当前位置:文档之家› 酶法制备新型医药中间体D-7-ACA工艺研究

酶法制备新型医药中间体D-7-ACA工艺研究

酶法制备新型医药中间体D-7-ACA工艺研究
酶法制备新型医药中间体D-7-ACA工艺研究

年产1000吨酸性蛋白酶的生产工艺设计

1. 前言 酸性蛋白酶是一类最适pH值为2.5?5.0的天冬氨酸蛋白酶,相对分子质量为30000 ?40000。酸性蛋白酶主要来源于动物的脏器和微生物分泌物,包括胃蛋白酶、凝乳酶和一些微生物蛋白酶。根据其产生菌的不同,微生物酸性蛋白酶可分为霉菌酸性蛋白酶、酵母菌酸性蛋白酶和担子菌酸性蛋白酶.根据作用方式可分为两类:一类是与胃蛋白酶相似,主要产酶微生物是曲霉、青霉和根霉等;另一类是与凝乳酶相似,主要产酶微生物是毛霉和栗疫霉等。细菌未发现产酸性蛋白酶的菌株.由于酸性蛋白酶具有较好的耐酸性,因此被广泛地应用于食品、医药、轻工、皮革工艺以及饲料加工工业中。 国外关于酸性蛋白酶的生产研究从20世纪初就开始了。1908年,德国科学家从动物的胰脏中提取出胰蛋白酶,并将其用于皮革的鞣质。1911年美国科学家从木瓜中提取木瓜蛋白酶(在酸性,碱性和中性的条件下都能分解蛋白质的酶)并将木瓜蛋白酶用于除去啤酒中的蛋白质浑浊物。自1954年吉田首次发现黑曲霉可产生酸性蛋白酶以来,国外对微生物发酵生产酸性蛋白酶进行了广泛的研究。1964年外国科学家首次发现大孢子黑曲霉突变体能产生两种不同的酸性蛋白酶,即酸性蛋白酶和酸性蛋白酶。1965年又从血红色陀螺孔菌,中分离出了一种酸性蛋白酶,并对该酶进行了纯化和结晶。1968年从微小毛霉中筛选出了一种酸性蛋白酶,并对其进行了纯化和酶学性质分析。1995年外国科学家对烟曲霉酸性蛋白酶的基因进行了克隆和测序。2001年又从假丝酵母中筛选出了一种酸性蛋白酶菌株,并对该酶进行了核苷酸序列分析和功能分析。国外学者对曲霉酸性蛋白酶的结构和功能等己经研究的较为透彻。 与国外相比,我国对酸性蛋白酶的研究相对较晚些。1970年上海工业微生

医药中间体

目前,我国每年约需与化工配套的原料和中间体2000多种,需求量达250万吨以上。经过30多年的发展,我国医药生产所需的化工原料和中间体基本能够配套,只有少部分需要进口。而且由于我国资源比较丰富,原材料价格较低,有许多中间体实现了大量出口。 所谓医药中间体,实际上是一些用于药品合成工艺过程中的一些化工原料或化工产品。这种化工产品,不需要药品的生产许可证,在普通的化工厂即可生产,只要达到一些的级别,即可用于药品的合成。 [编辑本段] [编辑本段] 苯乙酸需求继续增大 我国β-内酰胺类抗生素经过近50年的发展,已经形成了完整的生产体系。目前几乎所有的β-内酰胺类抗生素(除专利期内的品种外)我国都能生产,而且成本很低,青霉素产量居世界前位,大量出口供应国际市场;头孢类抗生素基本能够自给自足,还能争取一部分出口。 目前,与β-内酰胺类抗生素配套的中间体我国全部能够自己生产,除了半合成抗生素的母核7-ACA和7-ADCA需要部分进口外,所有的侧链中间体均可生产,而且大量出口。 以β-内酰胺类抗生素的主要配套中间体苯乙酸为例,我国现有苯乙酸生产厂家近30家,总年产能力约2万吨。但多数企业规模偏小,最大的年产2000吨,其他大多年产数百吨。2003年国内苯乙酸总需求量约1.4万吨,消费结构为:青霉素G占85%,其他医药占4%,香料占7%,农药及其他领域占4%。 随着国内香料、医药、农药等行业的发展,苯乙酸需求量将进一步增加。预计到2005年,我国医药工业将消耗苯乙酸约1.4万吨,农药行业将消费500吨,香料行业约消费2000吨。再加上其他领域的消费量,预计2005年国内苯乙酸总需求量将达1.8万吨。 [编辑本段] 含氟吡啶类中间体成热点 目前,我国已开发并已投入批量生产的喹诺酮类抗菌药主要有诺氟沙星、环丙沙星、氧氟沙星、依诺沙星、洛美沙星、氟罗沙星等。其中诺氟沙星、环丙沙星、氧氟沙星生产量最大,约占国内氟喹诺酮类抗菌药总产量的98%。 喹诺酮类一般由含氟苯环合成含氟喹啉类化合物后与哌嗪(或甲基哌嗪)缩合而得。由于我国萤石储量丰富,因而是世界含氟药物和中间体产量最大的国家之一,有80%以上的含氟中间体供应出口。从整体上看,我国氟苯类中间体发展较早,目前生产能力普遍过剩;三氟甲苯类中间体发展较晚,近年来发展速度较快;而对于杂环芳香族化合物特别是含氟吡啶类,我国目前只有个别研究单位和生产厂家拥有含氟吡啶类中间体的合成技术,因此,含氟吡啶类中间体将成为今后几年国内含氟中间体研发的主要方向之一。 [编辑本段] 对氨基酚缺口较大 我国已成为世界上最大的解热镇痛药生产国,阿司匹林、扑热息痛、安乃近等品种的产量均超万吨,非那西丁、氨基比林、安替比林等品种的产量超过1000吨。目前我国解热镇痛药的产量增长很快,预计今后还将以8%左右的速度增长。为解热镇痛药配套生产的中间体产量大,生产企业多。随着解热镇痛药的增长,其中间体也获得了长足的发展。 2003年国内扑热息痛消费量快速增加,出口也呈迅猛增长势头,出口量为28163吨,全年出口量同比增幅达1倍左右。到2004年上半年其出口增速虽然放慢,但依然有所增长,2004年1~5月扑热息痛的出口量为12501吨,略高于去年同期。对氨基酚是合成扑热息痛的重要中间体,近年来也增长迅速。目前,我国对氨基酚年产量约为3.2万吨,预计到2005年,国内扑热息痛产量将达到5万吨以上,医药工业将消耗对氨基酚4.5万吨,再加上在其他领域

年产1000吨酸性蛋白酶的生产工艺设计

1. 前言 酸性蛋白酶是一类最适pH值为的天冬氨酸蛋白酶,相对分子质量为30000 40000。酸性蛋白酶主要来源于动物的脏器和微生物分泌物,包括胃蛋白酶、凝乳酶和一些微生物蛋白酶。根据其产生菌的不同,微生物酸性蛋白酶可分为霉菌酸性蛋白酶、酵母菌酸性蛋白酶和担子菌酸性蛋白酶.根据作用方式可分为两类:一类是与胃蛋白酶相似,主要产酶微生物是曲霉、青霉和根霉等;另一类是与凝乳酶相似,主要产酶微生物是毛霉和栗疫霉等。细菌中尚未发现产酸性蛋白酶的菌株.由于酸性蛋白酶具有较好的耐酸性,因此被广泛地应用于食品、医药、轻工、皮革工艺以及饲料加工工业中。 国外关于酸性蛋白酶的生产研究从20世纪初就开始了。1908年,德国科学家从动物的胰脏中提取出胰蛋白酶,并将其用于皮革的鞣质。1911年美国科学家从木瓜中提取木瓜蛋白酶(在酸性,碱性和中性的条件下都能分解蛋白质的酶)并将木瓜蛋白酶用于除去啤酒中的蛋白质浑浊物。自1954年吉田首次发现黑曲霉可产生酸性蛋白酶以来,国内外对微生物发酵生产酸性蛋白酶进行了广泛的研究。1964年外国科学家首次发现大孢子黑曲霉突变体能产生两种不同的酸性蛋白酶,即酸性蛋白酶和酸性蛋白酶。1965年又从血红色陀螺孔菌,中分离出了一种酸性蛋白酶,并对该酶进行了纯化和结晶。1968年从微小毛霉中筛选出了一种酸性蛋白酶,并对其进行了纯化和酶学性质分析。1995年外国科学家对烟曲霉酸性蛋白酶的基因进行了克隆和测序。2001年又从假丝酵母中筛选出了一种酸性蛋白酶菌株,并对该酶进行了核苷酸序列分析和功能分析。国外学者对曲霉酸性蛋白酶的结构和功能等己经研究的较为透彻。 与国外相比,我国对酸性蛋白酶的研究相对较晚些。1970年上海工业微生物研究所首先从黑曲霉中筛选出一株产酸性蛋白酶菌株,并和上海酒精厂协作进行中试生产,填补了我国酸性蛋白酶制剂的空白.近年来国内在酸性蛋白酶上的研究大都致力于选育产酶活力高、抗逆性好的菌种,并获得了一些很有应用前途的产酶菌株。目前用于酸性蛋白酶生产的高产菌株主要有黑曲霉、宇佐美曲霉和青霉及它们的突变株。李永泉等,对宇佐美曲霉所产的酸性蛋白酶进行了发酵过程动力学研究.戚淑威等对青霉产酸性蛋白酶的适宜条件和酶学性质进行了分析。谢必峰等,采用硫酸铵盐析法和离子交换层析法分离纯化了黑曲霉产酸性蛋

xxx酶制剂项目工艺说明

×××酶生物科技有限公司年产2000吨酶制剂项目工艺说明

一、项目简介 酶制剂工业是21世纪最具发展前景的新兴精细化工产业之一,是生物工程的重要组成部分,其应用领域遍及轻工、食品、化工、医药、农业、能源及环境保护等,在国民经济发展中起着重要的作用,产生了巨大的社会和经济效益。,我国自20世纪60年代起已开始生产酶制剂产品,几十年发展成绩喜人,在品种、产量及技术水平等方面都取得了长足的进步。目前全国共有50多家生产企业,年生产能力超过40万吨,产品品种达到20多种。特别是近10年间,年产量的平均增长率高达20%左右,远远高于国民经济的平均增长速度。随着国内对酶制剂需求的进一步提高,酶制剂行业将有一个非常广阔的市场发展空间。 本公司拟建设一条年产2000吨酶制剂生产线,其中液体酶制剂1000吨/年,固体酶制剂1000吨/年。酶制剂的包装及灌装均达到国家GMP生产标准。 二、产品工艺初步设计 项目采用具有细菌液态深层发酵工艺生产新型酶制剂。项目生产原料是玉米芯、麸皮、豆饼粉等农产品下脚物,生产过程采用液体深层发酵。最终成熟的发酵液在精制车间制成成品酶制剂。其中部分发酵液采用精滤、膜浓缩工艺制成液体成品酶制剂,其余发酵液通过精滤、膜浓缩、溶析、干燥后制成固体成品酶制剂。具体工艺流程如下图所示:

生产工艺流程图 三、设备的初步预算 本项目的主要设备一览表见下表:

四、项目人员构成 项目新增定员为31人,其中生产人员22人,技术人员6人,管理人员3人。劳动定员表如表所示: 五、原料估算 项目拟建设一条年产2000吨酶制剂生产线,其中液体酶制剂1000吨/年,固体酶制剂1000吨/年。主要产品的原料估算如下表所示:

以淀粉为原料双酶法制葡萄糖生产工艺电子教案

以淀粉为原料双酶法制葡萄糖生产工艺

以淀粉为原料双酶法制葡萄糖生产工艺 双酶法是用专一性很强的淀粉酶和糖化酶为催化剂,将淀粉水解为葡萄糖的工艺。淀粉水解分为两步进行:第一步,用耐高温α-淀粉酶进行液化;第二步,用淀粉糖化酶对液化后液进一步水解为葡萄糖,使 DE 值达到 98%以上。水解反应 〔 C6H10O5〕n + nH2O n〔C6H12O6〕糖化酶 生产工艺流程图: 玉米淀粉(或精制淀粉乳) ↓ 调浆计量 ↓ 蒸汽→喷射液化←淀粉酶 ↓ 糖化←复合糖化酶 ↓ 蒸汽→灭酶脱色←活性炭 ↓ 板框过滤→旧活性炭弃去 ↓ 离子交换 ↓↙冷却水

蒸汽→蒸发浓缩——→葡萄糖浆 ↓ 降温结晶←冷却水 ↓ 糖膏分离 ↓ 蒸汽→气流干燥 筛分 ↓ 食用葡萄糖 ↓ 检验 ↓ 称量包装 ↓ 成品入库 生产结晶葡萄糖一般的配料工序要求的指标为: 浓度: 30%~36% (如生产其他的糖品,料液配料浓度可放宽到 45%)pH 值:最适 pH5.4~6.0(可在 pH5.0~7.0 之间选择) 淀粉乳蛋白含量:≤0.6% 电导率:≤200us/cm 1、调浆

工艺过程:①用低于 42℃的水将粉乳比重调至 17-18.5Be°,用泵将调好的淀粉乳打入调节罐,在不断搅拌条件下加一定量的 10%稀碱液使淀粉 PH 达5.5-5.8。②加入一定量的耐高温α—淀粉酶进行液化。加高温酶的量根据液化液的 DE 值确定,要求 DE 值在 13-17%之间。 2、液化: 工艺过程:①将一定浓度,一定 PH 值的淀粉乳连续用泵打入连续液化器进行液化。②一喷液化温度控制在 106-110℃,二喷液化温度控制在 135-145℃,控制出料速度,使液化液碘色反应为棕红色③液化液不合格必须返工,重新液化。 酶法喷射液化工序要求的指标为: 浓度:32%±2% pH 值:5.4~6.0(最好 5.5~5.8) 加酶量:0.035%~0.07%(对固形物) 喷射温度:一喷温度: 106-110℃二喷温度: 135-145℃ 液化保持:温度:95℃;时间:90~120min. 液化终了 DE 值:14~20%之间(最好在 DE14~16%之间) 碘试:暗红樱色 3、糖化: 工艺过程:①将降温后的液化料液,调好 PH 值,按干物量加入糖化酶②在一定温度 条件下糖化一定时间 DE 值达 98%以上。 酶法糖化工序要求的指标如下:

阿托伐他汀酶法生产工艺

阿托伐他汀酶法生产工艺 本生物法制备阿托伐他汀原料药,为目前国内最新工艺,仅有两家运用,一家为生产,另一家处于中试阶段。可直接购买A6或A5开始,国内A6或A5已经规模生产,因此成本较自己再合成成本更低。三种酶在国内苏州汉酶有限公司有商品出售,酶代号为供应商代号,若进行战略合作,则全程技术服务可与之深谈。 ATS-6生产工序 一.配比 ATS-5 146.6kG 苯乙烯212.5L (在冷库存放)温度高会聚合 THF 173+104kg 二异丙胺381kg 乙酸叔丁酯406kg 甲基叔丁基醚170+920+1900kg 金属锂26kg 15%盐酸1900+(150-360)L 碳酸氢钠0.5kg 水450+260 ATS-7酶法工艺 一.配比

1.碳酸钠 50kg 2.纯化水 400+400+20L 3.三乙醇胺 8kg 4.15%盐酸适量 5.硅藻土 40kg 6.活性炭 60kg 7.乙酸乙酯 800+400+400+400L 8.饱和盐水 200+200 9.ATS-6 250-300kg(相对146kgATS-5) 10.酶YK 260*1/催化率*0.8 11.酶YM 260*1/催化率*0.9 12.酶YN 260*1/催化率*0.9 ATS-8制备工艺 一.配比 1.ATS-7 一整批(240-280) 2.甲苯 330+460+900L 3.丙烷 260kg 4.甲基磺酸 1.35-2.7L 5.碳酸氢钠 3.3kg 6.水 320+400+400 7.己烷 750L

ATS-8一精 一.配比 1.ATS-8粗品 4批约620-880kg 2.己烷 1400-1500L 3.乙醇 -1 160kg(套用母液加40-80kg) 4.活性炭 9kg 5.己烷乙醇混合液 20L(3:1) ATS-8二精 一.配比 1.AT S-8一精物一整批约600kg 2.己烷-1 1000-1100L 3.乙醇-1 60-120kg 4.乙醇-2 20kg 5.己烷-2 20L 套用母液总收率可以达到100%,按以上投料量月正常生产可以产出9t成品;二异丙胺,乙酸叔丁酯,甲基叔丁基醚可以上塔回收,乙酸乙酯,甲苯,己烷可以套用。 卢红生 2014年3月2日

医药中间体生产工艺介绍

医药中间体生产工艺介绍

什么是中间体?中间体是精细化工产品当中非常重要的一个类型,其实质是一类“半成品”,主要广泛用于医药、农药、涂料、染料以及香料的合成。在医药领域,中间体是用来生产原料药的。所谓医药中间体,实际上是一些用于药品合成工艺过程中的一些化工原料或化工产品。医药中间体是医药行业产业链中的重要环节。按应用领域可分为抗生素类药物中间体、解热镇痛药用中间体、心血管系统药用中间体、抗癌用医药中间体等大的类别。 我国每年约需与化工配套的原料和中间体2000多种,需求量达250万吨以上。经过30多年的发展,我国医药生产所需的化工原料和中间体基本能够配套,只有少部分需要进口。而且由于我国资源比较丰富,原材料价格较低,有许多中间体实现了大量出口。经调查发现,2012年我国医药中间体行业产量约810万吨,到2018年达到了1032万吨。 国内医药中间体行业在市场方面做到了较强的竞争力,甚至部分中间体生产企业已经有能力生产分子结构复杂、技术要求较高的中间体,一大批有影响力的产品开始主导国际市场。但是,总体上现阶段我国中间体行业仍正处于产品结构优化升级的发展时期,工艺技术水平还是比较低的。多数医药中间体行业内产品仍以初级医药中间体为主,大量高级医药中间体以及新药的配套中间体产品生产企业较少。

德兰梅勒利用膜分离设备浓缩医药中间体,既可简化原有的操作工艺,又可得到较高纯度的产品,同时降低医药行业的生产成本,是用于医药中间体脱盐及浓缩很有效的方法。 医药中间体生产工艺如下: 首先将含有1%至25%盐的医药中间体原料依次通过微滤膜和超滤膜除去溶液中大分子颗粒、有机物和胶体。其次,将去除大分子颗粒、有机物和胶体的原料液冷却降温至10℃至25℃。将冷却后的原料液依次通过增压泵和高压泵增压,采用纳滤恒容脱盐技术进行医药中间体洗盐和浓缩,在脱盐过程中加入渗滤液的速率与膜通量相等,控制温度2℃至45℃,操作压力2.0Mpa至3.8Mpa。脱盐后浓缩液直接进入下一工序,最后采用纳滤恒容脱盐技术进行医药中间体洗盐和浓缩,对透过液中有经济价值的物质可以选择性的浓缩回收。 德兰梅勒根据医药中间体纯化处理要求定制性价比高的工艺包,对整个医药中间体浓缩系统进行全面分析和合理设计,使医药中间体浓缩系统设计、制造、生产各工艺环节得到有效控制,以实现整套工艺包的经济性能与技术优势双结合,从而为客户提供既专业又完善的流体分离纯化工艺包设计。

中药提取技术与酶法提取

中草药所含成分十分复杂,既有有效成分,又有无效成分和有毒成分。为了提高中草药的治疗效果,就要尽最大限度提取有效成分,去除无效成分及有毒成分。因此,中草药提取对于提高中药制剂的内在质量和临床疗效最为重要。但常用的提取方法(如煎煮法。回流法、浸渍法。渗漉法等)在保留有效成分,去除无效成分方面,存在着有效成分损失大、周期长、工序多。提取率不高等缺点。近10年来,在中药提取方面出现了许多新技术、新方法,这些新技术和方法的应用,使得中草药提取既符合传统的中医理论,又能达到提高有效成分的收率和纯度的目的。本文就这方面作一综述。 1. 超临界流体萃取技术 超临界流体萃取(简称SC FEFE)是一种以超临界流体(简称SCF)代替常规有机溶剂对中草药有效成分进行革取和分离的新型技术,其原理是利用流体(溶剂)在临界点附近某区域(超临界区)内与待分离混合物中的溶质具有异常相平衡行为和传递性能,且对溶质的溶解能力随压力和温度的改变而在相当宽的范围内变动,利用这种SCF作溶剂,可以从多种液态或固态混合物中萃取出待分离组分。常用的SCF为CO。,因为CO。无毒,不易燃易爆,价廉,有较低的临界压力和温度,易于安全地从混合物中分离出来。超临界CO。萃取法与传统提取方法相比,最大的优点是可以在近常温的条件下提取分离,几乎保留产品中全部有效成分,无有机溶剂残留,产品纯度高,操作简单,节能。 廖周坤等用不同浓度的乙醇作夹带剂,对藏药雪灵芝进行了总皂苷粗品及多糖的苹取试验,与传统溶剂萃取工艺相比较,收率分别提高至旧.9倍和 1.62倍。何春茂、梁忠云利用超临界CO。卒取技术从黄花蒿中革取所得的萃取物中杂质(蜡状物)含量低,青蒿素提纯精制简单,收率高产品质量好。雷正杰等利用超临界CO。流体萃取技术,对厚朴的有效成分进行萃取和分离,革取物为淡黄色膏状物,经分析该萃取物由厚朴酚等11个化学成分组成,其中厚朴酚和厚朴酚的相对含量高达46.81%和45.00%。葛发欢等探讨了从黄山药中萃取薯预皂素的最佳条件,同时进行了中试放大,证明应用超临界CO。萃取薯预皂素进行工业化生产是可行的,与传统的汽油法相比较,收率提高15倍,生产周期大大缩短,避免使用汽油有易燃易爆的危险。葛发欢等研究了超临界CO。萃取柴胡挥发油和皂苷的工艺,STh-CO。法提取柴胡挥发油,与传统水蒸气蒸馏法相比较,能大大提高收率,缩短提取时间,而挥发油组成一致,只是各成分含量有差异。原永芳等通过五因素一四水平正交试 验法,用超临界流体萃取技术对川穹的挥发油萃取条件进行了优化选择,结果最佳萃取条件为压力34.smPa,温度60℃,改性剂乙醇0.3ml,静态苹取时间10min,动态萃取量10ml,以水作为吸收。与水蒸气蒸馏法相比较,该法具有耗时少,提取安全等优点。 SCFE技术对于提取分离挥发性成分、脂溶性物质、高热敏性物质以及贵重药材的有效成分显示出独特的优点,但SCFE设备属高压设备,一次性投资较大,运行成本高,因此这一技术目前在工业生产中还难以普及。 2. 超声提取技术 超声提取技术的基本原理主要是利用超声波的空化作用加速植物有效成分的浸出提取,另外超声波的次级效应,如机械振动、乳化、扩散。击碎、化学效应等也能加速欲提取成分的扩散释放并充分与溶剂混合,利于提取。与常规提取法相比,具有提取时间短、产率高、

酶法合成阿莫西林原理

酶法合成阿莫西林介绍 β-内酰胺抗生素经过多年的发展,己成为抗生素中的最主要类型之一。由于具有良好的抗菌效力,较低的毒副作用,在临床上广泛应用,其发展非常迅速。现全世界耗用量已过万吨,预计今后还会增长。其中,青霉素和头孢菌素为最重要的两大类β-内酰胺抗生素。酶法合成技术始于20世纪60年代末70年代初,经过30多年的发展,现在酶缩合反应技术、产品分离以及固定化酶技术等方面取得很大的发展,配套技术日益完善,具备了大规模工业化生产的条件。全球著名的β-内酰胺抗生素生产厂家如荷兰DSM公司已有酶法合成的商品头孢氨苄、阿莫西林等产品面世。由于酶法应用于β-内酰胺抗生素合成,不仅可减少反应步骤,而且还可减少废弃物的产生,有利于保护环境,降低生产成本,产品质量优异,所含杂质极少。因此,21世纪β-内酰胺抗生素的酶法合成将是发展的必然趋势。我国酶法合成研究起步并不晚,但至今仍未形成大规模工业化生产,与国外先进厂家差距较大。随着我国经济快速发展,人们对自身居住环境的要求,政府对环保的重视,政府和越来越多的企业加大“绿色化学制药”的研究开发,特别是加快工业化生产的推进进程。 酶法产品主要有三大特点: 一是产品含量稳定、变化小,可降低制剂在有效期内的检测风险,并且杂质低,降解速度慢,对制剂的安全性,尤其是特殊制剂的稳定性尤为重要。 二是酶法产品生产批量能够达到化学法产品的2~3倍,这既能够大幅度节省制剂生产商的检验成本,粗略估算原料检测成本能够节约人民币9元/kg;同时,也便于物流、仓储和生产管理。 三是酶法产品是通过生物酶一步到位生产而得,以纯净水为介质,不使用传统化学工艺中的特殊化工原料,有机溶剂的使用量大幅度减少90%,废水排放减少80%,品质更纯净。 1 青霉素酰化酶的发展 青霉素酰化酶是从微生物或其代谢产物中发现的一类具有特定活性的蛋白质。能够产生青霉素酰化酶的微生物广泛分布于细菌、放线菌、真菌和酵母中,如:醋酸杆菌、假单胞菌、粪产碱菌、黄单胞菌、产气单胞菌、大肠杆菌、芽孢杆菌、枝状杆菌、克氏梭菌( Kluyvera) 等,其中常用的有巴氏醋酸杆菌、粪产碱

医药中间体加工谈判方案

医药中间体加工谈判方案 一、谈判人员组成 甲方(我方):美国A公司 总经理:XXX 市场顾问:XXX 法律顾问:XXX 财务顾问:XXX 技术顾问:XXX 秘书:XXX 乙方:哈尔滨B工厂 总经理:XXX 财务总监:XXX 法律总监:XXX 技术总监:XXX 谈判时间:XXX 谈判地点:XXX 二、谈判主题 就加工价值悬殊巨大,客方公司心里不平衡的情况进行重新谈判,进一步平衡双方利益,同时保住订单,维护双方关系,达成长期合作。 三、谈判双方公司背景 甲方:美国A公司 美国A公司是一家抗癌药品的中间体生产制造商,正研发了一种新的

中间体,而生产中间体的原料在中国北方极为丰富我方选定了哈尔滨B工厂作为其加工厂,从收购原料、加工、化验、包装、发运均由B 工厂负责,但加工工艺、化验方法、技术标准、包装要求均由我方提供标准办。 乙方:哈尔滨B工厂 哈尔滨B工厂为精细化工产品生产厂,设备及人员齐备,在对外加工方面有很强的实力,适合美国A公司产品加工的需要,而且对于开辟新产品也有浓厚的兴趣,美国A公司订单不断地增加,间接对B工厂订单也会增加。 四、谈判目标 最高目标:按我方的采购条件达成加工协议,每公斤650美元,而且以最快时间完成任务。 1、以原来拟定的合同继续进行: 1)从收购原料起,加工,化验,包装均由B工厂负责; 2)加工工艺、包装要求、按我方公司提供的美国食品医药协会要求及其制作要求进行,加上之后提出的继续完善意见; 3)B工厂加工出的所有中间体只能卖给我方公司。 2、B工厂是有能力的加工厂,并且我方有长远合作的打算,利用我方自身优势保证其价格对我方利益。 3、通过谈判,解决双方的分歧,相互尊重对方的基础上,重新平衡双方的利益,达成协议。 五、谈判形势分析

蛋白酶活力测定方法

酸性蛋白酶产品概述: 蛋白质由氨基酸组成,是自然界中发现的最复杂的有机化合物之一。由盐酸和蛋白酶分解成易被高等动物的肠道和微生物有机体的细胞膜吸收的氨基酸。包括人类在内的每种动物,必须要有足够的蛋白质来维持自身生长,来生成每个细胞所必需的氨基酸,一些特种蛋白质还是某些特殊细胞、腺体分泌物、酶和激素的功能性组成元素。蛋白酶是指一些有催化功能的酶,能够水解(断裂)蛋白质,因此也被称为蛋白水解酶。蛋白水解酶在许多的生理和病理过程中发挥着重要作用,在食品和乳品加工业也有着广泛应用。工作机理 蛋白水解酶制剂本产品能在酸性条件下水解蛋白质食品中的缩氨酸键,释放氨基酸或者多肽。在酒精、葡萄酒、果汁、啤酒、黄油和酱油生产中,添加酸性蛋白酶可澄清发酵液中的雾气。酵母在发酵阶段的生长可以通过悬浮蛋白质转化的氨基酸来加以促进,从而加速发酵并提高产量。本产品是一种酸性蛋白酶制剂,在酸性条件下具有较高活性,由酸性蛋白酶高产菌株——曲霉菌深层发酵而成。它广泛应用于饲料、纺织、废水处理和果汁提纯方面。 酸性蛋白酶(Acid protease )是指蛋白酶具有较低的最适pH,而不是指酸性基团存在于酶的活性部位,酸性蛋白酶的最适PH从2左右(胃蛋白酶)到4左右。从酶的活力-PH曲线分析,在酶的活性部位中含有一个或更多的羟基。这一类蛋白酶中研究最彻底的是胃蛋白酶。(酸性蛋白酶537容易失活)

简介:酸性蛋白酶是由隆科特黑曲霉优良菌种经发酵精制提炼而成,它能在低PH条件下,有效水解蛋白质,广泛应用于酒精、白酒、啤酒、酿造、食品加工、饲料添加、皮革加工等行业。 1、产品规格:,规格有5万u/g~10万u/g 液体型为黑褐色液体,规格有50000u/ml~10000u/ml. 2、酶活力定义:一个酶活力单位是1g酶粉或1ml酶液在40℃,PH3.0条件下,1分钟水解酪素产生1ug酪氨酸为一个酶活力单位(u/g或u/ml) 特性1、温度范围为:最适温度范围为40℃-50℃2、PH为:最适PH范围为2.5~3.5 使用方法 1、白酒工业: 本品用以淀粉为原料的生产酒精及白酒行业,提高出酒率0.25%个酒分,提高发酵速度。 2、食品工业: 食品上用以淀粉改良,提高食品风味、改良品质,因能提高氨基酸含量 3、啤酒生产: 能有效阻断双乙酰生成,缩短啤酒成熟期。 4 饲料添加剂:提高饲料利用率。 5、毛皮软化: 提高上色率,手感丰满,增加毛皮光泽。

酶法加工麦芽糊精生产工艺

酶法加工麦芽糊精生产工艺 中国食品添加剂和配料协会尤新 概述 麦芽糊精的生产工艺大致可分为3种:酸法工艺、酶法工艺、酸酶法工艺。目前,酸法工艺已基本被淘汰,国内外生产麦芽糊精均采用酶法工艺。酶法产品聚合度在1—6的产物的水解率比值均在2以上,产品透明度高,溶解性强,室温储存不变浑浊。 利用α-淀粉酶对于淀粉的催化水解具有高度的专一性,即只能按照一定的方式水解一定种类和一定部位的葡萄糖苷键,仅水解淀粉,不分解蛋白质、纤维素等。因此,麦芽糊精是以玉米、大米等粗粮直接投料(不是以精制淀粉为原料),经酶法控制部分水解、脱色提纯、真空浓缩、喷雾干燥而成。 为了便于叙述,在此以大米作原料为例,并按优级品质生产工艺说明。 麦芽糊精系列产品的生产按酶法工艺要求可分为6个工序:原料预处理、液化、过滤、浓缩、干燥、包装等。 1原料预处理工序 预处理包括计量投料、热水浸泡、淘洗杂质、粉碎磨浆4个内容,计量投料是为了保证投料准确,便于操作和管理。热水浸泡可使水分渗透到米的内部组织,促进米粒组织膨胀软化,便于淘洗和粉碎。淘洗是为了除去米糠和其他杂质,保障食品卫生和产品质量。粉碎磨浆是为了保证淀粉粒的细度和粉浆的流动性能,使淀粉易于糊化,并为酶能均匀地水解淀粉创造良好的条件。 大米预处理工序技术要求如下: 浸洗后的米,应该色白无米糠,无酸败味,米粒用两手指轻捏即成粉末状。 粉浆细度,60目以上粉粒应占80%以上,手感无粗粒,不允许在粉浆中混有米粒。 粉浆浓度控制在22—24°Bé,1t米磨成的粉浆相当于2.2m3左右。 粉浆不发酵,pH不低于5.2。 淘洗去杂

一般淘洗米采用机械淘洗,通常用压缩空气来翻动淘洗,在特制的洗米罐中进行。 淘洗操作时,将米按规定量送到洗米罐,放入清水,待水浸没米层后,通入压缩空气,利用空气冲击使米粒在水中翻动和相互摩擦,把附着于米粒上的米糠和杂质洗掉,悬浮物从溢流口溢出。当悬浮物基本溢净,可关闭进水阀和空气阀,放出米泔水。如此反复洗米2—3次,可使米粒洗净。 热水浸泡 热水浸泡的目的是为了加快吸收水分,促进米粒组织软化。米粒吸水程度和下列因素有关。 (1)与米粒吸水和浸米时间有关。一般说来,浸泡时间不能少于2h,否则米粒中心部分的水分浸入不足,这样就不利于米的粉碎和糊化。 (2)米粒吸水程度还决定于米的品质。非糯性米要相对延长浸泡时间。 (3)米粒吸水还和浸泡水温度有关。提高水温可加速米粒吸水,缩短浸泡时间。在冬季,浸泡水可利用生产中冷却水代替冷水,但水温不宜高于45℃,若再提高温度,会使米粒表面糊化,淀粉流失。 在浸泡过程中还要注意米粒发酵情况,虽浸泡2h不会很快受到微生物侵入而发酵。若在洗米时没有将米糠洗净,往往也会引起米粒发酵,如此将米磨成粉浆后,会造成液化中途pH下降,致使发生液化困难。凡发酵米粒必须要重新洗米才能粉碎。 米粒和粉浆发酵经常发生在夏秋高温季节,在此期间生产,更应重视环境卫生和设备清洗消毒工作,以减少微生物污染机会。 粉碎磨浆 将米粉碎磨成粉浆,要注意细度和浓度两个质量要求。 粉浆细度影响着液化程度和过滤速度。从糊化角度考虑,粒度细的粉浆溶解性好,容易糊化。从过滤性看,粉浆太细,则不利于过滤。根据工业化规模生产结果表明,粉浆细度以70目为宜,这样液化性和过滤性均好。 粉浆浓度关系到糊化液的流动性和蒸发量,粉浆浓度低,黏度小,流动性好,容易糊化,有利于加热和过滤。但降低液化浓度,增加了蒸发负荷,经济上不合算。高浓度粉浆则流动性差,且糊化困难。所以,粉浆最适宜浓度应在22—24°Bé。 砂盘磨工艺操作 开车:接通电源,先空载运转1—2min,检查有无异常振动和噪音,再调节上下磨盘间距到发出有轻微的摩擦声止。

酶制剂工业化可行性报告

发酵制品蛋白酶生产可行性报告 一、项目简介: 1、酶制剂发展现状: 现在酶制剂已发展成为一种重要的工业产品,它广泛应用于食品工业、医药工业、纺织业、酿酒业、洗衣粉、制革以及造纸--纸浆加工业等各行各业。酶制剂市场年增长率平均为5%左右。据统计,占酶制剂市场总量95%的酶为大宗工业酶,其中主要是洗衣粉专用酶(如蛋白酶、脂肪酶和淀粉酶等),食品工业用酶(如焙烤食品用酶、啤酒、白酒等发酵酒的酿酒用酶、果汁加工用酶--果胶酶、肉类加工用酶、玉米淀粉加工"果葡糖浆"专用淀粉酶、葡萄糖异构酶等等)、纺织品加工专用酶(其中用量最大的一种酶是可使纤维织物手感柔软光滑的"纤维素酶")和林产品加工专用酶(如可分解木质素的"木质素酶"等等)。这体现了高技术(生物工程技术)产品的市场价值远远胜过常规产品的价值。 现在世界各国投入大量人力、物力和财力进行生物酶制剂的研究,在发达国家,特别是丹麦、美国、日本、芬兰等已经形成商品化、系列化的酶制剂。 2、酶制剂的用途广泛: 在饲料工业中,在食品应用中,在日用化工生产中,造纸工业中、医药工业中,生物酶制剂都具有广泛的用途。 在印染行业中,酶制剂洗涤去除浮色,提高牢度,并可以达到降低皂洗温度、浮色洗除容易的目的,适用于各种纤维和染料。它具有

成本低,反应快、节能、节水、不损伤纤维和避免染色不匀、提高给色量和染色牢度等优点。减少烧碱、染料等强污染物质的使用量,降低废水排放量,有利于实现洁净化生产,有助于保护生态化境。二、项目技术工艺 公司与山东大学生命科学学院、山东农业大学生命科学学院紧密合作,技术上总结出一套完整的以纺织印染用酶为核心的生物酶制剂固体发酵技术,使生产的酶制剂活性高,性能稳定,工业化发酵产酶制剂水平均居国内领先地位。通过固体发酵法生产,可较快地实现产业化生产。生产工艺: 1.生产菌株的选育 枯草芽孢杆菌菌株,由山东农业大学生命科学学院生物工程实验室选育。 2 原料 麸皮、豆饼粉、菜籽饼粉等。 3 斜面种子培养基(三角瓶) 马铃薯200 g/L,蔗糖20 g/L ,琼脂18 g/L,自然pH;121℃灭菌20 min,放置斜面;冷却后接种枯草芽孢杆菌菌株,于(32±0.5)'C 培养96 h。 4 麸曲种子制备 4.1 一级麸曲种子(500ml三角瓶) 4.2 二级麸曲种子(曲盘) 5 .固态发酵培养

酶提法提取工艺

用酶法从虎杖中提取白藜芦醇的工艺流程图 45—50℃, PH4.8±0.2,沿壁缓慢 加入HCl调节PH值,轻轻搅拌 加复合酶增加收率原因:一是植物细胞壁被破坏,使内容物溶出率增加;二是白藜芦醇苷在复合酶的作用下被转化成白藜芦醇。 可用复合酶SPE—002、SPE—007醇提前和醇提后的酶解结果与单独进行乙醇提取得率进行比较。

从茶叶中提取茶多酚 过滤 提取物 酶提法优点: ○1可以软化植物细胞壁,使有效成分最大限度溶出,提高收率;对茶叶进行复合酶法提取, 茶多酚提取率可达98 %以上; 酶解法提取的茶多酚中儿茶素相对含量较沸水提取的高出9 %~10 %。○2酶法提取茶多酚及多糖具有提取率高, 且茶多酚的主要活性成分———儿茶素氧化损失少, 原料茶叶不需粉碎○3节省时间,降低成本;

酶法提取红景天有效成分的工艺流程图 1、酶提法 红景天 SPE —001或007 提取物〈 2、醇提法(略) 3、水提法(略) 酶提法优点: ○1可以使植物细胞壁破裂,使有效成分最大限度溶出,提高收率; ○ 2可替代水提醇沉工艺,节省时间,降低成本; ○ 3可降解红景天中的氨基酸、多肽、多糖、易于滤过。 每次分别为3、2、1小时 粉碎

1、酶提法 菊花 SPE — 007 提取物 2、醇提法(略) 3、水提法(略) 酶提法、醇提法与水提法进行比较 SPE-007:主要用于破除植物细胞壁,使有效成分最大限度溶出。SPE-006:主要用于提取液的沉清,加快滤过速度,降低成本。 加7倍量水 60℃水浸泡30min 40℃温水,PH :4.8 活化5—10min 1∶10倍量水溶解酶 用水煎煮3h 温度降至45-52℃,PH :3.5—4.5,时间1.5h 提取液 用SPE-006(干物 质重量)的40ppm

一步酶法生产 7-ACA

一步酶法生产7-ACA的优点 7-氨基头孢烷酸(7-ACA)是生产头孢菌素类抗生素的重要母核,头孢菌素分子中由于都含有β-内酰胺结构。它能抑制肽转肽酶所催化的转肽反应,使线性高聚物不能交联成网状结构,抑制粘肽的台成,从而阻止细胞壁的形成,导致细胞的死亡。 目前7-ACA生产采用新型酶法工艺,国内已成功开发出新型酶法7-ACA生产技术,打破国外对一步酶法生产7-ACA 技术的垄断。而目前国内的生产厂家采用的双酶大多数是从国外进口的,成本与化学法不相上下。通过本项目技术的使用大大降低7-ACA的成本,从而获得成本优势。新型酶法较好解决了旧酶法技术生产7-ACA在质量、色泽上劣于化学法的问题,同时在生产上的使用批次也大幅度增加,从而也降低了生产成本。 7-ACA和头孢菌素的合成工艺主要有化学法和酶法两种。化学半合成技术主要包括酰氯法和混酐法,化学法合成存在着活化、缩合、保护和去保护的过程;合成过程长、步骤多反应条件苛刻产生大量的三废等弊端,而酶法合成工艺与化学法相比,由于具有许多优点,如:生产工艺简单,周期短;反应条件温和,pH接近中性;高度的区域和立体选择性以及无需保护和去保护过程,割除了化学合成中所需的毒害物质;劳动环境得到改善,减少了三废的排放。因此,用

酶法实现7-ACA及头孢菌素的半合成体现了绿色环保工艺的各种优势。

一步酶法和两步酶法制备7-ACA优势对比分析 对比项一步酶法(CPCA)两步酶法(DAO 与GAC)生物酶NRB—103 D—氨基酸氧化酶 GL—7ACA酰化酶 设备投资减少30% 较大 操作步骤4步6步 操作周期每批90min 每批150min 同等设备条件产量增大一倍较小 7-ACA转化率/% ≥95 ≥93 收率/% 46—50 44—45 7-ACA含量/% ≥98.5 ≥97 技术安全特性优优 技术环保特性优优 技术发展空间非常大有 优点高转化率,高纯度,高经济性,环境保 护。生产成本低, 减少有机溶媒用量,利于环保。 缺点转化率低,酶解路线长、氧化条件 控制难度大、设备条件高。 一步酶法工艺技术指标: 底物浓度:2.0-3.0% 转化率:不低于98% 得率:不低于95% 反应时间: 90 分钟 固定化头孢菌素酰化酶( immoblized CPC acylase) 酶活:80-100U/g 使用寿命:100 次

(转化率)酶法合成头孢氨苄工艺研究

. 516 . 收稿日期:2012-08-10 基金项目:国家863计划(2012AA021204)。 作者简介:王艳艳,女,生于1978年,学士,工程师,主要从事生物酶的制备和应用,E-mail: wyycspc@https://www.doczj.com/doc/7f9240610.html, 文章编号:1001-8689(2013)07-0516-04 酶法合成头孢氨苄工艺研究 王艳艳 袁国强 朱科 王进贤 (石药集团中诺药业(石家庄)有限公司,河北省抗生素工程技术研究中心,石家庄 050041) 摘要:目的 酶法合成氨苄西林工艺优化并回收套用母液中的母核。方法 采用酶催化法,以7-氨基-3-去乙酰氧基头孢烷酸(7-Amino-3-methyl-3-cephem-4-carboxylic acid , 7-ADCA) 为母核,苯甘氨酸甲酯(D-phenylglycine methyl ester, PGM) 为酰基供体,在水相中用固定化青霉素酰化酶(Penicillin Gacylase, PGA)催化合成头孢氨苄(Cephalexin);对投酶量、侧链与底物投料比、反应温度、反应pH 、反应时间及母液中7-ADCA 回收套用等条件进行优化,考察头孢氨苄摩尔收率及产品质量。结果 工艺优化后头孢氨苄摩尔收率85%以上,套用母液中回收的7-ADCA 后头孢氨苄摩尔收率91%以上,高于目前化学法的收率(89%),产品质量合格。结论 酶法合成头孢氨苄工艺反应条件温和,收率高,排放废水中仅含有一些简单的无机盐,对环保无压力,属于绿色合成工艺。 关键词:青霉素G 酰化酶;头孢氨苄;7-ADCA 中图分类号:R978.1+1 文献标识码:A Study on preparation of cephalexin by enzymatic method Wang Yan-yan, Yuan Guo-qiang, Zhu Ke and Wang Jin-xian (Shijiazhuang Pharm.Group Hebei Zhongnuo Pharmaceutical Co., LTD, Hebei Province Antibiotic Engineering Technology Research Center, Shijiazhuang 050041) Abstract Objective To study the process optimization of cephalexin by enzymatic synthesis and recycling the nucleus in the mother liquid. Method Using the enzymatic method, 7-amino-3-methyl-3-cephem-4-carboxylic acid as the nucleus, D-phenylglycine methyl ester as the acyl donor, in the aqueous phase with immobilized penicillin G acylase catalyzed synthesis of cephalexin; temperature, pH, side chain and substrate feed ratio, investment conditions, Such as the amount of enzyme, reaction time and recycling the nucleus in the mother liquid was optimized, examining the yield and quality of the products. Result The molar yield of cephalexin was 85% after process optimization, and the molar yield of cephalexin was 91% after mother liquor was recycled, it was higher than the chenmical method(89%), and product quality was quali ? ed. Conclusion The reaction conditions of enzymatic cephalexin was mild, the yield was higher, waste water of reaction contained only some simple inorganic salt and it decreased the environmental pressure, which belonged to the green synthesis process. Key words Penicillin G acylase; Cephalexin; 7-ADCA 头孢氨苄是广谱抗生素,通过抑制细胞壁的合成,达到杀菌作用,是目前临床使用量较大的一个半合成头孢菌素,是头孢类抗生素中的一个主要品种。 头孢氨苄的传统合成方法是把母核和侧链经过 化学方法结合而得到头孢氨苄[1-2],化学合成过程经过混酐、缩合、水解和结晶等工序,由于需要基团保护、工艺路线较长,工序中用到吡啶、特戊酰氯、N, N-二甲基甲酰胺(DMF)β-萘酚等毒性很大的 中国抗生素杂志2013年7月第38卷第7期 DOI:10.13461/https://www.doczj.com/doc/7f9240610.html,ki.cja.005215

热门新型医药中间体及其制备工艺介绍[1]

热门新型医药中间体及其制备工艺介绍 医药作为精细化工领域中重要的行业,成为近十年来发展与竞争的焦点,随着科学技术的进步,许多医药被源源不断的开发出来,造福人类,这些医药的合成依赖于新型的高质量的医药中间体的生产,新药受到专利保护,而与之配套的中间体却不存在那样的问题,因此新型医药中间体国内外市场和应用前景都十分看好。新型医药中间体品种众多,不可能完全介绍,本文简要介绍近年来国内开始研究、非常值得关注的新型的医药中间体及一些重要医药中间体的新工艺。 1-(6-甲氧基-2-萘基)乙醇 非甾体消炎药物萘普生有多种合成方法,其中羰基化合成路线的高选择性、环境友好性,使得羰基化合成的非甾体消炎药优于传统的路线。羰基化合成萘普生的关键中间体就是1-(6-甲氧基-2-萘基)乙醇。国内湖南大学以2-甲氧基萘为原料,采用1,3-二溴-5,5-二甲基乙内酰脲盐酸催化溴乙酰基化、乙酰基化和常压下钯多相催化加氢还原,经过1-溴-2-甲氧基萘、5-溴-6-甲氧基-2-乙酰基萘等中间产物最终得到产品。 4-丙硫基邻苯二胺 4-丙硫基邻苯二胺是高效广谱驱虫药物阿苯达唑的关键中间体,阿苯达唑是20世纪80 年代末才上市的新药,对人体和动物毒性低,是苯并咪唑类药物中药性最强的。以邻硝基苯胺为原料,与硫氰酸钠在甲醇存在下,经过硫氰化、丙基溴取代得到4-丙硫基-2-硝基苯胺,然后还原得到4-丙硫基邻苯二胺,由于4-丙硫基-2-硝基苯胺结构上含有丙硫基,因此其还原成4-丙硫基邻苯二胺是其中关键,国外研究采用镍或铂系金属催化加氢技术都因为催化剂易中毒或者丙硫基易破坏而难以工业化;而水合肼还原易爆炸;因此最适合工业化生产以硫化钠还原法来合成,尽管会产生一定含盐废水,但是技术可*。另有报道国内外研究一氧化碳催化剂还原法,但是离工业化尚有距离。 α-亚甲基环酮 α-亚甲基环酮是许多具有抗癌活性药物的活性中心,其含有α,β-不饱和酮结构属于抗癌活性基团的隐蔽基团,成为合成很多重要环状抗癌药物的重要中间体。文献报道合成路线有三,1)是环酮和甲醛的羟醛缩合;2)由Mannich反应产生β-二烷基胺甲基环酮,产物胺或季铵盐的热分解产生α-亚甲基环酮;3)是环酮与草酸二乙酯缩合后,与甲醛反应得到α-亚甲基环酮。国内中科院广州药物研究所开发出分别以环戊酮、环已酮、异佛尔酮分别与草酸二乙酯反应后,反应产物再与甲醛一起反应得到相应的α-亚甲基环戊酮、α-亚甲基环已酮和α-亚甲基异佛尔酮等。其中第一步要在溶剂存在下反应,溶剂一般选用二甲基亚砜和四氢呋喃等。 4,4’-二甲氧基乙酰乙酸甲酯 4,4’-二甲氧基乙酰乙酸甲酯是重要的心脑血管疾病治疗药物尼伐地平的中间体,尼伐

相关主题
文本预览
相关文档 最新文档