当前位置:文档之家› 一类一阶非线性泛函微分方程脉冲边值问题的正解的存在性_吴丽娇

一类一阶非线性泛函微分方程脉冲边值问题的正解的存在性_吴丽娇

一类一阶非线性泛函微分方程脉冲边值问题的正解的存在性_吴丽娇
一类一阶非线性泛函微分方程脉冲边值问题的正解的存在性_吴丽娇

泛函分析习题1

线性与非线性泛函分析◇ - 1 - 习题1 1.(张燕石淼)设在全体实数R 上,定义两个二元映射2(,)()x y x y ρ=-和 (2) (,)d x y ,证明(1)(,)ρR 不是度量空间;(2)(,)d R 是度量空间. 2.(范彦勤孙文静)设X ρ(,)为度量空间,:f ∞→∞[0,+][0,+]为严格单调函数,且满足 ,x y f ?∈∞[0,+],(0)=0,()()()f x y f x f y +≤+,令(,)((,))d x y f x y ρ=,证明X d (,)为度量空间. 3. (武亚静张丹)设X d (,)为度量空间,证明,,,x y z w X ?∈有 (,)(,)(,)(,)d x z d y w d x y d z w -≤+. 4.(崔伶俐杨冰)设全体实数列组成的集合为{}123(,,,....,...)|,1,2,...n i X x x x x x R i =∈=,对于 123(,,,....,...)n x x x x x =及12(,,...,...)n y y y y =∈X ,定义11(,)12k k k k k k x y d x y x y ∞ =-=+-∑ .证明 X d (,)为度量空间. 5.设()X n 为0和1组成的n 维有序数组,例如(3){000,001,010,011,100,101,110,111}X =,对于任意的,()x y X n ∈,定义(,)d x y 为x 和y 中取值不同的个数,例如在(3)X 中,(110,111)1d =, (010,010)0d =(010,101)3d =.证明((),)X n d 为度量空间. 6.(苏艳丁亚男)设X d (,)为度量空间, A X ?且A ≠φ.证明A 是开集当且仅当A 为开球的并. 7.(张振山赵扬扬)设X d (,)和Y ρ(,)是两个度量空间.那么映射:f X Y →是连续映射当且仅当Y 的任意闭子集F 的原象1()f F -是X 中的闭集. 8.(王林何超)设{}n x 与{}n y 是度量空间X d (,)的两个Cauchy 列.证明(),n n n a d x y =是收敛列. 9.(李敬华孙良帅)设X d (,)和Y ρ(,)是两个度量空间,在X Y ?上定义度量 112212121 ((,),(,)){[(,)][(,)]}p p p x y x y d x x d y y γ=+,其中1122(,),(,)x y x y X Y ∈?,1p ≥为正数.证明 X Y ?是完备空间当且仅当X d (,)和Y ρ(,)均是完备空间. 10.(李秀峰钱慧敏)设X d (,)是完备的度量空间,{}11n G x G ∈是X 中的一列稠密的开子集,证明1n n G ∞ = 也是X 中的稠密子集. 11.(王胜训闫小艳)设n A ?R ,证明A 是列紧集当且仅当A 是有界集. 12 (冯岩盛谢星星)设X d (,)为度量空间,A X ?且A φ≠.证明 (1){|,(,)}x x X d x A ε∈<是X 的开集. (2){|,(,)}x x X d x A ε∈≤是X 的闭集,其中0ε>.

最新非线性泛函分析试题与答案

一. 名词解释 弱收敛,弱*收敛,,0 ()k p W Ω,强制,Gateaux 可微,Frechet 可微,紧映射,正则点,临界点,正则值,临界值,2 C 映射的Brouwer 度,全连续场,全连续场的Leray -Schauder 度 二. 举例说明无穷维空间中的有界闭集不是紧集。 三. 求下列函数在(0,0)处沿着12(,)h h 方向的G -微分 212 1222 1212,(,)(0,0)()0,(,)(0,0)x x x x f x x x x x ?≠?=+??=? 四. 证明Poincare 不等式:存在常数0C >使得对任意1,{|,([0,],)}p p n T u W u u u L T R ? ∈=∈,有 1,p T W u C u ∞ ≤ 五. 设n R Ω?是有界闭集,(,,)k x y u 是2 R Ω?上的连续函数,证明积分算子 :()(), ()()(,,())K C C K x k x y y dy ??Ω Ω→Ω=? 是全连续算子。 六. 设X 是Banach 空间,:[0,)f X X +∞?→连续,对固定的[0,)t ∈+∞,(,)f t x 关于x 是局部Lipschitz 的,并且Lipschitz 常数对t 在有界区间[0,]α上一致有界,证明:存在0β>,使得下列初值问题在区间[0,]β上有唯一解 (,) (0)dx f t x dt x x ?=???=? 七. 证明Gronwall 不等式:设,,u v w 是[,]a b 上的实函数,其中u 非负且在[,]a b 上Lebesgue 可积,v 在[,]a b 上绝对连续,w 在[,]a b 上连续,若它们满足 ()()()(), t a w t v t u s w s ds a t b ≤+≤≤? 则 ()()exp(())exp(()) t t t a a s dv w t v a u s ds u d ds ds ττ≤+??? 八. 证明Brouwer 度的切除性、Kronecker 存在性定理、连通区性质、边界值性质、Poincare -Bohl 定理、锐角原理、缺方向性质。 九. 设:n n f R R R ?→连续,关于x 是局部Lipschitz 的,关于t 是T 周期的,若存在球(0)n r B R ?使得 (0),[0,]r x B t T ∈?∈时,1 (,),(,)0n i i i f t x x f t x x =<>=<∑,证明下列初值问题存在T 周期解

非线性泛函分析试题与答案

一. 名词解释 弱收敛,弱*收敛,,0()k p W Ω,强制,Gateaux 可微,Frechet 可微,紧映射,正则点,临界点,正则值,临界值,2C 映射的Brouwer 度,全连续场,全连续场的Leray-Schauder 度 二. 举例说明无穷维空间中的有界闭集不是紧集。 三. 求下列函数在(0,0)处沿着12(,)h h 方向的G-微分 212 1222 1212,(,)(0,0)()0,(,)(0,0)x x x x f x x x x x ?≠?=+??=? 四. 证明Poincare 不等式:存在常数0C >使得对任意1,{|,([0,],)}p p n T u W u u u L T R ? ∈=∈,有 1,p T W u C u ∞ ≤ 五. 设n R Ω?是有界闭集,(,,)k x y u 是2 R Ω?上的连续函数,证明积分算子 :()(), ()()(,,())K C C K x k x y y dy ??Ω Ω→Ω=? 是全连续算子。 六. 设X 是Banach 空间,:[0,)f X X +∞?→连续,对固定的[0,)t ∈+∞,(,)f t x 关于x 是局部Lipschitz 的,并且Lipschitz 常数对t 在有界区间[0,]α上一致有界,证明:存在0β>,使得下列初值问题在区间[0,]β上有唯一解 (,) (0)dx f t x dt x x ?=???=? 七. 证明Gronwall 不等式:设,,u v w 是[,]a b 上的实函数,其中u 非负且在[,]a b 上Lebesgue 可积,v 在[,]a b 上绝对连续,w 在[,]a b 上连续,若它们满足 ()()()(), t a w t v t u s w s ds a t b ≤+≤≤? 则 ()()exp(())exp(()) t t t a a s dv w t v a u s ds u d ds ds ττ≤+??? 八. 证明Brouwer 度的切除性、Kronecker 存在性定理、连通区性质、边界值性质、Poincare-Bohl 定理、锐角原理、缺方向性质。 九. 设:n n f R R R ?→连续,关于 x 是局部Lipschitz 的,关于t 是T 周期的,若存在球(0)n r B R ?使得 (0),[0, ]r x B t T ∈?∈时,1 (,),(,)0n i i i f t x x f t x x =<>=<∑,证明下列初值问题存在T 周期解 (,) dx f t x dt ?=??

几类偏泛函微分方程解的动力学行为研究

几类偏泛函微分方程解的动力学行为研究主要运用偏泛函微分方程理论,算子半群理论和无穷维动力系统理论,研究了几类偏泛函微分方程解的动力学行为,包括拉回吸引子的存在性、维数及其上半连续性,平衡解的多项式稳定性和指数稳定性.全文共分六章:第一章介绍了偏泛函微分方程和无穷维动力系统的研究背景和意义,综述了近年来关于偏泛函微分方程与无穷维动力系统的研究现状,并概括了本论文的主要工作.第二章首先运用经典的Faedo-Galerkin逼近方法证明了非自治随机p-Laplace方程弱解的存在唯一性,并利用一致估计和渐近紧性得到了双空间随机吸引子的存在性及其上半连续性;然后结合Galerkin近似和Aubin-Lions紧性证明了时滞p-Laplace 方程弱解的存在唯一性,并运用能量方法得到了拉回吸引子的存在性及其上半连续性.第三章借助泛函微分方程理论证明了无界时滞的Navier-Stokes方程弱解的存在唯一性,运用Lyapunov函数等方法证明了其平衡解的局部稳定性,通过构造合适的Lyapunov泛函得到了该平衡解的渐近稳定性,并在一种特殊的无界时滞的情形下证明了该平衡解具有多项式稳定性;然后使用Ito公式证明了无限时滞的随机Navier-Stokes方程弱解的存在唯一性,通过构造合适的Lyapunov泛函得到了其平衡解的渐近稳定性,并在一种特殊的无界时滞的情形下证明了该平衡解的多项式稳定性.第四章结合能量方法和紧性理论分析了一类时滞不可压缩非Newtonian流体弱解的存在唯一性,并运用一致估计和分解方法证明了拉回吸引子的存在性;然后综合运用Lax-Milgram定理和Schauder不动点定理证明了时滞不可压缩非Newtonian流体平衡解的存在唯一性,最后运用Razumikhin等方法证明了平衡解的指数稳定性.第五章运用算子半群理论证明了无限时滞的分数阶随机反应扩散方程温和解的存在唯一性及其关于初值的连续依赖性,得到了具有有

非线性泛函——Brouwer度的应用

Brouwer度的性质及的应用 拓扑度理论是由L.E.J.Brouwer在1912年创立的。L.E.J.Brouwer所创立的拓扑度是针对有限维空间中的连续映射,现在称之为Brouwer度。组合拓扑学的奠基Brouwer于二十世界初提出的一个重要概念,Brouwer 通过引入一个复形到另一个复形的映射类和映射的度[1](即现在的Brouwer度)这些概念,能够第一次处理所谓一流形上的向量场的奇点,同时利用组合的办法,还得到了注明的Brouwer不动点定理。这些定理有深刻的几何意义,又在分析学中有着重要的应用,尤其是在处理非线性算子方面,拓扑度理论是研究非线性算子定性理论的有力工具[2],利用它可以推导出许多著名的不动点定理。后来,经过许多作者的努力,将其整个理论建立在不同的基础上,现在较为普遍也较为容易接受的方法是以分析为基础来建立的,它的推到步骤是先对简单的映射和区域定义度数,然后用简单的映射逼近一般映射,用简单的区域逼近一般的区域。随着非线性泛函分析理论体系的形成,到1934年,J.Leray和J.Schauder将Brouwer度的工作推广到Banach空间中的全连续场,从而使拓扑度理论在偏微分方程的研究中发挥了重要的作用。Leray和Schauder关于全连续场的拓扑度成为Leray-Schauder度,继Leray-Schauder的工作之后,拓扑度在理论和应用两个方面都得到了长足的发展。人们应用拓扑度理论得到了局部分定理,大范围分歧定理,以及各种不动点理论。 拓扑度在理论上的发展主要是针对不同的映射类建立拓扑度,概括起来大致有两种情况:一种是保持拓扑度的基本性质,只是讨论对象有了改变,第二种推广是度数以不在保持原有的某些性质,只保持拓扑度理论中的某些基本原则和结论。人们在实Banach空间上建立了非紧性测度,录用非紧性测度给出了一类比全连续场更广泛的映射---严格集压缩映射和凝聚映射,并建立了拓扑度。另外一方面,在实Banach空间上建立逼近格式,然后引入A-Proper映射的概念,对A-proper映射建立广义拓扑度概念, A-proper映射的拓扑度不再是整数,而是一个整数集合,它只保持拓扑度理论的一些基本原则。利用A-Proper 映射的广义拓扑度又引入实可分Hilbert空间中的连续单调映射的拓扑度,极大单调映射与广义伪单调映射之和的拓扑度,并由此获得相应的满射性定理。

相关主题
文本预览
相关文档 最新文档