当前位置:文档之家› 第六章 约束极值问题

第六章 约束极值问题

第四章 非线性规划1-约束极值问题

第四章 非线性规划 ???? ???? 无约束最优化问题线性规划约束最优化问题非线性规划 ?? ?凸规划约束最优化问题非凸规划 ?? ?直接解法约束最优化问题求解方法间接解法 间接解法是将约束优化问题转化为一系列无约束优化问题来解的一种方法。由于这类方法可以选用有效的无约束优化方法,且易于处理同时具有不等式约束和等式约束的问题,因而在工程优化中得到了广泛的应用。 直接解法是在满足不等式约束的可行设汁区域内直接按索问题的约束最优解。 第一节 目标函数的约束极值问题 所谓约束优化设计问题的最优性条件.就是指在满足等式和不等式约束条件下,其目标函数值最小的点必须满足的条件,须注意的是,这只是对约束的局部最优解而言。 对于带有约束条件的目标函数,其求最优解的过程可归结为: 一、约束与方向的定义 一)起作用约束与松弛约束 对于一个不等式约束()0g X ≤来说,如果所讨论的设计点() k X 使该约束()0g X =(或 者说() k X 当时正处在该约束的边界上)时,则称这个约束是() k X 点的一个起作用约束或紧约 束,而其他满足()0g X <的约束称为松弛约束。

冗余约束 40g ≤ 当一个设计点同时有几个约束起作用时,即可定义起作用约束集合为 {}()()()|()0,1,2, ,k k u I X u g X u m === 其意义是对() k X 点此时所有起作用约束下标的集合。 二)冗余约束 如果一个不等式约束条件的约束面(即()0g X =)对可行域的大小不发生影 响,或是约束面不与可行域D 相交,即此约束称为冗余约束。 三)可行方向 可行方向:一个设计点()k X 在可行域内,沿某一个方向S 移动,仍可得到一个属于可行域的新点,则称该方向为可行方向。 1)设计点为自由点 设计点() k X 在可行域内是一个自由点,在各个方 向上都可以作出移动得到新点仍属于可行域,如图所示。 2)设计点为约束边界点 当设计点()k X 处于起作用约束i g 上时,它的移动就会受到可行性的限制。此时,()k X 点的可行方向S 必满足条件: ()0T k i S g X ?≤ (解释:()()cos ,()T k k T k i i i S g X S g X S g X ?=??,,()90T k i S g X ?≥?)) 当,()90T k i S g X ?=?时,方向S 是约束函数i g 在()k X 点处的切线方向,即()0T k i S g X ?=。 当某个设计点x 同时有几个约束起作用时(如

约束优化设计

行域 φ 内,选择一个初始点 X 然后确定一个可行 得一个目标函数有所改善的可行的新点 X 即完成了 第四章 约束优化设计 ● 概述 ● 约束坐标轮换法 ● 随机方向法 ● 罚函数法 概述 结构优化设计的问题,大多属于约束优化设计问题,其数学模型为: s .t . min f (x ) g u (x ) ≤ 0 h v (x ) = 0 x ∈ R n u = 1, 2,..., m v = 1, 2,..., p < n 根据求解方式的不同,可分为直接解法和间接解法两类。 直接解法是在仅满足不等式约束的可行设计区域内直接求出问题的约束最优解。属于 这类方法的有:随机实验法、随机方向搜索法、复合形法、可行方向法等。其基本思路: 在由 m 个不等式约束条件 gu(x )≤0 所确定的可 0 搜索方向 S ,且以适当的步长沿 S 方向进行搜索,取 1 一次迭代。以新点为起始点重复上述搜索过程,每次 均按如下的基本迭代格式进行计算: X k+1=X k +α k S k (k=0,1,2,..) 逐步趋向最优解, 直到满足终止准则才停止迭代。 直接解法的原理简单,方法实用,其特点是: 1) 由于整个过程在可行域内进行,因此,迭代计算 不论何时终止,都可以获得比初始点好的设计点。 2) 若目标函数为凸函数,可行域为凸集,则可获得全域最优解,否则,可能存在多个局 部最优解,当选择的初始点不同,而搜索到不同的局部最优解。 3) 要求可行域有界的非空集

φ(X,μ1,μ2)=F(X)+∑μ 1 G??g j X)??+∑μ2H??h k(X)?? a)可行域是凸集;b)可行域是非凸 集 间接解法 间接解法是将约束优化问题转化为一系列无约束优化问题来解的一种方法。由于间接解法可以选用已研究比较成熟的无约束优化方法,并且容易处理同时具有不等式约束和等式约束的问题。因而在机械优化设计得到广泛的应用。 间接解法中具有代表性的是惩罚函数法。将约束函数进行特殊的加权处理后,和目标函数 结合起来,构成一个新的目标函数,即将原约束优化问题转化为一个或一系列的无约束优 化问题。 m l j=1k=1 新目标函数 然后对新目标函数进行无约束极小化计算。 加权因子 间接法是结构优化设计中广泛使用的有效方法,其特点: 1)由于无约束优化方法的研究日趋成熟,为间接法提供可靠基础。这类算法的计算效率和数值计算的稳定性大有提高; 2)可以有效处理具有等式约束的约束优化问题; 3)目前存在的主要问题,选取加权因子较为困难,选取不当,不仅影响收敛速度和计算精度,甚至导致计算失败。

约束优化问题的极值条件

等式约束优化问题的极值条件 求解等式约束优化问题 )(m i n x f ..t s ()0=x h k ()m k ,,2,1???= 需要导出极值存在的条件,对这一问题有两种处理方法:消元法和拉格朗日乘子法(升维法) 一、消元法(降维法) 1.对于二元函数 ),(min 21x x f ..t s ()0,21=x x h , 根据等式约束条件,将一个变量1x 表示成另一个变量2x 的函数关系()21x x ?=,然后将这一函数关系代入到目标函数()21,x x f 中消去1x 变成一元函数()2x F 2.对于n 维情况 ()n x x x f ,,,min 21???..t s ()0,,,21=???n k x x x h ),,2,1(l k ???= 由l 个约束方程将n 个变量中的前l 个变量用其余的l n -个变量表示: ()n l l x x x x ,,,2111???=++? ()n l l x x x x ,,,2122???=++? ... ()n l l l l x x x x ,,,21???=++? 将这些函数关系代入到目标函数中,得到()n l l x x x F ,,,21???++ 二、拉格朗日乘子法(升维法) 设T n x x x x ),,,(21???=,目标函数是()x f ,约束条件()0=x h k ),,2,1(l k ???=的l 个等式约束方程。为了求出()x f 的可能极值点T n x x x x ),,,(**2*1*???=,引入拉格朗日乘子k λ),,2,1(l k ???=,并构成一个新的目标函数 ()()x h x f x F l k k k ∑=+=1),(λλ 把()λ,x F 作为新的无约束条件的目标函数来求解它的极值点,满足约束条件 ()0=x h k ),,2,1(l k ???=的原目标函数()x f 的极值点。 ()λ,x F 具有极值的必要条件 ),,2,1(0n i x F i ???==?? ,),,2,1(0l k F k ???==??λ可得n l +

约束优化设计

第四章 约束优化设计 ● 概述 ● 约束坐标轮换法 ● 随机方向法 ● 罚函数法 概述 结构优化设计的问题,大多属于约束优化设计问题,其数学模型为: 根据求解方式的不同,可分为直接解法和间接解法两类。 直接解法是在仅满足不等式约束的可行设计区域内直接求出问题的约束最优解。属于这类方法的有:随机实验法、随机方向搜索法、复合形法、可行方向法等。其基本思路: 在由m 个不等式约束条件g u (x )≤0所确定的可行域φ内,选择一个初始点0 X 然后确定一个可行搜索方向S ,且以适当的步长沿S 方向进行搜索,取得一个目标函数有所改善的可行的新点1 X 即完成了一次迭代。以新点为起始点重复上述搜索过程,每次均按如下的基本迭代格式进行计算: k+1k k k =+S (k=0,1,2,..)X X α逐步趋向最优解, 直到满足终止准则才停止迭代。 直接解法的原理简单,方法实用,其特点是: 1) 由于整个过程在可行域内进行,因此,迭代计算不论何时终止,都可以获得比初始点好 的设计点。 2) 若目标函数为凸函数,可行域为凸集,则可获得全域最优解,否则,可能存在多个局部 最优解,当选择的初始点不同,而搜索到不同的局部最优解。 3) 要求可行域有界的非空集 1,2,...,1,2,...,u m v p n ==

间接解法 间接解法是将约束优化问题转化为一系列无约束优化问题来解的一种方法。由于间接解法可以选用已研究比较成熟的无约束优化方法,并且容易处理同时具有不等式约束和等式约束的问题。因而在机械优化设计得到广泛的应用。 间接解法中具有代表性的是惩罚函数法。将约束函数进行特殊的加权处理后,和目标函数结合起来,构成一个新的目标函数,即将原约束优化问题转化为一个或一系列的无约束优化问题。 然后对新目标函数进行无约束极小化计算。 间接法是结构优化设计中广泛使用的有效方法,其特点: 1) 由于无约束优化方法的研究日趋成熟,为间接法提供可靠基础。这类算法的计算效率和 数值计算的稳定性大有提高; 2) 可以有效处理具有等式约束的约束优化问题; 3) 目前存在的主要问题,选取加权因子较为困难,选取不当,不仅影响收敛速度和计算精 度,甚至导致计算失败。 a) 可行域是凸集;b)可行域是非凸集 () ()()()121211 ,,m l j k j k X F X G g X H h X φμμμμ==??=++? ?????∑∑ 新目标函数 加权因子

第四章 非线性规划约束极值问题

第四章 非线性规划 ?? ?? ???? 无约束最优化问题线性规划约束最优化问题非线性规划 ?? ?凸规划约束最优化问题非凸规划 ?? ?直接解法约束最优化问题求解方法间接解法 间接解法是将约束优化问题转化为一系列无约束优化问题来解的一种方法。由于这类方法可以选用有效的无约束优化方法,且易于处理同时具有不等式约束和等式约束的问题,因而在工程优化中得到了广泛的应用。 直接解法是在满足不等式约束的可行设汁区域内直接按索问题的约束最优解。 第一节 目标函数的约束极值问题 所谓约束优化设计问题的最优性条件.就是指在满足等式和不等式约束条件下,其目标函数值最小的点必须满足的条件,须注意的是,这只是对约束的局部最优解而言。 对于带有约束条件的目标函数,其求最优解的过程可归结为: 一、约束与方向的定义 一)起作用约束与松弛约束 对于一个不等式约束()0g X ≤来说,如果所讨论的设计点() k X 使该约束()0g X =(或 者说() k X 当时正处在该约束的边界上)时,则称这个约束是() k X 点的一个起作用约束或紧约 束,而其他满足()0g X <的约束称为松弛约束。

冗余约束 4 0g ≤ 当一个设计点同时有几个约束起作用时,即可定义起作用约束集合为 {}()()()|()0,1,2, ,k k u I X u g X u m === 其意义是对() k X 点此时所有起作用约束下标的集合。 二)冗余约束 如果一个不等式约束条件的约束面(即()0g X =)对可行域的大小不发生影 响,或是约束面不与可行域D 相交,即此约束称为冗余约束。 三)可行方向 可行方向:一个设计点()k X 在可行域内,沿某一个方向S 移动,仍可得到一个属于可行域的新点,则称该方向为可行方向。 1)设计点为自由点 设计点() k X 在可行域内是一个自由点,在各个方 向上都可以作出移动得到新点仍属于可行域,如图所示。 2)设计点为约束边界点 当设计点()k X 处于起作用约束i g 上时,它的移动就会受到可行性的限制。此时,()k X 点的可行方向S 必满足条件: ()0T k i S g X ?≤ (解释:()()cos ,()T k k T k i i i S g X S g X S g X ?=??,,()90T k i S g X ?≥?)) 当,()90T k i S g X ?=?时,方向S 是约束函数i g 在()k X 点处的切线方向,即()0T k i S g X ?=。 当某个设计点x 同时有几个约束起作用时(如

单纯形法解决无约束优化问题

分数: ___________任课教师签字:___________ 课程作业 学年学期:2017——2018学年第二学期 课程名称:优化理论 作业名称:作业三 学生姓名: 学号: 提交时间:

一、问题重述 形如的min (x),x R n f ∈问题称为无约束优化问题,常用下降算法来解决这类问题。下降算法的关键在于步长和搜索方向的选取。步长的求取可以借助前面作业中提到的一维搜索等方法求取,而搜索方向算法可以分为两大类,解析法和直接法。 解析法借助了目标函数的导数进行搜索,这类算法搜索速度快、效率高,但是对目标函数的要求更为严格。常用的方法有最速下降法、Newton 法、共轭梯度法、拟Newton 法等。 直接法不使用导数,也不需要得到目标函数的明确解析式,只需要能够得到某些函数上的点即可。因此直接法的适用范围更广,但相应的收敛速度会较慢,计算量也会随着问题维数的增加而迅速增大。常用的方法有单纯形法、Powell 方向加速法以及Powell 改进算法。 本作业以直接法的Powell 法为例,解决具体的无约束优化问题,并对将Powell 方向加速法和Powell 改进算法解决结果进行对比。 二、算法原理 对于n 维正定二次函数(x)0.5T T f x Gx b x c =++,设011,,...(k n)k p p p -<关于G 共轭,0x 与1x 为任意不同点。分别从0x 与1x 出发,依次沿011,,...k p p p -作一维搜索。如果最后找到两个互不相同的极小点x a 与x b ,则x b a x -与011,,...k p p p -关于G 共轭。 Powell 方向加速法正是基于这一原理,每次迭代过程作n+1次一维搜索。第一次沿给定的n 个线性无关的方向011,,...n p p p -依次作一维搜索,之后沿由这一阶段的起点到第n 次搜索所得到的点的方向P 再做一次一维搜索,并把这次所得点作为下一阶段的起点,下一阶段的n 个搜索方向为011,,...,n p p p p -。以此直到找到最优解。 此算法是在迭代中逐次生成共轭方向,而共轭方向又是较好的搜索方向,所以称之为方向加速法。但是,此算法产生的n 个向量可能线性或近似线性相关,这时张不成n 维空间,可能得不到真正的极小点。因此,Powell 原始算法存在一定的缺陷。 Powell 改进算法虽然不再具有二次终止性,但克服了搜索方向的线性相关的不利情形,是解决无约束优化问题较有效的直接法之一。 本次作业一维搜索的过程是利用函数求导,求得最小值。经过试验发现,α是允许为负数的。否则最终寻优得到的极值点与实际结果存在很大的偏差,

天津大学-研究生-最优化方法复习题

《最优化方法》复习题 第一章 概述(包括凸规划) 一、 判断与填空题 1 )].([arg )(arg m in m ax x f x f n n R x R x -=∈∈ √ 2 {}{}.:)(min :)(max n n R D x x f R D x x f ?∈-=?∈ ? 3 设.:R R D f n →? 若n R x ∈*,对于一切n R x ∈恒有)()(x f x f ≤*,则称*x 为最优化问题 )(min x f D x ∈的全局最优解. ? 4 设.:R R D f n →? 若D x ∈*,存在*x 的某邻域)(*x N ε,使得对一切)(*∈x N x ε恒有)()(x f x f <*,则称*x 为最优化问题)(min x f D x ∈的严格局部最 优解. ? 5 给定一个最优化问题,那么它的最优值是一个定值. √ 6 非空集合n R D ?为凸集当且仅当D 中任意两点连线段上任一点属于D . √ 7 非空集合n R D ?为凸集当且仅当D 中任意有限个点的凸组合仍属于D . √ 8 任意两个凸集的并集为凸集. ? 9 函数R R D f n →?:为凸集D 上的凸函数当且仅当f -为D 上的凹函数. √ 10 设R R D f n →?:为凸集D 上的可微凸函数,D x ∈*. 则对D x ∈?,有).()()()(***-?≤-x x x f x f x f T ? 11 若)(x c 是凹函数,则}0)( {≥∈=x c R x D n 是凸集。 √ 12 设{}k x 为由求解)(min x f D x ∈的算法A 产生的迭代序列,假设算法A 为下降算法, 则对{} ,2,1,0∈?k ,恒有 )()(1k k x f x f ≤+ . 13 算法迭代时的终止准则(写出三种):_____________________________________。

第三章 无约束最优化方法

第三章无约束最优化方法 本章内容及教学安排 第一节概述 第二节迭代终止原则 第三节常用的一维搜索方法 第四节梯度法 第五节牛顿法 第六节共轭方向法 第七节变尺度法 第八节坐标轮换法 第九节鲍威尔方法 第一节概述 优化问题可分为 无约束优化问题 有约束优化问题 无约束最优化问题求解基于古典极值理论的一种数值迭代方法,主要用来求解非线性规划问题 迭代法的基本思想:

所以迭代法要解决三个问题 1、如何选择搜索方向 2、如何确定步长

3、如何确定最优点(终止迭代) 第二节 迭代终止准则 1)1K K X X ε+-≤ 111/2 21K K K K n i i i X X X X ε++=??-=-≤???? ∑() 2) 11()()()() () K K K K K f X f X f X f X or f X ε ε ++-≤-≤ 3)(1)()K f X ε+?≤ 第三节 常用的一维搜索方法 本节主要解决的是如何确定最优步长的问题。 从初始点(0)X 出发,以一定的步长沿某一个方向,可以找到一个新的迭代点,其公式如下: (1)(0)00(2)(1)11(1)() K K k k X X S X X S X X S ααα+=+=+= + 现在假设K S 已经确定,需要确定的是步长k α,就把求多维目标函数的极小值这个多维算过程中,当起步点和方向问题,变成求一个变量即步长的最优值的一维问题了。即 (1)()min ()min ()min ()K K K k k f X f X S f αα+=+= 由此可见,最佳步长*K α由一维搜索方法来确定 求*k α,使得()()()()()()min K K K K f f X S αα=+→ 一、一维搜索区间的确定 区间[,]a b 应满足 ()(*)()f a f f b α><

单纯形法解决无约束优化问题

分数: ___________ 任课教师签字:___________ 课程作业 学年学期:2017——2018学年第二学期 课程名称:优化理论 作业名称:作业三 学生姓名: 学号: 提交时间:

一、问题重述 形如的min (x),x R n f ∈问题称为无约束优化问题,常用下降算法来解决这类问题。下降算法的关键在于步长和搜索方向的选取。步长的求取可以借助前面作业中提到的一维搜索等方法求取,而搜索方向算法可以分为两大类,解析法和直接法。 解析法借助了目标函数的导数进行搜索,这类算法搜索速度快、效率高,但是对目标函数的要求更为严格。常用的方法有最速下降法、Newton 法、共轭梯度法、拟Newton 法等。 直接法不使用导数,也不需要得到目标函数的明确解析式,只需要能够得到某些函数上的点即可。因此直接法的适用范围更广,但相应的收敛速度会较慢,计算量也会随着问题维数的增加而迅速增大。常用的方法有单纯形法、Powell 方向加速法以及Powell 改进算法。 本作业以直接法的Powell 法为例,解决具体的无约束优化问题,并对将Powell 方向加速法和Powell 改进算法解决结果进行对比。 二、算法原理 对于n 维正定二次函数(x)0.5T T f x Gx b x c =++,设011,,...(k n)k p p p -<关于G 共轭,0x 与1x 为任意不同点。分别从0x 与1x 出发,依次沿011,,...k p p p -作一维搜索。如果最后找到两个互不相同的极小点x a 与x b ,则x b a x -与011,,...k p p p -关于G 共轭。 Powell 方向加速法正是基于这一原理,每次迭代过程作n+1次一维搜索。第一次沿给定的n 个线性无关的方向011,,...n p p p -依次作一维搜索,之后沿由这一阶段的起点到第n 次搜索所得到的点的方向P 再做一次一维搜索,并把这次所得点作为下一阶段的起点,下一阶段的n 个搜索方向为011,,...,n p p p p -。以此直到找到最优解。 此算法是在迭代中逐次生成共轭方向,而共轭方向又是较好的搜索方向,所以称之为方向加速法。但是,此算法产生的n 个向量可能线性或近似线性相关,这时张不成n 维空间,可能得不到真正的极小点。因此,Powell 原始算法存在一定的缺陷。 Powell 改进算法虽然不再具有二次终止性,但克服了搜索方向的线性相关的不利情形,是解决无约束优化问题较有效的直接法之一。 本次作业一维搜索的过程是利用函数求导,求得最小值。经过试验发现,α是允许为负数的。否则最终寻优得到的极值点与实际结果存在很大的偏差,

天津大学《最优化方法》复习题(含答案)

天津大学《最优化方法》复习题(含答案) 第一章 概述(包括凸规划) 一、 判断与填空题 1 )].([arg )(arg min max x f x f n n R x R x -=∈∈ √ 2 {}{} .:)(m in :)(m ax n n R D x x f R D x x f ?∈-=?∈ ? 3 设.:R R D f n →? 若n R x ∈*,对于一切n R x ∈恒有)()(x f x f ≤*,则称*x 为最优化问题 )(min x f D x ∈的全局最优解. ? 4 设.:R R D f n →? 若D x ∈*,存在*x 的某邻域)(*x N ε,使得对一切 )(*∈x N x ε恒有)()(x f x f <*,则称*x 为最优化问题)(min x f D x ∈的严格局部最 优解. ? 5 给定一个最优化问题,那么它的最优值是一个定值. √ 6 非空集合n R D ?为凸集当且仅当D 中任意两点连线段上任一点属于D . √ 7 非空集合n R D ?为凸集当且仅当D 中任意有限个点的凸组合仍属于D . √ 8 任意两个凸集的并集为凸集. ? 9 函数R R D f n →?:为凸集D 上的凸函数当且仅当f -为D 上的凹函数. √ 10 设R R D f n →?:为凸集D 上的可微凸函数,D x ∈*. 则对D x ∈?,有).()()()(***-?≤-x x x f x f x f T ? 11 若)(x c 是凹函数,则}0)( {≥∈=x c R x D n 是凸集。 √ 12 设{}k x 为由求解)(min x f D x ∈的算法A 产生的迭代序列,假设算法A 为下降算法, 则对{}Λ,2,1,0∈?k ,恒有 )()(1k k x f x f ≤+ .

条件极值及拉格朗日乘数法

§4条件极值 一、何谓条件极值 在讨论极值问题时,往往会遇到这样一种情形,就是函数的自变量要受到某些条件的限制。决定一给定点),,(000z y x 到一曲面0),,(=z y x G 的最短距离问题,就是这种情形。我们 知 道 点 ) ,,(z y x 到点 ) ,,(000z y x 的距离为 202020)()()(),,(z z y y x x z y x F -+-+-=.现在的问题是要求出曲面0 ),,(=z y x G 上的点),,(z y x 使F 为最小.即问题归化为求函数),,(z y x F 在条件0),,(=z y x G 下的最小值问题. 又如,在总和为C 的几个正数n x x x ,,21的数组中,求一数组,使函数值 2 2221n x x x f +++= 为最小,这是在条件C x x x n =+++ 21)0(>i x 的限制下,求 函数f 的极小值问题。这类问题叫做限制极值问题(条件极值问题). 例1 要设计一个容积为V 的长方体形开口水箱 . 确定长、宽和高 , 使水箱的表面积最小 . 分别以x 、y 和z 表示水箱的长、宽和高 , 该例可表述为 : 在约束条件 V xyz =之下求函数xy yz xz z y x S ++=)(2),,(的最小值 . 条件极值问题的一般形式是在条件组)(,,2,1,0),,,(21n m m k x x x n k <== ? 限制下, 求目标函数),,,(21n x x x f y =的极值. 对这种问题的解法有: 化为无条件极值. 例 1 由V xyz =解出 xy V z = , 并代入函数),,(z y x S 中, 得到xy x y V y x F ++=)1 1(2),(, 然后按)0,0(),(=y x F F , 求出稳定点32V y x ==, 并有 3 22 1V z = , 最后判定在此稳定点上取的最小面积3243V S =.

§6.3 泛函的条件极值

§6.3 泛函的条件极值 一、泛函条件极值问题的提出(等周问题) 求在连接A 、B 长度为L 的所有曲线中与直线AB 所围成面积最大的曲线? AB 弧长:dx y L b a ∫+=2'1 (1) 曲线AB 与直线AB 所围成面积:()∫=b a dx x y S (2) 边界条件:()()0,0== b y a y (3) 在满足约束条件(1)和边界条件(3)的情况下,寻找满足由方程(2)的构成泛函问题的极小曲线函数。 二、一般泛函条件极值的E-L 方程 泛函[]()∫=b a dx y y x F y J ',,,约束条件()L dx y y x G b a =∫',,, 其中[][]()(){} 2120,,,y b y y a y b a C y y y D ==∈=。 设()x y 是所求泛函的极值函数,取任意光滑函数()[]b a C x ,2 0∈η ()()()x x y x y εη+=1,()()0,0==b a ηη 从而构成一元函数 ()[]()∫++=+=b a dx y y x F y J '',,εηεηεηε? ()L dx y y x G b a =++∫'',,εηεη 利用拉格朗日乘子法,定义新的泛函 ()()()[]∫+++++=Φb a dx y y x G y y x F '',,'',,,εηεηλεηεηλε (4) 其中,λ为常数。 泛函()λε,Φ取极值,即需() 0,0=Φ=εελεd d ()()0'''',''''''''''0=???????+?=??++??+=+++=+++=Φ∫∫∫∫∫∫∫∫∫∫=b a y y y y b a y b a y b a y b a y b a y b a y b a y b a y b a y b a y b a y y y y dx G dx d G F dx d F dx G dx d G dx G dx F dx d F dx F dx G dx G dx F dx F dx G G F F d d ηλληληληληηηηληληηηληληηε λεε

浅谈一类有约束条件的最值题的解法

活用数形结合求解一类有约束条件的最值题 西安市第一中学 张莲生 简单线性规划是现行高中数学教材必修5的一部分必修内容,是解决一些在线性约束条件下的线性目标函数的最值(最大值或最小值)的问题。它是运筹学的一个重要内容,对于形成最优化思想有着重要的作用,并且在实际生产活动中也有着广泛的应用,可以实现对资源的最佳利用。简单线性规划只能解决一些二元线性约束下条件下的二元函数的最值问题,但它的思想可以延伸到其他的数学最值问题的求解过程中。 简单线性规划的基本思想即在一定的约束条件下,通过数形结合求函数的最值。解决问题时主要是借助平面图形,运用这一思想能够比较有效地解决一些二元函数的最值问题。 本文将从规划的思想出发来探讨高中数学中一类有约束条件的最值问题的解法。 一、线性约束条件下的二元函数最值问题 在这类问题中, 它的线性约束条件是一个二元一次不等式组,可行域就是线性约束条件中不等式所对应的方程所表示的直线所围成的区域,区域内各点的坐标即为可行解。当目标函数是一个二元一次函数时,在可行解中使得目标函数取得最大值和最小值的点的坐标即简单线性规划的最优解;当目标函数不是二元一次函数时,可以利用目标函数所具有的几何意义转化求解. (一)利用直线的截距求线性规划的最优解 例1 已知x 、y 满足条件24250x x y x y ≥??+≤??-++≥? ,求3z x y =+的最值。 解:约束条件所表示的可行域如图1 所示. 其中直线2x =与直线250x y -++=为(2,1)P -,直线4x y +=与直线25x y -++=交点为(3,1)Q . 3z x y =+可变形为3y x z =-+,此时z 可理解 为直线3y x z =-+的截距. 现作直线:3l y x =-, 再作一组与l ∵x 、y 是上面不等式组所表示的区域内的点的横纵坐标, ∴当直线3y x z =-+通过点(2,1)P -时, z 取最小值即min 3215z =?-=,

最优化课程论文——无约束极值问题的PDF求解方法

无约束极值问题的PDF 求解方法 摘要:非线性规是研究约束非线性规划问题条件下,某一非线性目标函数达到最优的问题;目前非线性规划还没有适于各种问题的一般算法,通常不能用解析方法求出它的精确解。本文在学习最优化方法课程的基础上,运用改进牛顿法,近似求解无约束极值问题; 关键字:牛顿法;迭代法;二阶收敛。 0.引言 牛顿法最初由艾萨克-牛顿于1736年在 Method of Fluxions 中公开提出,这是18世纪数学界最重大的成果之一;由于这一方法收敛速度很快,而且可求复根,对于二次函数只需迭代一次便达到最优点,对非二次函数也能较快迭代到最优点,几十年来几乎在所有的领域中都得到广泛的应用。 但牛顿法对初始点要求较高、计算二阶偏导数矩阵及其逆阵工作量大,且要求迭代点处Hesse 矩阵正定,很多学者在这些方面都做了改进,如修正牛顿法、PDF 变尺度法、PSB 拟牛顿修正矩阵[1]、修正梯度法[2]、改进拉格朗日法[3]等。 1.牛顿法 1.1牛顿法的基本原理 假定无约束问题的目标函数f(x)二阶连续偏导,'x 为极小点的某一近似。目标函数f(x)在这个点附近的逼近二阶泰勒多项式为: ''''2'''1 f(x)f(x )f(x )(x x )(x x )f(x )(x x )(||x x ||)2 T T O =+?-+-?-+- 设目标函数 ()min f x , x n R ∈ 若(k)x n R ∈是f(x)极小点第K 轮迭代点,(x)q 是f(x)在()x k 点处的二阶泰勒多项式 (k)(k)(k)(k)2(k)(k)1 (x)f(x )f(x )(x x )(x x )f(x )(x x )2 T T q =+?-+-?-,

相关主题
文本预览
相关文档 最新文档