当前位置:文档之家› 光粗波分复用技术与应用

光粗波分复用技术与应用

光粗波分复用技术与应用
光粗波分复用技术与应用

光粗波分复用技术与应用

CWDM技术

多业务宽带城域网正逐渐成为电信和网络建设的热点,随着城域网中业务的不断丰富和增加,对城域网的容量要求也越来越高。然而,在目前的城域网中,许多已敷设了光纤的运营商其传输资源已非常有限,因此要增加城域网带宽容量。增加光路带宽的方法有两种:一是提高光纤的单信道传输速率;二就是增加单光纤中传输的波长数,即波分复用技术(WDM)。WDM利用光复用器将不同光纤中传输的波长结合到一根光纤中传输,在链路的接收端,利用解复用器将分解后的波长分别送到不同的光纤,并接到不同的接收设备。DWDM(密集波分复用)的巨大带宽和传输数据的透明性,无疑是当今光纤应用领域的首选技术,人们自然也希望能将其作为城域网的传输平台。城域网具有传输距离短、拓扑灵活(环型、星型、网状网等)和业务接口复杂多样化,而DWDM一般不提供低速接口,不能适应城域网复杂的各种接入方式,如照搬主要用于长途传输的DWDM,必然带来成本上过高。同时DWDM对城域网的灵活多样性也难以适应。是否有可能以较低的成本享用波分复用技术呢?面对这一宽带需求,CWDM(粗波分复用)应运而生。

CWDM是一种波分复用技术,它能够延续DWDM的技术优势,具有DWDM技术所不具备的多业务接口、低成本、低功耗、小尺寸等优点。它利用光复用器,可以把在不同光纤中传输的波长复用到一根光纤中传输;在链路的接收端,利用解复用器再将波长恢复为原来的波长。相对于DWDM来说它复用波长之间间隔比较宽,为20nm,最多可复用8个波。因此CWDM对激光器、复用/解复用器的要求大大降低,同时在不需要放大器的情况下可以传输50?80km,采用这种方式建设城域网或网络扩容,可极大地减少组网成本。

目前,电信市场正处在相对低迷阶段,运营商紧缩开支,更重视投资小、回报快的项目。城域网和接入网的带宽瓶颈仍然存在,WDM系统需求仍很大。C

WDM系统的出现正好顺应了这个形势,它能有效的提供高的带宽,而比DWDM便宜60%以上,正在越来越受到运营商的青睐。CWDM的器件成熟,标准也在加紧制定,国内和国际上这个市场已经启动。

CWDM应用于城域网的优势

据国内有关研究报告中预测显示:城域光网络将成为近年传输网建设的核心,CWDM将成为城域网建设中的热点。

CWDM技术是应宽带城域网的需求而发展起来的。有调查表明,在我国沿海发达地区,有些市话光缆纤芯使用率已达70-80%;而且过去的城域网以SDH网络占主导地位,主要是考虑传输话音,因此无论带宽提供还是从接口种类,它们都难以适应传输新兴业务的需要;另一方面,现在越来越多的用户要求提供端到端的波长或子波长出租业务。

这些需求和现状正好可以用低成本的CWDM设备加以解决,而且不必抛弃过去的设备和新增光路。在建设宽带城域网方面,用CWDM传输系统与高性能路由交换机结合,就可以从路由交换端口直接驱动光传输设备,同时路由交换机对各波长和数据流都可以进行分插处理。因此这种配置可方便构成宽带IP城域网。

CWDM用很低的成本提供了较宽的传输带宽和全透明的业务接入能力,适用于点对点、以太网、SDH环等各种流行的网络结构,特别适合中短距离、高带宽、接入信号类型多且无法预测的通信应用场合,如楼宇之间或城域的网络通信。尤其值得一提的是CWDM与PON(无源光网络)的搭配使用。PON是一种点对多点的光通信方式,通过与CWDM相结合,每个单独波长信道都可作为PON的虚拟光链路,实现中心节点与多个分布节点的宽带数据传输。

宽带IP城域网可采用IPoverCWDM系统和N×GbE帧格式。

由于以太网复用器可将N路GbE(千兆以太接口)用TDM方式合成传输,这种帧格式也是很容易实现的。而且由于这种可变速率的格式对光纤性能要求不高,一些性能下降的旧光纤也可以得到应用。此外,传输采用CWDM方式,路由器采用N×GbE端口组成的系统较SDH系统便宜得多。这样,以较优的性价比就在IPoverCWDM宽带城域网中实现了100/1000Mbps速率接入。

在业务量大并且预计未来业务流量将保持较高增长速度的区域,采用CWDM技术建设城域核心传输网,可以将当前单独组网的IP宽带城域网和城域传输网的核心层统一到一个城域波分物理平台上,从而能分别承载SDH、MSTP和IP宽带业务,这样不仅有利于网络的统一管理,而且还可以通过灵活调度波长资源,快速满足IP网迅速增长的宽带要求,解决光纤直连方式对光纤资源的快速消耗问题,以提高网络资源利用率。此外,通过CWDM技术的光通道保护和光复用段保护等功能可以提高网络的安全性和业务恢复能力,是一种比IP技术更可靠、更安全的城域网技术。更重要的是,CWDM技术的应用为今后向智能光网络的发展提供了平滑演进的物理平台,避免了分离组网所造成的网络融合困难、难以扩展等问题,为引入智能OXC、适应将来多样化业务的智能选择和宽带的灵活分配奠定基础。

CWDM标准化工作

关于CWDM系统的标准,最近的ITU-T年会上,SG-15工作组通过了G.695的草案,估计该标准最后将在今年10月份的ITU-T年会上通过。在上一次年会上,NTT提出光接口参数应该规范“黑盒子(blackbox)”和“非黑盒子(non-blackbox)”两种方式。“黑盒子”方式只要求在MPI-S、MPI-R进行规范,而“非黑盒子”方式则要求对于MPI-S、MPI-R、SS、、RS系统各个接口都进行标准化,以实现完全的横向兼容性。经过激烈讨论,会议认为从长远看系统应实现完全横向兼容性,但是考虑到2003年10月要对G.695达成共识,在短时间内无

法完成,目前的建议版本仍然采用在群路口提供横向兼容性的“黑盒子”方式。同时也可以采用在CWDM系统对外的单个通路口SS、RS横向兼容、内部MPI-S、MPI-R纵向兼容的方式。

目前ITU-T已通过的G.694.2标准来规范波长间隔为20nm的CWDM波长栅格:1270nm?1290nm?1310nm?1330nm....1470nm?1490nm?...1610nm。在最近的ITU-T的年会上,关于“CWDM系统应用光接口”中的光波长偏移指标提出了建议。鉴于Alcatel(Italy)提交的文稿D.666也对该指标提出了建议,并明确表示该文稿是为了支持中国上海贝尔阿尔卡特公司文稿D.458的提议,因此实际上两篇文稿是放在一起进行讨论的。讨论过程中一致认为有必要协调G.capp中波长偏移定义和G.694.2中CWDM系统波长栅格定义的关系,而且应该与目前市场CWDM器件的参数定义保持一致。

Alcatel的D.666中提出了两种解决此问题的建议:(a)保持G.694.2波长栅格定义不变,在G.capp中定义一个不对称的波长偏移指标,这实际上就是上海贝尔阿尔卡特公司的文稿D.458提出的方案;(b)修改G.694.2中的波长栅格定义,在原来的基础上偏移?+1?nm,同时保持G.capp中的对称的波长偏移定义。

经与会专家充分讨论,最后认为两种方案实质上是完全一致的,但b方案更易于操作,于是决定将G.694.2的波长栅格偏移?+1?nm(修改的G.694.2计划在今年10月的SG15会议上进行consent),并保持G.capp中的对称波长偏移定义

上海贝尔阿尔卡特长期致力于CWDM系统的标准化工作,曾多次参加国际电联ITU和中国标准化协会的CWDM标准制订活动。并于2002年在成都主办了中国标准化协会传输工作组会议。

ITU-T第15工作组是制订国际电信传输标准的标准组织,上海贝尔阿尔卡特作为其全权成员,多次派专家参加在日内瓦召开的国际电联大会。2002年,来自上海贝尔阿尔卡特和阿尔卡特的专家一起向国际电联提交文稿,提出CWDM系统中心频率不对称偏移、BlackLink参考模型、CWDM系统应用代码分类等建议,均被国际电联采纳,写入G.694.2和G.695中。同时,由于在CWDM系统方面的领先地位,上海贝尔阿尔卡特成为中国通信标准化协会CCSA的CWDM系统标准起草负责单位。目前,技术人员正在对包括CWDM系统的波长栅格、应用代码分类、系统模型、光接口参数、保护倒换、网络管理、分插复用OADM等技术不断进行规范和完善,为CWDM系统的研究、开发、生产、测试、工程设计、验收和维护管理提供技术的依据。

CWDM的应用

1.在城域光网络中的应用

城域光网络是当前光网络发展的重点,随着数据业务的飞速发展,需要打通城域网络中的带宽瓶颈。在大城市核心网建设中,越来越多的采用支持多种业务光传输系统。城域光网络的一个重要特点就是城域网发展的复杂性。相对骨干网而言,城域网的变化比较大,因为不断会有新的业务接入,特别在新开发的商业中心,原有的接入系统容量很容易被耗尽。SDH的容量目前还比较有限,特别是对于数据业务而言,SDH并不是理想的解决方案。而CWDM在大城市接入网中可以发挥出其特有的优势,可以作为DWDM系统的有力补充,比如,就波长出租业务而言,出租CWDM波长无疑要比出租DWDM波长成本低许多,而完成的功能却是一样的。另外,我国幅员辽阔,各地区经济发展不平衡。在大量的中小城市中,业务量相对大城市要低,采用DWDM技术虽然可以满足业务需求,但必然会带来过高的投资成本,CWDM系统提供了一种新的选择,在业务量适中的经济欠发达地区,用CWDM组建城域网无疑是一个经济、实用的解决方案。

2.在存储域网络(SAN,StorageAreaNetwork)中的应用

企业信息数据的安全、可靠存储问题成为关键,因为企业信息系统数据存储的任何失误,不但将给企业带来巨大的经济损失,而且还会影响企业的声誉,降低企业的竞争力。因此,数据的安全、可靠存储和管理作为网络发展的基础,日益受到人们的重视。据权威调查机构研究表明,目前世界大公司的年度存储需求增长率为100%;另外,据IDC的预测,到2004年,全球存储域市场将达到530亿美元以上。一方面,对数据的存储量的需求越来越大,另一方面,对数据的有效管理和传输提出了更高的要求。特别对于金融企业更是如此。随着企业对数据安全重视程度的提高,数据备份将成为企业保障数据安全的重要措施。企业对包括异地灾难备份、多点镜像服务在内的高品质服务的需求将会越来越强。对于该应用领域,DWDM系统功能可能过于强大,网络建设成本较高,维护和使用不便,用户较难承受。如果采用CWDM技术,则可以很好地平衡应用需求和投资,是一种较为理想的解决方案。

在数字信息化的今天,数据业务的安全可靠性变得越来越重要,地震、水灾、恐怖袭击、人为破坏等突发事件都给用户的业务和数据的安全性带来极大的风险和危害,如何保持业务的不间断性,提供可靠的数据备份和数据保护等已成为运营商应对时代不断发展,提高核心竞争力的利器。为此,2003年河北联通决定投入巨资,在年底前完成综合电信业务支撑系统的容灾系统一、二期工程,该系统将采用同城异地的方式,帮助用户远离各种突发事件所带来的损失。经过详细的技术比较和网络方案评审,结合对网络管理能力、多业务综合传送能力等的考察,河北联通认为上海贝尔阿尔卡特公司基于CWDM技术的解决方案能够很好地满足容灾备份系统的要求。上海贝尔阿尔卡特CWDM设备1692MSE采用了集中控制结构、多业务接入等先进的技术,具有完善的数据业务支持能力和极高的灵活性与扩展性,安全可靠、节省投资,并支持SAN技术,同时,通过先进的网络管理软件,用户可以随时全面地掌握当前网络的运行状况,及时制

订相关措施,应对万一出现的灾难。

3.CWDM在各种专网的应用

光网络正在向更广泛的领域延伸,特别是在各种大型企业专网中,对光传输的要求也在不断提高,如银行、石油,公安等行业。而这些部门一般光纤资源有限,同时,传输容量要求不是很高,采用DWDM系统建网成本偏高。CWDM系统的出现,将为这些用户提供合适的选择方案。

结束语

CWDM和DWDM一样属于物理层的技术,可以为上层的各种新技术(如RPR:弹性分组环、GE或10G?s以太网等)提供物理平台。近两年来,国内外在CWDM方面的发展也非常快。目前,已经有越来越多的国内外公司推出CWDM光传输产品,并在城域网、企业网(特别是金融企业,如银行等),SAN,铁路、公安、石油等专网以及CATV等领域得到越来越多的应用,取得了很好的效果。在国内,随着光网络的进一步发展,光网络的应用需求越来越广泛,应用领域也越来越呈现多样化,在许多应用领域,特别是有些传输距离不是很长,传输容量适中的网络或者有较多GE业务的城域数据网等应用领域,CWDM系统可以发挥出其特有的优势,将为用户提供一种经济而有效的新的光网络解决方案。我们相信,依据其特有的优势,CWDM将在不断深入发展的光通信领域展示出更大的应用空间。

光波分复用(WDM)技术复习过程

光波分复用(WDM)技术 一、波分复用技术的概念 波分复用(WDM)是将两种或多种不同波长的光载波信号(携带各种信息)在 发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。 通信系统的设计不同,每个波长之间的间隔宽度也有不同。按照通道间隔的不同,WDM可以细分为CWDM(稀疏波分复用)和DWDM(密集波分复用)。CWDM 的信道间隔为20nm,而DWDM的信道间隔从0.2nm 到1.2nm,所以相对于DWDM,CWDM称为稀疏波分复用技术。 CWDM和DWDM的区别主要有二点:一是CWDM载波通道间距较宽,因此,同一根光纤上只能复用5到6个左右波长的光波,“稀疏”与“密集”称谓的差别就由此而来;二是CWDM调制激光采用非冷却激光,而DWDM采用的是冷却激光。冷却激光采用温度调谐,非冷却激光采用电子调谐。由于在一个很宽的波长区段内温度分布很不均匀,因此温度调谐实现起来难度很大,成本也很高。CWDM避开了这一难点,因而大幅降低了成本,整个CWDM系统成本只有DWDM的30%。CWDM是通过利用光复用器将在不同光纤中传输的波长结合到一根光纤中传输来实现。在链路的接收端,利用解复用器将分解后的波长分别送到不同的光纤,接到不同的接收机。 二、波分复用技术的优点 WDM技术之所以在近几年得到迅猛发展是因为它具有下述优点: (1) 传输容量大,可节约宝贵的光纤资源。对单波长光纤系统而言,收发一个信号需要使用一对光纤,而对于WDM系统,不管有多少个信号,整个复用系统只需要一对光纤。例如对于16个2.5Gb/s系统来说,单波长光纤系统需要32根光纤,而WDM系统仅需要2根光纤。 (2) 对各类业务信号“透明”,可以传输不同类型的信号,如数字信号、模拟信号等,并能对其进行合成和分解。 (3) 网络扩容时不需要敷设更多的光纤,也不需要使用高速的网络部件,只需要换端机和增加一个附加光波长就可以引入任意新业务或扩充容量,因此WDM技术是理想的扩容手段。 (4) 组建动态可重构的光网络,在网络节点使用光分插复用器(OADM)或者使用光交叉连接设备(OXC),可以组成具有高度灵活性、高可靠性、高生存性的全光网络。 三、波分复用技术目前存在的问题 以WDM技术为基础的具有分插复用功能和交叉连接功能的光传输网具有易于重构、良好的扩展性等巨大优势,已成为未来高速传输网的发展方向,但在真正实现之前,还必须解决下列问题。 1.网络管理 目前,WDM系统的网络管理,特别是具有复杂的上/下通路需求的WDM网络管理仍处于不成熟期。如果WDM系统不能进行有效的网络管理,将很难在网络

光波分复用系统的基本原理

光波分复用系统的基本原理 本文简要介绍光波分复用系统的基本原理、结构组成、功能配置、关键技术部件和技术特点,说明光波分复用WDM系统是今后光通信发展的方向。 一、光波分复用(WDM)技术 光波分复用(Wavelength Division Multiplexing,WDM)技术是在一根光纤中同时同时多个波长的光载波信号,而每个光载波可以通过FDM或TDM方式,各自承载多路模拟或多路数字信号。其基本原理是在发送端将不同波长的光信号组合起来(复用),并耦合到光缆线路上的同一根光纤中进行传输,在接收端又将这些组合在一起的不同波长的信号分开(解复用),并作进一步处理,恢复出原信号后送入不同的终端。因此将此项技术称为光波长分割复用,简称光波分复用技术。 WDM技术对网络的扩容升级,发展宽带业务,挖掘光纤带宽能力,实现超高速通信等均具有十分重要的意义,尤其是加上掺铒光纤放大器(EDFA)的WDM对现代信息网络更具有强大的吸引力。 二、WDM系统的基本构成 WDM系统的基本构成主要分双纤单向传输和单纤双向传输两种方式。单向WDM是指所有光通路同时在一根光纤上沿同一方向传送,在发送端将载有各种信息的具有不同波长的已调光信号通过光延长用器组合在一起,并在一根光纤中单向传输,由于各信号是通过不同波长的光携带的,所以彼此间不会混淆,在接收端通过光的复用器将不同波长的光信号分开,完成多路光信号的传输,而反方向则通过另一根光纤传送。双向WDM是指光通路在一要光纤上同时向两个不同的方向传输,所用的波长相互分开,以实现彼此双方全双工的通信联络。目前单向的WDM系统在开发和应用方面都比较广泛,而双向WDM由于在设计和应用时受各通道干扰、光反射影响、双向通路间的隔离和串话等因素的影响,目前实际应用较少。 三、双纤单向WDM系统的组成 以双纤单向WDM系统为例,一般而言,WDM系统主要由以下5部分组成:光发射机、光中继放大器、光接收机、光监控信道和网络管理系统。 1.光发射机 光发射机是WDM系统的核心,除了对WDM系统中发射激光器的中心波长有特殊的要求外,还应根据WDM系统的不同应用(主要是传输光纤的类型和传输距离)来选择具有一定色度色散容量的发射机。在发送端首先将来自终端设备输出的光信号利用光转发器把非特定波长的光信号转换成具有稳定的特定波长的信号,再利用合波器合成多通路光信号,通过光功率放大器(BA)放大输出。

波分复用技术(WDM)

波分复用技术(WDM)介绍 --------密集波分复用(DWDM)和稀疏波分复用(CWDM) 波分复用(WDM)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。 WDM本质上是光域上的频分复用FDM技术。每个波长通路通过频域的分割实现,每个波长通路占用一段光纤的带宽。WDM系统采用的波长都是不同的,也就是特定标准波长,为了区别于SDH系统普通波长,有时又称为彩色光接口,而称普通光系统的光接口为“白色光口”或“白光口”。 通信系统的设计不同,每个波长之间的间隔宽度也有不同。按照通道间隔的不同,WDM 可以细分为CWDM(稀疏波分复用)和DWDM(密集波分复用)。CWDM的信道间隔为20nm,而DWDM的信道间隔从0.2nm 到1.2nm,所以相对于DWDM,CWDM称为稀疏波分复用技术。 1 DWDM技术简介 WDM和DWDM是在不同发展时期对WDM系统的称呼。在20世纪80年代初,人们想到并首先采用的是在光纤的两个低损耗窗口1310nm窗口和1550nm窗口各传送1路光波长信号,也就是1310nm、1550nm两波分的WDM系统。随着1550nm窗口EDFA的商用化,WDM系统的相邻波长间隔变得很窄(一般小于1.6nm),且工作在一个窗口内,共享EDFA光放大器。为了区别于传统的WDM系统,人们称这种波长间隔更紧密的WDM系统为密集波分复用系统。所谓密集,是指相邻波长间隔而言,过去WDM系统是几十纳米的波长间隔,现在的波长间隔只有0.4~2nm。密集波分复用技术其实是波分复用的一种具体表现形式。如果不特指1310nm、1550nm的两波分WDM系统外,人们谈论的WDM系统

波分复用/解复用 知多少

波分复用/解复用器 知多少? 随着数据业务的飞速发展,现代生活对传输网的带宽需求越来越高,而光纤资源已经固定且再次铺设费用昂贵,这就需要设备制造商提供有保障、低成本的解决方案。鉴于城域网具有一定的传输距离、较多的业务种类等许多不同于骨干网的特点,波分复用(WDM,Wavelength Division Multiplexing)技术就十分适用于光纤扩容。 什么是光波分复用技术? 在同一根光纤中同时让两个或两个以上的光波长信号通过不同光信道各自传输信息,称为光波分复用技术,简称WDM。光波分复用包括频分复用和波分复用。光频分复用(FDM)技术和光波分复用(WDM)技术无明显区别,因为光波是电磁波的一部分,光的频率与波长具有单一对应关系。通常也可以这样理解,光频分复用指光频率的细分,光信道非常密集。光波分复用指光频率的粗分,光信道相隔较远,甚至处于光纤不同窗口。 什么是波分复用/解复用器? 我们知道波分复用(WDM)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。 波分复用/解复用器的工作原理是什么? 在FDM系统中,波分复用器用于发射端将多个波长的信号复合在一起并注入传输光纤中,而波分解复用器则用于在接收端将多路复用的光信号按波长分开分别送到不同的接收器上,波分复用/解复用器可以分成两大类,即有源(主动)和无源(被动)型,我们这里只介绍被动型的器件,它按照工作原理可以分成三类,最简单的一种波分复用器是基于角度散射元件,例如棱镜和衍射光栅,另外两种波分复用器为光滤波器和波分复用定向耦合器。从原理上讲,一个波分解复用器反射过来用即为波分复用器,但应该注意的是在FDM系统中对它们的要求不一样,波分解复用器严格要求波长的选择性,而复用器不一定要求波长选择性,因为它的作用只是将多路信号复合在一起。

WDM 技术和要求

第1章WDM概述 1.1 WDM技术的产生背景 1.1.1 光网络复用技术的发展 随着信息时代宽带高速业务的不断发展,不但要求光传输系统向更大容量、更长 距离发展,而且,要求其交互便捷。因此,在光传输系统中引入了复用技术。所 谓复用技术是指利用光纤宽频带、大容量的特点,用一根光纤或光缆同时传输多 路信号。在多路信号传输系统中,信号的复用方式对系统的性能和造价起着重要 作用。 光纤传输网的复用技术经历了空分复用(SDM)、时分复用(TDM)到波分复用 (WDM)三个阶段的发展。 SDM技术设计简单、实用,但必须按信号复用的路数配置所需要的光纤传输芯数, 投资效益较差;TDM技术的应用很广泛,缺点是线路利用率较低;WDM技术在 1根光纤上承载多个波长(信道),使之成为当前光纤通信网络扩容的主要手段。 光纤通信系统经历了几个发展阶段,从70年代末的PDH系统,90年代中期的 SDH系统(经历了准同步数字体系(PDH)、同步数字体系(SDH),和波分复用 (WDM)三个阶段),以及近来风起云涌的DWDM系统,乃至将来的智能光网 络技术,光纤通信系统自身正在快速地更新换代。 波分复用技术从光纤通信出现伊始就出现了,80年代末、90年代初,AT&T贝尔 实验室的厉鼎毅(T.Y.Lee)博士大力倡导波分复用(DWDM)技术,两波长WDM (1310/1550nm)系统80年代就在美国AT&T网中使用,速率为2×1.7Gb/s。 但是到90年代中期,WDM系统发展速度并不快. 从技术和经济的角度,DWDM技术是目前最经济可行的扩容技术手段。 WDM WDM又叫波分复用技术,是新一代的超高速的光缆技术,所谓波分复用技术, 就是在单一光纤内同步传输多个不同波长的光波,让数据传输速度和容量获得倍 增,它充分利用单模光纤的低损耗区的巨大带宽资源,采用合波器,在发送端将 不同规定波长的光载波进行合并,然后传入单模光纤。在接收部分将再由分波器 将不同波长的光载分开的复用方式,由于不同波长的载波是相互独立的,所以双

光纤通信波分复用系统的研究与设计

武汉工程大学邮电与信息工程学院 毕业设计(论文) 光纤通信波分复用系统的研究与设计 Research And Design Of Optical Fiber Communication Wavelength Division Multiplexing System 学生姓名谭辉 学号1030210221 专业班级通信技术1002(光纤通信方向) 指导教师陈义华 2013年5月

作者声明 本人声明所呈交的论文是我个人在导师指导下进行的研究工作及取得的研究成果,除了文中特别加以标注的地方外,没有任何剽窃、抄袭、造假等违反学术道德、学术规范的行为,也没有侵犯任何其他人或组织的科研成果及专利。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。如本毕业设计(论文)引起的法律结果完全由本人承担。 毕业设计(论文)成果归武汉工程大学邮电与信息工程学院所有。 特此声明。 作者专业: 作者学号: 作者签名: ____年___月___日

摘要 20世纪90年代以来光纤通信得到了迅速的发展,光纤通信中的新技术也在不断涌现,其中波分复用技术就是光纤通信中重要的技术之一。波分复用(WDM)是在同一根光纤中同时传输两个或众多不同波长光信号的技术。 本文首先介绍了光纤通信的发展、特点、基本组成和波分复用技术(WDM)的基础知识、应用状况及目前存在的问题和发展状况,其中重点介绍了稀疏波分复用(CWDM)技术和密集波分复用(DWDM)技术的特点及其应用。其次深入分析了波分复用技术的基本原理与基本结构,同时深入分析了WDM系统的基本形式和主要特点及存在的问题,最后对现在的WDM的发展方向和前景做了进一步的探讨。 关键词:光纤通信;波分复用;技术研究

波分复用系统WDM结构原理和分类

波分复用系统(WDM),波分复用系统(WDM)结构原理和分类 波分复用系统简要介绍 光波分复用技术是在一根光纤中传输多波长光信号的一项技术。其基本原理是在发送端将不同波长的光信号组合起来(复用),并耦合到光缆线路上的同一根光纤中进行传输,在接收端又将组合波长的光信号分开〔解复用),并进一步处理,恢复出原信号后送入不同的终端。具体如下。 如图1所示。发送端内有N个发射机:发射机所发出的光的波长是不同的,它们的波长分别为波长1-N。每个光波承载1路信号。再把N个光发射机发出的光信号(光信号1-N)集中为1个光的群信号,送进光纤线路,直到接收端。若线路很长,光信号太弱,就加一光放大器,把光信号放大。在接收端有N个光滤波器(1-N)。滤波器1对载有信号1的光信号(波长1)有选择通过的作用,……滤波器N对载有信号N的光信号(波长N)有选择通过的作用。光接收机的作用是把载有信号的光信号还原为原信号。 光波分复用的关键器件 (1)分布反馈多量子阱激光器(DFB MQW—LD) (2)光滤波器 (3)光放大器

图1 波分复用系统原理 波分复用系统的发展与现状 WDM 波分复用并不是一个新概念在光纤通信出现伊始人们就意识到可以利用光纤的巨大带宽进行波长复用传输但是在20世纪90年代之前该技术却一直没有重大突破其主要原因在于TDM 的迅速发展从155Mbit/s 到622Mbit/s 再到2.5Gbit/s系统TDM 速率一直以过去几年就翻4 倍的速度提高人们在一种技术进行迅速的时候很少去关注另外的技术1995 年左右WDM 系统的发展出现了转折一个重要原因是当时人们在TDM 10Gbit/s 技术上遇到了挫折,众多的目光就集中在光信号的复用和处理上WDM 系统才在全球范围内有了广泛的应用。 WDM技术还具有以下若干优点:1 )能同时传输多种不同类型的信号;2)能实现单根光纤双向传输;3)有多种应用方式;4)节约线路投资;5)降低器件的超高速要求;6)对数据格式透明,能支持IP业务;7)具有高度的组网灵活性、经济性和可靠性。 在80年代中,已有人采用1.3微米和1.55微米两个频道的光波分复用技术,制造出简便实用的光纤通信系统。在90年代初,光波分复用的关键器件有突破,它包括:高精确和稳定的波长的激光器、滤光器和光放大器。于是,所谓密集光波分复用(DWDM,dense wavelenght division multiplex)光纤通信系统研制成功。 通过引入光交叉连接( OXC,Optical Cross-Connected)和光分插复用器(OADM, Optical Add-Drop Multiplexing),组建下一代智能化的宽带大容量的高度可靠的自动交换光网络将成为可能。WDM技术首先是作为一种点到点的传输技术而提出的,它发展很快并很快走向成熟,目前在骨干光纤网上己经得到广泛的推广和应用。从1995年到1999年,美国各大长途电话公司已经完成在其干线网络中配置WDM设备的工作。1998到1999年,中国

波分复用技术论文

波分复用技术 摘要波分复用(WND)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。 关键词波分复用技术(WDM),光纤,光传输网,交叉连接 引言 WDM是一种在光域上的复用技术,形成一个光层的网络既全光网,将是光通讯的最高阶段。建立一个以WDM和OXC(光交叉连接)为基础的光网络层,实现用户端到端的全光网连接,用一个纯粹的“全光网”消除光电转换的瓶颈将是未来的趋势。现在WDM技术还是基于点到点的方式,但点到点的WDM技术作为全光网通讯的第一步,也是最重要的一步,它的应用和实践对于全光网的发展起到决定性的作用。 1 波分复用技术 指在同一根光纤中同时让两个或两个以上的光波长信号通过不同光信道各自传输信息,称为光波分复用技术,简称WDM。光波分复用包括频分复用和波分复用。光频分复用(FDM)技术和光波分复用(WDM)技术无明显区别,因为光波是电磁波的一部分,光的频率与波长具有单一对应关系。通常也可以这样理解,光频分复用指光频率的细分,光信道非常密集。光波分复 用指光频率的粗分,光倍道相隔较远,甚至处于光纤不同窗口。 光波分复用一般应用波长分割复用器和解复用器(也称合波/分波器)分别置于光纤两端,实现不同光波的耦合与分离。这两个器件的原理是相同的。光波分复用器的主要类型有熔融拉锥型,介质膜型,光栅型和平面型四种。其主要特性指标为插入损耗和隔离度。通常,由于光链路中使用波分复用设备后,光链路损耗的增加量称为波分复用的插入损耗。当波长11,l2通过同一光纤传送时,在与分波器中输入端l2的功率与11输出端光纤中混入的功率之间的差值称为隔离度。光波分复用的技术特点与优势如下: 1.1 充分利用光纤的低损耗波段,增加光纤的传输容量,使一根光纤传送信息的物理限度增加一倍至数倍。目前我们只是利用了光纤低损耗谱(1310nm-1550nm)极少一部分,波分复用可以充分利用单模光纤的巨大带宽约25THz,传输带宽充足。 1.2 具有在同一根光纤中,传送2个或数个非同步信号的能力,有利于数字信号和模拟信号的兼容,与数据速率和调制方式无关,在线路中间可以灵活取出或加入信道。 1.3 对已建光纤系统,尤其早期铺设的芯数不多的光缆,只要原系统有功率余量,可进一步增容,实现多个单向信号或双向信号的传送而不用对原系统作大改动,具有较强的灵活性。 1.4 由于大量减少了光纤的使用量,大大降低了建设成本、由于光纤数量少,当出现故障时,恢复起来也迅速方便。 1.5 有源光设备的共享性,对多个信号的传送或新业务的增加降低了成本。 1.6 系统中有源设备得到大幅减少,这样就提高了系统的可靠性。目前,由于多路载波的光波分复用对光发射机、光接收机等设备要求较高,技术实施有一定难度,同时多纤芯光缆的

CWDM DWDM双架构波分复用系统网管平台

CWDM/DWDM双架构波分复用系统网管平台 16槽机架式多业务网管系统可同时支持125M~2.5G/125M~4.25G/10G CWDM/DWDM双架构波分复用系统,是高可靠、低成本的传输设备。支持各种速率,单模/多模,单纤/双纤,SFP,SFP+,XFP等。此网管平台功能全面、设置简单,支持SNMP、WEB、CONSOLE及TELNET等网管方式,可实现多业务卡局端远端统一平台集中管理。 1.基于图形界面(GUI)的网络管理,软件操作简单,用户界面友好,设置不同的授权用户(普通用户、高级用户和管理员) 2.采用集中式管理方式,结合树形目录,可在一个软件界面内同时管理多台机架式设备;同时引入组管理方式,在管理中充分增强层次性,即使同时管理很多设备,也可以方便地对任意一台设备进行操作 3.提供主从式管理模块,可以级联3个子机架管理,管理模块失败不影响其他模块正常工作 4.支持基于Snmp、Web、Telnet和Console方式的图形化和命令行管理Console口管理:用户可以直接使用WINDOWS自带的超级终端,通过机架串口进行网络配置和设置用户权限,并可以显示/控制局端和远端设备工作状态;WEB管理:使用网络浏览器(IE等),通过WEB页面进行远程访问,可以进行网络配置和设置权限,并可以显示/控制远程设备的工作状态; 5.标准SNMP协议:提供MIB库文件,方便整合到第三方的SNMP网管软件;用户可以设置达四个TRA P地址,按用户需要选择TRAP触发条件,如TX由Link到Down、FX由Link到Down等; 6.专用网管软件:中心局专用网管软件在后台运行,采集信息以数据库的形式保存在网管PC机硬盘。可以设置用户权限和显示/控制局端和远端设备的工作状态。 7.网管系统支持网络设备自动发现与添加功能 8.可以显示和配置机架名称、地域信息、IP地址相关信息及软硬件版本号等系统信息 9.可查询详细的电源以及业务卡工作状态,显示机箱温度信息,有故障实时上报 10.支持SFP/XFP、CWDM SFP/XFP、DWDM SFP/XFP及显示SFP/XFP信息与数字诊断功能 11.支持远端掉电检测,能够通过对端发送的远端错误信号检测发送端光纤连接状态 12.支持故障转移(LFP)功能,能迅速定位故障发生的链路,为维护人员提供方便 13.支持远程重启,通过网管软件设置系统重启或单个模块重启 14.业务板卡可恢复出厂设置配置或拨码开关配置,掉电后配置信息自动保存

波分复用系统的基本原理

一、波分复用系统的基本原理 所谓波分复用(WDM),就是采用波分复用器(合波器)在发送端将规定波长的信号光载波合并起来,并送入一根光纤中传输;在接收侧,在由另一个波分复用器(分波器)将这些不同信号的光载波分开。由于不同波长的光载波信号可以看作相互独立(不考虑光纤非线性时),从而在一根光纤中可实现多路光信号的复用传输。不同类型的光波分复用器,可以复用的波长数也不同,目前商用化的一般是8个波长、16个波长和32个波长的系统。波分复用系统的原理如图1-1所示。 图1-1 波分复用系统原理 在80年代初光纤通信兴起时,首先被采用的是1310nm/1550nm的两个波长复用系统(即在光纤的两个低损耗窗口1310nm和1550nm各传送一路光波长信号),也叫粗波分复用系统。这种系统比较简单,一般采用熔融的波分复用器,插入损耗小,在每个中继站,两个波长都进行解复用和光/电/光再生中继。随着1550nm窗口EDFA的商用化,光传输工程可以利用EDFA对传送的光信号进行放大,实现超长距离无电再生中继传输,在1550nm窗口传送多个波长信号,这些信号相邻波长间隔较窄,且工作在一个共享的EDFA工作带宽内,这种波长间隔紧密的WDM系统称为密集型波分复用系统(DWDM)。其频谱分布如图1-2所示。ITU-T G.692建议,DWDM系统的绝对参考频率为193.1THz(对应波长1552.52nm),不同波长的频率间隔为100GHz的整数倍(对应波长间隔约为0.8.nm的整数倍)。由于密集波分复用系统的波长间隔较小,必须采用高分辨率的波分复用器件,熔融的波分复用器一达不到要求。不加特别说明,波分复用系统通常指DWDM系统。 λ1λ2λ3λ 4 λ5λ6λ7λ8 波长 图1-2 DWDM系统的频谱分布 (一)DWDM的工作方式 双纤单向传输:一根光纤只完成一个方向信号的传输,反向光信号的传输由另一根光纤来完成,统一波长在两个方向上可以重复利用(如图1-3所示)。这种DWDM系统可以

光波分复用技术讲座第3讲WDM系统技术规范

新技术与新业务 光波分复用技术讲座 第三讲 WDM 系统技术规范 信息产业部电信研究院张成良 张海懿 图1 集成式WDM 系统 随着W DM 系统的大规模建设,对标准的需要也越来越强烈。WDM 系统不像SDH 系统那样有严格统一的规范。主要原因在于SDH 系统是IT U -T 先制定了标准规范,各大厂商再根据标准去制造产品,而W DM 系统的发展却恰恰相反,是各厂商先有产品,而且规范不一,都认为自己是最好的选择,因此到现在为止IT U-T 还没有形成统一的规范。因此,为了使引进产品和国内自行开发的产品具有统一性,制订我国的标准是十分必要的。 在制定我国WDM 规范时,必须先确定波分复用系统的通道数目。从最后几年看,16(8)波长的应用将是第一步。从各个公司现在推出的产品看,几乎全是间隔为100GH z 的16波分系统。这主要有以下原因:(a)现实的需要性,以2 5Gb/s 系统为例,16波分单向就可达到40Gb/s 的传输速率,这足以满足未来几年的业务需求:(b)技术的可行性。当前波分复用器件和激光器元件的技术都满足16个波长以上的复用。有鉴于此,我们所考虑的主要是用于干线系统的1550nm 的16通路密集波分复用技术。 从当前应用上看,WDM 系统只用于2 5Gb/s 以上的高速率系统。因而在制定规范的过程中,我们主要考虑了基于2 5Gb/sSDH 的干线网WDM 系统的应用,承载信号为SDH ST M -16系统,即2 5Gb/s N 的W DM 系统。对于承载信号为其他格式(例如IP)的系统和其它速率(例如10Gb/s N )暂不作要求。 在WDM 系统规范中,只考虑了点到点的线性系统。目前世界上大规模建设的W DM 系统几乎无一例外的都是点到点的系统,而且大部分没有采用OADM 。在有业务上下的节点上,采用了复用器/解复用器的背对背方式,因此我们规范的都是点到点的线性系统,而没有考虑环型或其它应用。 1集成式系统和开放式系统 W DM 系统根据其分类,可以分为开放式WDM 系统和集成式WDM 系统。 集成式系统就是SDH 终端设备具有满足G 692的光接口:标准的光波长、满足长距离传输的光源(又称彩色接口)。这两项指标都是当前SDH 系统不要求的。即把标准的光波长和长受限色散距离的光源集成在SDH 系统中。整个系统构造比较简单,没有增加多余设备。但在接纳过去的老SDH 系统时,还必须引入波长转换器OT U ,完成波长的转换,而且要求SDH 与WDM 为同一个厂商,在网络管理上很难实现SDH 、WDM 的彻底分开。集成式WDM 系统如图1所示。 开放式系统就是在波分复用器前加入OT U (波长转换器),将SDH 非规范的波长转换为标准波长。开放是指在同一WDM 系统中,可以接入多家的SDH 系统。OT U 对输入端的信号没有要求,可以兼容任意厂家的SDH 信号。OT U 输出端满足G 692的光接口:标准的光波长、满足长距离传输的光源。具有OT U 的WDM 系统,不再要求SDH 系统具有G 692接口,可继续使用符合G 657接口的SDH 设备;可以接纳过去的SDH 系统,实现不同厂家SDH 系统工作在一个

波分复用技术

波分复用技术研究 1.产生背景 1.1全球形势 随着全球互联网(Internet)的迅猛发展,以因特网技术为主导的数据通信在通信业务总量中的比列迅速上升,因特网业务已成为多媒体通信业中发展最为迅速、竞争最为激烈的领域。同时,无论是从数据传输的用户数量还是从单个用户需要的带宽来讲,都比过去大很多。特别是后者,它的增长将直接需要系统的带宽以数量级形式增长。因此如何提高通信系统的性能,增加系统带宽,以满足不断增长的业务需求成为大家关心的焦点。 面对市场需求的增长,现有通信网络的传输能力的不足的问题,需要从多种可供选择的方案中找出低成本的解决方法。缓和光纤数量的不足的一种途径是敷设更多的光纤,这对那些光纤安装耗资少的网络来说,不失为一种解决方案。但这不仅受到许多物理条件的限制,也不能有效利用光纤带宽。另一种方案是采用时分复用(TDM)方法提高比特率,但单根光纤的传输容量仍然是有限的,何况传输比特率的提高受到电子电路物理极限限制。第三种方案是波分复用(WDM)技术, WDM系统利用已经敷设好的光纤,使单根光纤的传输容量在高速率TDM 的基础上成N倍地增加。WDM能充分利用光纤的带宽,解决通信网络传输能力不足的问题,具有广阔的发展前景。 WDM波分复用并不是一个新概念,在光纤通信出现伊始,人们就意识到可以利用光纤的巨大带宽进行波长复用传输,但是在20世纪90年代之前,该技术却一直没有重大突破,其主要原因在于TDM的迅速发展,从155Mbit/s到622Mbit/s,再到2.5Gbit/s系统,TDM速率一直以过几年就翻4倍的速度提高。人们在一种技术进行迅速的时候很少去关注另外的技术。1995年左右,WDM系统的发展出现了转折,一个重要原因是当时人们在TDM10Gbit/s技术上遇到了挫折,众多的目光就集中在光信号的复用和处理上,WDM系统才在全球范围内有了广泛的应用。 1.2 发展过程 1.2.1 发展阶段 光纤通信飞速发展,光通信网络成为现代通信网的基础平台。光纤通信系统经历

光波分复用通信技术的特点

光波分复用通信技术的特点 光波分复用技术之所以得到世界各国的普遍重视和迅速发展,是与其出色的技术特点密不可分的. 1.光波分复用器结构简单、体积小、可靠性高 在波分复用技术中,技术的关键在于光波分复用器,它应具有将几种不同波长的光信号按一定顺序组合起来传输的功能,又具有将组合起来传输的光信号分开,并分别送入相应终端设备的功能.目前实用的光波分复用器,都为一个无源纤维光学器件,由于不含电源,因而器件具有结构简单、体积小、可靠、易于和光纤耦合等特点.另外由于波分复用器具有双向可逆性,即一个器件可以起到将不同波长的光信号进行组合和分开的作用,因此便于在一根光纤上实现双向传输的功能. 2.不同容量的光纤系统以及不同性质的信号均可兼容传输 由于光波分复用器是对不同波长的光载波信号以一定的次序进行排列以达到提高光纤频带利用率的目的,而与各系统的传输速率以及电调制方式无关,即各不同波长的光信号中所携带的信息以及数据,在光波分复用系统中将呈现透明传输.这样无论新加入的另一个系统的调制方式和传输速

率如何,均不受原系统的制约,使不同容量的光纤系统以及多种信息(声音、视频、图像、数据、文字、图形等)均可兼客传输. 3.提高光纤的频带利用率 在目前实用的光纤通信系统中,多数情况是仅传输一个光波长的光信号,其只占据了光纤频谱带宽中极窄的一部分,远远没能充分利用光纤的传输带宽.因而复用技术的使用大大地提高了频带利用率. 一般来说,两光波之间的波长间隔为l0~100nm时称为波分复用(稀疏波分复用);波长间隔为l~10 nm时称为紧密波分复用;当波长间隔小于l nm( lO GHz)情况时,则称之为光频分复用(FDM).如果采用后面将要介绍的相干光通信技术,则频率间隔能够进一步缩小到0.1 nm,那么一根光纤内可以安排2 000个光载波,若每一光载波信号的传输速率达到2.4 Gbit/s,则一根光纤就能同时传送10万路广播电视信号. 4.可更灵活地进行光纤通信组网 由于使用光波分复用技术,可以在不改变光缆设施的条件下,调整光通信系统的网络结构,因而在光纤通信组网设计中极具灵活性和自由度,便于对系统功能和应用范围的扩展. 5.存在插入损耗和串光问题

波分复用技术

浅议波分复用技术 一、波分复用技术的概念 波分复用(WDM)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。 系统的设计不同,每个波长之间的间隔宽度也有不同。按照通道间隔的不同,WDM可以细分为CWDM(稀疏波分复用)和DWDM (密集波分复用)。CWDM的信道间隔为20nm,而DWDM的信道间隔从0.2nm 到1.2nm。 CWDM和DWDM的区别主要有二点:一是CWDM载波通道间距较宽,因此,同一根光纤上只能复用5到6个左右波长的光波,“稀疏”与“密集”称谓的差别就由此而来;二是CWDM调制激光采用非冷却激光,而DWDM采用的是冷却激光。冷却激光采用温度调谐,非冷却激光采用电子调谐。由于在一个很宽的波长区段内温度分布很不均匀,因此温度调谐实现起来难度很大,成本也很高。CWDM避开了这一难点,因而大幅降低了成本,整个CWDM系统成本只有DWDM的30%。CWDM是通过利用光复用器将在不同光纤中传输的波长结合到一根光纤中传输来实现。在链路的接收端,利用解复用

器将分解后的波长分别送到不同的光纤,接到不同的接收机。 二、CWDM技术简介 1.CWDM标准制定情况 美国的1400nm商业利益组织正在致力于为CWDM系统制定标准。目前建议草案考虑的CWDM系统波长栅格分为三个波段。“O 波段”包括四个波长: 1290、1310、1330和1350nm,“E波段”包括四个波长: 1380、1400、1420 和1440nm,“S+C+L”波段包括从1470nm到1610nm的范围,间距为20nm的八个波长。这些波长利用了光纤的全部光谱,包括在1310、1510和1550nm 处的传统光源,从而增加了复用的信道数20nm的信道间距允许利用廉价的不带冷却器的激光发射机和宽带光滤波器,同时,它也躲开了1270nm高损耗波长,并且使相邻波段之间保持了30nm的间隙。 尽管目前还没有CWDM的技术标准,在市场上已经存在一个事实上的城域网标准:IEEE已经制定了万兆以太网10GbE标准。CWDM的标准将据此来制定。 CWDM的复用/解复用器和激光器正在逐渐形成自己的标准。相邻波长间隔根据无冷却的激光器在很宽的温度范围内工作产生的波长漂移来决定。目前被确定为20nm,其中心波长为:1491,1511,1531等一直到1611nm。而在1300nm波段,IEEE 以太网定义通道宽度为20nm,但是中心波长为1290,1310,1330和1359nm。在1400nm波段如何定义还不知道。目前已经成立CWDM用户组开始结束CWDM城域网标准的混乱状态。

WDM(波分复用)

WDM 波分复用技术是多路复用技术的一种。多路复用技术包括:时分复用( TDM)、频分复用( FDM)、码分复用( CDMA)、波分复用( WDM)。 WDM又叫波分复用技术是新一代的超高速的光缆技术,所谓波分复用技术,它充分利用单模光纤的低损耗区的巨大带宽资源,将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称 分波器或去复用器)将各种波长的光载波分离,然后由光接收机作进一步处理以 恢复原信号。这种在同一根光纤中同时传输两个或众多不同波长光信号的技术称为波分复用。 波分复用原理图 WDM本质上是光域上的频分复用FDM技术。每个波长通路通过频域的分割实现,每个波长通路占用一段光纤的带宽。与电频分复用(SDH)不同,波分复用(WDM)是把基带带宽不同的多个信息通道,调制到不同的光载波上,然后 通过波分复用器将这些光信号合成一个光信号,经光纤信道传输。波分复用解调,采用光纤法布里—珀罗滤波器或者采用相干检测技术,首先把各个光载波分离和重现出来,然后用带通滤波器和各信道的频率选择器把基带信号分离和重现出来。当通信信道间距变得和比特率接近时(密集的FDM),就必须使用相干检测技术,而信道间间距较大时(>100GHz),可以采用直接检测技术。

通信系统的设计不同,每个波长之间的间隔宽度也有不同。按照通道间隔的不同,WDM可以细分为CWDM和DWDM。CWDM的信道间隔为20nm,而DWDM 的信道间隔从0.2nm 到1.2nm。波分复用技术,通常有3种复用方式,即1 310 nm和1 550 nm波长的波分复用、稀疏波分复用(CWDM)和密集波分复用(DWDM)。石英光纤有两个低损耗窗口,即1310 nm与1550 nm,但由于目前尚无工作于1310 nm窗口的实用化放大器,所以WDM系统的工作波长区为1530~1565 nm。 WDM是在1根光纤上承载多个波长(信道)系统,将1根光纤转换为多条“虚拟”纤,当然每条虚拟纤独立工作在不同波长上,这样极大地提高了光纤的传输容量。 1.WDM系统 在WDM网络中,主要有光波长转换单元(OTU),波分复用器(ODU/OMU),光放大器(BA、PA、LA),光监控信道(OSC),光线路终端(OLT),光分插复用器(OADM),光交叉连接器(OXC)等。 WDM系统结构图 1.1 双纤单向WDM 单向波分复用系统采用两根光纤,一根光纤只完成一个方向的光信号传输,反向光信号的传输由另一根光纤完成。

WDM波分复用技术

WDM波分复用技术 1 绪论 本论文主要研究的是WDM波分复用技术,其中包括WDM技术的产生背景,WDM 的基本概念和特点,WDM的关键技术,WDM的网络生存性,WDM技术发展现状及发展趋势等,下面将分别从以上几个方面讨论。 2 WDM技术产生背景 随着科学技术的迅猛发展,通信领域的信息传送量正以一种加速度的形式膨胀。信息时代要求越来越大容量的传输网络。近几年来,世界上的运营公司及设备制造厂家把目光更多地转向了WDM 技术,并对其投以越来越多的关注,增加光纤网络的容量及灵活性,提高传输速率和扩容的手段可以有多种,下面对几种扩容方式进行比较。 1. 空分复用SDM(Space Division Multiplexer) 空分复用是靠增加光纤数量的方式线性增加传输的容量,传输设备也线性增加。 在光缆制造技术已经非常成熟的今天,几十芯的带状光缆已经比较普遍,而且先进的光纤接续技术也使光缆施工变得简单,但光纤数量的增加无疑仍然给施工以及将来线路的维护带来了诸多不便,并且对于已有的光缆线路,如果没有足够的光纤数量,通过重新敷设光缆来扩容,工程费用将会成倍增长。而且,这种方式并没有充分利用光纤的传输带宽,造成光纤带宽资源的浪费。作为通信网络的建设,不可能总是采用敷设新光纤的方式来扩容,事实上,在工程之初也很难预测日益增长的业务需要和规划应该敷设的光纤数。因此,空分复用的扩容方式是十分受限。 2. 时分复用TDM(Time Division Multiplexer) 时分复用也是一项比较常用的扩容方式,从传统PDH 的一次群至四次群的复用,到如今SDH 的STM-1、STM-4、STM-16 乃至STM-64 的复用。通过时分复用技术可以成倍地提高光传输信息的容量,极大地降低了每条电路在设备和线路方面投入的成本,并且采用这种复用方式可以很容易在数据流中抽取某些特定的数字信号,尤其适合在需要采取自愈环保护策略的网络中使用。 时分复用的扩容方式有两个缺陷:第一是影响业务,即在“全盘”升级至更高的速率等级时,网络接口及其设备需要完全更换,所以在升级的过程中,不得不中断正在运行的设备;第二是速率的升级缺乏灵活性,以SDH 设备为例,当一个线路速率为155Mbit/s 的

实验1.9WDM光波分复用器

1.9 WDM光波分复用器 实验者:钦(12342080) 合作者:王唯一(12342057) (大学物理科学与工程技术学院,光信息科学与技术12级2班 B13) 2015年3月26日,19,70% c 一、实验目的和容 1、了解WDM光波分复用器的工作原理和制作工艺,即熔融拉锥技术。 2、认识WDM光波分复用器的基本技术参量的实际意义,学会测量插入损耗、附加损耗、隔离度、偏振相关损耗等。 3、分析测量误差的来源。 二、实验基本原理 在熔融拉锥技术中,具体制作方法一般是将两根(或者两根以上)除去涂覆层的裸光纤以一定方式靠近,在高温加热下熔融,同时向两侧拉伸,利用计算机监控其光功率耦合曲线,并根据耦合比与拉伸长度控制停火时间,最后形成双锥结构。采用熔融拉锥法实现光纤间传输光功率耦合的耦合系数与波长有关,光传输波长发生变化时,耦合系数也会变化,即耦合器的分光比发生变化。考虑到熔融拉锥的耦合是周期性的,耦合周期愈多,耦合系数与传输波长的关系越大,所以尽量减少熔融拉锥中耦合的次数,最好在一个周期完成耦合。合理改变熔融拉锥条件,能够获得不同功能的全光纤耦合器件。熔融拉锥机的控制原理模块图如图1所示。熔融拉锥型光纤耦合器工作原理示意图如图2所示。 图1 熔融拉锥机系统控制示意图 图2 熔融拉锥型光纤耦合器工作原理示意图 1、单模耦合器 HE信号。图3是单模光纤耦合器的迅衰场耦合示意图。但在单模光纤中传导模是两个正交的基模 11 传导模进入熔锥区时,随着纤芯的不断变细,归一化频率V逐渐减小,有越来越多的光功率掺入光纤包层中。实际上光功率是在由包层作为芯,纤外介质(一般是空气)作为包层的复合波导中传播的;在输出端,随着纤芯的逐渐变粗,V值重新增大,光功率被两根纤芯以特定比例“捕获”。在熔锥区,两光纤包层合并在一起,纤芯足够逼近,形成弱耦合。将一根光纤看做是另一光纤的扰动,在弱导近似下,并假设光纤是无吸收的,则有

波分复用概念与其技术讲解波分复用(WDM)是将两种或多种不同波长...

波分复用概念与其技术讲解 波分复用(WDM)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。通信系统的设计不同,每个波长之间的间隔宽度也有不同。按照通道间隔的不同,WDM 可以细分为CWDM(稀疏波分复用)和DWDM(密集波分复用)。CWDM 的信道间隔为20nm,而DWDM的信道间隔从0.2nm 到1.2nm,所以相对于DWDM,CWDM称为稀疏波分复用技术。 CWDM 和DWDM 的区别主要有二点:一是CWDM 载波通道间距较宽,因此,同一根光纤上只能复用5 到6 个左右波长的光波,“稀疏”与“密集”称谓的差别就由此而来;二是CWDM 调制激光采用非冷却激光,而DWDM采用的是冷却激光。冷却激光采用温度调谐,非冷却激光采用电子调谐。由于在一个很宽的波长区段内温度分布很不均匀,因此温度调谐实现起来难度很大,成本也很高。CWDM 避开了这一难点,因而大幅降低了成本,整个CWDM 系统成本只有DWDM 的30%。CWDM 是通过利用光复用器将在不同光纤中传输的波长结合到一根光纤中传输来实现。在链路的接收端,利用解复用器将分解后的波长分别送到不同的光纤,接到不同的接收机。 由于光波长与频率的关系:= ×。实际上为一种频分复用,所以WDM通常也被称为光频分复 用(OFDM), WDM系统的主要优点为: 1.充分利用光纤的低损耗波段,大大增加光纤的传输容量,降低成本 2.对革新到传输的信号的速率,格式具有透明性,有利于数字信号和模拟信号的兼容3.节省光纤和光中继器,便于对已经建成的系统进行扩容 4.可以提供波长选路,使建立透明,灵活,具有高度生存性的WDM网络成为可能 46.2.2 波分复用/解复用器件 在整个WDM 系统中,需要使用多种波长的光信号,通常光纤的损耗随着传输距离的增长而增大。光纤的传输损耗与工作波长有关。故现有光通讯系统中通常选择850nm,1310nm 和1550nm的光波用于传输(如右图所示),为了保证不同的DWDM系统之间的横向兼容性,ITU-T定义了以193.1THz(1552.52nm) 为中心频率,通道最小间隔为100GHz。下图为8/16/32个信道使用频段。

相关主题
文本预览
相关文档 最新文档