当前位置:文档之家› 02-OMC类故障分析与处理

02-OMC类故障分析与处理

02-OMC类故障分析与处理
02-OMC类故障分析与处理

M900/M1800 基站子系统故障处理手册目录

目录

第2章 OMC类故障分析与处理.............................................................................................2-1

2.1 概述...................................................................................................................................2-1

2.2 典型案例............................................................................................................................2-2

2.2.1 BAM与主机通信中断..............................................................................................2-2

2.2.2 BAM与Server通信中断.........................................................................................2-3

2.2.3 BAM启动时弹出对话框显示数据表错.....................................................................2-3

2.2.4 BAM加载失败.........................................................................................................2-4

2.2.5 数据无法修改、删除...............................................................................................2-4

2.2.6 数管台报告至少有一张表出错.................................................................................2-4

2.2.7 维护台接口跟踪通信超时........................................................................................2-5

2.2.8 告警台收不到告警信息...........................................................................................2-5

2.2.9 BAM上打印“Fail to shake hands with alarm server”信息..................................2-7

2.2.10 告警箱与故障告警库记录不一致...........................................................................2-8

2.2.11 告警台上删除告警记录时出现与BAM握手失败现象............................................2-8

2.2.12 服务器故障,无法进行注册..................................................................................2-9

2.2.13 运行业务台失败....................................................................................................2-9

2.2.14 无法加载Shell地图..............................................................................................2-9

2.2.15 话务统计台在执行模板刷新操作时,有些计算机始终无法完成..........................2-10

第2章 OMC类故障分析与处理

2.1 概述

GSM BSS-OMC系统可以分为如下几个部分:

1. 浏览器

浏览器用来浏览和查看OMC(Operation & Maintenance Center)网上配置

情况和各节点信息,对OMC全网监控。浏览器运行环境为WINDOWS 9x。

2. BAM

BAM是各个业务台对前台BSC的通信服务器。

3. 业务台

业务台是一些业务功能的分类集合。包括:维护系统台、话务统计台、数据

管理台、自动数据配置台、告警台、报表、基站维护台(远端和近端)。每

个业务台一般由WS(Work Station)端(人机界面)和BAM端组成,WS

端提供输入、操作界面,BAM端将WS端的操作转化为对前端主机的操作,

并将操作结果送达WS端。

4. OMC Server

(1) 存取OMC配置信息,为浏览器提供必要的配置数据。

(2) 存取HLR(Home Location Register)用户数据,数据库平台为Sybase。

(3) 存取话务统计数据。

(4) 存取告警数据。

OMC Server运行环境为Solaris2.6

BSS-OMC结构如图2-1所示。

图2-1OMC整体结构框图

其中,通过OMC Server的连接方式,是远端维护,而通过OMC Local WS

连接的方式是近端维护。

App1 Appn是业务台,包括维护系统台、话务统计台、数据管理台、自动数

据配置台、告警台、报表、基站维护台(远端和近端)。

2.2 典型案例

2.2.1 BAM与主机通信中断

1. 现象描述

BAM程序运行起来之后,与主机通信指示灯红色。

2. 原因分析

(1) 检查主机程序是否正常运行,可查看GMPU(Main Process Unit)(单

模块BSC)或GSNT(GSM Signaling Switching Network Board)、

GMCCM(多模块BSC)运行灯;

(2) 检查MCP(Multiple Communication-Protocol Processor)卡与主机连

线是否正确;

(3) 检查bam.ini中MAILBOX模块设置installed是否为1。

3. 处理过程

(1) 配置数据并加载,使主机运行正常;

(2) 更换MCP卡连线或改变MCP卡连线方式;

(3) bam.ini中[MAILBOX]模块的installed设置为1,并重新启动BAM。

2.2.2 BAM与Server通信中断

1. 现象描述

BAM程序运行起来之后,间隔显示Connecting to Switch或没有这种显示但

对应Omc Shell上图标总是叉。

2. 原因分析

(1) 检查机器TCP/IP协议是否安装正确,可采用Ping命令;

(2) 检查bam.ini中Network下Server IP(Internet Protocol)地址是否是

期望的服务器IP;

(3) 检查Server进程(多个)是否正常运行,可直接登录到服务器检查;

(4) 检查bam.ini中[Network]下installed是否为0 同时ClientInstalled是否

为1。

3. 处理过程

(1) 确保机器TCP/IP正常;

(2) 确保Omc Shell 与BAM所连接的服务器是同一服务器;

(3) 确保OMC Server中进程运行正常;

(4) 确保bam.ini中Network下Installed=0 且ClientInstalled=1并重新启动

BAM。

2.2.3 BAM启动时弹出对话框显示数据表错

1. 现象描述

BAM程序运行起来之后,弹出对话框显示存在一些数据表错或数据库引擎错。

2. 原因分析

(1) 重新启动计算机及BAM程序,查看是否现象依然存在;

(2) 检查提示出错的数据表,是否版本不符(升级时有误);

(3) 检查安装目录结构是否破坏,如IDAPI及IDAPI32目录是否被破坏即这

两个目录是否还存在以及里面的文件是否完整。

3. 处理过程

(1) 重新启动计算机并启动BAM程序;

(2) 删除提示出错的数据表(或重命名),重启BAM生成新表并重配数据;

(3) 重新安装同版本的OMC系统。

2.2.4 BAM加载失败

1. 现象描述

BAM加载不成功,主机无法运行。

2. 原因分析

(1) 首先检查BAM主窗口上是否提示有出错信息;

(2) 确认bam.ini中有关加载的段地址设置正确;

(3) 确认主机软件与物理单板配套。

3. 处理过程

(1) 根据出错信息确认dload目录下存在待加载文件,没有则拷贝一个正确

文件;

(2) 设置正确的段地址值并重启BAM;

(3) 使用正确版本(与单板配套)的主机软件并加载。

2.2.5 数据无法修改、删除

1. 现象描述

在配置数据时,发现有些模块的数据无法修改、删除。

2. 原因分析

(1) 由于非公共表数据操作在程序设计中与模块有关,因此先检查AM模块

描述表,发现其中没有对应的模块号;

(2) 由于在AM模块表中没有对应的模块号,所以业务台在作数据校验时认

为那些数据是非法的,不接受有关操作。

3. 处理过程

(1) 在AM模块描述表中增加以上不能操作的模块,重新转换所有数据;

(2) 重新启动BAM;

(3) 重启数管业务台,原不能操作的模块数据可以修改和删除。

2.2.6 数管台报告至少有一张表出错

1. 现象描述

转换全部表格数据后业务台报告至少有一张表出错。

2. 原因分析

在BAM窗口中详细列出了出错的表格和出错的原因。

3. 处理过程

根据BAM窗口中提供的信息修改相应的表格数据。

2.2.7 维护台接口跟踪通信超时

1. 现象描述

接口跟踪,出现通信超时对话框。

2. 原因分析

跟踪模块没有配置或者为非活动状态;所处节点的前后台连接中断。

3. 处理过程

(1) 首先查看模块的状态:单击“日常维护”,在弹出菜单中选择“模块状

态”;

(2) 查看OMC Shell,看所处的节点的工作状态,如果该节点的图标上有一

条红斜线,表示BAM与主机通信中断;如果该节点的图标上画上红叉,

表示BAM与OMC Server通信中断或BAM根本就没有运行。

2.2.8 告警台收不到告警信息

1. 现象描述

在告警台收不到前台已经送到BAM的告警信息;不能浏览到历史告警。

2. 原因分析

(1) 查看告警服务器进程是否正常,使用如下命令:

ps -ef|grep alarmbam,系统应该显示的进程数为2。

alarmbam进程应该为两个

(2) 数据库出现不正常现象,包括如下可能:

告警数据空间满;master或告警库日志空间满。

3. 处理过程

(1) 如果告警进程异常,则先停掉告警进程,用kill 进程号按顺序杀掉进程

newfhlrsvr,newcommdriver,alarmbam。再反向运行重新启动,方式为:

停止进程(以newfhlrsvr):

ps -ef|grep newfhlrsvr

屏幕显示为:

newomc 345 10 12月8日 0:0 newfhlrsvr

newomc 346 345 0 12月8日 10:35 newfhlrsvr

其中第一列newomc为用户名,第二列345,346为进程号,第三列1,345为父进程号。然后以kill命令停掉进程,具体如下:

kill 345 346

重启进程:

$ alarmbam

$newcommdriver

$ newfhlrsvr

(2) 检查OMC Server上SYBASE数据库是否已启动

(3) 如果告警库数据空间已满,将历史库数据备份后,清空,方式为:

备份历史库:

$ bcp warn..history out history.dat -Usa -P口令 -c

清空历史库:

$ isql -Usa

1> use warn

2> go

1> truncate table history

2> go

(4) 如果master或告警库warn日志空间已满,用dump tran 数据库名 with

no_log;若仍得不到空间,则看是否本应该建立在其它数据库上的表或存储过程建立在master数据库上,有则删除之。

(5) 把进程重新启动,仍不正常请参考打印Fail信息的的处理。

2.2.9 BAM上打印“Fail to shake hands with alarm server”信息

1. 现象描述

在BAM消息跟踪时,打印出红色字样的Fail to shake hands with alarm

server信息。

2. 原因分析

与OMC Server发握手消息帧失败,通常情况为与OMC Server连接中断或

告警服务器进程非正常启动。

3. 处理过程

(1) 查看网络情况

以ping命令看出错机器与OMC服务器之间通信状况。

(2) 查看进程数量

首先,查看alarmserver和newcommdriver进程是否都为两个,若不是则

(a). 登录sybase系统,用isql -Usa -Pserver1234

(b). 首先看告警库日志和数据空间是否写满

sp_helpdb warn

device_fragments size usage free bytes

------------------------------ ------------- -------------------- -----------

data_dev1 20.0 MB data only 20464

data_dev1 50.0 MB data only 46944

data_dev1 30.0 MB log only 30192

log_dev1 100.0 MB log only 102400

若usage中的data only总和为0或剩下不足1000,或log only总和为0或

剩下不足1000,则表示数据或日志空间不够。

若Warn库正常,可查看master表是否正常,方式同上。

(c). 若warn表和master表都正常,则进入OMC用户下log目录,以vi命

令查看alarm.log文件中Fail信息,或以如下命令进行错误信息统计:

grep Fail switch.log

然后根据具体出错信息进行具体解决。

其次,查看newcommdriver进程是否为两个,若不是则进入OMC用户下log

目录,以vi命令查看commdrv.log文件中Fail信息,或以如下命令进行错误

信息统计:

grep Fail commdrv.log

(3) 查看硬盘是否写满,以df -k命令看硬盘的各相关文件系统是否写满。

2.2.10 告警箱与故障告警库记录不一致

1. 现象描述

在告警箱中显示的告警跟从告警台查询出来的故障告警数量不一致。

2. 原因分析

通常情况下由于在数据库上手工作了某些操作,删除了告警故障表中的记录

所致,或BAM重启时清空告警库,而此时告警箱中仍有告警存在。

3. 处理过程

只有主机重启或主机故障消除,BAM重启才能保证告警箱和告警库中记录一

致。

2.2.11 告警台上删除告警记录时出现与BAM握手失败现象

1. 现象描述

查询历史表记录超过1万条,选择维护->清除历史告警->确定删除所有告警

历史表,等待3~4分钟左右,且在BAM端打印出Fail to shake hands with

alarm server信息。

2. 原因分析

服务器端程序通过单个进程单个dbproc访问数据库,当一次删十万条或很大

批量数据时,该事务处理时间比较长,而且所有的CPU都被占用直到该事务

完成为止,所以这时连发握手消息也不会处理。

3. 处理过程

建议每次不要删除大批量数据,分批对数据进行删除,现在已经提供新的版

本,通过子进程完成该删除操作,不影响握手与查询等消息处理。

2.2.12 服务器故障,无法进行注册

1. 现象描述

运行OMC Shell,出现主窗口后有对话框提示:“服务器故障,无法进行注

册”。

2. 原因分析

OMC Shell连上服务器后会上报安装时输入的产品序列号,服务器会查看

data目录下的License.dat文件对该序列号进行校验,出现此问题是由于服务

器缺少该文件或文件已被破坏,服务器无法进行校验返回失败信息。

3. 处理过程

登录到服务器,查看该文件是否存在或被破坏,如有必要则需重新拷贝该文

件(存在于安装盘中)。

2.2.13 运行业务台失败

1. 现象描述

运行业务台时对话框提示:“运行失败:创建进程失败,错误代码:XXXX”。

2. 原因分析

如果重复出现该问题通常是由于业务台程序文件有问题或已被破坏。

3. 处理过程

(1) 双击运行业务台的节点图标查看业务台程序版本号;

(2) 重新安装该版本出现问题的业务台程序。

2.2.14 无法加载Shell地图

1. 现象描述

运行OMC Shell时出现对话框提示:“无法载入地图”,然后程序退出。

2. 原因分析

原因是OMC Shell无法将地图文件载入,可能是文件不存在、格式不对或路

径不对。

3. 处理过程

(1) 打开C:\WINDOWS下的OMC.INI文件,在OPTION段中“MAP=”后

面列出了地图文件的路径及文件名;

(2) 如果地图文件不存在,则应添加地图文件;

(3) 如果路径或文件名不正确,则应修改OMC.INI文件;

(4) 地图文件后缀名必须为.BMP,否则应更换成BMP文件。

2.2.15 话务统计台在执行模板刷新操作时,有些计算机始终无法完成

1. 现象描述

有四台连在同一Server上的客户端,在执行模板刷新操作时,有两台机器始

终无法完成。

2. 原因分析

在无法执行模板刷新操作的这两台机器上,单纯执行FTP(File Transfer

Protocol)操作,发现一个20kByte的文件居然要传一小时,从而断定是网络

故障。

3. 处理过程

重新整理网线,使网络通畅,故障排除。

故障诊断技术发展现状

安全检测与故障诊断 题目:故障诊断技术发展现状 导师:秀琨 学生:典 学号:14114263

目录 1 引言 (3) 2 故障诊断的研究现状 (3) 1.1基于物理和化学分析的诊断方法 (3) 1.2基于信号处理的诊断方法对 (3) 1.3基于模型的诊断方法 (3) 1.4基于人工智能的诊断方法 (4) 2故障诊断研究存在的问题 (6) 2.1故障分辨率不高 (7) 2.2信息来源不充分 (7) 2.3自动获取知识能力差 (7) 2.4知识结合能力差 (7) 2.5对不确定知识的处理能力差 (7) 3发展方向 (8) 3.1多源信息的融合 (8) 3.2经验知识与原理知识紧密结合 (8) 3.3混合智能故障诊断技术研究 (9) 3.4基于物联网的远程协作诊断技术研究 (9) 4发展方向 (9)

1 引言 故障可以定义为系统至少有一个特性或参数偏离正常的围,难于完成系统预期功能的行为。故障诊断技术是一种通过监测设备的状态参数,发现设备的异常情况,分析设备的故障原因,并预测预报设备未来状态的技术,其宗旨是运用当代一切科技的新成就发现设备的隐患,以达到对设备事故防患于未然的目的,是控制领域的一个热点研究方向。它包括故障检测、故障分离和故障辨识。故障诊断能够定位故障并判断故障的类型及发生时刻,进一步分析后可确定故障的程度。故障检测与诊断技术涉及多个学科,包括信号处理、模式识别、人工智能、神经网络、计算机工程、现代控制理论和模糊数学等,并应用了多种新的理论和算法。 2 故障诊断的研究现状 1.1基于物理和化学分析的诊断方法 通过观察故障设备运行过程中的物理、化学状态来进行故障诊断,分析其声、光、气味及温度的变化,再与正常状态进行比较,凭借经验来判断设备是否故障。如对柴油机常见的诊断方法有油液分析法,运用铁谱、光谱等分析方法,分析油液中金属磨粒的大小、组成及含量来判断发动机磨损情况。对柴油机排出的尾气(包含有NOX,COX 等气体) 进行化学成分分析,即可判断出柴油机的工作状态。 1.2基于信号处理的诊断方法对 故障设备工作状态下的信号进行诊断,当超出一定的围即判断出现了故障。信号处理的对象主要包括时域、频域以及峰值等指标。运用相关分析、频域及小波分析等信号分析方法,提取方差、幅值和频率等特征值,从而检测出故障。如在发动机故障领域中常用的检测信号是振动信号和转速波动信号。如以现代检测技术、信号处理及模式识别为基础,在频域围,进行快速傅里叶变换分析等方法,描述故障特征的特征值,通过采集到的发动机振动信号,确定了试验测量位置,利用加速传感器、高速采集卡等采集了发动机的振动信号,并根据小波包技术,提取了发动机故障信号的特征值。该诊断方法的缺点在于只能对单个或者少数的振动部件进行分析和诊断。而发动机振动源很多,用这种方法有一定的局限性。 1.3基于模型的诊断方法 基于模型的诊断方法,是在建立诊断对象数学模型的基础上,根据模型获得的预测形态和所测量的形态之间的差异,计算出最小冲突集即为诊断系统的最小诊断。其中,最小诊断就是关于故障元件的假设,基于模型的诊断方法具有不依赖于被诊断系统的诊断实例和经验。将系统的模型和实际系统冗余运行,通过对比产生残差信号,可有效的剔除控制信号对

信号设备故障分析与处理

信号设备故障分析与处理 一、任务在安全的基础上提高运输效率。安全是铁路运输的生命线,是铁路管理水平、人员素质、设备质量、技术装备等的综合反映。作为铁路主要技术装备的铁路信号设备,在保证行车安全、提高运输效率、传递行车信息等方面起到了不可替代的作用。改革开放以来尤其是近几年,铁路部门在积极引进国外先进技术的同时,也自主研发了一大批新技术、新设备,铁路信号设备正在向数字化、网络化、综合化、智能化发展,促进了铁路的提速和扩能,推进了铁路的跨越式发展。 二、素质要求信号工作的好坏直接关系到人民生命财产的安全。信号设备一旦发生故障,将对铁路运输带来直接影响。因此,要处理好信号设备故障,必须要有高度的事业心、强烈的责任感和熟练的业务技能。当信号设备发生故障时,能应急处理,较快地判断出故障的大致范围,查找方法正确,处理方法得当,做到机智、沉着、果断、迅速、准确。要达到这些要求,必须刻苦钻研技术,熟悉设备性能、位置,熟悉电路,熟悉处理方法;必须有实事求是的科学态度。在处理信号设备故障时,既会有成功的经验,也会有失败的教训,

要学会及时总结正反两个方面的经验教训,逐步摸索和积累经验,找出规律,防止信号设备故障的重复发生。1.要熟悉管内设备的分布情况以及电源的配置,电缆走向、端子的使用规律等。2.要熟悉管内设备的原理、性能、规格及技术标准.3.要熟悉管内设备的电路图,跑通电路图、看懂配线图.4.要会正确使用各类工具仪表。5.要遵守处理故障时的有关规定,并按程序进行。6.要能熟练地运用各种查找故障的方法。 三、故障处理方法(一)信号设备故障的分类1、按故障的稳定性分(1)稳定型设备故障。设备故障发生后,设备故障状态下的电气特性保持稳定(电流、电压)。如轨道电路、道岔表示、信号机红灯点灯等。

配电设备故障分析与处理

1.低压框架断路器简介及故障排除 框架断路器适用于额定工作电压690V及以下,交流50Hz,额定工作电流6300A及以下的配电网络中,用来分配电能和保护线路及设备免受过载、短路、欠电压和接地故障等的危害,万能式断路器主要安装在低压配电柜中作主开关。额定工作电流1000A及以下的断路器,亦可在交流50Hz、400V网络中作为电动机的过载、短路、欠电压和接地故障保护,在正常条件下还可作为电动机的不频繁起动之用。 一.框架断路器的功能介绍 1.万能断路器保护模块有热-电磁和智能两种,我司常用智能断路器。 智能断路器的智能控制器分为以下三种:电子型、标准型、通讯型,其基本功能有过载长延时反时限保护;短路短延时反时限保护;短路短延时定时限保护;短路瞬时保护;接地故障保护功能;整定功能;过载报警功能;试验功能;电流显示功能;自诊断功能;热模拟功能;故障记忆功能;触头损耗指示;MCR功能;通讯型控制器通过RS485实现双向传输各功能 2.万能断路器有固定式和抽出式。 摇动抽屉座下部横梁上手柄,可实现断路器的三个工作位置(手柄旁有位置指示,国内的断路器指示是大概位置,国外的断路器指示都有位置联锁): 1)“连接”位置:主回路和二次回路均接通,此时隔离板开启; 2)“试验”位置:主回路断开。并由绝缘隔离板关闭隔开,仅二次回路接通。可进行必要的动作试验; 3)“分离”位置:主回路与二次回路全部断开,此时隔离板关闭。 抽屉式断路器具有可靠的机械联锁装置,只有在连接位置和试验位置时才能使断路器闭合。相同额定电流的抽屉式断路器(包括本体和抽屉座)具有互换性。 3.智能断路器的复位功能 当断路器发生保护动作后复位按钮会自动弹出来,此时断路器手动和电动都不能合闸,需把复位按钮按回去复位方可合闸。 二.框架断路器的常见故障 1.断路器不能合闸。可能原因如下: 1)没有操作电源或电源电压太低 2)断路器处在未储能状态 3)欠压脱扣器未接通额定电压或欠压脱扣器已烧坏 4)合闸线圈已烧坏导致电动不能合闸,但手动应可以合闸 5)抽屉式断路器所处位置不对,或不到位,断路器应在“试验”或“连接”位置方可合闸 6)断路器在“试验“位置能合闸而在“连接”位置不能合闸,因为是位置联锁有问题 7)合闸后又自动跳闸,这种故障有3类情况:1.欠压线圈未接通电源2.分闸线圈在合闸后接通电源3.过载和短路保护动作 8)保护动作后未复位 9)断路器之间有联锁 2.断路器不能电动分闸

发动机常见故障分析与处理

发动机常见故障分析与处理 一、故障分类:发动机控制电路故障,发动机自身故障,其它外部故障。排除故障思路:原则上先排除控制电路故障——再排除发动机自身故障——后排除其它外部故障。 二、常见故障现象及分析处理(以下疏理的是针对不同故障现象可能的原因,编者尽量按照排查故障的思路流程按照顺序罗列,考虑到不同检修人员的技术能力和对不同大机的熟悉程度等因素,仅为检修人员提供参考的流程): 1、启动困难或不能启动。(电气控制的原因见电气故障,这里不再叙述) 原因分析及处理:(前五项为操作人员自己可查,后面的需要经过发动机专业培训的人员进行检查) A、环境温度过低。处理:对燃油箱安装预热装置;更换燃油;检查预热火花塞状况。 B、电瓶无电或电瓶损坏。处理:给电瓶充电或更换新电瓶。 C、启动电机故障。原因:启动电机无动作,检查启动电机是否得电,如不得电,则检查或检查外部控制电路是否有电压进入,如得电,检查启动电机连线是否松动或锈蚀(电压标准:24V的电压测量应不低于22.18v)。启动电机仍然无动作,判断启动电机损坏。处理:启动电机一般损坏的原因可能是电磁阀损坏或电机碳刷磨损,修理或更换启动电机。现场临时应急处理启动电机损坏故障方法:手动拉起停机电磁阀开启;采用连接线或长螺丝刀连接启动电机的电磁离合器控制线桩头和电源线桩头2~3秒,带动发动机启动后立即断开(此方法操作不当对发动机有一定的伤害,为应急情况下使用)。 C、燃油不足导致无法吸上燃油或燃油质量及燃油供油管路问题。处理:⑴、检查油位并检查油箱排气孔是否堵塞造成吸油不到位。⑵、检查管路有否漏气情况。 ⑶、检查管路有无脏污。⑷、燃油滤芯的密封圈是否损伤,配合是否正确。⑸、燃油软管是否有损伤、老化和折叠现象。⑹、柴油管中空心螺丝的铜垫是否变形。 ⑺、柴油滤芯是否脏污。

故障诊断第二章习题

第二章第一节信号特征检测 一、填空题(10) 1.常用的滤波器有、低通、带通、四种。 2.加速度传感器,特别是压电式加速度传感器,在及的振动监测与诊断中应用十分广泛。 3.传感器是感受物体运动并将物体的运动转换成的一种灵敏的换能器件。 4.振动传感器主要有、速度传感器、三种。 5.把模拟信号变为数字信号,是由转换器完成的。它主要包括和两个环节。 6.采样定理的定义是:。采样时,如果不满足采样定理的条件,会出现频率现象。 7.电气控制电路主要故障类型、、。 8.利用对故障进行诊断,是设备故障诊断方法中最有效、最常用的方法。 9.振动信号频率分析的数学基础是变换;在工程实践中,常运用快速傅里叶变换的原理制成,这是故障诊断的有力工具。 10.设备故障的评定标准常用的有3种判断标准,即、相对判断标准以及类比判断标准。可用制定相对判断标准。 二、选择题(10) 1.()在旋转机械及往复机械的振动监测与诊断中应用最广泛。 A位移探测器B速度传感器 C加速度计D计数器 2.当仅需要拾取低频信号时,采用()滤波器。

A高通B低通 C带通D带阻 3.()传感器,在旋转机械及往复机械的振动监测与诊断中应用十分广泛。 A压电式加速度B位移传感器C速度传感器 D 以上都不对 4.数据采集、谱分析、数据分析、动平衡等操作可用()实现。 A传感器B数据采集器C声级计D滤波器 5.()是数据采集器的重要观测组成部分。 A. 滤波器 B. 压电式传感器C数据采集器D数据分析仪 6.传感器是感受物体运动并将物体的运动转换成模拟()的一种灵敏的换能器件。 A力信号B声信号C光信号 D. 电信号 7.在对()进行电气故障诊断时,传感器应尽可能径向安装在电机的外壳上。 A单相感应电机B三相感应电机 C二相感应电机D四相感应电机 8.从理论上讲,转速升高1倍,则不平衡产生的振动幅值增大()倍。 A1 B2 C3 D4 9.频谱仪是运用()的原理制成的。 A绝对判断标准B阿基米德 C毕达哥拉斯D快速傅立叶变换

实验故障分析与处理

实验故障分析与处理 实验中常常会因为种种意想不到的原因而影响电路的正常工作,有可能会烧坏仪表和元器件。通过对电路故障的分析与处理,逐步提高分析问题与解决问题的能力。故障的分析需具备一定的理论知识和丰富的实践经验。 一、故障的类型与原因 实验故障根据其严重性一般可以分两大类:破坏性和非破坏性故障。破坏性故障可造成仪器设备、元器件等损坏,其现象常常是某些元器件过热并伴有刺鼻的异味、局部冒烟、发出吱吱的声音或炮竹似的爆炸声等。非破坏性故障的现象是电路中电压或电流的数值不正常或信号波形发生畸变等。如果不能及时发现并排除故障,将会影响实验的正常进行或造成损失。故障原因大致有以下几种: ⑴电路连接错误或操作者对实验供电系统设施不熟悉。 ⑵元器件参数或初始状态值选择不合适、元器件或仪器损坏、仪器仪表等实验装置与使用条件不符。 ⑶电源、实验电路、测试仪器仪表之间公共参考点连接错误或参考点位置选择不当。 ⑷导线内部断裂、电路连接点接触不良造成开路或导线裸露部分相碰造成短路。 ⑸布局不合理、测试条件错误、电路内部产生干扰或周围有强电设备,产生电磁干扰。 下面我们通过一个实例来分析问题。 在RLC串联谐振实验中,通常保持信号源输出电压一定,改变信号源的频率,用交流毫伏表或示波器监测电阻两端电压,通过监测发现,实验开始时电路中电流随频率升高而增加,后来电流迅速降至很低。这时,无论如何调节输出信号的频率范围或是改变其它元件的参数,均无法得到谐振现象,这说明 的谐振条件无法得到满足。分析其原因,由于电路中有电流存在,说明电路有可能短路而不是开路,用多用表检查电路中各元器件发现电容器被短路,根据现象判断电容器的短路是在实验过程中造成的。因为实验时信号源的输出电压取值偏高,而电路的品质因数Q很大,谐振时电容器上的电压可达到信号源电压的Q倍,超过了电容器的耐压值而被击穿。通过这个例子我们知道,实验前应对电路中的电压、电流的最大值有一个初步的估计,选用元器件时要考虑其额定值,确定测试条件时,应考虑到是否会引起不良的后果。 二、故障检测 故障检测的方法很多,一般按故障部位直接检测。当故障原因和部位不易确定时,可根据故障类型缩小范围并逐点检查,最后确定故障所在部位加以排除。在选择检测方法时,要视故障类型和电路结构确定。常用的故障检测的方法有以下两种: ⑴通电检测法。用多用表、电压表或示波器在接通电源情况下进行电压或电位的测量。当某两点应该有电压而多用表测出电压为零时说明发生了短路;当导线两端不应该有电压而用多用表测出了电压则说明导线开路。

信号分析与处理答案第二版完整版

信号分析与处理答案第 二版 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

第二章习题参考解答 求下列系统的阶跃响应和冲激响应。 (1) 解当激励为时,响应为,即: 由于方程简单,可利用迭代法求解: ,, …, 由此可归纳出的表达式: 利用阶跃响应和冲激响应的关系,可以求得阶跃响应: (2) 解 (a)求冲激响应 ,当时,。 特征方程,解得特征根为。所以: …(2.1.2.1) 通过原方程迭代知,,,代入式(2.1.2.1)中得:解得,代入式(2.1.2.1): …(2.1.2.2) 可验证满足式(2.1.2.2),所以: (b)求阶跃响应 通解为 特解形式为,,代入原方程有,即 完全解为 通过原方程迭代之,,由此可得 解得,。所以阶跃响应为: (3)

解 (4) 解 当t>0时,原方程变为:。 …(2.1.3.1) …(2.1.3.2) 将(2.1.3.1)、式代入原方程,比较两边的系数得: 阶跃响应: 求下列离散序列的卷积和。 (1) 解用表 格法求 解 (2) 解用表 格法求 解 (3) 和 如题图2.2.3所示 解用表 格法求 解

(4) 解 (5) 解 (6) 解参见右图。 当时: 当时: 当时: 当时: 当时: (7) , 解参见右图: 当时: 当时: 当时: 当时: 当时: (8) ,解参见右图

当时: 当时: 当时: 当时: (9) , 解 (10) , 解 或写作:

求下列连续信号的卷积。 (1) , 解参见右图: 当时: 当时: 当时: 当时: 当时: 当时: (2) 和如图2.3.2所示 解当时: 当时: 当时: 当时: 当时: (3) , 解 (4) , 解 (5) , 解参见右图。当时:当时: 当时:

轴承故障诊断中的信号处理技术研究与展望

!专题综述# 轴承故障诊断中的信号处理技术研究与展望 董建宁,申永军,杨绍普 (石家庄铁道学院机械工程分院,河北石家庄050043) 摘要:讨论了各种信号处理技术在滚动轴承故障诊断中的应用,如平稳信号处理技术、非平稳信号处理技术,非高斯和非白色噪声信号处理技术、非线性信号处理技术、奇异值分解技术以及各种智能诊断技术。详细比较了各种信号处理技术的特点、应用范围和研究进展,并指出了今后的若干研究方向,为轴承的故障诊断和在线监测提供了依据。 关键词:滚动轴承;故障诊断;信号处理 中图分类号:T H133.33;T N911.7文献标识码:B文章编号:1000-3762(2005)01-0043-05 Study and Prospect on S ignal Process Technique of Bearing Fault Diagnosis DONG Jian-ning,SHEN Yong-jun,YANG Shao-pu (Department of M echincal Eng ineering,Shijiazhuang Railway Inst itute,Shijiazhuang050043,China) Abstract:T he application of several signal process techniques are discussed in failur e diagnosis of the rolling bearing, such as steady signal,non-steady sig nal,non-g auss-s and non-w hite no ise signal,non-linear signal process tech-nique,oddity value decompositio n technique and so me kinds of intelligent diagnosis technique.T he characterist ics,ap-plied area and development trend of the signal process techniques ar e compared in detail.A nd t he study dir ections in t he futur e are pointed out. Key words:ro lling bearing;fault diagnosis;signal process 对重要轴承进行工况监视与故障诊断,不但可以防止机械工作精度下降,减少或杜绝事故发生,而且可以最大限度地发挥轴承的工作潜力,节约开支,在工程上具有重要意义。 本文以轴承系统为研究对象,重点介绍轴承的振动诊断技术中常见的信号处理方法。现代信号分析和处理的本质可以作一个/非0字高度概括:研究和分析非线性、非因果、非最小相位系统、非高斯、非平稳、非整数维信号和非白色的加性噪声[1]。其中非最小相位和非因果信号处理技术目前尚未在故障诊断中得到应用。现介绍其他信号处理技术在轴承故障诊断中的应用情况。 收稿日期:2004-03-12;修回日期:2004-04-22 基金项目:河北省科学技术研究与发展计划项目(01547019D) 作者简介:董建宁,(1977-),女,研究生,专业方向:滚动轴承的故障诊断技术研究。1平稳信号处理技术 111平稳信号的Fourier谱分析技术 目前振动信号分析工程上常用的信号处理方法是FFT频谱分析。在对轴承的故障诊断中,将振动信号进行频谱分析,查看谱图中有无明显的故障频率谱峰存在,从而可以判断轴承是否完好。这种方法具有很大的局限性,诊断出来的轴承一般都已有较严重的损害,并且对轴承早期故障的分析不够灵敏。 112平稳信号的时间序列分析 对于直接进行频谱分析比较困难的情况,如采集的信号序列较短,或者Fourier变换不能将相互靠近的两个频率分开,采用时间序列分析(也称参数模型的谱分析)是一种较好的方法。常用的时间序列模型有ARMA模型、AR模型以及MA 模型。关于各种模型的特点、算法以及适用领域 ISSN1000-3762 CN41-1148/T H 轴承 Bear ing 2005年第1期 2005,No.01 43-47

计算机系统故障分析报告与处理

课程设计报告书 设计名称:论计算机系统故障分析与处理 课程名称:计算机系统故障诊断与维护 学生姓名: 专业: 班别: 学号: 指导老师: 日期:2016 年 6 月 1 日

论计算机系统故障分析与处理 摘要:计算机发展迅速,越来越多的问题也随之而来,本文以计算机的浅层知识为框架,分析了计算机的常见故障,并介绍简单处理方法。对于计算机操作方面也做了相关的简单介绍,还有操作系统,安装软件等方面。本文对于各方面知识全部只是简单介绍,只是有一个快速了解的过程,如果要精通,还得自己下点真功夫。只有掌握硬件和软件的基本知识和技术,才能搞好计算机的维护和维修工作。 关键词:硬件、软件 一、计算机硬件组成 电脑分为台式机和笔记本,台式机由显示器,主机箱,键盘,鼠标,音箱等几部分组成。而主机箱又是由电源、主板、光驱、硬盘、软驱等组成。而主板又是由内存显卡、声卡、网卡、CPU组成。笔记本和台式机组成一样,只是笔记本是为了携带方便,把各个硬件排列的更为紧密,但整体上,相同配置的台式和笔记本,台式机的性能要优于笔记本。 下面对各硬件做简单介绍 1.显示器:电脑的主要输出设备,用电脑操作产生的文字图像等都是由显示器显示出来。 2.键盘:键盘是最常用也是最主要的输入设备,通过键盘,可以将英文字母、数字、标点符号等输入到计算机中,从而向计算机发出命令、输入数据等。 3.鼠标: 是计算机输入设备的简称,分有线和无线两种。也是计算机显示系统纵横坐标定位的指示器,因形似老鼠而得名“鼠标”(港台作滑鼠)。“鼠标”的标准称呼应该是“鼠标器”,英文名“Mous e”。鼠标的使用是为了使计算机的操作更加简便,来代替键盘那繁

变电站常见故障分析及处理方法

变电站常见故障分析及处理方法 变电所常见故障的分析及处理方法一、仪用互感器的故障处理当互感器及其二次回路存在故障时,表针指示将不准确,值班员容易发生误判断甚至误操作,因而要及时处理。 1、电压互感器的故障处理。电压互感器常见的故障现象如下:(1)一次侧或二次侧的保险连续熔断两次。(2)冒烟、发出焦臭味。(3)内部有放电声,引线与外壳之间有火花放电。(4)外壳严重漏油。发现以上现象时,应立即停用,并进行检查处理。 1、电压互感器一次侧或二次侧保险熔断的现象与处理。(1)当一次侧或二次侧保险熔断一相时,熔断相的接地指示灯熄灭,其他两相的指示灯略暗。此时,熔断相的接地电压为零,其他两相正常略低;电压回路断线信号动作;功率表、电度表读数不准确;用电压切换开关切换时,三相电压不平衡;拉地信号动作(电压互感器的开口三角形线圈有电压33v)。当电压互感器一交侧保险熔断时,一般作如下处理:拉开电压互感器的隔离开关,详细检查其外部有元故障现象,同时检查二次保险。若无故障征象,则换好保险后再投入。如合上隔离开关后保险又熔断,则应拉开隔离开关进行详细检查,并报告上级机关。若切除故障的电压互感器后,影响电压速断电流闭锁及过流,方向低电压等保护装置的运行时,应汇报高度,并根据继电保护运行规程的要求,将该保护装置退出运行,待电压互感器检修好后再投入运行。当电压互感器一次侧保险熔断两相时,需经过内部测量检查,确定设备正常后,方可换好保险将其投入。(2)当二次保险熔断一相时,熔断相的接地电压表指示为零,接地指示灯熄灭;其他两相电压表的数值不变,灯泡亮度不变,电压断线信号回路动作;功率表,电度表读数不准确电压切换开关切换时,三相电压不平衡。当发现二次保险熔断时,必须经检查处理好后才可投入。如有击穿保险装置,而B相保险恢复不上,则说明击穿保险已击穿,应进行处理。 2、电流互感器的故障处理。电流互感器常见的故障现象有:(1)有过热现象(2)内部发出臭味或冒烟(3)内部有放电现象,声音异常或引线与外壳间有火花放电现象(4)主绝缘发生击穿,并造成单相接地故障(5)一次或二次线圈的匝间或层间发生短路(6)充油式电流互感器漏油(7)二次回路发生断线故障当发现上述故障时,应汇报上级,并切断电源进行处理。当发现电流互感器的二次回路接头发热或断开,应设法拧紧或用安全工具在电流互感器附近的端子上将其短路;如不能处理,则应汇报上级将电流互感器停用后进行处理。二、直流系统接地故障处理直流回路发生接地时,首先要检查是哪一极接地,并分析接地的性质,判断其发生原因,一般可按下列步骤进行处理:首先停止直流回路上的工作,并对其进行检查,检查时,应避开用电高峰时间,并根据气候、现场工作的实际情况进行回路的分、合试验,一般分、合顺如下:事故照明、信号回路、充电回路、户外合闸回路、户内合闸回路、载波备用电源6-10KV的控制回路,35KV以上的主要控制回路、直流母线、蓄电池以上顺应根据具体情况灵活掌握,凡分、合时涉及到调度管辖范围内的设备时,应先取得调度的同意。确定了接地回路应在这一路再分别分、合保险或拆线,逐步缩小范围。有条件时,凡能将直流系统分割成两部分运行的应尽量分开。在寻找直流接地时,应尽量不要使设备脱离保护。为保证个人身和设备的安全,在寻找直流接地时,必须由两人进行,一人寻找,另一人监护和看信号。如果是220V直流电源,则用试电笔最易判断接地是否消除。否认是哪极接地,在拔下运行设备的直流保险时,应先正极、后负极,恢复时应相反,以免由于寄生回路的影响而造成误动作。三、避雷器的故障处理发现避雷器有下列征象时,

故障诊断及相关应用_信号处理大论文

故障诊断及相关应用 摘要 故障诊断技术是一门以数学、计算机、自动控制、信号处理、仿真技术、可靠性理论等有关学科为基础的多学科交叉的边缘学科。故障诊断技术发展至今,已提出了大量的方法,并发展成为一门独立的跨学科的综合信息处理技术,是目前热点研究领域之一。我国的一些知名学者也在这方面取得了可喜的成果。 关键字:故障诊断,信息处理 1故障诊断技术的原理及基本方法 按照国际故障诊断权威,德国的Frank P M教授的观点,所有的故障诊断方法可以划分为3种:基于解析模型的方法、基于信号处理的方法和基于知识的方法。 1.1基于解析模型的故障诊断方法 基于解析模型的方法是发展最早、研究最系统的一种故障诊断方法。所谓基于解析模型的方法,是在明确了诊断对象数学模型的基础上,按一定的数学方法对被测信息进行诊断处理。其优点是对未知故障有固有的敏感性;缺点是通常难以获得系统模型,且由于建模误差、扰动及噪声的存在,使得鲁棒性问题日益突出。 基于解析模型的方法可以进一步分为参数估计方法、状态估计方法和等价空间方法。这3种方法虽然是独立发展起来的,但它们之间存在一定的联系。现已证明:基于观测器的状态估计方法与等价空间方法是等价的。相比之下,参数估计方法比状态估计方法更适合于非线性系统,因为非线性系统状态观测器的设计有很大困难,通常,等价空间方法仅适用于线性系统。 1.1.1参数估计方法 1984年,Iserman对于参数估计的故障诊断方法作了完整的描述。这种故障诊断方法的思路是:由机理分析确定系统的模型参数和物理元器件参数之间的关系方程,由实时辨识求得系统的实际模型参数,进而由关系方程求解实际的物理元器件参数,将其与标称值比较,从而得知系统是否有故障与故障的程度。但有时关系方程并不是双射的,这时,通过模型参数并不能求得物理参数,这是该方法最大的缺点。目前,非线性系统故障诊断技术的参数估计方法主要有强跟踪滤波方法。在实际应用中,经常将参数估计方法与其他的

信号设备故障处理

信号设备故障处理 一、故障分类 1、按故障数量分类:单一故障和叠加故障。 ①、单一故障:同一性质的电路中只存在一个故障,此类故障现象较为明显,在日常工作中经常发生,故障现象比较容易分析。 ②、叠加故障:同一性质的电路中存在一个以上的故障,此类故障在设备使用中较为少见,在施工及新开通的设备中较为多见。此类故障较复杂,体现出的现象也各不相同,分析起来较复杂。 2、按故障现象分类:非潜伏性故障和潜伏性故障 ①、非潜伏性故障:通过信号设备的自检能力,在发生故障之后能以一定的形式表现出来,比如道岔不动、无表示、轨道电路红灯等。 ②、潜伏性故障:只有在使用该部分电路或器材时,才能发现的故障,不能直接通过自检体现出来,比如方向电路的辅助办理、反向发车表示器断丝,此类故障危害较大。 二、故障处理原则 1、信号设备发生故障时应积极组织修复,有以下三种情况: ①、遇一般故障尚未影响设备使用时,信号维修人员应

在联系登记后会同车站值班员进行试验,判明情况,查找修复。调度集中区段要转为非常站控。 ②、如在试验中发现严重缺陷,危及行车安全一时无法排除,应通知车站值班员(应急值守员),并登记停用。 ③、遇已影响设备使用的故障,信号维修人员应首先登记停用设备,然后积极查找原因、排除故障、尽快回复使用。如不能判明原因。应立即上报,听从上级指示处理(上报现象、处理情况)。 2、当发生与信号设备有关联的机车车辆脱轨、冲突、颠覆等重大事故时,信号维修人员应会同值班站长记录设备状态,派人监视保护事故现场,但不得擅自触动设备,并立即报告电务段,以免影响事故的调查和分析。 3.、发生影响行车的设备故障时,信号维修人员应将接发列车进路的排列情况、调车作业情况、控制台显示情况、列车运行时分、设备位臵状态及故障处理情况作详细记录作为原始记录备查。 三、故障处理程序 信号故障处理程序具体分七个步骤。 1、准备工具仪表,了解情况。当故障发生后,首先要了解故障发生的大概情况,问明是否影响行车,当已影响行车时,通知车务人员采取应急措施如改变进路、引导接车等,并及时向分公司值班室汇报简要情况。准备好必要的工具、

基于噪声分析的机械故障诊断方法研究

基于噪声分析的机械故障诊断方法研究 摘要 基于噪声分析的机械故障诊断方法可以非接触地获得机械信号,适用于众多不便于使用振动传感器的场合,如某些高温、高腐蚀环境,是一种常用而有效地故障诊断方法。但在实际应用中,由于不相干噪声和环境噪声的影响,我们需要的待测信号往往被淹没在这些混合噪声中,信号的信噪比较低。 盲源分离作为数字信号处理领域的新兴技术,能利用观测信号恢复或提取独立的各个机械信号,在通讯、雷达信号处理、图像处理等众多领域具有重要的实用价值及发展前景,已经成为神经网络学界和信号处理学界的热点研究课题之一。 本文分析总结了盲源分离技术的相关研究现状,对盲源分离的原理、算法、相关应用作了探讨和研究。并就汽轮机噪声问题运用了盲源分离技术进行机械故障诊断,试验表明,该方法能将我们需要的故障信号从混合信号中分离出来,成功实现汽轮机部件的故障诊断。 关键词:声信号,机械故障诊断,独立分量分析 Investigation of Mechanical Fault Diagnosis Based on Noise Analysis Abstract You can obtain a non-contact method of mechanical fault diagnosis based on noise analysis of mechanical signals , not suitable for many occasions to facilitate the use of vibration sensors , such as certain high temperature , highly corrosive environment , is a common and effective fault diagnosis method . However, in practice , the effects of noise and extraneous ambient noise , the signal under test often need to be submerged in the mixed noise , lower signal to noise ratio . Blind source separation as an emerging field of digital signal processing technology to take advantage of the observed signal recovery or extraction of various mechanical signals independently in many communications, radar signal processing , image processing has important practical value and development prospects , has become a neural network one of the hot research topic in academic circles and signal processing . In this paper summarizes the research status of blind source separation techniques , the principles of blind source separation algorithms, related applications and research were discussed . Turbine noise problems and to use the blind source separation techniques for mechanical fault diagnosis, tests showed that the method we need fault signal can be separated from the mixed signal , fault diagnosis of steam turbine components successfully . Key Words:Mechanical Fault Diagnosis,Independent Component Analysis

(设备管理)信号设备故障分析与处理教案

信号设备故障分析与处理教案 安全是铁路运输的生命线是铁路管理水平人员素质、设备质量、技术装备的综合反映。随着我国铁路现代化的发展、列车运行速度、行车密度、行车牵引重量等都在不断提高,行车安全的重要性也就更加突出。所以认真贯彻安全笫一、预防为主的方针,提高从业人员的素质、保证运输生产的安全显的尤其重要。 笫一章:故障分类 一、按故障性质分类:信号事故和信号障碍 信号事故:凡因亏违反规章制度、劳动纪律、技术设备不良及其他原因在行车中造成人员伤亡、设备损坏、经济损失、影响正常行车或危及行车安全的均构成信号事故。 信号障碍:信号设备发生故障但未构成行车事故的称为信号障碍。信号障碍又分为信号责任障碍和信号非责任障碍。 信号责任障碍:信号设备谁修不良造成设备故障,影响正常使用时,构成信号责任障碍。信号非责任障碍:指无法防止的雷害及自然灾害,及无法检查发发现的电务器才材质不良造成设备故障,影响使用时构成信号非责任障碍, 二、按故障原因分类:材质、维修、其它。 1、材质不良,包括元器件变质和制造工艺缺陷 元器件变质:信号电气元件使用一段时间后,可能发

生质变、特性变化,包括电机拉力下降、二极管击穿、表示杆断裂等。 工艺缺陷:制造工艺落后、材料不当、出厂把关不严造成故障,包括点灯单元不良、灯泡断丝、付丝不通、接收器不良。 2、维修不良:包括技术业务差和责任心不强 技术业务差:缺乏专业技能,对设备状态性能的检修标准不清楚,测试方法不正确,道岔标调不会,轨道电压调整不会,相位调整不会等等。 责任心不强:巡检走过场,值表漏项,简化作业程序,本身懂业务但就是不按标准执行,造成信号故障。 3、其他:自然灾害、外部门 自然灾害:雷害、雨雪、等阻线被盗 外部门:断轨、工务螺丝断,但需要注意工电结合部故障不属于其他,而是列入维修不良。 三、按故障特征分类:机械故障和电气故障 机械故障:机械设备的材质发生变化、固定螺丝松动,如道岔机械卡阻、道岔不解锁、不落锁、表示杆缺口变化、工电结合部捣固不良、杆件不方等引发的故障。 电气故障:各种配线不良及电子器材性能不良引发故障。 四、按故障数量分类:单一故障和叠加故障

变压器故障分析与处理_0

变压器故障分析与处理 变压器有着调节电压的功能,可以为电力用户提供不同的电压服务。为了保证电力用户电力使用的稳定性,更好地满足电力用户不同的电压使用需要,就必须做好变压器运行的维护工作,尽可能减少变压器运行过程发生故障的频率,提高变压器工作的稳定性和长期性,更好地保障电力系统运行的稳定性与安全性。 标签:变压器;运行维护;故障分析 1变压器运行维护的重要性 变压器是电网传输过程中重要的组成部分,变压器可以调节电压的升高或降低,为电力用户提供安全、稳定的电力服务,既满足了电力用户不同的电压使用要求,又可以防止电压过高或过低给电力用户的电器以及设备造成损害,避免给用户带来经济财产上的损失。 因此,变压器的维护工作非常重要,只有运用科学合理的维护方法,及时、有效地解决变压器工作中出现的问题,保证变压器可以持续、稳定的工作,才能保障电力系统运行的安全和稳定,才能为电力用户提供更好、更优质的电力服务。 2变压器运行维护的要点 2.1安装和运行 变压器的安装和设计标准必须相适应,户外运行的变压器要确保其不受雷击和外部损坏的相关危险,保证符合在变压器设计所允许的安全范围之中;油冷变压器则需要密切监视其顶层油温,运行操作中工作人员必须严格遵循相关规程执行,避免有误操作的情况发生;此外,在变压器的运行期间,必须要依照变压器解、并列的三要素进行,以免出现操作导致过电压现象。 2.2对油的检验 变压器油位异常,变压器在运行期间油温正常且油位下降,可能是油位显示有误差,造成该种现象的原因多是因为呼吸器堵塞所致;若油位过低则多是因为变压器漏油,或者在上次检修完毕后未添加补充。大中型变压器的油样需要定期进行击穿实验、油中故障气体分析等。使用变压器油中故障气体在线监测设备,持续测定变压器的故障发展导致溶解于油中其他的含量。定期进行油性能试验,以保证其绝缘性能。 2.3检查变压器油温是否超标 环境温度、负荷大小等都会导致运行中的变压器油温出现异常;此外,散热器通风不良,冷却器异常等也会导致油温变化。

常见故障分析与处理汇总

柴油机常见故障分析与处理 1.预防故障的发生和防止事故的进一步扩大。 2.进行正确的应急故障处理,减少机破和临修事故。 一、甩车的有关问题 (一)甩车目的 (1)检查柴油机是否有异音; (2)检查各缸燃烧室内是否有积存的油和水。 (二)甩车步骤 (三)甩车时,有水从示功阀排出 1.故障后果: (1)造成机油乳化。 (2)水量达到一定程度时,造成“水锤”,导致有关部件破损。 2.原因分析与判断处理: (1)甩车时多个气缸存在该现象。 ①机车停放在露天,遇大雨,雨水从排气系统进入燃烧室;此种情况甩完车后可正常起机投入运用。 ②甩车后起机,如水箱水位有下降趋势且排烟为白色,可能是中冷器水管裂漏,此时应打开机体进气稳压箱排污阀进一步确认(有水流出)。如要暂时运用,必须开着该阀。(2)甩车时个别气缸存在该现象,且起机后水箱水位出现不正常的升高,(称虚水位),一般为气缸盖火力面裂漏或气缸套穴蚀穿透。采用逐缸停缸法进一步确认。如要暂时运用,应使该缸喷油泵供油齿条维持在停油位。 (四)甩车时,机油从示功阀排出 1.故障后果: (1)机油消耗量增大。 (2)机油参与燃烧,造成有关零部件气门、喷油器等表面积碳、磨损增大等,引起柴油机排温高,排气总管发红,增压器喘振,柴油机经济性能下降。 (3)机油量达到一定程度时,造成“油锤”。 2.原因分析与判断处理: (1)甩车时多个气缸存在该现象。 ①增压器油腔内机油漏入压气机腔,随进气系统到燃烧室内。 a.进入增压器油腔的机油压力超高; b.增压器转子轴损坏油封; c.增压器回油道不通畅。 进一步确认:增压器压气机出口法兰面有漏油现象或打开增压器蜗壳下面的螺堵有淌机油现象。 ②机体主油道与进气稳压箱之间隔板漏焊、开焊。 上述①②情况时,如需暂时运用,必须开着进气稳压箱排污阀。 ③活塞刮油环装反。 (2)甩车时个别气缸存在该现象。 ①气缸盖顶部机油漏入燃烧室。 a.喷油器体与气缸盖座孔间密封不良,机油经相应座孔间漏入,橡胶密封圈和紫铜密封垫

语音信号分析与处理系统设计

语音信号分析与处理系统设计

语音信号分析与处理系统设计 摘要 语音信号处理是研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴的学科,是目前发展最为迅速的信息科学研究领域的核心技术之一。通过语音传递信息是人类最重要、最有效、最常用和最方便的交换信息形式。 Matlab语言是一种数据分析和处理功能十分强大的计算机应用软件,它可以将声音文件变换为离散的数据文件,然后利用其强大的矩阵运算能力处理数据,如数字滤波、傅里叶变换、时域和频域分析、声音回放以及各种图的呈现等,它的信号处理与分析工具箱为语音信号分析提供了十分丰富的功能函数,利用这些功能函数可以快捷而又方便地完成语音信号的处理和分析以及信号的可视化,使人机交互更加便捷。信号处理是Matlab重要应用的领域之一。 本设计针对现在大部分语音处理软件内容繁多、操作不便等问题,采用MATLAB7.0综合运用GUI界面设计、各种函数调用等来实现语音信号的变频、变幅、傅里叶变换及滤波,程序界面简练,操作简便,具有一定的实际应用意义。 最后,本文对语音信号处理的进一步发展方向提出了自己的看法。 关键字:Matlab;语音信号;傅里叶变换;信号处理;

目录 1 绪论 (1) 1.1课题背景及意义 (1) 1.2国内外研究现状 (1) 1. 3本课题的研究内容和方法 (2) 1.3.1 研究内容 (2) 1.3.2 运行环境 (2) 1.3.3 开发环境 (2) 2 语音信号处理的总体方案 (3) 2.1 系统基本概述 (3) 2.2 系统基本要求 (3) 2.3 系统框架及实现 (3) 2.4系统初步流程图 (4) 3 语音信号处理基本知识 (6) 3.1语音的录入与打开 (6) 3.2采样位数和采样频率 (6) 3.3时域信号的FFT分析 (6) 3.4数字滤波器设计原理 (7) 3.5倒谱的概念 (7) 4 语音信号处理实例分析 (8) 4.1图形用户界面设计 (8) 4.2信号的采集 (8) 4.3语音信号的处理设计 (8) 4.3.1 语音信号的提取 (8) 4.3.2 语音信号的调整 (10)

LKJ常见故障分析及处理论文

L K J2000型监控装置(硬件) 简单故障判断及处理方法 L K J2000型监控装置(硬件)简单故障判断及处理方法 系统简介

1.防止列车线路超速。 2.防止列车冒进关闭的进站信号机。 3.防止列车冒进关闭的出站信号机。 4.防止列车溜逸。 5.防止列车以高于规定的限制速度调车作业。 6.按列车运行揭示要求控制列车不超过临时限速。车载部分系统构成 主机箱之插件 主机箱之插件 主机箱之插件 数字量输入/出插件 显示器 速度传感器 速度传感器 系统构成(地面部分)

2000型测试台 2000型转储器 地面开发系统 地面处理系统 微机网络 打印机 地面处理系统结构框图 1.采用32位微处理器技术 主处理器采用M C68332芯片32位数据处理能力 16M寻址范围 高处理速度 高速输入/出接口 故障检测功能 双套插件

双套C A N总线 双套V M E总线 模块级冗余 主备机故障自动切换 数据记录的同步性 车载数据与地面信息结合 LKJ2000型监控装置主机对核心部件都有自检功能,其上电自检后,对每个插件的核心部件都会自检。通过观察面板指示灯的查询屏幕显示器设备状态的方法,可以很好的判断部分故障部位。利用这一功能,对简单判断、查找故障源头十分有用。但是判断的前提条件是必须确保监控主机程序正常运行。另外,装置部分插件采用表面贴技术,人工焊接需要技术娴熟的专业人员方可进行。 一、监控记录插件

部分故障现象及处理方法:

二、地面信息处理插件 地面信息处理插件面板指示灯的含义1A、1B、2A、2B、8B是通用的,其含义不随信号制式变化。其他几个灯随信号制式的不同,运行程序的变化而表示不同的含义。 三、通信插件 自检完毕以后,面板指示灯含义如下表所示:

相关主题
文本预览
相关文档 最新文档