刷。对背电极进行印刷、烘干。

烧结或固化。

测试。

以上工序基本完成了电池硅片的处理过程,再经过焊接接线,组合装配等配套过程后,电池就可应用。PECVD是后来才发展出来的一个工艺。一般如果单晶硅电池100的都还会又一道工艺,就是腐蚀制作绒面,以增加对光的吸收。并且这个绒面层对于以后组件封装的光匹配有比较大的帮助。可以减少组件封装的损耗。

另外PECVD是多晶硅电池制作必不可少的一个部分,PECVD中有很多的H键可以修补多晶硅断裂的晶键,从而显著提高少子寿命,并从中显著提高多晶硅电池的转换效率。没有PECVD,多晶硅电池一般转换效率会明显低于单晶硅电池。

单晶硅

中文别名:硅单晶

英文名称:Silicon

分子式:Si

分子量:28.086

C A S 号:7440-21-3

硅是地球上储藏最丰富的材料之一,从19世纪科学家们发现了晶体硅的半导体特性后,它几乎改变了一切,甚至人类的思维。直到上世纪60年代开始,硅材料就取代了原有锗材料。硅材料――因其具有耐高温和抗辐射性能较好,特别适宜制作大功率器件的特性而成为应用最多的一种半导体材料,目前的集成电路半导体器件大多数是用硅材料制造的。

现在,我们的生活中处处可见“硅”的身影和作用,晶体硅太阳能电池是近15年来形成产业化最快的。熔融的单质硅在凝固时硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则这些晶粒平行结合起来便结晶成单晶硅。

单晶硅的制法通常是先制得多晶硅或无定形硅,然后用直拉法或悬浮区熔法从熔体中生长出棒状单晶硅。

单晶硅棒是生产单晶硅片的原材料,随着国内和国际市场对单晶硅片需求量的快速增加,单晶硅棒的市场需求也呈快速增长的趋势。

单晶硅圆片按其直径分为6英寸、8英寸、12英寸(300毫米)及18英寸(450毫米)等。直径越大的圆片,所能刻制的集成电路越多,芯片的成本也就越低。但大尺寸晶片对材料和技术的要求也越高。单晶硅按晶体生长方法的不同,分为直拉法(CZ)、区熔法(FZ)和外延法。直拉法、区熔法生长单晶硅棒材,外延法生长单晶硅薄膜。直拉法生长的单晶硅主要用于半导体集成电路、二极管、外延片衬底、太阳能电池。目前晶体直径可控制在Φ3~8英寸。区熔法单晶主要用于高压大功率可控整流器件领域,广泛用于大功率输变电、电力机车、整流、变频、机电一体化、节能灯、电视机等系列产品。目前晶体直径可控制在

Φ3~6英寸。外延片主要用于集成电路领域。

由于成本和性能的原因,直拉法(CZ)单晶硅材料应用最广。在IC工业中所用的材料主要是CZ抛光片和外延片。存储器电路通常使用CZ抛光片,因成本较低。逻辑电路一般使用价格较高的外延片,因其在IC制造中有更好的适用性并具有消除Latch-up的能力。

单晶硅也称硅单晶,是电子信息材料中最基础性材料,属半导体材料类。单晶硅已渗透到国民经济和国防科技中各个领域,当今全球超过2000亿美元的电子通信半导体市场中95%以上的半导体器件及99%以上的集成电路用硅。

《单晶硅市场调研报告》对单晶硅的生产工艺,生产现状,应用领域,消费结构,消费现状,消费需求,市场价格,进出口,项目投资等多方面多角度阐述单晶硅市场状况,并在此基础上对未来市场需求和市场前景定性和定量的分析和预测。

单晶硅的物理特性

熔融的单质硅在凝固时硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则这些晶粒平行结合起来便结晶成单晶硅。

单晶硅具有准金属的物理性质,有较弱的导电性,其电导率随温度的升高而增加,有显著的半导电性。超纯的单晶硅是本征半导体。在超纯单晶硅中掺入微量的ⅢA族元素,如硼可提高其导电的程度,而形成p型硅半导体;如掺入微量的ⅤA族元素,如磷或砷也可提高导电程度,形成n型硅半导体。

单晶硅的制法通常是先制得多晶硅或无定形硅,然后用直拉法或悬浮区熔法从熔体中生长出棒状单晶硅。单晶硅主要用于制作半导体元件。

硅是集成电路产业的基础,半导体材料中98%是硅,半导体硅工业产品包括多晶硅、单晶硅(直拉和区熔)、外延片和非晶硅等,其中,直拉硅单晶广泛应用于集成电路和中小功率器件。区域熔单晶目前主要用于大功率半导体器件,比如整流二极管,硅可控整流器,大功率晶体管等。单晶硅和多晶硅应用最广。

中彰国际(SINOSI)是一家致力于尖端科技、开拓创新的公司。中彰国际(SINOSI)能够规模生产和大批量供应单晶硅、多晶硅及Φ4〃- Φ6〃直拉抛光片、Φ3〃- Φ6〃直拉磨片和区熔NTD磨片并且可以按照国内、外客户的要求提供非标产品。

单晶硅

单晶硅主要有直拉和区熔

区熔(NTD)单晶硅可生产直径范围为:Φ1.5〃- Φ4〃。直拉单晶硅可生产直径范围为:Φ2〃-Φ8〃。各项参数可按客户要求生产。

多晶硅

区熔用多晶硅:可生产直径Φ40mm-Φ70mm。直径公差(Tolerance)≤10%,施主水平>300Ω.㎝,受主水

平>3000Ω.㎝,碳含量<2×1016at/㎝3 。各项参数可按客户要求生产。

切磨片

切磨片可生产直径范围为:Φ1.5〃- Φ6〃。厚度公差、总厚度公差、翘曲度、电阻率等参数符合并优于国家现行标准,并可按客户要求生产。

抛光片

抛光片可生产直径范围为:Φ2〃- Φ6〃,厚度公差、总厚度公差、翘曲度、平整度、电阻率等参数符合并优于国家现行标准,并可按客户要求生产。

高纯的单晶硅棒是单晶硅太阳电池的原料,硅纯度要求99.999%。单晶硅太阳电池是当前开发得最快的一种太阳电池,它的构和生产工艺已定型,产品已广泛用于空间和地面。为了降低生产成本,现在地面应用的太阳电池等采用太阳能级的单晶硅棒,材料性能指标有所放宽。有的也可使用半导体器件加工的头尾料和废次单晶硅材料,经过复拉制成太阳电池专用的单晶硅棒。

单晶硅是转化太阳能、电能的主要材料。在日常生活里,单晶硅可以说无处不在,电视、电脑、冰箱、电话、汽车等等,处处离不开单晶硅材料;在高科技领域,航天飞机、宇宙飞船、人造卫星的制造,单晶硅同样是必不可少的原材料。

在科学技术飞速发展的今天,利用单晶硅所生产的太阳能电池可以直接把太阳能转化为光能,实现了迈向绿色能源革命的开始。现在,国外的太阳能光伏电站已经到了理论成熟阶段,正在向实际应用阶段过渡,太阳能单晶硅的利用将普及到全世界范围,市场需求量不言而喻。

直拉硅单晶广泛应用于集成电路和中小功率器件。区域熔单晶目前主要用于大功率半导体器件,比如整流二极管,硅可控整流器,大功率晶体管等。

区熔(NTD)单晶硅可生产直径范围为:Φ1.5〃- Φ4〃。

直拉单晶硅可生产直径范围为:Φ2〃-Φ8〃。

硅单晶被称为现代信息社会的基石。硅单晶按照制备工艺的不同可分为直拉(CZ)单晶硅和区熔(FZ)单晶硅,直拉单晶硅被广泛应用于微电子领域,微电子技术的飞速发展,使人类社会进入了信息化时代,被称为硅片引起的第一次革命。区熔单晶硅是利用悬浮区熔技术制备的单晶硅。它的用途主要包括以下几个方面。

1、制作电力电子器件

电力电子技术是实现电力管理,提高电功效率的关键技术。飞速发展的电力电子被称为“硅片引起的第二次革命”,大多数电力电子器件是用区熔单晶硅制作的。电力电子器件包括普通晶闸管(SCR)、电力晶体管GTR、GTO以及第三代新型电力电子器件——功率场效应晶体管(MOSFET)和绝缘栅双极晶体管(IGBT)以及功率集成电路(PIC)等,广泛应用于高压直流输电、静止无功补偿、电力机车牵引、交直流电力

传动、电解、励磁、电加热、高性能交直流电源等电力系统和电气工程中。制作电力电子器件,是区熔单晶硅的传统市场,也是本项目产品的市场基础。

2、制作高效率太阳能光伏电池

太阳能目前已经成为最受关注的绿色能源产业。美国、欧洲、日本都制定了大力促进本国太阳能产业发展的政策,我国也于2005年3月份通过了《可再生能源法》。这些措施极大地促进了太阳能电池产业的发展。据统计,从1998—2004年,国际太阳能光伏电池的市场一直保持高速增长的态势,年平均增长速度达到30%,预计到2010年,仍将保持至少25%的增长速度。

晶体硅是目前应用最成熟,最广泛的太阳能电池材料,占光伏产业的85%以上。美国SunPower公司最近开发出利用区熔硅制作太阳能电池技术,其产业化规模光电转换效率达到20%,为目前产业化最高水平,其综合性价比超过直拉单晶硅太阳能电池(光电转换效率为15%)和多晶硅太阳能电池(光电转换效率为12%)。这项新技术将会极大地扩展区熔硅单晶的市场空间。据估计,到2010年,其总的市场规模到将达到电力电子需求规模,这是本项目新的市场机会。

3、制作射频器件和微电子机械系统(MEMS)

区熔单晶还可以用来制作部分分立器件。另外采用高阻区熔硅制造微波单片集成电路(MMIC)以及微电子机械系统(MEMS)等高端微电子器件,被广泛应用于微波通讯、雷达、导航、测控、医学等领域,显示出巨大的应用前景。这也是区熔单晶的又一个新兴的市场机会。

4、制作各种探测器、传感器,远红外窗口

探测器、传感器是工业自动化的关键元器件,被广泛应用于光探测、光纤通讯、工业自动化控制系统中以及医疗、军事、电讯、工业自动化等领域。高纯的区熔硅单晶是制作各种探测器、传感器的关键原材料,其市场增长趋势也很明显。

单晶硅生长技术的研究与发展

单晶硅生长技术的研究与发展 摘要:综述了单晶硅生长技术的研究现状。对改良热场技术、磁场直拉技术、真空高阻技术以及氧浓度的控制等技术进行了论述。 关键词:单晶硅;真空高阻;磁场;氧含量;氮掺杂 一、前言 影响国家未来在高新技术和能源领域实力的战略资源。作为一种功能材料,其性能应该是各向异性的,因此半导体硅大都应该制备成硅单晶,并加工成抛光片,方可制造IC器件,超过98%的电子元件都足使用硅单晶”引。生产单晶硅的原料主要包括:半导体单晶硅碎片,半导体单晶硅切割剩余的头尾料、边皮料等。目前,单晶硅的生长技术主要有直拉法(CZ)和悬浮区熔法(FZ)。在单晶硅的制备过程中还可根据需要进行掺杂,以控制材料的电阻率,掺杂元素一般为Ⅲ或V主族元素.生长制备后的单晶硅棒还需经过切片、打磨、腐蚀、抛光等工序深加工后方可制成用作半导体材料的单晶硅片。随着单晶硅生长及加工处理技术的进步,单晶硅正朝着大直径化(300ram以上)、低的杂质及缺陷含晕、更均匀的分布以及生产成本低、效率高的方向发展。 二、单晶硅的生长原理 在单晶硅生长过程中,随着熔场温度的下降,将发生由液态转变到固态的相变化。对于发生在等温、等压条件下的相变化,不同相之间的相对稳定性可由吉布斯自由能判定。AG可以视为结晶驱动力。 △G=△H—TAS (1) 在平衡的熔化温度瓦时,固液两相的自由能是相等的,即AG=0,因此 △G=AH一瓦X AS---O (2) 所以,AS=AH/T= (3) 其中,AH即为结晶潜热。将式(3)代入式(1)可得 (4) 由式(4)可以看出,由于AS是一个负值常数,所以△兀即过冷度)可被视为结晶的唯一驱动力。 以典型的CZ长晶法为例,加热器的作用在于提供系统热量,以使熔硅维持在高于熔点的温度。如果在液面浸入一品种,在品种与熔硅达到热平衡时,液面会靠着表面张力的支撑吸附在晶种下方。若此时将晶种往上提升,这些被吸附的液体也会跟着晶种往上运动,而形成过冷状态。这节过冷的液体由于过冷度产生的驱动力而结晶,并随着晶种方向长成单晶棒。在凝固结晶过程中,所释放出的潜热是一个间接的热量来源,潜热将借着传导作用而沿着晶棒传输。同时,晶棒表面也会借着热辐射与热对流将热量散失到外围,另外熔场表面也会将热量散失掉。于是,在一个固定的条件下,进入系统的热能将等于系统输出的热能陟。 三、硅单晶生长方法 1直拉(CZ)法 直拉法的生产过程简单来说就是利用旋转的籽晶从熔硅中提拉制备单晶硅。此法产量大、成本低,国内外大多数太阳能单晶硅片厂家多采用这种技术。目前,直拉法生产工艺的研究热点主要有:先进的热场构造、磁场直拉法以及对单晶硅中氧浓度的控制等方面。 (1)先进的热场构造 在现代下游IC产业对硅片品质依赖度日益增加的情况下,热场的设计要求越来越高。好的

单晶硅制备方法

金属1001 覃文远3080702014 单晶硅制备方法 我们的生活中处处可见“硅”的身影和作用,晶体硅太阳能电池是近15年来形成产业化最快的。 单晶硅,英文,Monocrystallinesilicon。是硅的单晶体。具有基本完整的点阵结构的晶体。不同的方向具有不同的性质,是一种良好的半导材料。纯度要求达到99.9999%,甚至达到99.9999999%以上。用于制造半导体器件、太阳能电池等。用高纯度的多晶硅在单晶炉内拉制而成。 用途:单晶硅具有金刚石晶格,晶体硬而脆,具有金属光泽,能导电,但导电率不及金属,且随着温度升高而增加,具有半导体性质。单晶硅是重要的半导体材料。在单晶硅中掺入微量的第ЩA族元素,形成P型半导体,掺入微量的第VA族元素,形成N型,N型和P型半导体结合在一起,就可做成太阳能电池,将辐射能转变为电能。 单晶硅是制造半导体硅器件的原料,用于制大功率整流器、大功率晶体管、二极管、开关器件等。在开发能源方面是一种很有前途的材料。 单晶硅按晶体生长方法的不同,分为直拉法(CZ)、区熔法(FZ)和外延法。直拉法、区熔法生长单晶硅棒材,外延法生长单晶硅薄膜。直拉法生长的单晶硅主要用于半导体集成电路、二极管、外延片衬底、太阳能电池。 直拉法 直拉法又称乔赫拉尔基斯法(Caochralski)法,简称CZ法。它是生长半导体单晶硅的主要方法。该法是在直拉单晶氯内,向盛有熔硅坩锅中,引入籽晶作为非均匀晶核,然后控制热场,将籽晶旋转并缓慢向上提拉,单晶便在籽晶下按照籽晶的方向长大。拉出的液体固化为单晶,调节加热功率就可以得到所需的单晶棒的直径。其优点是晶体被拉出液面不与器壁接触,不受容器限制,因此晶体中应力小,同时又能防止器壁沾污或接触所可能引起的杂乱晶核而形成多晶。直拉法是以定向的籽晶为生长晶核,因而可以得到有一定晶向生长的单晶。 直拉法制成的单晶完整性好,直径和长度都可以很大,生长速率也高。所用坩埚必须由不污染熔体的材料制成。因此,一些化学性活泼或熔点极高的材料,由于没有合适的坩埚,而不能用此法制备单晶体,而要改用区熔法晶体生长或其

单晶硅与多晶硅的区别、功能及优缺点

单晶硅与多晶硅的区别、功能及优缺点 单晶硅 硅有晶态和无定形两种同素异形体。晶态硅又分为单晶硅和多晶硅,它们均具有金刚石晶格,晶体硬而脆,具有金属光泽,能导电,但导电率不及金属,且随温度升高而增加,具有半导体性质。 单晶硅在日常生活中是电子计算机、自动控制系统等现代科学技术中不可缺少的基本材料。电视、电脑、冰箱、电话、手表、汽车,处处都离不开单晶硅材料,单晶硅作为科技应用普及材料之一,已经渗透到人们生活中的各个角落。 单晶硅在火星上是火星探测器中太阳能转换器的制成材料。火星探测器在火星上的能量全部来自太阳光,探测器白天休息---利用太阳能电池板把光能转化为电能存储起来,晚上则进行科学研究活动。也就是说,只要有了单晶硅,在太阳光照到的地方,就有了能量来源单晶硅在太空中是航天飞机、宇宙飞船、人造卫星必不可少的原材料。人类在征服宇宙的征途上,所取得的每一步进步,都有着单晶硅的身影。航天器材大部分的零部件都要以单晶硅为基础。离开单晶硅,卫星会没有能源,没有单晶硅,航天飞机和宇航员不会和地球取得联系,单晶硅作为人类科技进步的基石,为人类征服太空作出了不可磨灭的贡献。 单晶硅在太阳能电池中得到广泛的应用。高纯的单晶硅是重要的半导体材料,在光伏技术和微小型半导体逆变器技术飞速发展的今天,利用硅单晶所生产的太阳能电池可以直接把太阳能转化为光能,实现了迈向绿色能源革命的开始。单晶硅太阳能电池的特点:1.光电转换效率高,可靠性高; 2.先进的扩散技术,保证片内各处转换效率的均匀性; 3.运用先进的PECVD成膜技术,在电池表面镀上深蓝色的氮化硅减反射膜,颜色均匀美观;4.应用高品质的金属浆料制作背场和电极,确保良好的导电性。 单晶硅广阔的应用领域和良好的发展前景北京2008年奥运会将把"绿色奥运"做为重要展示面向全世界展现,单晶硅的利用在其中将是非常重要的一环。现在,国外的太阳能光伏电站已经到了理论成熟阶段,正在向实际应用阶段过渡,太阳能硅单晶的利用将是普及到全世界范围,市场需求量不言而喻。

单晶培养.单晶生长原理及其常规方法

单晶的培养 物质的结构决定物质的物理化学性质和性能,同时物理化学性质和性能是物质结构的反映。只有充分了解物质结构,才能深入认识和理解物质的性能,才能更好地改进化合物和材料的性质与功能,设计出性能良好的新化合物和新材料。单晶结构分析可以提供一个化合物在固态中所有原子的精确空间位置、原子的连接形式、分子构象、准确的键长和键角等数据,从而为化学、材料科学和生命科学等研究提供广泛而重要的信息。X射线晶体结构分析的过程,从单晶培养开始,到晶体的挑选与安置,继而使用衍射仪测量衍射数据,再利用各种结构分析与数据拟合方法,进行晶体结构解析与结构精修,最后得到各种晶体结构的几何数据与结构图形等结果。要获得比较理想的衍射数据,首先必须获得质量好的单晶。衍射实验所需要单晶的培养,需要采用合适的方法,以获得质量好、尺寸合适的晶体。晶体的生长和质量主要依赖于晶核形成和生长的速率。如果晶核形成速率大于生长速率,就会形成大量的微晶,并容易出现晶体团聚。相反,太快的生长速率会引起晶体出现缺陷。以下是几种常用的有效的方法和一些实用的建议。 1.溶液中晶体的生长 从溶液中将化合物结晶出来,是单晶体生长的最常用的形式。它是通过冷却或蒸发化合物的饱和溶液,让化合物从溶液中结晶出来。这时最好采取各种必要的措施,使其缓慢冷却或蒸发,以期获得比较完美的晶体。因为晶体的生长和质量主要依赖于晶核形成和生长的速率。如果晶核形成速率大于生长速率,就会形成大量的微晶,并容易出现晶体团聚。相反,太快的生长速率会引起晶体出现缺陷。在实验中,通常注意以下几个方面: ①为了减少晶核成长位置的数目,最好使用干净、光滑的玻璃杯等容器。 ②应在非震动环境中,较高温度下进行结晶,因为较高温度条件下结晶可以减少化合物与不必要溶剂共结晶的几率,同时,必须注意,尽量不要让溶剂完全挥发。因为溶剂完全挥发后,容易导致晶体相互团聚或者沾染杂质,不利于获得纯相、质量优良的晶体。 ③可以尝试不同的溶剂,但应尽量避免使用氯仿和四氯化碳等含有重原子并且通常会在晶体中形成无序结构的溶剂。 2.界面扩散法 如果化合物有两种反应物反应生成,而两种反应物可以分别溶于不同(尤其是不太互溶的)溶剂中,可以用溶液界面扩散法(liuuiddi恤sion)。将A溶液小心的加到B溶液上,化学反应将在这两种溶液的接触面开始,晶体就可能在溶液界面附近产生。通常溶液慢慢扩散进另一种溶液时,会在界面附近产生好的晶体。如果结晶速率太快,可以利用凝胶体等方法,进一步降低扩散速率,以求结晶完美。 3.蒸汽扩散法 蒸汽扩散法(vapordi恤sion)的操作也很简单。选择两种对目标化合物溶解度不同的溶剂A和B,且A和B有一定的互溶性。把要结晶的化合物溶解在盛于

单晶硅材料简介

单晶硅材料简介 摘要:单晶硅是硅的单晶体,具有完整的点阵结构,纯度要求在99.9999%以上,是一种良好的半导体材料。制作工艺以直拉法为主,兼以区熔和外延。自从1893年光生伏效应的发现,太阳能电池就开始在人们的视线中出现,随着波兰科学家发展了生长单晶硅的提拉法工艺以及1959年单晶硅电池效率突破10%,单晶硅正式进入商业化。我国更是在05年把太阳能电池的产量提高到10MW/年,并且成为世界重要的光伏工业基地。单晶硅使信息产业成为全球经济发展中增长最快的先导产业,世界各国也重点发展单晶硅使得单晶硅成为能源行业宠儿。地壳中含量超过25.8%的硅含量使得单晶硅来源丰富,虽然暂时太阳能行业暂时以P 型电池主导,但遭遇边际效应的P型电池终将被N型电池所取代。单晶硅前途不可限量。 关键字:性质;历史;制备;发展前景 Monocrystalline silicon material Brief Introduction Abstract: Monocrystalline silicon is silicon single crystal with complete lattice structure, purity over 99.9999%, is a good semiconductor materials.Process is given priority to with czochralski method, and with zone melting and extension.Since 1893 time born v effect, found that solar cells began to appear in the line of sight of people, with the development of polish scientist pulling method of single crystal silicon growth process and single crystal silicon battery efficiency above 10% in 1959, monocrystalline silicon formally enter the commercial.5 years of our country is in the production of solar cells to 10 mw/year, and become the world pv industrial base.Monocrystalline silicon makes information industry become the world's fastest growing economy in the forerunner industry, the world also make focus on monocrystalline silicon single crystal silicon darling become the energy industry.Content more than 25.8% of silicon content in the crust has rich source of monocrystalline silicon, while the solar industry to temporarily P type battery, but in the marginal effects of p-type battery will eventually be replaced by N type battery.Future of monocrystalline silicon. Key words: silicon;Properties;History;Preparation;Prospects for development 一、单晶硅基本性质以及历史沿革 硅有晶态和无定形两种同素异形体。晶态硅又分为单晶硅和多晶硅,它们均具有金刚石晶格,晶体硬而脆,具有金属光泽,能导电,但导电率不及金属,且随温度升高而增加,具有半导体性质。晶态硅的熔点1410C,沸点2355C,密度2.32~2.34g/cm3,莫氏硬度为7。 单晶硅是硅的单晶体。具有基本完整的点阵结构的晶体。不同的方向具有不同的性质,是一种良好的半导材料。纯度要求达到99.9999%,甚至达到99.9999999%以上。 熔融的单质硅在凝固时硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则这些晶粒平行结合起来便结晶成单晶硅。单晶硅具有准金属的物理性质,有较弱的导电性,其电导率随温度的升高而增加,有显著的半导电性。超纯的单晶硅是本征半导体。在超纯单晶硅中掺入微量的ⅢA族元素,如硼可提高其导电的程度,而形成p型硅半导体;如掺入微量的ⅤA族元素,如磷或砷也可提高导电程度,形成n型硅半导体。 最开始是1893年法国的实验物理学家E.Becquerel发现液体的光生伏特效应,简称为光伏效应。在1918年的时候波兰科学家Czochralski发展生长单晶硅的提拉法工艺。1959年Hoffman电子实现可商业化单晶硅电池效率达到10%,并通过用网栅电极来显著减少光伏电池串联电阻;卫星探险家6号发射,共用9600片太阳能电池列阵,每片2c㎡,共20W。由此单晶硅生产的太阳能电池正式进入商业化方向。 同样在中国,单晶硅的发展也是伴随着太阳能电池的发展。在1958年的时候我国开始

单晶硅炉

单晶硅生长炉 目录 单晶硅生长炉 原理简介 目前国内外晶体生长设备的现状 单晶硅生长炉的特点 单晶硅生长炉 原理简介 目前国内外晶体生长设备的现状 单晶硅生长炉的特点 展开 编辑本段单晶硅生长炉 单晶硅生长炉是通过直拉法生产单晶硅的制造设备。主要由主机、加热电源和计算机控制系统三大部分组成。 1、主机部分: ●机架,双立柱 ●双层水冷式结构炉体 ●水冷式阀座 ●晶体提升及旋转机构 ●坩埚提升及旋转机构 ●氩气系统 ●真空系统及自动炉压检测控制 ●水冷系统及多种安全保障装置 ●留有二次加料口 2、加热器电源: 全水冷电源装置采用专利电源或原装进口IGBT及超快恢复二极管等功率器件。配以特效高频变压器,构成新一代高频开关电源。采用移相全桥软开关(ZVS)及CPU独立控制技术,提高了电能转换效率,不需要功率因数补偿装置。 3、计算机控制系统: 采用PLC和上位工业平板电脑PC机,配备大屏幕触摸式HMI人机界面、高像素CCD测径ADC系统和具有独立知识产权的“全自动CZ法晶体生长SCADA监控系统”,可实现从抽真空—检漏—炉压控制—熔料—稳定—溶接—引晶—放肩—转肩—等径—收尾—停炉全过程自动控制。

中国西安理工大学研究所 。 美国KAYEX公司 德国CGS GmbH公司 编辑本段单晶硅生长炉的特点 HD系列硅单晶炉的炉室采用3节设计。上筒和上盖可以上升并向两边转动,便于装料和维护等。炉筒升降支撑采用双立柱设计,提高稳定性。支撑柱安装在炉体支撑平台的上面,便于平台下面设备的维护。炉筒升降采用丝杠提升技术,简便干净。 全自动控制系统采用模块化设计,维护方便,可靠性高,抗干扰性好。双摄像头实时采集晶体直径信息。液面测温确保下籽晶温度和可重复性。炉内温度或加热功率控制方式可选,保证控温精度。质量流量计精确控制氩气流量。高精度真空计结合电动蝶阀实时控制炉内真空度。上称重传感器用于晶棒直径的辅助控制。伺服电机和步进电机的混合使用,即可满足转动所需的扭矩,又可实现转速的精确控制。质量流量计精确控制氩气流量。 自主产权的控制软件采用视窗平台,操作方便简洁直观。多种曲线和数据交叉分析工具提供了工艺实时监控的平台。完整的工艺设定界面使计算机可以自动完成几乎所有的工艺过程。 加热电源采用绿色纵向12脉冲直流电源。比传统直流电源节能近15%。 特殊的温场设计使晶体提拉速度提高20-30%。

四川单晶硅项目申报材料

四川单晶硅项目申报材料 xxx有限公司

报告说明— 从生产工艺来看,单多晶生产工艺差别主要体现在拉棒和铸锭环节, 其中单晶硅棒工艺对设备、生产人员的要求严格,早期单晶硅片因长晶炉 投料量、生长速率、拉棒速度等方面技术不够成熟,生产成本居高不下, 而多晶硅锭使用铸锭技术成本优势明显而占据主要市场份额。 该单晶硅棒项目计划总投资2741.68万元,其中:固定资产投资 2429.72万元,占项目总投资的88.62%;流动资金311.96万元,占项目总 投资的11.38%。 达产年营业收入2738.00万元,总成本费用2132.46万元,税金及附 加47.11万元,利润总额605.54万元,利税总额736.17万元,税后净利 润454.15万元,达产年纳税总额282.01万元;达产年投资利润率22.09%,投资利税率26.85%,投资回报率16.56%,全部投资回收期7.54年,提供 就业职位43个。 硅棒在2018年和2020年能分别达到1942万片/月和2130万片/月, 预计2015年到2020年之间符合年均增速为5.4%。硅棒指的是作用主要是 耐火耐高温材料,做高温发热的元件,为无色立方或六方晶体,表面氧化或 含杂质时呈蓝黑色。

目录 第一章项目基本情况 第二章项目投资单位 第三章建设背景 第四章项目市场分析 第五章项目建设方案 第六章项目选址科学性分析第七章土建工程 第八章工艺技术方案 第九章项目环境影响分析第十章企业卫生 第十一章项目风险评估分析第十二章节能说明 第十三章进度方案 第十四章项目投资方案分析第十五章项目经营收益分析第十六章项目结论 第十七章项目招投标方案

浅析单晶硅的生产现状

浅析单晶硅的生产现状 发表时间:2018-07-23T16:41:02.197Z 来源:《知识-力量》2018年8月上作者:高磊刘佳佳[导读] 本文综述了制造光伏电池和集成电路用单晶硅的特点,对直拉法生长单晶硅的基本原理及生产工艺进行论述,并且分析了直拉法单晶生长过程中的主要杂质及其来源。(郑州大学,河南郑州 450001) 摘要:本文综述了制造光伏电池和集成电路用单晶硅的特点,对直拉法生长单晶硅的基本原理及生产工艺进行论述,并且分析了直拉法单晶生长过程中的主要杂质及其来源。关键词:单晶硅直拉法生产工艺前言 单晶硅属于立方晶系,金刚石结构,是一种性能优良的半导体材料。应用于制作晶体管、微处理器、存储器、模拟电路等,其中90%的半导体器件和集成电路都是用硅单晶制作的。目前,单晶硅在太阳能光伏电池和集成电路中的应用最为广泛。 随着电子通讯行业和太阳能光伏产业的快速发展,半导体工业也随之迅猛发展。到目前为止,太阳能光电工业基本上是建立在硅材料基础之上的,以硅材料为主的半导体专用材料在国民经济、军事工业中的地位非常重要,全世界的半导体器件中有95 % 以上是用硅材料制成。其中单晶硅则是半导体器件的核心材料,单晶硅属于立方晶系,具有类似金刚石的结构,硬度大,在较宽的温度范围内,都能够稳定地工作,其热稳定性和电学性能非常好。硅材料的优点及用途决定了它是目前最重要、产量最大、发展最快、用途最广泛的一种半导体材料。因此,单晶硅制备工艺发展迅速,产量大幅增加。 1单晶硅生产工艺 当前制备单晶硅主要有两种技术,根据晶体生长方式不同,可分为悬浮区熔法和直拉法。这两种方法制备的单晶硅具有不同的特性和不同的器件应用领域,区熔单晶硅主要应用于大功率器件方面,而直拉单晶硅主要应用于微电子集成电路和太阳能电池方面,是单晶硅的主体。 区熔法:在整个制备单晶硅的过程中,不需要使用石英坩埚支撑,高温的硅并没有和任何其它物质接触,因而很容易保持高纯度。这种方法制备的单晶硅氧含量低,但是不容易生长出较大直径的硅单晶。 直拉法:也被简称为CZ 法,现已成为制备单晶硅材料最为重要的方法之一。CZ法是将原料装在一个石英坩埚中,外面用石墨加热器进行加热,当原料被加热器熔化后,将籽晶插入熔体之中,在合适的温度下,边转动边提拉,即可获得所需单晶。直拉法的优点是:可以方便地观察晶体生长过程、晶体生长时内部热应力小、可以方便地使用“缩颈”工艺,降低位错密度,成品率高、方便的控制温度梯度、有较快的生长效率。 直拉法生长单晶的具体工艺过程包括装料、化料、熔接、引晶、放肩、转肩、等径生长和收尾这几个阶段: 1.装料:根据所设计的投料量,将块状多晶硅料装入石英坩埚内并放入到单晶炉中。在此阶段有两个问题需要特别注意: 投料量和熔料温度,避免在化料过程中产生不利的问题,例如挂边、破裂。 2.抽真空:将单晶炉内的空气抽出,真空合格后充入保护气体氩气。 3.化料:打开功率进行加热,使炉体上升到1500℃左右。熔硅时,应注意炉内真空度的变化,一般来说,在流动气氛下或在减压下熔硅比较稳定。熔硅温度升到1000℃时应转动坩埚,使坩埚各部受热均匀。 4.熔接:当硅料全部溶化,调整加热功率以控制熔体的温度。待熔体稳定后,降下籽晶至离液面3-5mm 距离,使籽晶预热,以减少籽晶与溶硅的温度差,从而减少籽晶与溶硅接触时在籽晶中产生的热应力。预热充分后的籽晶则可以继续下降与液面进行熔接,同时籽晶保持一定的旋转速度。 5.引晶:为排除籽晶在熔接时由于受热冲击而产生的位错延伸到晶体中,需要控制籽晶生长出一段长为100mm左右、直径为3~5mm的细颈,在引晶过程中需注意两个关键因素:坩埚的位置和液面温度。 6.放肩:为使得晶体直径达到制备要求的尺寸,进行放肩。引晶完成后,将拉速降低,同时降低功率开始放肩。放肩角一般控制在140°至160°之间,需适当调整放肩速度,保持圆滑光亮的放肩表面。放肩过程可通过降低拉速或者降低温度实现。 7.转肩:当放肩过程达到目标直径时,要对它的生长进行控制,通过提高拉晶速度进行转肩,使肩近似直角,进入等直径的纵向生长。 8.等径:当晶棒长到一定长度,就可以对其直径进行等径控制,以确保单晶棒直径的上下一致。等径过程在整个拉晶工艺中占用时间最多也是最重的阶段,这个阶段的工艺直接决定了单晶硅棒的质量。不仅要控制好晶体的直径,更为重要的是保持晶体的无错位生长。 9.收尾:在晶体生长接近尾声时,生长速度再次加快,同时升高硅熔体的温度,使得晶体的直径不断缩小,形成一个圆锥形,最终晶体离开液面,单晶硅生长完成。收尾的作用是防止位错反延。 10.停炉:当单晶硅与液面脱离后,不能立刻把晶棒升高,而是缓慢降低加热器功率直至为零,仍保持氩气的正常流通直至完全冷却,以防止空气对单晶硅表面的氧化。 2直拉单晶中存在的主要杂质目前,在直拉单晶硅中,主要杂质是氧和碳。 (1)单晶硅中的氧杂质在CZ法生长中,氧是直拉单晶硅中的主要杂质,氧不可避免地掺入硅单晶。其途径是在硅的熔点(1420℃)附近,熔硅与石英坩埚作用,生成sio进入硅熔体,溶解的氧经由熔体的对流和扩散传输到晶体和熔体的界面或自由表面。熔体中的部分氧在熔体自由表面蒸发,而余下的氧则通过晶体和熔体界面分凝而渗入晶体内。在实际直拉单晶硅中,氧浓度的表现为头部高、尾部低,在收尾处氧浓度有所上升,同时,氧浓度从单晶硅的中心部位到边缘是逐渐降低的。这是受晶体生长工艺变化的影响。 (2)单晶中的碳杂质

单晶硅的原材料

单晶硅棒、单晶硅片成品和主要原料 单质硅有无定形及晶体两种。无定形硅为灰黑色或栗色粉末,更常见的是无定形块状,它们是热和电的不良导体、质硬,主要用于冶金工业(例如铁合金及铝合金的生产)及制造硅化物。晶体硅是银灰色,有金属光泽的晶体,能导电(但导电率不及金属)故又称为金属硅。高纯度的金属硅(≥99.99%)是生产半导体的材料,也是电子工业的基础材料。掺杂有微量硼、磷等元素的单晶硅可用于制造二极管、晶体管及其他半导体器件。 由于半导体技术不断向高集成度,高性能,低成本和系统化方向发展,半导体在国民经济各领域中的应用更加广泛。单晶硅片按使用性质可分为两大类:生产用硅片;测试用硅片。 半导体元件所使用的单晶硅片系采用多晶硅原料再经由单晶生长技术所生产出来的。多晶硅所使用的原材料来自硅砂(二氧化硅)。目前商业化的多晶硅依外观可分为块状多晶与粒状多晶。 多晶硅的品质规格: 多晶硅按外形可分为块状多晶硅和棒状多晶硅;等级分为一、二、三级免洗料。 多晶硅的检测: 主要检测参数为电阻率、碳浓度、N型少数载流子寿命;外形主要是块状的大小程度;结构方面要求无氧化夹层;表面需要经过酸腐蚀,结构需致密、平整,多晶硅的外观应无色斑、变色,无可见的污染物。对于特殊要求的,还需要进行体内金属杂质含量的检测。 单晶硅棒品质规格: 单晶硅棒的主要技术参数

其中电阻率、OISF密度、以及碳含量是衡量单晶硅棒等级的关键参数。这些参数在单晶成型后即定型,无法在此后的加工中进行改变。 测试方法: 电阻率:用四探针法。 OISF密度:利用氧化诱生法在高温、高洁净的炉管中氧化,再经过腐蚀后观察其密度进行报数。 碳含量:利用红外分光光度计进行检测。 单晶硅抛光片品质规格: 单晶硅抛光片的物理性能参数同硅单晶技术参数 单晶硅抛光片的表面质量:正面要求无划道、无蚀坑、无雾、无区域沾污、无崩边、无裂缝、无凹坑、无沟、无小丘、无刀痕等。背面要求无区域沾污、无崩边、无裂缝、无刀痕。(太阳能人才太阳能招聘人才招聘太阳能商情网)

单晶硅生长炉原理

单晶硅生长炉原理 单晶硅生长炉原理 首先,把高纯度的多晶硅原料放入高纯石英坩埚,通过石墨加热器产生的高温将其熔化;然后,对熔化的硅液稍做降温,使之产生一定的过冷度,再用一根固定在籽晶轴上的硅单晶体(称作籽晶)插入熔体表面,待籽晶与熔体熔和后,慢慢向上拉籽晶,晶体便会在籽晶下端生长;接着,控制籽晶生长出一段长为100m 单晶硅生长炉 m左右、直径为3~5mm的细颈,用于消除高温溶液对籽晶的强烈热冲击而产生的原子排列的位错,这个过程就是引晶;随后,放大晶体直径到工艺要求的大小,一般为75~300mm,这个过程称为放肩;接着,突然提高拉速进行转肩操作,使肩部近似直角;然后,进入等径工艺,通过控制热场温度和晶体提升速度,生长出一定直径规格大小的单晶柱体;最后,待大部分硅溶液都已经完成结晶时,再将晶体逐渐缩小而形成一个尾形锥体,称为收尾工艺;这样一个单晶拉制过程就基本完成,进行一定的保温冷却后就可以取出。 直拉法,也叫切克劳斯基(J.Czochralski)方法。此法早在1917年由切克劳斯基建立的一种晶体生长方法,用直拉法生长单晶的设备和工艺比较简单,容易实现自动控制,生产效率高,易于制备大直径单晶,容易控制单晶中杂质浓度,可以制备低电阻率单晶。据统计,世界上硅单晶的产量中70%~80%是用直拉法生产的。 单晶硅生长炉现状 目前国内外晶体生长设备的现状如下: 美国KAYEX公司 国外以美国KAYEX公司为代表,生产全自动硅单晶体生长炉。KAYEX公司是目前世界上最大,最先进的硅单晶体生长炉制造商之一。KAYEX的产品早在80年代初就进入中国市场,已成为中国半导体行业使用最多的品牌。该公司生长的硅晶体生长炉从抽真空-检漏-熔料-引晶-放肩-等径-收尾到关机的全过程由计算机实行全自动控制。晶体产品的完整性与均匀性好,直径偏差在单晶全长内仅±1mm。主要产品有CG3000、CG6000、KAYEX100PV、KAYEX120PV、KEYEX150,Vision300型,投料量分别为30kg、60kg、100kg、120kg、150kg、300kg。

单晶硅技术参数

单晶硅抛光片的物理性能参数同硅单晶技术参数 厚度(T) 200-1200um 总厚度变化(TTV)<10um 弯曲度(BOW)<35um 翘曲度(WARP)<35um 单晶硅抛光片的表面质量:正面要求无划道、无蚀坑、无雾、无区域沾污、无崩边、无裂缝、无凹坑、无沟、无小丘、无刀痕等。背面要求无区域沾污、无崩边、无裂缝、无刀痕。 (2)加工工艺知识 多晶硅加工成单晶硅棒: 多晶硅长晶法即长成单晶硅棒法有二种: CZ(Czochralski)法 FZ(Float-Zone Technique)法 目前超过98%的电子元件材料全部使用单晶硅。其中用CZ法占了约85%,其他部份则是由浮融法FZ生长法。CZ法生长出的单晶硅,用在生产低功率的集成电路元件。而FZ法生长出的单晶硅则主要用在高功率的电子元件。CZ法所以比FZ法更普遍被半导体工业采用,主要在于它的高氧含量提供了晶片强化的优点。另外一个原因是CZ法比FZ法更容易生产出大尺寸的单晶硅棒。 目前国内主要采用CZ法 CZ法主要设备:CZ生长炉 CZ法生长炉的组成元件可分成四部分 (1)炉体:包括石英坩埚,石墨坩埚,加热及绝热元件,炉壁 (2)晶棒及坩埚拉升旋转机构:包括籽晶夹头,吊线及拉升旋转元件 (3)气氛压力控制:包括气体流量控制,真空系统及压力控制阀 (4)控制系统:包括侦测感应器及电脑控制系统 加工工艺: 加料→熔化→缩颈生长→放肩生长→等径生长→尾部生长 (1)加料:将多晶硅原料及杂质放入石英坩埚内,杂质的种类依电阻的N或P型而定。杂质种类有硼,磷,锑,砷。 (2)熔化:加完多晶硅原料于石英埚内后,长晶炉必须关闭并抽成真空后充入高纯氩气使之维持一定压力范围内,然后打开石墨加热器电源,加热至熔化温度(1420℃)以上,将多晶硅原料熔化。 (3)缩颈生长:当硅熔体的温度稳定之后,将籽晶慢慢浸入硅熔体中。由于籽晶与硅熔体场接触时的热应力,会使籽晶产生位错,这些位错必须利用缩劲生长使之消失掉。缩颈生长是将籽晶快速向上提升,使长出的籽晶的直径缩小到一定大小(4-6mm)由于位错线与生长轴成一个交角,只要缩颈够长,位错便能长出晶体表面,产生零位错的晶体。 (4)放肩生长:长完细颈之后,须降低温度与拉速,使得晶体的直径渐渐增大到所需的大小。 (5)等径生长:长完细颈和肩部之后,借着拉速与温度的不断调整,可使晶棒直径维持在正负2mm之间,这段直径固定的部分即称为等径部分。单晶硅片取自于等径

单晶硅生产工艺

什么是单晶硅 单晶硅可以用于二极管级、整流器件级、电路级以及太阳能电池级单晶产品的生产和深加工制造,其后续产品集成电路和半导体分离器件已广泛应用于各个领域,在军事电子设备中也占有重要地位。 在光伏技术和微小型半导体逆变器技术飞速发展的今天,利用硅单晶所生产的太阳能电池可以直接把太阳能转化为光能,实现了迈向绿色能源革命的开始。北京2008年奥运会将把“绿色奥运”做为重要展示面向全世界展现,单晶硅的利用在其中将是非常重要的一环。现在,国外的太阳能光伏电站已经到了理论成熟阶段,正在向实际应用阶段过渡,太阳能硅单晶的利用将是普及到全世界范围,市场需求量不言而喻。 单晶硅产品包括φ3”----φ6”单晶硅圆形棒、片及方形棒、片,适合各种半导体、电子类产品的生产需要,其产品质量经过当前世界上最先进的检测仪器进行检验,达到世界先进水平。 相对多晶硅是在单籽晶为生长核,生长的而得的。单晶硅原子以三维空间模式周期形成的长程有序的晶体。多晶硅是很多具有不同晶向的小单晶体单独形成的,不能用来做半导体电路。多晶硅必须融化成单晶体,才能加工成半导体应用中使用的晶圆片 加工工艺: 加料—→熔化—→缩颈生长—→放肩生长—→等径生长—→尾部生长 (1)加料:将多晶硅原料及杂质放入石英坩埚内,杂质的种类依电阻的N或P型而定。杂质种类有硼,磷,锑,砷。 (2)熔化:加完多晶硅原料于石英埚内后,长晶炉必须关闭并抽成真空后充入高纯氩气使之维持一定压力范围内,然后打开石墨加热器电源,加热至熔化温度(1420℃)以上,将多晶硅原料熔化。 (3)缩颈生长:当硅熔体的温度稳定之后,将籽晶慢慢浸入硅熔体中。由于籽晶与硅熔体场接触时的热应力,会使籽晶产生位错,这些位错必须利用缩颈生长使之消失掉。缩颈生长是将籽晶快速向上提升,使长出的籽晶的直径缩小到一定大小(4-6mm)由于位错线与生长轴成一个交角,只要缩颈够长,位错便能长出晶体表面,产生零位错的晶体。 (4)放肩生长:长完细颈之后,须降低温度与拉速,使得晶体的直径渐渐增大到所需的大小。 (5)等径生长:长完细颈和肩部之后,借着拉速与温度的不断调整,可使晶棒直径维持在正负2mm之间,这段直径固定的部分即称为等径部分。单晶硅片取自于等径部分。 (6)尾部生长:在长完等径部分之后,如果立刻将晶棒与液面分开,那么热应力

中国晶体硅生长炉设备调查

中国晶体硅生长炉设备调查 目前我国有超过30家企业在生产多晶硅铸锭炉和单晶炉。现推出中国晶体硅生长炉设备调查。 多晶硅铸锭炉发展迅速太阳能产业的迅猛发展需要更多的硅料及生产设备来支撑。世界光伏产业中,多晶硅片太阳能电池占据主导地位,带动了多晶硅铸锭生长设备市场的发展。目前,全球太阳能电池的主流产品为硅基产品,占太阳能电池总量的85%以上。多晶硅太阳能电池占太阳能电池总量的56%。多晶硅太阳能电池由于产能高,单位能源消耗低,其成本低于单晶硅片,适应降低太阳能发电成本的发展趋势。多晶铸锭生长技术已逐渐发展成为一种主流的技术,由此也带动了多晶硅铸锭炉市场的发展。多晶硅铸锭炉作为一种硅重熔的设备,重熔质量的好坏直接影响硅片转换效率和硅片加工的成品率。 目前,我国引进最多的是GT SOALR(GT Advanced Technologies Inc.,以下简称GT) 的结晶炉。在国际多晶硅铸锭炉市场上,市场份额占有率最高的为美国GT公司和德国ALD公司。GT公司市场主要面向亚洲,在亚洲的市场销售额占其收入的60%;ALD公司主要面向欧洲市场。其他多晶铸锭设备的主要国际生产商还有美国Crystallox Limited、挪威Scanwafer、普发拓普、和法国ECM。德国ALD公司生产的多晶硅铸锭炉投料量为400kg/炉;美国Crystallox Limited 公司为275kg/炉;挪威Scanwafer公司生产的多晶硅铸锭炉可同时生产4锭,投料量达到800~1000kg/炉,该设备属于专利产品,暂时不对外销售;法国ECM生产的多晶硅铸锭炉采用三温区设计,提高了硅料的再利用率高。 国内的保定英利、江西赛维LDK、浙江精功太阳能都是引进GT的结晶炉。从早期160公斤级到240公斤级,目前容量已增加到450公斤级甚至到800公斤级。2003年10月国内第一条铸锭线在保定英利建成,2006年4月LDK项目投产,百兆瓦级规模生产启动。随后,尚德、林洋、CSI等众多企业多晶硅电池开始量产。2002年, 30~50kg的小型浇铸炉研发;2004年, 100kg试验型热交换型铸锭炉研发;2007年, 240kg大生产型定向凝固炉研发成功并推向市场。

单晶硅片制作工艺流程

单晶硅电磁片生产工艺流程 ?1、硅片切割,材料准备: ?工业制作硅电池所用的单晶硅材料,一般采用坩锅直拉法制的太阳级单晶硅棒,原始的形状为圆柱形,然后切割成方形硅片(或多晶方形硅片),硅片的边长一般为10~15cm,厚度约200~350um,电阻率约1Ω.cm的p型(掺硼)。 ?2、去除损伤层: ?硅片在切割过程会产生大量的表面缺陷,这就会产生两个问题,首先表面的质量较差,另外这些表面缺陷会在电池制造过程中导致碎片增多。因此要将切割损伤层去除,一般采用碱或酸腐蚀,腐蚀的厚度约10um。 ? ? 3、制绒: ?制绒,就是把相对光滑的原材料硅片的表面通过酸或碱腐蚀,使其凸凹不平,变得粗糙,形成漫反射,减少直射到硅片表面的太阳能的损失。对于单晶硅来说一般采用NaOH加醇的方法腐蚀,利用单晶硅的各向异性腐蚀,在表面形成无数的金字塔结构,碱液的温度约80度,浓度约1~2%,腐蚀时间约15分钟。对于多晶来说,一般采用酸法腐蚀。 ? 4、扩散制结:

?扩散的目的在于形成PN结。普遍采用磷做n型掺杂。由于固态扩散需要很高的温度,因此在扩散前硅片表面的洁净非常重要,要求硅片在制绒后要进行清洗,即用酸来中和硅片表面的碱残留和金属杂质。 ? 5、边缘刻蚀、清洗: ?扩散过程中,在硅片的周边表面也形成了扩散层。周边扩散层使电池的上下电极形成短路环,必须将它除去。周边上存在任何微小的局部短路都会使电池并联电阻下降,以至成为废品。 目前,工业化生产用等离子干法腐蚀,在辉光放电条件下通过氟和氧交替对硅作用,去除含有扩散层的周边。 扩散后清洗的目的是去除扩散过程中形成的磷硅玻璃。 ? 6、沉积减反射层: ?沉积减反射层的目的在于减少表面反射,增加折射率。广泛使用PECVD淀积SiN ,由于PECVD淀积SiN时,不光是生长SiN 作为减反射膜,同时生成了大量的原子氢,这些氢原子能对多晶硅片具有表面钝化和体钝化的双重作用,可用于大批量生产。 ? 7、丝网印刷上下电极: ?电极的制备是太阳电池制备过程中一个至关重要的步骤,它不仅决定了发射区的结构,而且也决定了电池的串联电阻和电

云南单晶硅项目申报材料

云南单晶硅项目申报材料 参考模板

报告说明— 从生产工艺来看,单多晶生产工艺差别主要体现在拉棒和铸锭环节,其中单晶硅棒工艺对设备、生产人员的要求严格,早期单晶硅片因长晶炉投料量、生长速率、拉棒速度等方面技术不够成熟,生产成本居高不下,而多晶硅锭使用铸锭技术成本优势明显而占据主要市场份额。 该单晶硅棒项目计划总投资18463.72万元,其中:固定资产投资14070.91万元,占项目总投资的76.21%;流动资金4392.81万元,占项目总投资的23.79%。 达产年营业收入32709.00万元,总成本费用25347.93万元,税金及附加330.34万元,利润总额7361.07万元,利税总额8706.73万元,税后净利润5520.80万元,达产年纳税总额3185.93万元;达产年投资利润率39.87%,投资利税率47.16%,投资回报率29.90%,全部投资回收期4.84年,提供就业职位477个。 硅棒在2018年和2020年能分别达到1942万片/月和2130万片/月,预计2015年到2020年之间符合年均增速为5.4%。硅棒指的是作用主要是耐火耐高温材料,做高温发热的元件,为无色立方或六方晶体,表面氧化或含杂质时呈蓝黑色。

目录 第一章基本信息 第二章项目建设单位 第三章项目建设及必要性第四章市场调研 第五章产品及建设方案 第六章选址规划 第七章项目工程设计说明第八章工艺方案说明 第九章环境保护说明 第十章项目安全规范管理第十一章项目风险 第十二章项目节能可行性分析第十三章进度方案 第十四章投资方案分析 第十五章项目经济评价分析第十六章结论 第十七章项目招投标方案

单晶硅生长原理及工艺_刘立新

单晶硅生长原理及工艺 摘要:介绍了直拉法生长单晶硅的基本原理及工艺条件。通过控制不同的工艺参数(晶体转速:2.5、10、20rpm ;坩埚转速: 5、 150×1000mm 优质单晶硅棒。分别对这三种单晶硅样品进行 了电阻率、氧含量、碳含量、少子寿命测试,结果表明,当晶体转速为10rpm ,坩埚转速为 07 ),男,助理研究员,E-mail :lxliu2007@https://www.doczj.com/doc/7310764548.html, 。 刘立新1,罗平1,李春1,林海1,张学建1,2,张莹1 (1.长春理工大学 材料科学与工程学院,长春 130022;2.吉林建筑工程学院,长春 130021) Growth Principle and Technique of Single Crystal Silicon LIU Lixin 1,LUO Ping 1,LI Chun 1,LIN Hai 1,ZHANG Xuejian 1,2 ,ZHANG Ying 1 (1.Changchun University of Science and Technology ,Changchun 130022;2.Jilin Architectural and civil Engineering institute ,Changchun 130021) Abstract :This paper introduces the basic principle and process conditions of single crystal silicon growth by Cz method.Through controlling different process parameters (crystal rotation speed:2.5,10,20rpm;crucible rotation speed:-1.25,-5,-10),three high quality single crystal silicon rods with the size of é? ??ì?2a?÷?¢?ˉ3éμ??·?¢ì????üμ?3?μè [1] 。此外,硅 没有毒性,且它的原材料石英(SiO 2)构成了大约60%的地壳成分,其原料供给可得到充分保障。硅材料的优点及用途决定了它是目前最重要、产量最大、发展最快、用途最广泛的一种半导体材料[2]。 到目前为止,太阳能光电工业基本上是建立在 硅材料基础之上的,世界上绝大部分的太阳能光电器件是用单晶硅制造的。其中单晶硅太阳能电池是 最早被研究和应用的,至今它仍是太阳能电池的最 主要材料之一。单晶硅完整性好、纯度高、资源丰富、技术成熟、工作效率稳定、光电转换效率高、使用寿命长,是制备太阳能电池的理想材料。因此备受世界各国研究者的重视和青睐,其市场占有率为太阳能电池总份额中的40%左右[3]。 随着对单晶硅太阳能电池需求的不断增加,单晶硅市场竞争日趋激烈,要在这单晶硅市场上占据重要地位,应在以下两个方面实现突破,一是不断降低成本。为此,必须扩大晶体直径,加大投料量,并且提高拉速。二是提高光电转换效率。为此,要在晶体生长工艺上搞突破,减低硅中氧碳含 第32卷第4期2009年12月 长春理工大学学报(自然科学版) Journal of Changchun University of Science and Technology (Natural Science Edition )Vol.32No.4 Dec.2009

相关主题
文本预览
相关文档 最新文档