当前位置:文档之家› Matlab数学规划问题求解

Matlab数学规划问题求解

Matlab数学规划问题求解
Matlab数学规划问题求解

Matlab数学规划问题求解

1. 线性规划

线性规划问题是目标函数和约束条件均为线性函数的问题,MATLAB6.0解决的线性规划问题的标准形式为:

min n R

',

f∈

x

x

sub.to:b

?

x

A≤

A e q=

?

x

b e q

lb≤

x

ub

其中f、x、b、beq、lb、ub为向量,A、Aeq为矩阵。

其它形式的线性规划问题都可经过适当变换化为此标准形式。

在MATLAB6.0版中,线性规划问题(Linear Programming)已用函数linprog取代了MATLAB5.x版中的lp函数。当然,由于版本的向下兼容性,一般说来,低版本中的函数在6.0版中仍可使用。

函数linprog

调用格式:

x=linprog(f,A,b)

x=linprog(f,A,b,Aeq,beq)

x=linprog(f,A,b,Aeq,beq,lb,ub)

x=linprog(f,A,b,Aeq,beq,lb,ub,x0)

x=linprog(f,A,b,Aeq,beq,lb,ub,x0,options)

[x,fval]=linprog(…)

[x, fval, exitflag]=linprog(…)

[x, fval, exitflag, output]=linprog(…)

[x, fval, exitflag, output, lambda]=linprog(…)

说明:

x=linprog(f, A, b)%求min f ' *x, sub.to b

A≤

?线性规划的最优解。返回

x

值x为最优解向量。

x=linprog(f, A, b, Aeq, beq) %含有等式约束beq

?,若没有不等式

x

Aeq=

约束b

?,则令A=[ ],b=[ ]。

A≤

x

x = linprog(f, A, b, Aeq, beq, lb, ub) %指定x的范围ub

x

lb≤x=linprog(f, A, b, Aeq, beq, lb, ub, x0) %设置x0为初值点。

x=linprog(f, A, b, Aeq, beq, lb, ub, x0, options) % options为指定的优化参数。下面将进行专门描述。

[x, fval] = linprog(…) %返回目标函数最优值,即fval= f ' *x。

[x, lambda, exitflag] = linprog(…) % lambda为解x的Lagrange乘子。

[x, lambda, fval, exitflag] = linprog(…) % exitflag 为终止迭代的错误条件。

[x, fval, lambda, exitflag, output] = linprog(…) % output 为关于优化的一些信息。

若exitflag>0表示函数收敛于解x ,exitflag=0表示超过函数估值或迭代的最大数字,exitflag<0表示函数不收敛于解x ;

lambda=lower (lambda.lower)表示下界lb ,lambda=upper (lambda.upper)表示上界ub ,lambda=ineqlin (lambda.ineqlin)表示不等式约束,lambda=eqlin (lambda.eqlin)表示等式约束,lambda 中的非0元素表示对应的约束是有效约束;

output=iterations 表示迭代次数,output=algorithm 表示使用的运算规则,output=cgiterations 表示PCG 迭代次数。

Options 函数描述:

对于优化控制,MATLAB 提供了18个参数,这些参数的具体意义为: options(1)-参数显示控制(默认值为0)。等于1时显示一些结果。

options(2)-优化点x 的精度控制(默认值为1e-4)。

options(3)-优化函数F 的精度控制(默认值为1e-4)。

options(4)-违反约束的结束标准(默认值为1e-6)。

options(5)-算法选择,不常用。

options(6)-优化程序方法选择,为0则为BFCG 算法,为1则采用DFP 算法。

options(7)-线性插值算法选择,为0则为混合插值算法,为1则采用立方插算法。

options(8)-函数值显示 (目标—达到问题中的Lambda )

options(9)-若需要检测用户提供的梯度,则设为1。

options(10)-函数和约束估值的数目。

options(11)-函数梯度估值的个数。

options(12)-约束估值的数目。

options(13)-等约束条件的个数。

options(14)-函数估值的最大次数(默认值是100×变量个数)

options(15)-用于目标 — 达到问题中的特殊目标。

options(16)-优化过程中变量的最小有限差分梯度值。

options(17)- 优化过程中变量的最大有限差分梯度值。

options(18)-步长设置 (默认为1或更小)。

例1 求下面的优化问题

321645min x x x ---

sub.to ???

????≤≤≤≤+≤++≤+-32121

3213210,0,030234242320x x x x x x x x x x x 解:

>>f = [-5; -4; -6];

>>A = [1 -1 1; 3 2 4; 3 2 0];

>>b = [20; 42; 30];

>>lb = zeros(3,1);

>>[x, fval, exitflag, output, lambda] = linprog(f,A,b,[],[],lb) 结果为:

x = %最优解

0.0000

15.0000

3.0000

fval = %最优值

-78.0000

exitflag = %收敛

1

output =

iterations: 6 %迭代次数

cgiterations: 0

algorithm: 'lipsol' %所使用规则

lambda =

ineqlin: [3x1 double]

eqlin: [0x1 double]

upper: [3x1 double]

lower: [3x1 double]

>> lambda.ineqlin

ans =

0.0000

1.5000

0.5000

>> lambda.lower

ans =

1.0000

0.0000

0.0000

表明:不等约束条件2和3以及第1个下界是有效的

2. 0-1整数规划

对于0-1 规划问题,MATLAB7.0提供命令bintprog 求解。

MATLAB 中0-1 规划的标准形式:

min f'*X s.t. A*X <= b, Aeq*X = beq

其中X的每个分量为0 或者1。

(1)X = BINTPROG(f)

求解问题min f'*X

(2)X = BINTPROG(f,A,b)

求解min f'*X s.t. A*X <= b

(3)X = BINTPROG(f,A,b,Aeq,beq)

求解min f'*X s.t. Aeq*X = beq, A*X <= b

3. 分枝定界法求解整数线性规划问题

%%本程序是用分枝定界法求解整数线性规划问题(bech() in V7.0) %%问题的标准形式:

%% min c'*x

%% s.t. A*x<=b

%% Aeq*x=beq

function [y,fval]=BranchBound(c,A,b,Aeq,beq)

NL=length(c);

UB=inf;

LB=-inf;

FN=[0];

AA(1)={A};

BB(1)={b};

k=0;

flag=0;

while flag==0;

[x,fval]=linprog(c,A,b,Aeq,beq);

if fval>UB|fval==UB

FN(1)=[];

if isempty(FN)==1

flag=1;

else

k=FN(1);

A=AA{k};

b=BB{k};

end

else

for i=1:NL

if abs(x(i)-round(x(i)))>1e-7

kk=FN(length(FN));

FN=[FN,kk+1,kk+2];

temp_A=zeros(1,NL);

temp_A(i)=1;

temp_A1=[A;temp_A];

AA(kk+1)={temp_A1};

b1=[b;fix(x(i))];

BB(kk+1)={b1};

temp_A2=[A;-temp_A];

AA(kk+2)={temp_A2};

b2=[b;-(fix(x(i))+1)];

BB(kk+2)={b2};

FN(1)=[];

k=FN(1);

A=AA{k};

b=BB{k};

break;

end

end

if i==NL

UB=fval;

y=x;

FN(1)=[];

if isempty(FN)==1

flag=1;

else

k=FN(1);

A=AA{k};

b=BB{k};

end

end

end

end

y=round(y);

fval=c*y;

4. MATLAB非线性规划函数

在MATLAB\toolbox\optim中有两个M文件:constr.m和fminu.m,分别包含了用于约束优化问题和无约束优化问题的两组函数.下面介绍其中最有用的两个函数.

(1) 约束优化

[X,OPTIONS]=constr(…FUN?,X,OPTIONS,VLB,VUB)

此函数求解下列约束优化(非线性规划)问题:

min F(X)

s.t.

G1(X)=0(m equalities)

G2(X)<=0(p inequalities)(G=[G1;G2])

VLB<=x<=VUB

FU N:M文件…FU N.M”中定义了函数[F,G]=FUN(X),F=F(X)是目标函数

(求极小),以G(X)=[G1(X);G2(X)]代表等式和不等式(<=)约

束函数;

X:输入参数X是决策变量的初始点(最优点的一个估计,可以随便给,当然越准求解越快),输出参数X是决策变量的最优点;

OPTIONS:可选的参数向量,其中最有用的有两个:

输出参数options(8)=目标函数最优值;

输人参数options(13)=等式约束的个数=m;

VLB和VUB:决策变量的下界和上界.

(2) 无约束优化

[X,OPTIONS]=fminu(…FUN?,X0,……)

此函数求解下列无约束优化问题:

min F(X)

其中:

FUN:M文件“FUN.M?中定义了函数.F=FUN(X),F=F(X)就是目标函数(求极小);

X:输人参数X是决策变量的初始点(最优点的一个估计,可以随便给,当然越准求解越快)输出参数X是决策变量的最优点;

OPTIONS:可选向量,其中最有用的是:

输出参数options(8)=目标函数最优值.

在fminu中,默认的无约束优化算法是BFGS算法,直线搜索是二次和三次混合拟合搜索,

********************************************************************* ********

提示:1)MATLAB函数的定义形式独具一格,它非常明白地表达了函数参数的三种情况:输入、输出、输入-输出,这是一般计算机语言都不及的(就我所见!)

2)求解非线性规划问题首先要编一个M文件,代表你要解的问题.

5. matlab多目标规划

[x,fval,attainfactor,exitflag]=fgoalattain(fun,x0,goal,...,weight,a,b,aeq,beq,lb,ub).

在输入部分:

fun是目标函数,x0是初始值,goal是目标函数希望达到的值,weight是目标权重。

(1)当目标权重为正时,指令fgoalattain试图使对象小于目标值。为了使目标函数大于目标值,可使权重设置为负。

(2)一般设置为weight=goal或weight=abs(goal)

a,b给出线性不等式约束;aeq,beq给出线性等式约束;lb,ub为x的上界和下界。如无某类约束,可用[]代替。

在输出部分:

exitflag为输出标记。当exitflag>0,解收敛,所给出的x,fval有效;当exitflag<=0,解没有收敛,所给出的x,fval无效。

x为多目标问题的解,当exitflag>0,x称满意解,fval称目标达到值。attainfactor是指目标达到情况。当attainfactor>=0,目标达到值fval没有溢出

goal;

当attainfactor<0,fval有溢出goal的情况。

例:某工厂因生产需要,欲采购一种原料,市场上这种原材料有两个等级,甲级单价2元/kg,乙级单价1元/kg,现要求总费用不超过200元,购得原料总量不少于100kg,其中甲级原料不少于50kg,问如何确定最好的采购方案。

列出方程

x1>=50

x1*2+x2*1<=200

x1+x2>=100

x1,x2>=0

min f1=x1*2+x2*1

min f2=-x1-x2

min f3=x1

s.t :

x1*2+x2*1<=200

-x1-x2<=-100

-x1<=-50

x1,x2>=0

matlab程序

fun='[2*x(1)+x(2),-x(1)-x(2),-x(1)]';

a=[2 1;-1 -1;-1 0];

b=[200 -100 20]';

goal=[200,-100,-50];

weight=goal;

x0=[55,55];

lb=[0,0]';

[x,fval,attainfactor,exitflag]=fgoalattain(fun,x0,goal,weight,a,b,[],[],lb,[]) Optimization terminated: Search direction less than 2*options.TolX

and maximum constraint violation is less than options.TolCon.

Active inequalities (to within options.TolCon = 1e-006):

lower upper ineqlin ineqnonlin

2 2

3

x =

50.0000 50.0000

fval =

150.0000 -100.0000 -50.0000

attainfactor =

-1.4476e-024

exitflag =

4

(完整版)MATLAB常用函数大全

一、MATLAB常用的基本数学函数 abs(x):纯量的绝对值或向量的长度 angle(z):复数z的相角(Phase angle) sqrt(x):开平方 real(z):复数z的实部 imag(z):复数z的虚部 conj(z):复数z的共轭复数 round(x):四舍五入至最近整数 fix(x):无论正负,舍去小数至最近整数 floor(x):地板函数,即舍去正小数至最近整数ceil(x):天花板函数,即加入正小数至最近整数rat(x):将实数x化为分数表示 rats(x):将实数x化为多项分数展开 sign(x):符号函数(Signum function)。 当x<0时,sign(x)=-1; 当x=0时,sign(x)=0; 当x>0时,sign(x)=1。 rem(x,y):求x除以y的馀数 gcd(x,y):整数x和y的最大公因数 lcm(x,y):整数x和y的最小公倍数 exp(x):自然指数 pow2(x):2的指数 log(x):以e为底的对数,即自然对数或 log2(x):以2为底的对数 log10(x):以10为底的对数 二、MATLAB常用的三角函数 sin(x):正弦函数 cos(x):余弦函数

tan(x):正切函数 asin(x):反正弦函数 acos(x):反馀弦函数 atan(x):反正切函数 atan2(x,y):四象限的反正切函数 sinh(x):超越正弦函数 cosh(x):超越馀弦函数 tanh(x):超越正切函数 asinh(x):反超越正弦函数 acosh(x):反超越馀弦函数 atanh(x):反超越正切函数 三、适用於向量的常用函数有: min(x): 向量x的元素的最小值 max(x): 向量x的元素的最大值 mean(x): 向量x的元素的平均值 median(x): 向量x的元素的中位数 std(x): 向量x的元素的标准差 diff(x): 向量x的相邻元素的差 sort(x): 对向量x的元素进行排序(Sorting)length(x): 向量x的元素个数 norm(x): 向量x的欧氏(Euclidean)长度sum(x): 向量x的元素总和 prod(x): 向量x的元素总乘积 cumsum(x): 向量x的累计元素总和cumprod(x): 向量x的累计元素总乘积 dot(x, y): 向量x和y的内积 cross(x, y): 向量x和y的外积 四、MATLAB的永久常数

动态规划-图论

§1动态规划模型 如图所示,给定一个线路网络,两点之间连线上的数字表示 两点间距离,试求一条从A到E的路线,使总距离为最短。Mattlab求解: 首先利用Excel建立两个工作表edge和n分别存储图的上三 角阵和顶点数量。其中edge= 99999 5 2 99999 99999 99999 99999 99999 99999 99999 99999 99999 3 7 99999 99999 99999 99999 99999 99999 99999 99999 6 3 99999 99999 99999 99999 99999 99999 99999 99999 99999 6 99999 99999 99999 99999 99999 99999 99999 99999 3 8 99999 99999 99999 99999 99999 99999 99999 99999 1 99999 99999 99999 99999 99999 99999 99999 99999 99999 3 99999 99999 99999 99999 99999 99999 99999 99999 7 99999 99999 99999 99999 99999 99999 99999 99999 99999 n=9,然后在Matlab调入以上数据。同时将自编的动态规划 软件“dynamic.m”调入当前目录之中,在Matlab命令窗口

输入dynamic,回车后则在窗口显示出路径Path 和距离distance §2 最小生成树 例1 某工厂要架设局域网联通工厂各个部门。已知工厂有7个部门,各个部门间铺设网线的距离如上图所示,计算出铺设网线的最短距离。 Matlab 的算法: 首先,将上图的邻接矩阵存储为G ,顶点数存储为N ;即:G= 99999 50 60 99999 99999 99999 99999 50 99999 99999 65 40 99999 99999 60 99999 99999 52 99999 99999 45 99999 65 52 99999 50 30 42 99999 40 99999 50 99999 70 99999 99999 99999 99999 30 70 99999 99999 99999 99999 45 42 99999 99999 99999 2 5 3 1 4 7 6 50 60 45 65 52 40 50 70 30 42

(完整版)matlab函数大全(非常实用)

信源函数 randerr 产生比特误差样本 randint 产生均匀分布的随机整数矩阵 randsrc 根据给定的数字表产生随机矩阵 wgn 产生高斯白噪声 信号分析函数 biterr 计算比特误差数和比特误差率 eyediagram 绘制眼图 scatterplot 绘制分布图 symerr 计算符号误差数和符号误差率 信源编码 compand mu律/A律压缩/扩张 dpcmdeco DPCM(差分脉冲编码调制)解码dpcmenco DPCM编码 dpcmopt 优化DPCM参数 lloyds Lloyd法则优化量化器参数 quantiz 给出量化后的级和输出值 误差控制编码 bchpoly 给出二进制BCH码的性能参数和产生多项式convenc 产生卷积码 cyclgen 产生循环码的奇偶校验阵和生成矩阵cyclpoly 产生循环码的生成多项式 decode 分组码解码器 encode 分组码编码器 gen2par 将奇偶校验阵和生成矩阵互相转换gfweight 计算线性分组码的最小距离 hammgen 产生汉明码的奇偶校验阵和生成矩阵rsdecof 对Reed-Solomon编码的ASCII文件解码rsencof 用Reed-Solomon码对ASCII文件编码rspoly 给出Reed-Solomon码的生成多项式syndtable 产生伴随解码表 vitdec 用Viterbi法则解卷积码 (误差控制编码的低级函数) bchdeco BCH解码器 bchenco BCH编码器 rsdeco Reed-Solomon解码器 rsdecode 用指数形式进行Reed-Solomon解码 rsenco Reed-Solomon编码器 rsencode 用指数形式进行Reed-Solomon编码 调制与解调

动态计划求解方法的Matlab实现及应用[]

动态规划求解方法的Matlab实现及应用[1].txt我自横刀向天笑,笑完我就去睡觉。你的手机比话费还便宜。路漫漫其修远兮,不如我们打的吧。第 %卷第 ,期信息工程大学学报 S>:+% <>+, !""’年 >月 T>8D3F: >C 53C>DEFB2>3 G3?23@@D23? 032H@DA2BI 6@N+!""’ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! 动态规划求解方法的 !"#$"%实现及应用 于斌,刘姝丽,韩中庚 <信息工程大学信息工程学院,河南郑州 #’"""!) 摘要:文章对动态规划问题的求解方法进行了分析研究,根据问题的特点、难点和关键点做了 针对性的处理,然后用 !"#$"%做了实现尝试,从而实现了“最佳组队”和“最短路线”等问题的 求解。实践证明所采用方法和程序都是有效的。 关键词:动态规划;基本方程;!"#$"%实现;最佳组队 中图分类号:* !!&+,文献标识码:-文章编号:&%.& $ "%.,

$ "# !"#$"% &’"$(>"#(*+ *, #-’ ./+"0(1 23*43"00(+4 5663*"1-"+7 8#9 566$(1"#(*+ /0 123,450 6789:2,。-< =7>3?9?@3? <53AB2B8B@ >C 53C>DEFB2>3 G3?23@@D23?,53C>DEFB2>3 G3?23@@D23? 032H@DA2BI,=7@3?J7>8 #’"""!,K723F) 5%9#3"1#:1I F3F:IJ23? F3L 23H@AB2?FB23? B7@ LI3FE2M ND>?DFEE23? FNND>FM7,F3 @CC@MB2H@ L2AN>AF: 7FA O@@3 L>3@

动态规划 销售人员分配问题(matlab编程)

数学规划课程设计 题目:销售人员费配问题 姓名: 学号: 成绩: 2011年6月

销售人员费配问题 摘要:动态规划程序设计是对解最优化问题的一种途径、一种方法,而不是一种特殊算法,本论文通过对动态规划的基本概念和基本思路,并利用Matlab对动态规划中的销售人员分配问题进行了分析,然后利用Matlab语言进行了程序设计和计算,是复杂问题简单化,避免了繁琐的计算,从而使问题能跟方便地得到解决。 关键词:动态规划销售人员分配问题Matlab语言

一、问题重述 某企业甲、乙、丙三个销售市场,其市场的利润与销售人员的分配有关,现有6个销售人员, 二、问题分析 首先我们对设备的分配规定一个顺序,即先考虑分配给甲市场,其次乙市场,最后丙市场,但分配时必须保证企业的总收益最大。 将问题按分配过程分为三个阶段,根据动态规划逆序算法,可设: 1、阶段数k=1,2,3(即甲、乙、丙三个市场的编号分别为1,2,3); 2、状态变量x k 表示分配给第k 个市场至第3个市场的人员数(即第k 阶段初尚未分配的人员数); 3、决策变量u k 表示分配给第k 市场的人员数; 4、状态转移方程:x k+1=x k -u k ; 5、g k (u k )表示u k 个销售人员分配到第k 个市场所得的收益值,它由下表可查得; 6、f k (x k )表示将x k 个销售人员分配到第k 个市场所得到的最大收益值,因而可得出递推方程: f k (x k )= 6 ,...,1,0max =k u [ g k (u k )+ f k+1(x k -u k )],k=1,2,3 f 4(x 4)=0 三、问题求解 1)k=3时,市场丙的分配方案和总收益. 最大收益:f 3(x 3)=6 ,...,1,0max 3=u [g 3(x 3)]

Matlab中常见数学函数的使用

给自己看的----Matlab 的内部常数(转) 2008/06/19 14:01 [Ctrl C/V--学校 ] MATLAB 基本知识 Matlab 的内部常数 pi 圆周率 exp(1) 自然对数的底数e i 或j 虚数单位 Inf 或 inf 无穷大 Matlab 的常用内部数学函数

我们也可在matlab中调用maple的命令进行多项式的运算,调用格式如下: maple(’maple中多项式的运算命令’) 如何用matlab进行分式运算 发现matlab只有一条处理分式问题的命令,其使用格式如下: [n,d]=numden(f)把符号表达式f化简为有理形式,其中分子和分母的系数为整数且分子分母不含公约项,返回结果n为分子,d为分母。注意:f必须为符号表达式 不过我们可以调用maple的命令,调用方法如下: maple(’denom(f)’)提取分式f的分母 maple(’numer(f)’)提取分式f的分子 maple(’normal(f)’ ) 把分式f的分子与分母约分成最简形式 maple(’expand(f)’) 把分式f的分子展开,分母不变且被看成单项。 maple(’factor(f)’) 把分式f的分母和分子因式分解,并进行约分。 如何用Matlab进行因式分解 syms 表达式中包含的变量factor(表达式) 如何用Matlab展开 syms 表达式中包含的变量expand(表达式) 如何用Matlab进行化简 syms 表达式中包含的变量simplify(表达式) 如何用Matlab合并同类项 syms 表达式中包含的变量collect(表达式,指定的变量) 如何用Matlab进行数学式的转换 调用Maple中数学式的转换命令,调用格式如下: maple(‘Maple的数学式转换命令’) 即:maple(‘convert(表达式,form)’)将表达式转换成form的表示方式 maple(‘convert(表达式,form, x)’)指定变量为x,将依赖于变量x的函数转换成form的表示方式(此指令仅对form为exp与sincos的转换式有用) 如何用Matlab进行变量替换 syms 表达式和代换式中包含的所有变量subs(表达式,要替换的变量或式子,代换式) 如何用matlab进行复数运算 a+b*i 或 a +b*j表示复数a+bi 或a+bj real(z)求复数z的实部 imag(z)求复数z的虚部 abs(z)求复数z的模 angle(z)求复数z的辐角, conj(z)求复数z的共轭复数 exp(z)复数的指数函数,表示e^z 如何在matlab中表示集合 [a, b, c,…] 表示由a, b, c,…组成的集合(注意:元素之间也可用空格隔开) unique(A) 表示集合A的最小等效集合(每个元素只出现一次) 也可调用maple的命令,格式如下: maple('{a, b, c,…}')表示由a, b, c,…组成的集合 下列命令可以生成特殊的集合: maple(‘{seq(f(i),i=n..m)}’)生成集合{f(n), f(n+1), f(n+2), … , f(m)} 如何用Matlab求集合的交集、并集、差集和补集

最优化方法的Matlab实现(公式(完整版))

第九章最优化方法的MatIab实现 在生活和工作中,人们对于同一个问题往往会提出多个解决方案,并通过各方面的论证从中提取最佳方案。最优化方法就是专门研究如何从多个方案中科学合理地提取出最佳方案的科学。由于优化问题无所不在,目前最优化方法的应用和研究已经深入到了生产和科研的各个领域,如土木工程、机械工程、化学工程、运输调度、生产控制、经济规划、经济管理等,并取得了显著的经济效益和社会效益。 用最优化方法解决最优化问题的技术称为最优化技术,它包含两个方面的内容: 1)建立数学模型即用数学语言来描述最优化问题。模型中的数学关系式反映了最优化问题所要达到的目标和各种约束条件。 2)数学求解数学模型建好以后,选择合理的最优化方法进行求解。 最优化方法的发展很快,现在已经包含有多个分支,如线性规划、整数规划、非线性规划、动态规划、多目标规划等。 9.1 概述 利用Matlab的优化工具箱,可以求解线性规划、非线性规划和多目标规划问题。 具体而言,包括线性、非线性最小化,最大最小化,二次规划,半无限问题,线性、非线性方程(组)的求解,线性、非线性的最小二乘问题。另外,该工具箱还提供了线性、非线性最小化,方程求解,曲线拟合,二次规划等问题中大型课题的求解方法,为优化方法在工程中的实际应用提供了更方便快捷的途径。 9.1.1优化工具箱中的函数 优化工具箱中的函数包括下面几类: 1 ?最小化函数

2.方程求解函数 3.最小—乘(曲线拟合)函数

4?实用函数 5 ?大型方法的演示函数 6.中型方法的演示函数 9.1.3参数设置 利用OPtimSet函数,可以创建和编辑参数结构;利用OPtimget函数,可以获得o PtiOns优化参数。 ? OPtimget 函数 功能:获得OPtiOns优化参数。 语法:

基于Matlab的动态规划程序实现

动态规划方法的Matlab 实现与应用 动态规划(Dynamic Programming)是求解决策过程最优化的有效数学方法,它是根据“最优决策的任何截断仍是最优的”这最优性原理,通过将多阶段决策过程转化为一系列单段决策问题,然后从最后一段状态开始逆向递推到初始状态为止的一套最优化求解方法。 1.动态规划基本组成 (1) 阶段 整个问题的解决可分为若干个阶段依次进行,描述阶段的变量称为阶段变量,记为k (2) 状态 状态表示每个阶段开始所处的自然状况或客观条件,它描述了研究问题过程的状况。各阶段状态通常用状态变量描述,用k x 表示第k 阶段状态变量,n 个阶段决策过程有n+ 1个状态。 (3) 决策 从一确定的状态作出各种选择从而演变到下一阶段某一状态,这种选择手段称为决策。描述决策的变量称为决策变量,决策变量限制的取值范围称为允许决策集合。用()k k u x 表示第k 阶段处于状态k x 时的决策变量,它是k x 的函数。用()k k D x Dk(xk)表示k x 的允许决策的集合。 (4) 策略 每个阶段的决策按顺序组成的集合称为策略。由第k 阶段的状态k x 开始到终止状态的后部子过程的策略记为{}11(),(),,()k k k k n n u x u x u x ++ 。可供选择的策略的范围称为允许策略集合,允许策略集合中达到最优效果的策略称为最优策略。从初始状态* 11()x x =出发,过程按照最优策略和状态转移方程演变所经历的状态序列{ } **** 121,,,,n n x x x x + 称为最优轨线。 (5) 状态转移方程 如果第k 个阶段状态变量为k x ,作出的决策为k u ,那么第k+ 1阶段的状态变量1k x +也被完全确定。用状态转移方程表示这种演变规律,记为1(,)k k k x T x u +=。 (6) 指标函数 指标函数是系统执行某一策略所产生结果的数量表示,是衡量策略优劣的数量指标,它定义在全过程和所有后部子过程上,用()k k f x 表示。过程在某阶段j 的阶段指标函数是衡量该阶段决策优劣数量指标,取决于状态j x 和决策j u ,用(,)j j j v x u 表示。 2.动态规划基本方程 (){} 11()min ,,(),()k k k k k k k k k k f x g v x u f x u D x ++=∈???? Matlab 实现 (dynprog.m 文件) function [p_opt,fval]=dynprog (x,DecisFun,SubObjFun,TransFun,ObjFun) % x 是状态变量,一列代表一个阶段的所有状态; % M-函数DecisFun(k,x) 由阶段k 的状态变量x 求出相应的允许决策变量; % M-函数SubObjFun(k,x,u) 是阶段指标函数, % M-函数ObjFun(v,f) 是第k 阶段至最后阶段的总指标函数 % M-函数TransFun(k,x,u) 是状态转移函数, 其中x 是阶段k 的某状态变量, u 是相应的决策变量; %输出 p_opt 由4列构成,p_opt=[序号组;最优策略组;最优轨线组;指标函数值组]; %输出 fval 是一个列向量,各元素分别表示p_opt 各最优策略组对应始端状态x 的最优函数值。

matlab 常用函数(1)

A axis() axis([xmin xmax ymin ymax]) sets the limits for the x- and y-axis of the current axes. axis([xmin xmax ymin ymax zmin zmax cmin cmax]) sets the x-, y-, and z-axis limits and the color scaling limits (see caxis) of the current axes. axis equal sets the aspect ratio so that the data units are the same in every direction. The aspect ratio of the x-, y-, and z-axis is adjusted automatically according to the range of data units in the x, y, and z directions C clf Clear current figure window G grid off/on The grid function turns the current axes' grid lines on and off. H hold on/off ●The hold function determines whether new graphics objects are added to the graph or replace objects in the graph. ●hold on retains the current plot and certain axes properties so that subsequent graphing commands add to the existing graph. ●hold off resets axes properties to their defaults before drawing new plots. hold off is the default

图论算法及matlab程序的三个案例

图论实验三个案例 单源最短路径问题 Dijkstra 算法 Dijkstra 算法是解单源最短路径问题的一个贪心算法。其基本思想是,设置一个顶点集合S 并不断地作贪心选择来扩充这个集合。一个顶点属于集合S 当且仅当从源到该顶点的最短路径长度已知。设v 是图中的一个顶点,记()l v 为顶点 v 到源点v 1的最短距离, ,i j v v V ?∈,若 (,)i j v v E ?,记i v 到j v 的权ij w =∞。 Dijkstra 算法: ① 1{}S v =,1()0l v =;1{}v V v ??-,()l v =∞,1i =,1{}S V v =-; ② S φ=,停止,否则转③; ③ ()min{(),(,)} j l v l v d v v =, j v S ∈,v S ?∈; ④ 存在 1 i v +,使 1()min{()} i l v l v +=,v S ∈; ⑤ 1{} i S S v +=, 1{} i S S v +=-,1i i =+,转②; 实际上,Dijkstra 算法也是最优化原理的应用:如果12 1n n v v v v -是从1v 到 n v 的最短路径,则 12 1 n v v v -也必然是从1v 到 1 n v -的最优路径。 在下面的MATLAB 实现代码中,我们用到了距离矩阵,矩阵第i 行第j 行元 素表示顶点i v 到j v 的权ij w ,若i v 到j v 无边,则realmax ij w =,其中realmax 是 MATLAB 常量,表示最大的实数+308)。 function re=Dijkstra(ma)

动态规划_销售人员分配问题(matlab编程)

一、问题重述 某企业甲、乙、丙三个销售市场,其市场的利润与销售人员的分配有关,现有6个销售人员,分配到各市场所获利润如下表示,试问应如何分配销售人员才能使总利润最大? 二、问题分析 首先我们对设备的分配规定一个顺序,即先考虑分配给甲市场,其次乙市场,最后丙市场,但分配时必须保证企业的总收益最大。 将问题按分配过程分为三个阶段,根据动态规划逆序算法,可设: 1、阶段数k=1,2,3(即甲、乙、丙三个市场的编号分别为1,2,3); 2、状态变量x k 表示分配给第k 个市场至第3个市场的人员数(即第k 阶段初尚未分配的人员数); 3、决策变量u k 表示分配给第k 市场的人员数; 4、状态转移方程:x k+1=x k -u k ; 5、g k (u k )表示u k 个销售人员分配到第k 个市场所得的收益值,它由下表可查得; 6、f k (x k )表示将x k 个销售人员分配到第k 个市场所得到的最大收益值,因而可得出递推方程: f k (x k )= 6 ,...,1,0max =k u [ g k (u k )+ f k+1(x k -u k )],k=1,2,3 f 4(x 4)=0 三、问题求解 1)k=3时,市场丙的分配方案和总收益. 最大收益:f 3(x 3)=6 ,...,1,0max 3=u [g 3(x 3)]

最大收益:f 2(x 2)=2 max u [g 2(u 2)+ f 3(x 3)]= 2 max u [g 2(u 2)+ f 3(x 2- u 2 )] 最大收益:f 1(x 1)=1 max u [g 1(u 1)+ f 2(x 1- u 1)]= max[g 1(u 1)+ f 2(4- u 1)] 为此,我们可以用Matlab 语言编程使问题能跟方便地得到解决,其算法设计如下图:

Matlab常见函数汇总

colorbar 显示彩条 getimage 由坐标轴得到图像数据 ice(DIPUM)交互彩色编辑 image 创建和显示图像对象 imagesc 缩放数据并显示为图像 immovie 由多帧图像制作电影 imshow 显示图像 imview 在Image Viewer中显示图像montage 将多个图像帧显示为矩阵蒙太奇movie 播放录制的电影帧 rgbcube 显示一个彩色RGB立方体subimage 在单个图形中显示多幅图像truesize 调整图像的显示尺寸 warp 将图像显示为纹理映射的表面 图像文件输入/输出 Dicominfo 从一条DICOM消息中读取元数据Dicomread 读一幅DICOM图像Dicomwrite 写一幅DICOM图像 Dicom-dict.txt 包含DICOM数据字典的文本文件Dicomuid 产生DICOM唯一的识别器Imfinfo 返回关于图像的文件的信息Imread 读图像文件

Imwrite 写图像文件 图像算术 Imabsdiff 计算两幅图像的绝对差 Imadd 两幅图像相加或把常数加到图像上Imcomplement 图像求补 Imdivide 两幅图像相除,或用常数除图像Imlincomb 计算图像的线性组合 Immultiply 两幅图像相乘或用常数乘图像Imsubtract 两幅图像相减,或从图像中减去常数几何变换 Checkerboard 创建棋盘格图像 Findbounds 求几何变换的输出范围 Fliptform 颠倒TFORM结构的输入/输出Imcrop 修剪图像 Imresize 调整图像大小 Imrotate 旋转图像 Imtransform 对图像应用几何变换 Intline 整数坐标线绘制算法Makersampler 创建重取样器结构 Maketform 创建几何变换结构(TFORM)Pixeldup(DIPUM)在两个方向上复制图像的像素Tformarray 对N-D数组应用几何变换

最新Matlab中常见数学函数的使用

给自己看的----Matlab的内部常数(转) 2008/06/19 14:01[Ctrl C/V--学校 ] MATLAB基本知识 Matlab的内部常数 pi 圆周率 exp(1) 自然对数的底数e i 或j 虚数单位 Inf或inf 无穷大 Matlab的常用内部数学函数

如何用matlab进行多项式运算 (1)合并同类项 syms 表达式中包含的变量 collect(表达式,指定的变量) (2)因式分解 syms 表达式中包含的变量factor(表达式) (3)展开 syms 表达式中包含的变量 expand(表达式) 我们也可在matlab中调用maple的命令进行多项式的运算,调用格式如下: maple(’maple中多项式的运算命令’) 如何用matlab进行分式运算 发现matlab只有一条处理分式问题的命令,其使用格式如下: [n,d]=numden(f)把符号表达式f化简为有理形式,其中分子和分母的系数为整数且分子分母不含公约项,返回结果n为分子,d为分母。注意:f必须为符号表达式 不过我们可以调用maple的命令,调用方法如下: maple(’denom(f)’)提取分式f的分母 maple(’numer(f)’)提取分式f的分子 maple(’normal(f)’ ) 把分式f的分子与分母约分成最简形式 maple(’expand(f)’) 把分式f的分子展开,分母不变且被看成单项。 maple(’factor(f)’) 把分式f的分母和分子因式分解,并进行约分。 如何用Matlab进行因式分解 syms 表达式中包含的变量factor(表达式) 如何用Matlab展开 syms 表达式中包含的变量expand(表达式) 如何用Matlab进行化简 syms 表达式中包含的变量simplify(表达式) 如何用Matlab合并同类项 syms 表达式中包含的变量collect(表达式,指定的变量) 如何用Matlab进行数学式的转换 调用Maple中数学式的转换命令,调用格式如下: maple(‘Maple的数学式转换命令’) 即:maple(‘convert(表达式,form)’)将表达式转换成form的表示方式 maple(‘convert(表达式,form, x)’)指定变量为x,将依赖于变量x的函数转换成form的表示方式(此指令仅对form为exp与sincos的转换式有用) 如何用Matlab进行变量替换 syms 表达式和代换式中包含的所有变量subs(表达式,要替换的变量或式子,代换式) 如何用matlab进行复数运算 a+b*i 或 a +b*j表示复数a+bi 或a+bj real(z)求复数z的实部 imag(z)求复数z的虚部 abs(z)求复数z的模 angle(z)求复数z的辐角, conj(z)求复数z的共轭复数 exp(z)复数的指数函数,表示e^z 如何在matlab中表示集合 [a, b, c,…] 表示由a, b, c,…组成的集合(注意:元素之间也可用空格隔开) unique(A) 表示集合A的最小等效集合(每个元素只出现一次) 也可调用maple的命令,格式如下: maple('{a, b, c,…}')表示由a, b, c,…组成的集合 下列命令可以生成特殊的集合: maple(‘{seq(f(i),i=n..m)}’)生成集合{f(n), f(n+1), f(n+2), … , f(m)} 如何用Matlab求集合的交集、并集、差集和补集

matlab常用解方程及方程组函数

1. roots 求解多项式的根 r=roots(c) 注意: c 为一维向量,者返回指定多项式的所有根( 包括复根),poly 和roots 是互为反运算,还有就是roots 只能求解多项式的解 还有下面几个函数poly2sym、sym2poly 、eig >>syms x >>y=x A5+3*x A3+3; >>c=sym2poly(y);%求解多项式系数 >>r=roots(c); >>poly(r) 2. residue 求留数 [r, p, k] = residue(b,a) >>b = [ 5 3 -2 7] >>a = [-4 0 8 3] >>[r, p, k] = residue(b,a) 3. solve 符号解方程(组)——使用最多的 g = solve(eq1,eq2,...,eqn,var1,var2,...,varn) 注意:eqn 和varn 可以是符号表达式,也可以是字符串表达式,但是使用符号表达式时不能有“=号”,假如说varn 没有给出,使用findsym 函数找出默认的求解变量。返回的g 是个结构体,以varn 为字段。由于符号求解的局限性,好多情况下可能得到空矩阵,此时只能用数值解法 解方程A=solve('a*xA2 + b*x + c') 解方程组B=solve('a*uA2 + vA2', 'u - v = 1', 'aA2 - 5*a + 6') 4. fzero 数值求零点 [x,fval,exitflag,output]=fzero(fun,x0,options,p1,p2...) fun 是目标函数,可以是句柄(@)、inline 函数或M 文件名 x0 是初值,可以是标量也可以是长度为2 的向量,前者给定一个位置,后者是给定一个范围options 是优化参数,通过optimset 设置,optimget 获取,一般使用默认的就可以了,具体参照帮助 p1,p2...为需要传递的其它参数 假如说(x/1446)A2+p/504.1+(t/330.9)*(log(1-x/1446)+(1-1 /5.3)*x/1446)=0 的根,其中p,t 是已知

(整理)matlab 动态规划讲义.

第四章动态规划 §1 引言 1.1 动态规划的发展及研究内容 动态规划(dynamic programming)是运筹学的一个分支,是求解多阶段决策问题的最优化方法。20世纪50年代初R. E. Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优性原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法—动态规划。1957年出版了他的名著《Dynamic Programming》,这是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。 虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 应指出,动态规划是求解某类问题的一种方法,是考察问题的一种途径,而不是一种特殊算法(如线性规划是一种算法)。因而,它不象线性规划那样有一个标准的数学表达式和明确定义的

一组规则,而必须对具体问题进行具体分析处理。因此,在学习时,除了要对基本概念和方法正确理解外,应以丰富的想象力去建立模型,用创造性的技巧去求解。 例1 最短路线问题 下面是一个线路网,连线上的数字表示两点之间的距离(或费用)。试寻求一条由A到G距离最短(或费用最省)的路线。 例2 生产计划问题 工厂生产某种产品,每单位(千件)的成本为1(千元),每次开工的固定成本为3(千元),工厂每季度的最大生产能力为6(千件)。经调查,市场对该产品的需求量第一、二、三、四季度分别为2,3,2,4(千件)。如果工厂在第一、二季度将全年的需求都生产出来,自然可以降低成本(少付固定成本费),但是对于第三、四季度才能上市的产品需付存储费,每季每千件的存储费为0.5(千元)。还规定年初和年末这种产品均无库存。试制定一个生产计划,即安排每个季度的产量,使一年的总费用(生产成本和存储费)最少。 1.2 决策过程的分类

动态规划matlab仿真实例整理

动态规划在火力分配中地应用. 1.问题描述 设有m个目标,目标价值(重要性和危害性)各不相同,用数值A(K=1,K =,其n枚导弹突袭,导弹击毁目标地概率P2,..m)表 示,计划用K为向目标发射地导弹数,问是常数,取决于导弹地特性与目标地性质;中题:做出方案使预期地突击效果最大. 2.问题建模 上述问题可以表述为 约束条件为 (为非负整数) 3.算法描述 ),和(n=5am=4下面通过一个实例说明:设目标数目为4(),导弹为5K取值情况如下表所示:表1:A取值情况k 4 2 3 1 K 目标 3 6 7 8 0.9 0.3 0.2

将火力分配可分为4个阶段,每个阶段指标函数为: 可能取值为0,1,2,3,4,5,将函数值带人如下表:表2函数值 u 0 0 0 0 0 1.79 1 1.81 1.45 2.36 2.51 2 3.16 2.64 3.79 2.81 4.66 3 4.15 3.61 2.93 4 4.89 5.19 4.41

5 5.44 5.06 5.51 动态规划问题基本方程为: c =0 逐次向前推一级 K=4 K=3 K=2 K=1

() 地最大值然后反推回去就可以获得最优地分配方案只需要求解4.Matlab仿 真求解 地最大值,对应取值为整数,可以采用动态规划地方法,获得与因为 地最优方案 function[p_opt,fval]=dynprog(x,DecisFun,SubObjFun,TransFun,ObjFun) %求解动态规划问题最小值函数 k=length(x(1,:)) %判断决策级数 x_isnan=~isnan(x)。 % 非空状态矩阵 t_vubm=inf*ones(size(x))。 % 性能指标中间矩阵 f_opt=nan*ones(size(x))。 % 总性能指标矩阵 d_opt=f_opt。 %每步决策矩阵 tmp1=find(x_isnan(:,k))。 % 最后一步状态向量 tmp2=length(tmp1)。 % 最后一步状态个数 for i=1:tmp2 u=feval(DecisFun,k,x(tmp1(i),k))。 tmp3=length(u)。%决策变量 for j=1:tmp3 % 求出当前状态下所有决策地最小性能指标 tmp=feval(SubObjFun,k,x(tmp1(i),k),u(j))。 if tmp <= t_vubm(i,k) %t_vub f_opt(i,k)=tmp。 d_opt(i,k)=u(j)。 t_vubm(i,k)=tmp。 end。 end。 end for ii=k-1:-1:1 tmp10=find(x_isnan(:,ii))。 tmp20=length(tmp10)。 for i=1:tmp20 %求出当前状态下所有可能地决策 u=feval(DecisFun,ii,x(tmp10(i),ii))。 tmp30=length(u) 。 for j=1:tmp30 % 求出当前状态下所有决策地最小性能指标 tmp00=feval(SubObjFun,ii,x(tmp10(i),ii),u(j))。 % 单步性能指标 tmp40=feval(TransFun,ii,x(tmp10(i),ii),u(j))。 % 下一状态 tmp50=x(:,ii+1)-tmp40。 % 找出下一状态在 x 矩阵地位置 tmp60=find(tmp50==0) 。 if~isempty(tmp60) if nargin<6 %矩阵不同需要修改nargin地值,很重要

matlab内部函数大全

MATLAB函数大全 Matlab有没有求矩阵行数/列数/维数的函数? ndims(A)返回A的维数 size(A)返回A各个维的最大元素个数 length(A)返回max(size(A)) [m,n]=size(A)如果A是二维数组,返回行数和列数nnz(A)返回A中非0元素的个数 MATLAB的取整函数:fix(x), floor(x) :,ceil(x) , round(x) (1)fix(x) : 截尾取整. >> fix( [3.12 -3.12]) ans = 3 -3 (2)floor(x):不超过x 的最大整数.(高斯取整) >> floor( [3.12 -3.12]) ans = 3 -4 (3)ceil(x) : 大于x 的最小整数 >> ceil( [3.12 -3.12]) ans = 4 -3 (4)四舍五入取整 >> round(3.12 -3.12) ans = >> round([3.12 -3.12]) ans =

3 -3 >> 如何用matlab生成随机数函数 rand(1) rand(n):生成0到1之间的n阶随机数方阵rand(m,n):生成0到1之间的m×n的随机数矩阵(现成的函数) 另外: Matlab随机数生成函数 betarnd 贝塔分布的随机数生成器 binornd 二项分布的随机数生成器 chi2rnd 卡方分布的随机数生成器 exprnd 指数分布的随机数生成器 frnd f分布的随机数生成器 gamrnd 伽玛分布的随机数生成器 geornd 几何分布的随机数生成器 hygernd 超几何分布的随机数生成器 lognrnd 对数正态分布的随机数生成器 nbinrnd 负二项分布的随机数生成器 ncfrnd 非中心f分布的随机数生成器 nctrnd 非中心t分布的随机数生成器 ncx2rnd 非中心卡方分布的随机数生成器 normrnd 正态(高斯)分布的随机数生成器 poissrnd 泊松分布的随机数生成器 raylrnd 瑞利分布的随机数生成器 trnd 学生氏t分布的随机数生成器 unidrnd 离散均匀分布的随机数生成器 unifrnd 连续均匀分布的随机数生成器 weibrnd 威布尔分布的随机数生成器 一、MATLAB常用的基本数学函数 abs(x):纯量的绝对值或向量的长度 angle(z):复数z的相角(Phase angle) sqrt(x):开平方 real(z):复数z的实部 imag(z):复数z的虚部 conj(z):复数z的共轭复数 round(x):四舍五入至最近整数 fix(x):无论正负,舍去小数至最近整数 floor(x):地板函数,即舍去正小数至最近整数 ceil(x):天花板函数,即加入正小数至最近整数

最优化方法的Matlab实现(公式(完整版))

第九章最优化方法的Matlab实现 在生活和工作中,人们对于同一个问题往往会提出多个解决方案,并通过各方面的论证从中提取最佳方案。最优化方法就是专门研究如何从多个方案中科学合理地提取出最佳方案的科学。由于优化问题无所不在,目前最优化方法的应用和研究已经深入到了生产和科研的各个领域,如土木工程、机械工程、化学工程、运输调度、生产控制、经济规划、经济管理等,并取得了显著的经济效益和社会效益。 用最优化方法解决最优化问题的技术称为最优化技术,它包含两个方面的内容:1)建立数学模型即用数学语言来描述最优化问题。模型中的数学关系式反映了最优化问题所要达到的目标和各种约束条件。 2)数学求解数学模型建好以后,选择合理的最优化方法进行求解。 最优化方法的发展很快,现在已经包含有多个分支,如线性规划、整数规划、非线性规划、动态规划、多目标规划等。 9.1 概述 利用Matlab的优化工具箱,可以求解线性规划、非线性规划和多目标规划问题。具体而言,包括线性、非线性最小化,最大最小化,二次规划,半无限问题,线性、非线性方程(组)的求解,线性、非线性的最小二乘问题。另外,该工具箱还提供了线性、非线性最小化,方程求解,曲线拟合,二次规划等问题中大型课题的求解方法,为优化方法在工程中的实际应用提供了更方便快捷的途径。 9.1.1 优化工具箱中的函数 优化工具箱中的函数包括下面几类: 1.最小化函数

表9-1 最小化函数表 2.方程求解函数 表9-2 方程求解函数表 3.最小二乘(曲线拟合)函数 表9-3 最小二乘函数表

4.实用函数 表9-4 实用函数表 5.大型方法的演示函数 表9-5 大型方法的演示函数表 6.中型方法的演示函数 表9-6 中型方法的演示函数表 9.1.3 参数设置 利用optimset函数,可以创建和编辑参数结构;利用optimget函数,可以获得o ptions优化参数。 ● optimget函数 功能:获得options优化参数。

相关主题
文本预览
相关文档 最新文档