当前位置:文档之家› 最短路径算法及代码实现

最短路径算法及代码实现

最短路径算法及代码实现
最短路径算法及代码实现

最常用的路径算法有:

[编辑]Dijkstra算法

详细介绍

Dijkstra复杂度是O(N^2),如果用binary heap优化可以达到O((E+N)logN),用fibonacci heap 可以优化到O(NlogN+E)

其基本思想是采用贪心法,对于每个节点v[i],维护估计最短路长度最大值,每次取出一个使得该估计值最小的t,并采用与t相连的边对其余点的估计值进行更新,更新后不再考虑t。

在此过程中,估计值单调递减,所以可以得到确切的最短路。

Dijkstra 程序:

详细介绍

Bellman-Ford主要是用于赋权图。Bellman-Ford算法即标号修正算法。

实践中常用到的方法通常是FIFO标号修正算法和一般标号修正算法的Dequeue实现。

前者最坏时间复杂度是O(nm), 是解决任意边权的单源最短路经问题的最优强多项式算法。也可以用这个算法判断是否存在负权回路.

SPFA算法

SPFA就是bellmanford的一种实现方式。

SPFA算法就是上面说的FIFO标号修正算法, 请参见《网络流:理论、算法与应用》。SPFA程序:

MD5加密算法-c源代码

md5加密算法c实现 七分注释收藏 经常到csdn来是查资料,每次都会有所收获。总是看别人的感觉很不好意思,于是决定自己也写一点东西贡献出来。于是就有了这篇md5七分注释。希望对用到的朋友有所帮助。 记得当初自己刚开始学习md5的时候,从网上搜了很多关于算法的原理和文字性的描述的东西,但是看了很久一直没有搞懂,搜c的源代码又很少。直到后来学习rsa算法的时候,从网上下了1991年的欧洲的什么组织写的关于rsa、des、md5算法的c源代码(各部分代码混在一块的,比如rsa用到的随机大素数就是用机器的随机时间的md5哈希值获得的)。我才彻底把md5弄明白了。这里的代码就是我从那里面分离出来的,代码的效率和可重用性都是很高的。整理了一下希望对需要的朋友能够有帮助。 md5的介绍的文章网上很多,关于md5的来历,用途什么的这里就不再介绍了。这里主要介绍代码。代码明白了就什么都明白了。 //////////////////////////////////////////////////////////////////// /* md5.h */ #ifndef _MD5_H_ #define _MD5_H_ #define R_memset(x, y, z) memset(x, y, z) #define R_memcpy(x, y, z) memcpy(x, y, z) #define R_memcmp(x, y, z) memcmp(x, y, z) typedef unsigned long UINT4; typedef unsigned char *POINTER; /* MD5 context. */ typedef struct { /* state (ABCD) */ /*四个32bits数,用于存放最终计算得到的消息摘要。当消息长度〉512bits时,也用于存放每个512bits的中间结果*/ UINT4 state[4]; /* number of bits, modulo 2^64 (lsb first) */ /*存储原始信息的bits数长度,不包括填充的bits,最长为2^64 bits,因为2^64是一个64位数的最大值*/ UINT4 count[2]; /* input buffer */ /*存放输入的信息的缓冲区,512bits*/ unsigned char buffer[64];

最短路径规划实验报告

电子科技大学计算机学院标准实验报告 (实验)课程名称最短路径规划 电子科技大学教务处制表

实验报告 学生姓名:李彦博学号:2902107035 指导教师:陈昆 一、实验项目名称:最短路径规划 二、实验学时:32学时 三、实验原理:Dijkstra算法思想。 四、实验目的:实现最短路径的寻找。 五、实验内容: 1、图的基本概念及实现。 一、图的定义和术语 图是一种数据结构。 ADT Graph{ 数据对象V :V是据有相同特性的数据元素的集合,称为顶点集。 数据关系R : R={VR} VR={|v,w∈V且P(v,w), 表示从v到w的弧,P(v,w)定义了弧的意义或信息} 图中的数据元素通常称为顶点,V是顶点的有穷非空集合;VR是两个顶点之间的关系的集合,若顶点间是以有向的弧连接的,则该图称为有向图,若是以无向的边连接的则称为无向图。弧或边有权值的称为网,无权值的称为图。 二、图的存储结构 邻接表、邻接多重表、十字链表和数组。这里我们只介绍数组表示法。 图的数组表示法: 用两个数组分别存储数据元素(顶点)的信息和数据元素之间的关系(边或弧)的信息。其形式描述如下: //---------图的数组(邻接矩阵)存储表示---------- #define INFINITY INT_MAX //最大值 #define MAX_VERTEX_NUM 20 //最大顶点个数 Typedef enum{DG,DN,UDG,UDN} GraphKind; //有向图,有向网,无向图,无向网Typedef struct ArcCell{ VRType adj; //顶点关系类型,对无权图,有1或0表示是否相邻; //对带权图,则为权值类型。 InfoType *info; //弧相关信息的指针

最短路径算法—dijkstra总结

最短路径算法—D i j k s t r a 总结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

Dijkstra 算法解释 本文引用三篇文章:分别是谢光新-Dijkstra 算法, zx770424 -Dijkstra 算法, 中华儿女英雄 -Dijkstra 算法 有兴趣的朋友请引用原文,由于分类很不相同难以查找,此处仅作汇总。 谢光新的文章浅显易懂,无需深入的数学功力,每一步都有图示,很适合初学者了解。 zx770424将每一步过程,都用图示方式和公式代码\伪代码对应也有助于,代码的理解。 中华儿女英雄从大面上总结了Dijkstra 的思想,并将演路图描叙出来了。起到总结的效果。 希望这篇汇总有助于大家对Dijkstra 算法的理解。

Dijkstra算法是典型最短路算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。 简介 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。Dijkstra一般的表述通常有两种方式,一种用永久和临时标号方式,一种是用OPEN, CLOSE表的方式,这里均采用永久和临时标号的方式。注意该算法要求图中不存在负权边。 算法描述 (这里描述的是从节点1开始到各点的dijkstra算法,其中Wa->b表示a->b的边的权值,d(i)即为最短路径值) 1.置集合S={2,3,...n}, 数组d(1)=0, d(i)=W1->i(1,i之间存在边) or +无穷大(1.i之间不存在边) 2.在S中,令d(j)=min{d(i),i属于S},令S=S-{j},若S为空集则算法结束,否则转3 3.对全部i属于S,如果存在边j->i,那么置d(i)=min{d(i), d(j)+Wj->i},转2 Dijkstra算法思想为:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。 算法具体步骤 (1)初始时,S只包含源点,即S=,v的距离为0。U包含除v外的其他顶点,U中顶点u距离为边上的权(若v与u有边)或)(若u不是v的出边邻接点)。 (2)从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。 (3)以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u(u U)的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k 的距离加上边上的权。 (4)重复步骤(2)和(3)直到所有顶点都包含在S中。 复杂度分析 Dijkstra 算法的时间复杂度为O(n^2) 空间复杂度取决于存储方式,邻接矩阵为O(n^2)

最短路径流程图及算法详解

:算法的设计思想 本算法采用分支定界算法实现。构造解空间树为:第一个城市为根结点,与第一个城市相邻的城市为根节点的第一层子节点,依此类推;每个父节点的子节点均是和它相邻的城市;并且从第一个根节点到当前节点的路径上不能出现重复的城市。 本算法将具有最佳路线下界的节点作为最有希望的节点来展开解空间树,用优先队列实现。算法的流程如下:从第一个城市出发,找出和它相邻的所有城市,计算它们的路线下界和费用,若路线下界或费用不满足要求,将该节点代表的子树剪去,否则将它们保存到优先队列中,并选择具有最短路线下界的节点作为最有希望的节点,并保证路径上没有回路。当找到一个可行解时,就和以前的可行解比较,选择一个较小的解作为当前的较优解,当优先队列为空时,当前的较优解就是最优解。算法中首先用Dijkstra算法算出所有点到代表乙城市的点的最短距离。算法采用的下界一个是关于路径长度的下界,它的值为从甲城市到当前城市的路线的长度与用Dijkstra算法算出的当前城市到乙城市的最短路线长度的和;另一个是总耗费要小于1500。 伪代码 算法AlgBB() 读文件m1和m2中的数据到矩阵length和cost中 Dijkstra(length) Dijkstra(cost) while true do for i←1 to 50 do //选择和node节点相邻的城市节点 if shortestlength>optimal or mincost>1500 pruning else if i=50 optimal=min(optimal,tmpopt)//选当前可行解和最优解的 较小值做最优解 else if looped //如果出现回路 pruning //剪枝 else 将城市i插入到优先队列中 end for while true do if 优先队列为空 输出结果 else 取优先队列中的最小节点 if 这个最小节点node的路径下界大于当前的较优解 continue

MD5算法及源代码

MD5算法及源代码 分类:计算机密码 //获得MD5的二个数组和一个buffer并初始化 MD5 *GetMD5(); //初始化MD5的二个数据和一个buffer void MD5Init (MD5 *context); //用于计算MD5值的函数 void MD5Update (MD5 *context, unsigned char *input, unsigned int inputLen); //输出结果 void MD5Final (MD5 *context, unsigned char digest[16]); //对input数据做一次完整的MD5运算 void MD5Out (MD5 *md5, unsigned char *input, unsigned int inputLen, unsigned char out[16]); //计算一个文件的MD5值 int 计算一个文件的MD5值(TCHAR* 文件路径, unsigned char md5值[16]) { MD5 context; int 缓冲区长度 = 1024, 读取到的字节数; unsigned char *缓冲区 = new unsigned char[缓冲区长度]; FILE *文件指针 = fopen(文件路径, "rb"); if(文件指针 == NULL) return 1; MD5Init(&context); while ( (读取到的字节数 = fread ( 缓冲区, 1, 缓冲区长度, 文件指针 )) ! =EOF) { MD5Update (&context, 缓冲区, 读取到的字节数); //判断是否为已经读到文件尾 if ( 读取到的字节数 < 缓冲区长度 ) break; } MD5Final (&context, md5值); free ( 缓冲区 ); return 0; } /** **MD5.h **/ typedef struct { unsigned long state[4]; /* state (ABCD) */ unsigned long count[2]; /* number of bits, modulo 2^64 */

前N条最短路径问题的算法及应用

第36卷第5期2002年9月 浙 江 大 学 学 报(工学版) Jo ur nal o f Zhejiang U niv ersity(Eng ineer ing Science) Vol.36No.5Sep.2002 收稿日期:2001-10-24. 作者简介:柴登峰(1974-),男,浙江江山人,博士生,从事遥感图像处理、地理信息系统方面研究.E-mail:chaidf@z https://www.doczj.com/doc/7812951705.html, 前N 条最短路径问题的算法及应用 柴登峰,张登荣 (浙江大学空间信息技术研究所,杭州浙江310027) 摘 要:现有最短路径问题指的是狭义最短路径问题,针对该问题而设计的算法只能求得最短的一条路径.前N 条最短路径拓宽了最短路径问题的内涵(即不仅要求得最短路径,还要求得次短、再次短…第N 短路径),是广义最短路径问题.在图论理论基础上分析问题之后,设计了一个递归调用Dijkstr a 算法的新算法,该算法可以求取前N 条最短路径,而且时间、空间复杂度都为多项式阶.该算法已经成功应用于一个交通咨询系统中,自然满足实时应用需要. 关键词:最短路径;N 条最短路径;网络分析;地理信息系统;交通咨询系统 中图分类号:P 208;O 22 文献标识码:A 文章编号:1008-973X (2002)05-0531-04 Algorithm and its application to N shortest paths problem CHAI Deng-f eng,ZHAN G Deng-rong (I nstitute of Sp ace and I n f ormation T echnical ,Zhej iang U niv er sity ,H angz hou 310027,China ) Abstract :As the shor test path denotes one path ,algorithms designed for shor test path problem can g et only one path .N shortest paths are N paths including the shortest one ,the one inferior to the shortest one,eto.After reviewing the application of shortest poth pro blem ,an N shortest paths problem w as put fo rw ard and described.Gr aph theo ry w as used to analy ze the problem and results in fo ur theoretical con-clusions .T hen ,algo rithm recursively calling the Dijkstra algor ithm was desig ned and analy zed .Bath time co nplexity and space conplex ity are poly nom ial order.The algo rithm w as tested by ex periment and applied to a traffic consultatio n system of Guang zhou City ,it can meet the need of r eal-time application.Key words :sho rtest path;N shor test paths;netw ork analysis;tr affic consultation system ;GIS 20世纪中后期,随着计算机的出现和发展,图论的理论和应用研究得到广泛重视,图论作为一个数学分支的地位真正得到了确立.现在,图论的应用已经深入到众多领域,GIS 网络分析就是图论在地理信息领域的重要应用[3] ,此外,还有城市规划、电子导航、交通咨询等等. 最短路径问题是图论中的一个典范问题[1],主要研究成果有Dijkstra 、Floy d 等优秀算法[1,2],Dijk-stra 还被认为是图论中的好算法[1] .目前的研究工作主要集中于算法实现的优化改进与应用方面[3,4].最短路径问题通常有两类[2]:一类是求取从某一源点到其余各点的最短路径;另一类是求取每一对顶 点之间的最短路径.它们从不同的角度描述问题,但有一个共同的缺陷:这里的最短路径指两点之间最 短的那一条路径,不包括次短、再次短等等路径.在此不妨称以上两类问题为狭义最短路径问题,为此设计的算法只能求得最短的一条路径,而不能得到次短、再次短等等路径. 实际上,用户在使用咨询系统或决策支持系统时,希望得到最优的决策参考外,还希望得到次优、再次优等决策参考,这同样反映在最短路径问题上.因此,有必要将最短路径问题予以扩充,成为N 条最短路径问题,即不但要求得到最短路径,还要得到次短、再次短等路径.这称之为广义最短路径问题.

基于蚁群算法的路径规划

MATLAB实现基于蚁群算法的机器人路径规划 1、问题描述 移动机器人路径规划是机器人学的一个重要研究领域。它要求机器人依据某个或某些优化原则(如最小能量消耗,最短行走路线,最短行走时间等),在其工作空间中找到一条从起始状态到目标状态的能避开障碍物的最优路径。机器人路径规划问题可以建模为一个有约束的优化问题,都要完成路径规划、定位和避障等任务。 2 算法理论 蚁群算法(Ant Colony Algorithm,ACA),最初是由意大利学者Dorigo M. 博士于1991 年首次提出,其本质是一个复杂的智能系统,且具有较强的鲁棒性,优良的分布式计算机制等优点。该算法经过十多年的发展,已被广大的科学研究人员应用于各种问题的研究,如旅行商问题,二次规划问题,生产调度问题等。但是算法本身性能的评价等算法理论研究方面进展较慢。 Dorigo 提出了精英蚁群模型(EAS),在这一模型中信息素更新按照得到当前最优解的蚂蚁所构造的解来进行,但这样的策略往往使进化变得缓慢,并不能取得较好的效果。次年Dorigo 博士给出改进模型(ACS),文中改进了转移概率模型,并且应用了全局搜索与局部搜索策略,来得进行深度搜索。Stützle 与Hoos给出了最大-最小蚂蚁系统(MAX-MINAS),所谓最大-最小即是为信息素设定上限与下限,设定上限避免搜索陷入局部最优,设定下限鼓励深度搜索。蚂蚁作为一个生物个体其自身的能力是十分有限的,比如蚂蚁个体是没有视觉的,蚂蚁自身体积又是那么渺小,但是由这些能力有限的蚂蚁组成的蚁群却可以做出超越个体蚂蚁能力的超常行为。蚂蚁没有视觉却可以寻觅食物,蚂蚁体积渺小而蚁群却可以搬运比它们个体大十倍甚至百倍的昆虫。这些都说明蚂蚁群体内部的某种机制使得它们具有了群体智能,可以做到蚂蚁个体无法实现的事情。经过生物学家的长时间观察发现,蚂蚁是通过分泌于空间中的信息素进行信息交流,进而实现群体行为的。 下面简要介绍蚁群通过信息素的交流找到最短路径的简化实例。如图2-1 所示,AE 之间有两条路ABCDE 与ABHDE,其中AB,DE,HD,HB 的长度为1,BC,CD 长度为0.5,并且,假设路上信息素浓度为0,且各个蚂蚁行进速度相同,单位时间所走的长度为1,每个单位时间内在走过路径上留下的信息素的量也相同。当t=0时,从A 点,E 点同时各有30 只蚂蚁从该点出发。当t=1,从A 点出发的蚂蚁走到B 点时,由于两条路BH 与BC 上的信息素浓度相同,所以蚂蚁以相同的概率选择BH 与BC,这样就有15 只蚂蚁选择走BH,有15 只蚂蚁选择走BC。同样的从E 点出发的蚂蚁走到D 点,分别有15 只蚂蚁选择DH 和DC。当t=2 时,选择BC 与DC的蚂蚁分别走过了BCD 和DCB,而选择BH 与DH 的蚂蚁都走到了H 点。所有的蚂蚁都在所走过的路上留下了相同浓度的信息素,那么路径BCD 上的信息素的浓度是路径BHD 上信息素浓度的两倍,这样若再次有蚂蚁选择走BC 和BH 时,或选择走DC 与DH 时,都会以较大的概率选择信息素浓度高的一边。这样的过程反复进行下去,最短的路径上走过的蚂蚁较多,留下的信息素也越多,蚁群这样就可以找到一条较短的路。这就是它们群体智能的体现。 蚁群算法就是模拟蚂蚁觅食过程中可以找到最短的路的行为过程设计的一种仿生算法。在用蚁群算法求解组合优化问题时,首先要将组合优化问题表达成与信息素相关的规范形式,然后各个蚂蚁独立地根据局部的信息素进行决策构造解,并根据解的优劣更新周围的信息素,这样的过程反复的进行即可求出组合优化问题的优化解。 归结蚁群算法有如下特点: (1)分布式计算:各个蚂蚁独立地构造解,当有蚂蚁个体构造的解较差时,并不会影响整体的求解结果。这使得算法具有较强的适应性; (2)自组织性:系统学中自组织性就是系统的组织指令是来自系统的内部。同样的蚁

MD5算法的设计与实现

实验三 MD5算法的设计与实现 一、实验目的: 设计并实现MD5算法,从而进一步加深对数据完整性保证和散列函数的理解。 二、实验要求: 1、产生任意电子文档(包括文本和二进制)的128位信息摘要。 2、根据信息摘要验证该电子文档是否被更改过。 三、实验内容: 1、MD5算法简介: Message Digest Algorithm MD5(中文名为消息摘要算法第五版)为计算机安全领域广泛使用的一种散列函数,用以提供消息的完整性保护。1991年,Rivest开发出技术上更为趋近成熟的md5算法。它在MD4的基础上增加了"安全-带子"(safety-belts)的概念。虽然MD5比MD4复杂度大一些,但却更为安全。这个算法很明显的由四个和MD4设计有少许不同的步骤组成。在MD5算法中,信息-摘要的大小和填充的必要条件与MD4完全相同。Den boer和Bosselaers曾发现MD5算法中的假冲突(pseudo-collisions),但除此之外就没有其他被发现的加密后结果了。对MD5算法简要的叙述可以为:MD5以512位分组来处理输入的信息,且每一分组又被划分为16个32位子分组,经过了一系列的处理后,算法的输出由四个32位分组组成,将这四个32位分组级联后将生成一个128位散列值。

2. MD5算法逻辑处理操作包括以下几步: 步骤一:附加填充比特。对报文填充使报文的长度(比特数)与448模512同余。即填充比特使长度为512的整数倍减去64。例如,如果报文是448比特长,那么将填充512比特形成960比特的报文。填充比特串的最高位为1,其余各位均为0。 步骤二:附加长度值。将用64比特表示的初始报文(填充前)的位长度附加在步骤一的结果后(低位字节优先)。如果初始长度大于264,仅使用该长度的低64比特。这样,该域所包含的长度值为初始报文长度模264的值。这两步的结果将产生一个长度为512整数倍比特的报文。经扩展的报文表示成512比特的分组序列列Y1、Y2、Y3……Y(n-1),因此扩展的报文长度等于L乘512比特。与之等价的是,该结果也等于字长为16比特或32比特的整数倍,如果让[]10?NML表示扩展报文包含的字数,其中N是16的倍数,则N等于L 乘512。下图为使用MD5产生报文摘要的过程:

一种快速神经网络路径规划算法概要

文章编号 2 2 2 一种快速神经网络路径规划算法α 禹建丽? ∏ √ 孙增圻成久洋之 洛阳工学院应用数学系日本冈山理科大学工学部电子工学科 2 清华大学计算机系国家智能技术与系统重点实验室日本冈山理科大学工学部信息工学科 2 摘要本文研究已知障碍物形状和位置环境下的全局路径规划问题给出了一个路径规划算法其能量函数 利用神经网络结构定义根据路径点位于障碍物内外的不同位置选取不同的动态运动方程并针对障碍物的形状设 定各条边的模拟退火初始温度仿真研究表明本文提出的算法计算简单收敛速度快能够避免某些局部极值情 况规划的无碰路径达到了最短无碰路径 关键词全局路径规划能量函数神经网络模拟退火 中图分类号 ×°文献标识码 ΦΑΣΤΑΛΓΟΡΙΤΗΜΦΟΡΠΑΤΗΠΛΑΝΝΙΝΓ ΒΑΣΕΔΟΝΝΕΥΡΑΛΝΕΤ? ΟΡΚ ≠ 2 ? ? ≥ 2 ≥ ∏ ΔεπαρτμεντοφΜατηεματιχσ ΛυοψανγΙνστιτυτεοφΤεχηνολογψ Λυοψανγ

ΔεπαρτμεντοφΕλεχτρονιχΕνγινεερινγ ΦαχυλτψοφΕνγινεερινγ ΟκαψαμαΥνι?ερσιτψοφΣχιενχε 2 Ριδαι2χηο 2 ?απαν ΔεπαρτμεντοφΧομπυτερΣχιενχε Τεχηνολογψ ΣτατεΚεψΛαβοφΙντελλιγεντΤεχηνολογψ Σψστεμσ ΤσινγηυαΥνι?ερσιτψ Βει?ινγ ΔεπαρτμεντοφΙνφορματιον ΧομπυτερΕνγινεερινγ ΦαχυλτψοφΕνγινεερινγ ΟκαψαμαΥνι?ερσιτψοφΣχιενχε 2 Ριδαι2χηο 2 ?απαν Αβστραχτ ∏ √ √ √ × ∏ ∏ ∏ ∏ ∏ ∏ 2 ∏ √ × ∏ ∏ ∏ ∏ √ ∏ Κεψωορδσ ∏ ∏ ∏ 1引言Ιντροδυχτιον 机器人路径规划问题可以分为两种一种是基于环境先验完全信息的全局路径规划≈ 另一种是基于传感器信息的局部路径规划≈ ?后者环境是未知或者部分未知的全局路径规划已提出的典型方法有可视图法 ! 图搜索法≈ ! 人工势场法等可视图法的优点是可以求得最短路径但缺乏灵活性并且存在组合爆炸问题图搜索法比较灵活机器人的起始点和目标点的改变不会造成连通图的重新构造但不是任何时候都可以获得最短路径可视图法和图搜索法适用于多边形障碍物的避障路径规划问题但不适用解决圆形障碍物的避障路径规划问题人工势场法的基本思想是通过寻找路径点的能量函数的极小值点而使路径避开障碍物但存在局部极小值问题且不适于寻求最短路径≈ 文献≈ 给出的神经网络路径规划算法我们称为原算法引入网络结构和模拟退火等方法计算简单能避免某些局部极值情况且具有并行性及易于从二维空间推广到三维空间等优点对人工势场法给予了较大的改进但在此算法中由于路径点的总能量函数是由碰撞罚函数和距离函数两部分的和构成的而路径点 第卷第期年月机器人ΡΟΒΟΤ? α收稿日期

地图中最短路径的搜索算法研究综述 (1)

地图中最短路径的搜索算法研究 学生:李小坤导师:董峦 摘要:目前为止, 国内外大量专家学者对“最短路径问题”进行了深入的研究。本文通过理论分析, 结合实际应用,从各个方面较系统的比较广度优先搜索算法(BFS)、深度优先搜索算法(DFS)、A* 算法的优缺点。 关键词:最短路径算法;广度优先算法;深度优先算法;A*算法; The shortest path of map's search algorithm Abstract:So far, a large number of domestic and foreign experts and scholars on the" shortest path problem" in-depth study. In this paper, through theoretical analysis and practical application, comprise with the breadth-first search algorithm ( BFS ), depth-first search algorithm ( DFS ) and the A * algorithms from any aspects of systematic. Key words: shortest path algorithm; breadth-first algorithm; algorithm; A * algorithm; 前言: 最短路径问题是地理信息系统(GIS)网络分析的重要内容之一,而且在图论中也有着重要的意义。实际生活中许多问题都与“最短路径问题”有关, 比如: 网络路由选择, 集成电路设计、布线问题、电子导航、交通旅游等。本文应用深度优先算法,广度优先算法和A*算法,对一具体问题进行讨论和分析,比较三种算的的优缺点。 在地图中最短路径的搜索算法研究中,每种算法的优劣的比较原则主要遵循以下三点:[1] (1)算法的完全性:提出一个问题,该问题存在答案,该算法能够保证找到相应的答案。算法的完全性强是算法性能优秀的指标之一。 (2)算法的时间复杂性: 提出一个问题,该算法需要多长时间可以找到相应的答案。算法速度的快慢是算法优劣的重要体现。 (3)算法的空间复杂性:算法在执行搜索问题答案的同时,需要多少存储空间。算法占用资源越少,算法的性能越好。 地图中最短路径的搜索算法: 1、广度优先算法 广度优先算法(Breadth-First-Search),又称作宽度优先搜索,或横向优先搜索,是最简便的图的搜索算法之一,这一算法也是很多重要的图的算法的原型,Dijkstra单源最短路径算法和Prim最小生成树算法都采用了和宽

MD5加密算法原理

MD5加密算法原理 MD5的全称是Message-Digest Algorithm 5(信息-摘要算法),在90年代初由MIT Laboratory for Computer Science和RSA Data Security Inc的Ronald L. Rivest开发出来,经MD2、MD3和MD4发展而来。它的作用是让大容量信息在用数字签名软件签署私人密匙前被"压缩"成一种保密的格式(就是把一个任意长度的字节串变换成一定长的大整数)。不管是MD2、MD4还是MD5,它们都需要获得一个随机长度的信息并产生一个128位的信息摘要。虽然这些算法的结构或多或少有些相似,但MD2的设计与MD4和MD5完全不同,那是因为MD2是为8位机器做过设计优化的,而MD4和MD5却是面向32位的电脑。这三个算法的描述和C语言源代码在Internet RFCs 1321中有详细的描述 (https://www.doczj.com/doc/7812951705.html,/rfc/rfc1321.txt),这是一份最权威的文档,由Ronald L. Rivest 在1992年8月向IEFT提交。. . Van Oorschot和Wiener曾经考虑过一个在散列中暴力搜寻冲突的函数(Brute-Force Hash Function),而且他们猜测一个被设计专门用来搜索MD5冲突的机器(这台机器在1994年的制造成本大约是一百万美元)可以平均每24天就找到一个冲突。但单从1991年到2001年这10年间,竟没有出现替代MD5算法的MD6或被叫做其他什么名字的新算法这一点,我们就可以看出这个瑕疵并没有太多的影响MD5的安全性。上面所有这些都不足以成为MD5 的在实际应用中的问题。并且,由于MD5算法的使用不需要支付任何版权费用的,所以在一般的情况下(非绝密应用领域。但即便是应用在绝密领域内,MD5也不失为一种非常优秀的中间技术),MD5怎么都应该算得上是非常安全的了。 算法的应用 MD5的典型应用是对一段信息(Message)产生信息摘要(Message-Digest),以防止被篡改。比如,在UNIX下有很多软件在下载的时候都有一个文件名相同,文件扩展名为.md5的文件,在这个文件中通常只有一行文本,大致结构如: MD5 (tanajiya.tar.gz) = 0ca175b9c0f726a831d895e269332461 这就是tanajiya.tar.gz文件的数字签名。MD5将整个文件当作一个大文本信息,通过其不可逆的字符串变换算法,产生了这个唯一的MD5信息摘要。如果在以后传播这个文件的过程中,无论文件的内容发生了任何形式的改变(包括人为修改或者下载过程中线路不稳定引起的传输错误等),只要你对这个文件重新计算MD5时就会发现信息摘要不相同,由此可以确定你得到的只是一个不正确的文件。如果再有一个第三方的认证机构,用MD5还可以防止文件作者的"抵赖",这就是所谓的数字签名应用。 MD5还广泛用于加密和解密技术上。比如在UNIX系统中用户的密码就是以MD5(或其它类似的算法)经加密后存储在文件系统中。当用户登录的时候,系统把用户输入的密码计算成MD5值,然后再去和保存在文件系统中的MD5值进行比较,进而确定输入的密码是否正确。通过这样的步骤,系统在并不知道用户密码的明码的情况下就可以确定用户登录系统的合法性。这不但可以避免用户的密码被具有系统管理员权限的用户知道,而且还在一定程度上增加了密码被破解的难度。

GIS环境下的最短路径规划算法

GIS 环境下的最短路径规划算法 ―――此处最短路理解为路径长度最小的路径 02计算机1班刘继忠 学号:2002374117 1.整体算法说明: 将图的信息用一个邻接矩阵来表达,通过对邻接矩阵的操作来查找最短路进,最短路径的查找采用迪杰斯特拉算法,根据用户给出的必经结点序列、起点、终点进行分段查找。 2.各函数功能及函数调用说明。 1).void Welcome() 程序初始化界面,介绍程序的功能、特点及相关提示 2) void CreatGraph(MGraph *G,char buf[]) 把图用邻接矩阵的形式表示,并进行 初始化。 3).int ShortestPath(MGraph *G,int jump,int end,int avoid[],int P[MAXSIZE][MAXSIZE],int Dist[],int ShPath[])根据用户给出的起点、终点、必经结点、避开结点进行最短路径的分段查找。 4).void Print(int jump,int end,int Dist[],int ShPath[]) 输出找到的最短路径所经的 结点和路径长度。 函数调用图: 3.各函数传入参数及返回值说明: 1).void Welcome() 无传入和返回值 2) void CreatGraph(MGraph *G,char buf[ ]) MGraph *G为主函数中定义的指向存放图的信息的指针变量。 char buf[ ]为主函数中定义的用来存放在图的相关信息录入时的界面信息的数组,以便以后调用查看各结点的信息。

无返回值。 3).int ShortestPath(MGraph *G,int jump,int end,int avoid[],int P[MAXSIZE][MAXSIZE],int Dist[ ],int ShPath[ ]) MGraph *G指向存放图的信息的指针变量。 int jump起点,int end终点,int avoid[ ] 避开结点序列。 int P[MAXSIZE][MAXSIZE]用来记录各点当前找到的最短路径所经过 的结点。 int Dist[ ] 记录各结点的当前找到的最短路径的长度。 int ShPath[ ]用来存放用户需要的最短路径所经的各结点。 返回最短路径查找是否成功的信息。(return SUCCEED;return ERROR)4).void Print(int jump,int end,int Dist[],int ShPath[]) int jump起点,int end终点。 int Dist[ ] 记录各结点的当前找到的最短路径的长度。 int ShPath[ ]用来存放用户需要的最短路径所经的各结点。 无返回值。 4.用户说明: ①源程序经编译连接后运行,出现程序的初始化界面,其内容为介绍程序的 功能、特点及相关提示。如下: Welcome to shortest path searching system. Instructions Function: 1. Personal travelling route choosing. 2. Assistan helper in city's traffic design. 3. Shortes path choose in the comlicated traffic net of the city. Characteristic: It is convient,you could set vital point you must travel,and the point you must avoid. Prompt: If the condition is too secret ,maybe there will have no path available. Designer: Liu jizhong. Complate-data: 2004. 3. 21 CopyRight: Shared program,welcome to improve it. Press anykey to enter the program... ②按任意键进入图的信息录入界面根据提示即可完成图的信息的录入。

md5计算程序源代码

//以下为md5计算程序源代码,可以复制到自己的程序中使用,使用方法见最后的main函数 //经测试,绝对可以使用 ////////////////////////////////////////////////////// #include #include #include using namespace std; /* Type define */ typedef unsigned char byte; typedef unsigned int uint32; using std::string; using std::ifstream; /* MD5 declaration. */ class MD5 { public: MD5(); MD5(const void* input, size_t length); MD5(const string& str); MD5(ifstream& in); void update(const void* input, size_t length); void update(const string& str); void update(ifstream& in); const byte* digest(); string toString(); void reset(); private: void update(const byte* input, size_t length); void final(); void transform(const byte block[64]); void encode(const uint32* input, byte* output, size_t length); void decode(const byte* input, uint32* output, size_t length); string bytesToHexString(const byte* input, size_t length); /* class uncopyable */ MD5(const MD5&); MD5& operator=(const MD5&);

最短路径问题的算法分析及建模案例

最短路径问题的算法分析及建模案例

最短路径问题的算法分析及建模案例 一.摘要 (3) 二.网络最短路径问题的基础知识 (5) 2.1有向图 (7) 2.2连通性................... 错误!未定义书签。 2.3割集....................... 错误!未定义书签。 2.4最短路问题 (8) 三.最短路径的算法研究.. 错误!未定义书签。 3.1最短路问题的提出 (9) 3.2 Bellman最短路方程错误!未定义书签。 3.3 Bellman-Ford算法的基本思想错误!未定义书签 3.4 Bellman-Ford算法的步骤错误!未定义书签。 3.5实例....................... 错误!未定义书签。 3.6 Bellman-FORD算法的建模应用举例错误!未定义 3.7 Dijkstra算法的基本思想 (9) 3.8 Dijkstra算法的理论依据 (9) 3.9 Dijkstra算法的计算步骤 (9) 3.10 Dijstre算法的建模应用举例 (10) 3.11 两种算法的分析错误!未定义书签。

1.Diklstra算法和Bellman-Ford算法 思想有很大的区别错误!未定义书签。 Bellman-Ford算法在求解过程中,每 次循环都要修改所有顶点的权值,也就 是说源点到各顶点最短路径长度一直 要到Bellman-Ford算法结束才确定下 来。...................... 错误!未定义书签。 2.Diklstra算法和Bellman-Ford算法 的限制.................. 错误!未定义书签。 3.Bellman-Ford算法的另外一种理解错误!未定 4.Bellman-Ford算法的改进错误!未定义书签。 摘要 近年来计算机发展迅猛,图论的研究也得到了很大程度的发展,而最短路径 问题一直是图论中的一个典型问题,它已应用在地理信息科学,计算机科学等 诸多领域。而在交通路网中两个城市之间的最短行车路线就是最短路径问题的 一个典型例子。 由于最短路径问题在各方面广泛应用,以及研究人员对最短路径的深入研究, 使得在最短路径问题中也产生了很多经典的算法。在本课题中我将提出一些最 短路径问题的算法以及各算法之间的比较,最后将这些算法再应用于实际问题

最短路径算法及其在路径规划中的应用

最短路径算法及其路径规划中的应用 摘要: 这篇文章把徒步运动的路径规划问题转化为求解图中任意两点间的最短路径问题,进而针对此问题介绍了Floyd算法,对该算法的时间花费进行分析,并介绍了在实际问题中如何灵活运用该算法解决路径决策中遇到的问题。 关键词:路径规划、最短路径、决策、Floyd算法 将实际地图的转化为有向图 在策划一次徒步旅行时,设计正确的旅行的线路特别重要,首先我们必须先要得到那个地区的地图,以便进行后续的线路规划。当我们拿到某一地区的地图时,我们可以把地图上的每一条线路用线段表示,用顶点表示地图上的岔路口,即多条线段的交点,这样就形成了一个由点和线段组成的图。我们可以在每条线段上标上数字,表示两点之间的实际距离,或者表示通过这条路径所需的时间。当然,如果两点之间没有线段相连,我们可以认为距离为无穷大,用∞表示。有时候某些线路是单向的,即只能从一个方向到另一个方向,不能逆行。这种情况在具体的路径设计中非常常见,比如,在繁华的都市内会有一些单行道,在山区景点中,常会出现一些上山索道,这些都是单向线路的常见例子。有时候,沿某条线路的两个方向所需的时间不同,这种例子更为常见,比如上山与下山,顺风与逆风等等。对于这两种情况,我们可以在表示路径的线段上加上箭头表示该路径的方向,形成有向图。 到达v2的距离为8,而从v2到v1的距离为3。 从点v1到v0的距离为5,而从v0到v1的距离 为∞。这种带有箭头的有向图,比不带箭头的无 向图能够表示更一般的情形,可以说无向图只是 有向图的一种特殊情况。 如果我们知道任意两点间的最短路径,这对 我们进行路径规划将会有很大的帮助,但当地图 较为复杂时,凭直觉估计最短路径的方法往往不 可靠,这时就必须借助计算机的强大计算能力,寻找最短路径。下面,我们就以 这种有向图为工具,来探究寻找最短路径的方法。

相关主题
文本预览
相关文档 最新文档