当前位置:文档之家› 04-第4讲数列极限收敛准则

04-第4讲数列极限收敛准则

第二章数列的极限与常数项级数的含义。

和极限。正确理解》语言描述数列的会用《了解数列极限的概念, N N εε-念和性质。

量的概收敛准则。熟悉无穷小熟悉数列极限的性质和。极限或简单的极限证明限运算法则计算数列的以及极式”法、“夹逼定理”能熟练运用“放大不等性质。

件以及收敛级数的基本必要条性质。掌握级数收敛的理解常数项级数概念和别法。

收敛判判别法。掌握交错级数熟悉常数项级数的收敛-级数的敛散性。

数、熟悉等比级数、调和级P 本章学习要求:

第二章数列的极限与常数项级数

第二节数列极限收敛准则

第三节数列极限的运算

一、数列极限收敛准则

二、无穷小量与无穷大量

请点击

三、极限的运算

四、施笃兹定理及其应用

一、数列极限收敛准则

1.单调收敛准则

2.数列极限的夹逼定理

请点击

3. 柯西收敛准则

1.单调收敛准则

单调增加有上界的数列必有极限.

单调减少有下界的数列必有极限.

通常说成:单调有界的数列必有极限.

. 11 收敛证明数列????????

? ??+n n 由中学的牛顿二项式展开公式 +?--+?-+?+=??

? ??+=321! 3)2)(1(1! 2)1(1! 1111n n n n n n n n n n x n n n n

n n n n n 1! ))1(()1(?---+ +??? ??-??? ??-+??? ??-++=n n n 2111! 3111 2111! , 112111! 1??? ??--??? ??-??? ??-+n n n n n 例1证

类似地, 有

1

1111++??? ??++=n n n x 111121111! 1??

? ??+--??? ??+-??? ??+-+n n n n n 11121111! )1(1??

? ??+-??? ??+-??? ??+-++n n n n n +??

? ??+-??? ??+-+??? ??+-++=121111! 31111 2111n n n !

除前面的展开式可以看出与比较 , 1+n n x x 并且的对应项的每一项都小于两项外 , ,1+n n x x 因此

一项还多了最后的大于零的 , 1+n x 1

+

}{ 是单调增加的即n x +??? ??-??? ??-+??? ??-++=n n n x n 2111! 3111 2111! , 112111! 1??? ??--??? ??-??? ??-+n n n n n 11121111! )1(1??

? ??+-??? ??+-??? ??+-++n n n n n 111121111! 1??? ??+--??? ??+-??? ??+-+n n n n n +??

? ??+-??? ??+-+??? ??+-++=+121111! 31111 21111n n n x n !

+??? ??-??? ??-+??? ??-++=n n n x n 2111! 3111 2111! 112111! 1??

? ??--??? ??-??? ??-+n n n n n 又!

1! 31! 2111n +++++< 1221212111-+++++

1121111<-=--+=-n n 等比数列求和

放大不等式 . }{ 有界从而n x 每个括号小于1 .

综上所述, 数列{x n }是单调增加且有上界的, 由极限存在准则可知, 该数列的极限存在, 通常将它纪为e , 即

. 11lim e n n

n =??

? ??++∞→e 称为欧拉常数.

590457182818284.2=e .ln : , , x y e =记为称为自然对数为底的对数以

!

! 1! 31! 21 ! 111 n n n e e ?++++++=θ 的计算公式为

. 10 ,<<θ其中点击此处可了解欧拉

2.数列极限的夹逼定理

设数列{ x n }, { y n }, { z n } 满足下列关系:(2),

lim lim a z y n n n n ==+∞

→+∞

→则a

x n n =+∞

→lim (1) y n ≤x n ≤z n , n ∈Z +(或从某一项开始) ;想想:如何证明夹逼定理?

.12111

lim 222??

????+++++++∞→n n n n n 求1

12

11

1

2

2

2

2

2

+<

++

+++

+<

+n n n

n n n n

n n , 1lim

2

=++∞

→n

n n n 而1

1

lim

2

=++∞

→n n n 由于

112111 lim 222=??

????+++++++∞→n n n n n 故想得通吧?

例2

. ,! lim +

+∞→∈Z n n

n n n 求

,1

1 321! 0 n n n n n n n n n

n n ≤?-????=< 由于 1. 1,,3,2均小于n

n n n - ,00lim ,01

lim ==+∞→+∞→n n n 而

.0! lim =+∞→n n n

n 故例3

.)321(lim ,13lim

1n

n n

n n

n ++=+∞

→+∞

→求已知

132313)321(11

n

n

n n

n n

?

??

???+??? ??+??? ??=++ , 3132311 <+??? ??+??? ??

n 而

, 33)321(3 11n

n

n n

?<++<故

, 3)33(lim 1=?+∞

→n

n 又

. 3)321(lim , 1=+++∞

→n

n n

n 得由夹逼定理夹逼定理

例4

.111lim 2n

n n n ??

? ??+++∞→求

, 1 时当>n 1

112n

n ++

,11111111 2n

n n n n n n ??? ??-+

n n

n =??? ??-+=??? ??++∞→+∞→而

. 111lim 2e n n n =??

? ??+++∞→故夹逼定理

请自己做!

<+n 11 ,111)1(111-+=-+

+

有界数列的重要性质

由任何有界数列必能选出收敛的子数列..

: }{ b x a x n n ≤≤有界设数列

]. ,[ , }{ , ] ,[ 11b a x b a n 记为的无穷多项含有数列间则其中至少有一个小区二等分将区间

]. ,[ , ] ,[ 2211b a b a 多项的新的小区间无穷又可得到一个含有数列二等分再将 ., , 含前一个小区间内且每一个小区间都被包区间无穷多项的小可得到无穷多个含数列如此下去定理

[]a

b 1

a 1

b 2a 2

b [

[3a ]3

b

n a n

b ]

,[],[],[],[],[112211b a b a b a b a b a n n n n ??????--

[]左端点构成单调增加的数列右端点构成单调减少的数列

,, ] ,[ n k n n x b a 记为中任取数列的一个元素在区间

,},{ 且它是原数列的子数列则得到一个数列n k x .lim :c x n

k n =+∞→由夹逼定理 ).( 2 ] ,[ +∈-Z n a b b a n n n n 的区间长度为个小区间第

:存在故由单调收敛准则可知c b a n n n n ==+∞

→+∞→lim lim ,02

lim )(lim =-=-+∞→+∞→n n n n n a b a b 即有n

k n b x a n ≤≤

. }{ 收敛即子数列n k x

上面所用到的方法归结起来称为“区间套定理”.

: , ]},{[ 它们满足是数轴上的一串闭区间设k k b a (区间套定理)

定理 ; ], ,[],[ )1(11+

++∈?Z k b a b a k k k k 0, ||lim )2(=-+∞

→k k k a b

) . ],[ || , ( 的长度为区间其中k k k k b a a b -

, ], ,[ 且则存在唯一的实数+∈∈Z k b a c k k .lim lim c b a k k k k ==+∞

→+∞→

3. 柯西收敛准则

??=+∞→ ) }{ ( lim 收敛即数列n n n x a x . || , , ,0 ,0εε<->>?>?n m x x N n m N 时当满足此条件的数列, 称为“柯西列”. 柯西准则可写为:

. }{ }{ 为柯西列收敛数列n n x x ??点击此处可了解柯西

数学分析Cauchy收敛准则及迭代数列极限

第七章实数的完备性 §1.Cauchy 收敛准则及迭代数列极限 一引言 问题 极限{}n x 收敛、发散是什么意思?答如果存在数a ,使得lim n n x a →∞=,则称数列{}n x 收敛;反之称为发散。 问题上述关于数列“收敛性”的定义有何缺陷? 答涉及数a ,这在理论上不够完美。 问题 能否不涉及数a ,仅根据{}n x 本身的特性判断{}n x 的收敛性?答可以,如前面已学过的“单调有界定理”,“两边夹法则”,“Stolz 定理”等。 问题 上述方法只是数列{}n x 收敛的“充分条件”,有无“充要条件”?答有,Cauchy 收敛准则――它是具有重要原则意义的敛散性充要判别法则,它揭示了实数的完备性。 二、基本数列(引进此概念仅为叙述方便) 不严格的讲,如果lim n n x a →∞ =?n 充分大时,n x a ≈?当n ,m 充分大时,0n m x x a a -≈-=,即从第m 个起,数列{}n x 的任意两项差别可以任意小。严格的讲,有以下定义: 定义1对每个ε>0,都能找到一个自然数N ,对一切n ,m ≥N ,成立不等式n m x x ε-<,则称{}n x 为 (cauchy )基本数列,记作,lim ()0n m n m x x →∞-=。 简写:{}n x 是收敛数列?,lim ()0n m n m x x →∞ -=?0,,,N n m N ε?>??≥,n m x x ε-<。例1若{}n x 收敛,则{}n x 必是基本数列例2{}(1)n -不是基本数列例31n n +?????? 是基本数列。三、Cauchy 收敛准则 {}n x 收敛?{}n x 是基本数列 四、实数系的完备性 实数所组成的基本数列{}n x 比存在实数极限――实数系完备性;有理数域不具有完备性,如1(1)n n ??+??? ?:1lim(1)n n e n →∞+=(无理数)。五、函数极限的Cauchy 收敛准则 设f 在点a 某个去心邻域有定义,则极限lim ()x a f x →存在且为有限?lim[()()]0x a x a f x f x '→''→'''-=0ε??>,

章第二节数列的极限2

数学教学多媒体课件

◆一类数列的变化特征◆数列极限的定义 ◆几个基本数列的极限◆问题讨论 ◆数列极限概念的小结

通过图像观察数列的特性 数列的图像(点击按钮调用图像)

通过图表定量观察(1)数列: 0.9,0.99,0.999,0.9999,0.99999,0.999999,...........项号项|a n-1| 10.9|0.9-1|=0.1 20.99|0.99-1|=0.01 30.999|0.999-1|=0.001 40.9999|0.9999-1|=0.0001 50.99999|0.99999-1|=0.00001 60.999999|0.999999-1|=0.000001 70.9999999|0.9999999-1|=0.0000001 .................... 对ε=0.001与ε =0.000001,则n>3与n>6后满足|a -A|< ε n

项号项|a n -1|11/2|(1/2)-1|=0.521/4|(1/4)-1|=0.2531/8|(1/8)-1|=0.12541/16|(1/16)-1|=0.062551/32|(1/32)-1|=0.0312561/64|(1/64)-1|=0.01562571/128|(1/128)-1|=0.0078125...... ...... ........ 通过图表定量观察(2) 数列: 1/2,1/4,1/8,1/16,1/32,1/64,1/128,........... 对ε=0.1与ε =0.01,则n>3与n>6后满足|a n -A|< ε

数列极限四则运算法则的证明

数列极限四则运算法则的证明 设limAn=A,limBn=B,则有 法则1:lim(A n+B n)=A+B 法则2:lim(An-Bn)=A-B 法则3:lim(An ? Bn)=AB 法则4:lim(An/Bn)=A/B. 法则5:lim(An的k次方)=A的k次方(k是正整数) (n T+R的符号就先省略了,反正都知道怎么回事.) 首先必须知道极限的定义: 如果数列{Xn}和常数A有以下关系:对于?£> 0(不论它多么小),总存在正数N,使得对于满足n > N的一切Xn,不等式|Xn-A| v &都成立, 则称常数A是数列{Xn}的极限,记作limXn=A. 根据这个定义,首先容易证明:引理1: limC=C.(即常数列的极限等于其本身) 法则1的证明: ?/ limAn=A,二对任意正数 &存在正整数N?,使n > N?时恒有|An-A| v&①(极限定义)同理对同一正数&存在正整数N?,使n>N?时恒有|Bn-B| v 设N=max{N ?,N?},由上可知当n > N时①②两式全都成立. 此时|(An+Bn)-(A+B)|=|An-A)+(Bn-B)| < |An-A|+|Bn-B| v & + & =2 &. 由于&是任意正数,所以2&也是任意正数. 即:对任意正数2 &存在正整数N,使n > N时恒有|(An+Bn)-(A+B)| v 2 &. 由极限定义可知,lim(An+Bn)=A+B. 即:对任意正数C&存在正整数N,使n > N时恒有|C ? An-CA|v C&. 由极限定义可知,lim(C ? An)=C?A若C=0的话更好证) 法则2的证明: lim(A n-B n) =limA n+lim(-B n)(法则1) =limAn+(-1)limBn (引理2) =A-B. 为了证明法则3,再证明1个引理. 引理3:若limAn=0,limBn=0,则lim(An ? Bn)=0. 证明:?/ limAn=0,二对任意正数 &存在正整数N?,使n>N?时恒有|An-0| v &③(极限定义)同理对同一

柯西收敛准则的3种不同证法

柯西收敛准则的不同证法方法一:用定理2证明柯西收敛准则 证明:必要性:易知,当{ a n }有极限时(设极限为a),{ a n }一定是一个柯 西数列。因为对任意的ε>0,总存在N(N为正整数)。使得当n ,m>N时,有| a n -a|< ε, | a m -a|<ε ∴| a n - a m |≤| a n -a|+| a m -a|<ε,即{ a n }是一个柯西数列。 充分性:先证明柯西数列{ a n }是有界的。不妨取ε=1,因{ a n }是柯西数 列,所以存在某个正整数N 0,当n > N 时有| a n –a No+1 |<1,亦即当n ,N> N 时| a n |≤| a No+1 |+1即{ a n }有界。不妨设{ a n }?[a ,b],即a≤a n≤b,我们 可用如下方法取得{ a n }的一个单调子列{ a nk }: (1)取{ a nk }?{ a n }使[a,a nk ]或[a nk,b]中含有无穷多的{ a n }的项; (2)在[a,a nk ]或[a nk ,b]中取得a nk+1∈ { a n }且满足条件(1)并使nk+1>nk; (3)取项时方向一致,即要么由a→b要么由b→a。 由数列{ a n }的性质可知以下三点可以做到,这样取出一个数列{ a nk }?{ a n} 且{ a nk }是一个单调有界数列,必有极限设为a,下面我们证明{ a n }收敛于a。 因为lim n→∞a nk =a,则对ε>0,正整数K,当k >K时| a nk -a|< 2 ε 。另一方面由于 { a nk }是柯西数列,所以存在正整数N,使得当n ,m>N时有| a n – a m |< 2 ε , 取n 0=max(k+1,N+1),有n 0≥n N+1>N以及 > k+1 >k。所以当n >N时| a n-a|≤| a n – a m |+| a m -a|<ε。 ∴{ a n }收敛于a。 方法二:用定理3证明柯西收敛准证 证明:必要性显然。下证充分性。 设{x n }是柯西数列,即对任意的ε>0,存在N >0,使得当n , m > N时, 有| x n – x m | <ε (1) 令y n =sup{ x n+p | p =1,2,…} z n =inf { x n+p | p =1,2,…} 显然,y n 是单调递减数列,z n 是单调递增数列。取M =max{ x 1 ,x 2 ,…,

数学基础训练45 数列的极限及四则运算

数学基础训练45 数列的极限及四则运算 ●训练指要 数列极限的定义与运算法则,若|a |<1,则∞→n lim a n =0. 一、选择题 1.已知等比数列{a n }的前三项分别为a , 31,21++a a ,其中a ∈R ,则∞→n lim (a 1+a 2+…+a n )等于 A.9 B.6 C.2 9 D.3 2.在数列{a n }中,有∞→n lim [(2n -1)a n ]=1,∞→n lim a n 存在,则∞ →n lim (na n )的值为 A.0 B.21 C.1 D.-1 3.已知{a n }是等比数列,如果a 1+a 2=12,a 2+a 3=-6,S n =a 1+a 2+…+a n ,那么∞ →n lim S n 的值等于 A.8 B.16 C.32 D.48 二、填空题 4.设无穷等比数列{a n }的a 1=2,S =3,则公比q =_________. 5.已知∞ →n lim (2n -342+-kn n )=1,则k 的值为_________. 三、解答题 6.求下列数列的极限: (1))21(lim 32 3232n n n n n +++∞→Λ; (2)302050)3()1(1lim --+∞→n n n n 7.求下列数列的极限. (1))1(lim n n n n -+∞→; (2)n n n n n b a b a -+++∞→1 1lim (|a |≠|b |). 8.正数数列{a n }中,a 1=2,lg a n =lg a n -1+lg t (t 为常数,且t >0). (1)求{a n }的通项公式; (2)求11lim n -+∞→n n a a . 数学基础训练45答案 一、1.A 2.B 3.B

数列极限的运算法则

数列极限的运算法则 (上海教育出版社高中课本数学高二第一学期第二课时) 一.教学目标: 掌握数列极限的运算法则,并会利用这些法则求简单的数列的极限。 二.教学重点:运用数列极限的运算法则求极限 教学难点:无限个数列极限的运算 教学过程: 1. 引入: 今天的主角是古希腊著名的数学家、物理学家阿基米德。他提出了三次方程的几何解法,发现了以他的名字命名的螺线,他曾求出许多图形的面积和体积,极限的思想能够帮助我们解决很多几何图形面积体积的问题,今天我们也来做一次数学家,研究重现一下他这一贡献的过程。我们来看这个例子,要计算由抛物线2y x =、x 轴以及直线x=1所围成的区域的面积S ,这是一个曲边三角形,不能用三角形的面积公式来计算,阿基米德是如何计算的呢首先把区间[0,1]分为两部分,那么作出的这一个矩形的面积必然小于曲边三角形面积,之后我们再尝试继续一分为二,那么作出这三个矩形,其面积比我们刚才计算的要大,但仍小于曲边三角形的面积,继续采取这种方法,增大区间段,不妨设把区间[0,1]分成n 个小区间,即用x 轴上的分点0,1231,,,.....,,n n n n n n - 分隔;那么在每个小区间上作一个小矩形,使矩形的左上端点在抛物线上,这些矩形的高对应就是 222212310,(),(),(),.....,()n n n n n -,我们来考虑这些矩形面积的总和: 2222222332 1112111123...(1)(1)(21)(1)(21)0()()....()66n n n n n n n n S n n n n n n n n n n -++++-----=?+?+?+?===我们不妨考察n S 与S 之间有何关系,我们尝试使n 越来越大,也就使分的每段区间越来越小,那么矩形可以要多窄有多窄,我们是不是就可以把n S 近似看作S 了呢,n 无限增大,矩形面积的和就可以无限逼近曲边三角形的面积~这就是一种极限的思想,当n 无限增大时,矩形面积的总和n S 可以近似等于曲边三角形的面积,它们之间的差极其小。那么这个极限我们上节课已经学过了,结果是多少哇(1/3)非常好,这是大学中非常重要的一种积分的思想,我们看到了极限的重要性,那么大家更要认真学习,积极理解。那么我们就来回顾一下上节课介绍的常见的三种数列极限。(提问)不错,功课做的很足~我们上节课呢,介绍的f(n)/g(n)模型是常考点,但除此之外还有很多复杂的数列,他们的极限比较复杂,那么应该如何求呢我们学过实数的四则运算,今天我们就来探讨一下数列极限的四则运算性质: 揭示主题:数列极限的四则运算性质。 2. 概念详细讲解:

柯西收敛准则

第十讲、柯西收敛准则 定理10.1 . (柯西收敛准则)数列{x n}极限存在的充要条件是:对于 ?>存在正数N , 使当n >N 时, 对于一切p∈+有| | εx x ε0 +?< n p n 注记10.1. (I)柯西准则的意义是:数列{x n}是否有极限可以根据其一 般项的特性得出,而不必事先知晓其极限的具体值(见下面的例子10.2)。(II)定理10.1 的逆否命题为: (柯西收敛准则)数列{x n}极限不存在的充要条件是: ?ε0 > 0,使得对 ?∈, 均存在n >N 时, 存在p∈,使得 N | | + +?≥ + x x ε n p n 0 例子10.1 设x n sin 2n =,试用柯西收敛准则证明该数列极限存在。 n 证明:注意到 sin 2(n p) sin 2n sin 2(n p) sin 2n ++ |x x |= ??≤ + n+p n ++ n p n n p n 1 1 2 ≤+≤ n p n n +

2 ∈有于是,对?ε> 0,取正数ε, 则当n >N 时, 对于一切p N= + 2 sin 2n n p n n +?≤<。故由定理10.1 柯西收敛准则可知 ε n n 证毕。 例子10.2.设x n 1 1 1 =++++,证明数列{ } 1 x 收敛。 2 3 n 2 2 2 n 证明:注意到

1 1 1 |x x |= n p n +?+++ +++ 2 2 2 (n 1) (n 2) (n p) 1 1 1 ≤+++ n(n 1) (n 1)(n 2) (n p 1)(n p) ++++?+ 1 1 1 1 1 1 =?+++?++++??+ n n 1 n 1 n 2 n p 1 n p 1 1 1 =?< n n p n + 1 于是,对?ε> 0,取正数ε, 则当n >N 时, 对于一切p N= 1 |x x | n p n +?≤<ε。故由定理10.1 柯西收敛准则可知 n ++++ 1 1 1 存在。 lim 1 n→∞n 2 3 2 2 2 ∈有 +

考研数学数列极限内容概括及考点总结

考研数学数列极限内容概括及考点总结 来源:文都教育 数列极限的概念和判断极限存在的夹逼准则和单调有界准则也是考研数学的重要考点,下面文都考研数学教研室老师为大家总结了数列极限部分的知识和考点题型,希望对同学们有帮助。 一、数列极限 1. 数列极限的定义 设{}n a 为一数列,若存在常数A ,对任意的0>ε,总存在0>N ,当N n >时,有ε<-||A a n ,称A 为数列{}n a 的极限,或称数列 {}n a 收敛于A ,记为A a n n =∞ →lim 。 2. 收敛数列的性质 (1)收敛数列极限存在且唯一. (2)收敛数列必为有界数列. (3)收敛数列的保号性. 3. 极限存在准则 (1)夹逼准则 如果数列{}{}{},,n n n a b c 满足下列条件: 从某项起,即0n N ?∈,当0n n >时有,n n n c b a ≤≤,且A c a n n n n ==∞ →∞ →lim lim , 则A b n n =∞ →lim 。 (2)单调有界准则 单调增加(或单调减少)且有上界(或有下界)的数列{}n x 必有极限。 【注】此准则只给出了极限的存在性,并未给出极限是多少。此时一般是在判定了“极限存在”以后通过数列的递推表示,在等式两边取极限得到。 4. 重要结论

(1)若lim lim n n n n a a a a →∞ →∞ =?=. (2)lim 0lim 0 n n n n a a →∞ →∞ =?=. (3)221lim lim ,lim n n n n n n a a a a a a -→∞ →∞ →∞ =?==. 【考点一】数列极限的概念与性质 例1设 ().lim 0,n n n n n x a y y x a →∞ ≤≤-=且为常数,则数列 {}n x 和{}n y ( ) 。 (A )都收敛于a (B )都收敛,但不一定收敛于a (C )可能收敛,也可能发散 (D )都发散 例2设 (){}{} .lim 0,,n n n n n n n n x a y y x x y →∞ ≤≤-=且和 {}n a 均为数列,则lim n n a →∞ ( )。 (A )存在且等于0 (B )存在但不一定等于0 (C )一定不存在 (D )不一定存在 【考点二】(1)单调有界数列必有极限. (2)单调递增且有上界的数列必有极限,单调递增且无上界的数列的极限为+∞. (3)单调递减且有下界的数列必有极限,单调递减且无下界的数列的极限为-∞. 例1 设()()1103,31,2, n n n x x x x n +<<=-=,证明:数列{}n x 极限存在,并求此极限 例2 设 ()2 0110,20,1,2, n n n x x x x n +-<<=+=,证明:数列{}n x 极限存在,并求此极限 【考点三】夹逼准则 【思路提示】在使用夹逼准则时,需要对通项进行“缩小”和“放大”,要注意:“缩小”应该是尽可能的大,而“放大”应该是尽可能的小,在这种情况下,如果仍然“夹不住”那么就说明夹逼准则不适用,改方法。 【考点四】数列连加和的极限 例1. 求极限 111 lim 1111212n n →∞ ? ?+++ ?++++ +??

数列求和及极限

数列求和及极限 【知识及方法归纳】 1、 数列求和主要有以下几种常见方法:(1)公式法;(2)通项转移法;(3)倒序相加法; (4)裂项相消法;(5)错项消法;(6)猜想、证明(数学归纳法)。 2、 能运用数列极限的四则运算法则求数列的极限;求无穷等比数列各项的和。 【学法指导】 1、 在公式法求和中,除等差、等比的求和公式外,还应掌握自然数方幂数列的求和公式,如:+++…+= 6 ) 12)(1(++n n n ;2、对于形式比较复杂而又不能直接用公式求和的数列,可通 过对数列通项结构特点的分析研究,将2其分解为若干个易求和的新数列的和、差;3、将一个数列倒过来排列,当它与原数列相加时,若有公因式可提,并且剩余的项易求和,这样的数列常用倒序相加,如课本中等差数列的求和公式就是用这种办法得到;4、利用裂项变换改写数列的通项公式,通过消去中间项达到求和的目的;5、若通项是由一个等差数列与一个等比数列相乘而得的数列,其求和的方法类似于推导等比数列前n 项和公式的方法,通过乘于等比数列的公比,在错位相减,转化为等比数列的求和问题;6、通过对、、…进行归纳,分析,寻求规律,猜想出,然后再用数学归纳法给予证明。 【典型例题】 例1 求和:+++…+2)12(-n 【分析】这是一个通项为2)12(-n 的数列求前 n 项和,对通项公式展开可得:=1442++n n , 所以对原数列求和分解为3个新数列求和,可用方法2求和。 【简解】+++…+2)12(-n =(114142+?-?)+(124242+?-?)+…+(1442+-n n )=4(+++… +)–4·(1+2+3+…+n )+n =4。 3) 12)(12(2)1(46)12)(1(+-= ++?-++n n n n n n n n n 。 例2 求和:12510257541+++…+1 523-- n n 【分析】这是一个通项为1 5 23--n n 的数列求前n 项和,观察通项,不难发现它是一个等差数列与一个等比数列的积,可用方法5求和。 【简解】设=12510257541+++…+1523-- n n ,则n S 51=25451++…+n n n n 5235531-+--,所以n S )511(-=1+2 5353++…+ n n n 523531 ---=1++++251511(53 (2) 51 -+n ) –n n 523-=1+5 1 1)51(1531 --?-n –n n 523-=n n 5471247?+-,所以=151********-?+-n n 。

数学分析-数列极限

第二章 数列极限 §1 数列极限概念 教学目的与要求: 使同学们理解数列极限存在的定义,数列发散的定义,某一实数不是数列极限的定义;掌握用数列极限定义证明数列收敛发散的方法。 教学重点,难点: 数列极限存在和数列发散定义的理解;切实掌握数列收敛发散的定义,利用数列收敛或发散的定义证明数列的收敛或发散性。 教学内容: 一、课题引入 1°预备知识:数列的定义、记法、通项、项数等有关概念。 2°实例:战国时代哲学家庄周著《庄子·天下篇》引用一句话“一尺之棰, 日取其半,万古不竭。”将其“数学化”即得,每天截后剩余部分长度为(单位尺) 21,221,321,……,n 21 ,…… 或简记作数列:? ?????n 21 分析:1°、? ?? ???n 21随n 增大而减小,且无限接近于常数0; 2 二、数列极限定义 1°将上述实例一般化可得:

对数列{}n a ,若存在某常数a ,当n 无限增大时,a n 能无限接近常数a ,则称 该数为收敛数列,a 为它的极限。 例如:? ?? ???n 1, a=0; ??? ? ??-+n n )1(3, a=3; {}2 n , a 不存在,数列不收敛; {}n )1(-, a 不存在,数列不收敛; 2°将“n 无限增大时”,数学“符号化”为:“存在N ,当n >N 时” 将“a n 无限接近a ”例如对? ?? ? ??-+n n )1(()3以3为极限,对ε= 10 1 3)1(3--+ =-n a a n n =10 11π n 只需取N=10,即可 3°“抽象化”得“数列极限”的定义 定义:设{}n a 是一个数列,a 是一个确定的常数,若对任给的正数ε,总存在 某一自然数N ,使得当n >N 时,都有 a a n -<ε 则称数列{}n a 收敛于a ,a 为它的极限。记作 a a n n =∞ →lim {(或a n →a,(n →∞)) 说明 (1)若数列{}n a 没有极限,则称该数列为发散数列。 (2)数列极限定义的“符号化”记法:a a n n =∞ →lim ? ε ?>0,?N ,当n (3)上述定义中ε的双重性:ε>0是任意..

数学分析9数列极限存在的条件

§3 数列极限存在的条件 教学目的:使学生掌握判断数列极限存在的常用工具。 教学要求:(1)掌握并会证明单调有界定理,并会运用它求某些收敛数列的极限;(2)初步理解Cauchy 准则在极限理论中的主要意义,并逐步会应用Cauchy 准则判断某些数列的敛散性。 教学重点:单调有界定理、Cauchy 收敛准则及其应用。 教学难点:相关定理的应用。 教学方法:讲练结合。 教学程序: 引言 在研究比较复杂的极限问题时,通常分两步来解决:先判断该数列是否有极限(极限的存在性问题);若有极限,再考虑如何计算些极限(极限值的计算问题)。这是极限理论的两基本问题。在实际应用中,解决了数列{}n a 极限的存在性问题之后,即使极限值的计算较为困难,但由于当n 充分大时,n a 能充分接近其极限a ,故可用n a 作为a 的近似值。 本节将重点讨论极限的存在性问题。 为了确定某个数列是否有极限,当然不可能将每一个实数依定义一一加以验证,根本的办法是直接从数列本身的特征来作出判断。 从收敛数列的有界性可知:若{}n a 收敛,则{}n a 为有界数列;但反之不一定对,即{}n a 有界不足以保证{}n a 收敛。例如{} (1)n -。但直观看来,若{}n a 有界,又{}n a 随n 的增大(减少)而增大(减少),它就有可能与其上界(或下界)非常接近,从而有可能存在极限(或收敛)。 为了说明这一点,先给出具有上述特征的数列一个名称——单调数列。 一、 单调数列 定义 若数列{}n a 的各项满足不等式11()n n n a a a a ++≤≥,则称{}n a 为递增(递减)数列。递增和递减数列统称为单调数列. 例如:1n ??????为递减数列;{} 2n 为递增数列;(1)n n ??-????不是单调数列。 二、 单调有界定理 〔问题〕 (1)单调数列一定收敛吗?;(2)收敛数列一定单调吗? 一个数列{}n a ,如果仅是单调的或有界的,不足以保证其收敛,但若既单调又有界,就可以了。此即下面的极限存在的判断方法。 定理(单调有界定理) 在实数系中,有界且单调数列必有极限。 三、 应用

数列极限四则运算法则的证明

数列极限四则运算法则 的证明 https://www.doczj.com/doc/7f8436679.html,work Information Technology Company.2020YEAR

数列极限四则运算法则的证明 设limAn=A,limBn=B,则有 法则1:lim(An+Bn)=A+B 法则2:lim(An-Bn)=A-B 法则3:lim(An·Bn)=AB 法则4:lim(An/Bn)=A/B. 法则5:lim(An的k次方)=A的k次方(k是正整数) (n→+∞的符号就先省略了,反正都知道怎么回事.) 首先必须知道极限的定义: 如果数列{Xn}和常数A有以下关系:对于ε>0(不论它多么小),总存在正数N,使 得对于满足n>N的一切Xn,不等式|Xn-A|<ε都成立, 则称常数A是数列{Xn}的极限,记作limXn=A. 根据这个定义,首先容易证明: 引理1: limC=C. (即常数列的极限等于其本身) 法则1的证明: ∵limAn=A, ∴对任意正数ε,存在正整数N?,使n>N?时恒有|An-A|<ε.①(极限定义) 同理对同一正数ε,存在正整数N?,使n>N?时恒有|Bn-B|<ε.② 设N=max{N?,N?},由上可知当n>N时①②两式全都成立. 此时|(An+Bn)-(A+B)|=|An-A)+(Bn-B)|≤|An-A|+|Bn-B|<ε+ε=2ε. 由于ε是任意正数,所以2ε也是任意正数. 即:对任意正数2ε,存在正整数N,使n>N时恒有|(An+Bn)-(A+B)|<2ε. 由极限定义可知,lim(An+Bn)=A+B. 为了证明法则2,先证明1个引理. 引理2:若limAn=A,则lim(C·An)=C·A.(C是常数) 证明:∵limAn=A, ∴对任意正数ε,存在正整数N,使n>N时恒有|An-A|<ε.①(极限定义) ①式两端同乘|C|,得: |C·An-CA|<Cε. 由于ε是任意正数,所以Cε也是任意正数. 即:对任意正数Cε,存在正整数N,使n>N时恒有|C·An-CA|<Cε. 由极限定义可知,lim(C·An)=C·A. (若C=0的话更好证) 法则2的证明: lim(An-Bn) =limAn+lim(-Bn) (法则1) =limAn+(-1)limBn (引理2) =A-B. 为了证明法则3,再证明1个引理.

高三数学试题数列的极限

数列的极限 1.数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n }的项a n 无限地趋近于某个常数a (即|a n -a |无限地接近于0),那么就说数列{a n }以a 为极限. 注:a 不一定是{a n }中的项. 2.几个常用的极限:①∞ →n lim C =C (C 为常数);②∞ →n lim n 1 =0;③∞→n lim q n =0 (|q |<1). 3.数列极限的四则运算法则:设数列{a n }、{b n }, 当∞ →n lim a n =a , ∞ →n lim b n =b 时,∞ →n lim (a n ±b n )=a ±b ; ∞ →n lim (a n ·b n )=a ·b ; ∞ →n lim n n b a =b a ( b ≠0). ●点击双基 1.下列极限正确的个数是 ①∞ →n lim α n 1=0(α>0) ②∞ →n lim q n =0 ③∞ →n lim n n n n 3 232+-=-1 ④∞ →n lim C =C (C 为常数) A.2 B.3 C.4 D.都不正确 解析:①③④正确. 答案:B 2. ∞ →n lim [n (1-3 1)(1-4 1)(1-51) (1) 2 1 +n )]等于 A.0 B.1 C.2 D.3 解析: ∞ →n lim [n (1-3 1)(1-4 1)(1-5 1) (1) 2 1 +n )]

=∞ →n lim [n ×32×43×54×…×2 1++n n ] =∞ →n lim 2 2+n n =2. 答案:C ●典例剖析 【例1】 求下列极限: (1)∞ →n lim 7 5722 2+++n n n ;(2) ∞ →n lim ( n n +2-n ); (3)∞ →n lim ( 2 2n + 2 4n +…+2 2n n ). 剖析:(1)因为分子分母都无极限,故不能直接运用商的极限运算法则,可通过变形分子分母同除以n 2后再求极限;(2)因 n n +2与 n 都没有极限,可先分子有理化再求极限;(3)因为极限的运算法则只适用于有限个数列,需先求和再求极限. 解:(1)∞ →n lim 7 57 222 +++n n n =∞→n lim 2 2757 12n n n +++ =5 2. (2)∞ →n lim ( n n +2-n )= ∞ →n lim n n n n ++2=∞ →n lim 1111++ n =2 1. (3)原式=∞ →n lim 2 2642n n ++++Λ=∞ →n lim 2 )1(n n n +=∞→n lim (1+n 1 )=1. 评述:对于(1)要避免下面两种错误:①原式=) 75(lim ) 72(lim 22+++∞ →∞ →n n n n n =∞ ∞=1, ②∵∞ →n lim (2n 2+n +7), ∞ →n lim (5n 2+7)不存在,∴原式无极限.对于(2) 要避免出现下面两种错误: ①∞ →n lim ( n n +2-n )= ∞ →n lim n n +2-∞ →n lim n =∞-∞=0;②原式=∞ →n lim n n +2-∞ →n lim n =∞-∞不存在.

3 函数极限存在的条件

§3 函数极限存在的条件 与讨论数列极限存在的条件一样,我们将从函数值的变化趋势来判断其极限的存在性。下面的定理只 对这种类型的函数极限进行论述,但其结论对其它类型的函数极限也是成立的。下述归结原则有 时成为海涅(Heine)定理。 定理3.8(归结原则)设在内有定义。存在的充要条件是:对任何含于 且以为极限的数列,极限都存在且相等。 证 [必要性] 设,则对任给的,存在正数,使得当时, 有。 另一方面,设数列且,则对上述的,存在 ,使得当时, 有,从而有。这就证明了。 (充分性) 设对任何数列且,有,则可用反证法推出

事实上,倘若当时不以为极限,则存在某,对任何(不论多么小),总存在 一点,尽管,但有。现依次取,, ,…,,…,则存在 相应的点,,,…,…,使得,而,。 显然数列且,但当时不趋于 。这与假设相矛盾,所以必 有。 注1 归结原则也可简述为: 对任何()有。 注2若可找到一个以为极限的数列,使不存在,或找到两个都以为极限的数列 注3与,使与都存在而不相等, 则不存在。

例1 证明极限不存在。 证设,(),则显然有 ,() ,()。 故有归结原则即得结论。 函数的图象如图3-4所示。由图象可见,当时,其函数值无限地在-1与1的范围内振 荡,而不趋于任何确定的数。 归结原则的意义在于把函数极限归结为数列极限来处理。从而,我们能应用归结原则和数列极限的有 关性质来证明上一节中所述的函数极限的所有性质。 对于,,和这四种类型的单侧极限,相应的归结原则可表示为更强的

形式,现以这种类型为例阐述如下: 定理3.9设函数在点的某空心右邻域有定义。的充要条件是:对任何以 为极限的递减数列,有。 这个定理的证明可仿照定理3.8进行,但在运用反证法证明充分性时,对 的取法要作适当的修改, 以保证所找到的数列能递减地趋于。证明的细节留给读者作为练习。 相应于数列极限的单调有界定理,关于上述四类单侧极限也有相应的定理。现以这种类型为例叙述如下: 定理3.10设是定义在上的单调有界函数,则右极限存在。 证不妨设在上递增。因在上有界,由确界原理, 存在,记为。 下证。 事实上,任给,按下确界定义,存在,使得。 取,则由 的递增性,对一切=,有 另一方面,由,更有。从而对一切有

考研数列极限计算汇总

数列极限及其计算(习题部分) 数列极限存在性的证明以及数列极限的计算,是考研数学的重难点,有时会命制成压轴题。 在考研范围内,数列极限计算常用的方法主要有单调有界准则、夹逼准则、初等变形、定积分定义、归结原理、级数收敛的必要条件、转化为幂级数求和等。本章部分题目涉及到后续章节的知识(如利用定积分定义求极限),自学本讲义的同学可暂时跳过。 题型一、递推数列的极限 (一)单调有界准则 例题1收敛并求极限值 注:利用单调有界准则证明递推数列的收敛性,是常考题型。在具体证明单调性和有界性时,常用到一些经典的不等式放缩,如均值不等式,柯西不等式等等;有时也可用数学归纳法证明。(在进行含有自然数的命题的证明时,我们常常可以考虑数学归纳法,这是一个很好用也很流氓的一个方法。) 类题1 ,证明收敛并求极限值 类题2 ,证明收敛并求极限值 ,问此时是否收敛,该如何 证明?若将,又该如何证明? 类题3 ,证明收敛并求极限值 [注]:此题对于极限值的取舍才是关键点,这是很多辅导书都没有讲清楚的地方,希望大家好好思考。 类题4 设数列,证明收敛并求极限 类题5设可导,且,对于数列收敛, 且极限值满足方程 类题6 收敛并求极限值 类题7 (2018年数学二压轴题)设,证明收敛并求极限 注:这题是我当年考研时的原题,当时考完以后,很多人就在吹这个题多么的不常规,是考研史上最难的数列极限题。也正常,弱者总喜欢找各种理由。 例题2设收敛 注:①.该题说明,某些不是递推型的数列,也可以用单调有界准则来证明 ②.是一个非常重要的极限,我们将这个极限值定义为欧拉常数, 和是等价无穷

是发散的。() 例题3问数列的单调性和函数的单调性之间有无必然联系?请猜想并证明你的判断。 例题4 (2013年数学二压轴题)设函数 (1) 求的最小值 (2)设数列收敛并求极限 注:本题的解法值得借鉴。该题说明,即使某些数列的递推关系由不等式给出,也能使用单调有界准则。 类题1 收敛并求极限 类题2 ,证明收敛并求极限 (二)非单调的迭代数列 例题1收敛并求极限值 注:对付这种不单调的数列,我们可以采取“先斩后奏”的办法——即先把极限值找出来,然后再用递推放缩的方法,证明这个数字就是该数列的极限。以下还有几道类似的题—— 类题1 ,证明收敛并求极限值 类题2 收敛并求极限值 例题2 压缩映像原理 设当,满足——对于上任意两点和,都有 ,试证明—— (1) ,使得 (2) ,证明收敛,且 注:压缩映像原理根本就不要求数列是单调的——只要函数是一个压缩映射,那么就一定收 若题目还告知了可导,那么在具体使用压缩映像原理证明数列收敛时,更常用的是下面这个推论:推论成立,则一定收敛。 (在利用压缩映像原理解题时,最常见的错误就是忽略了 ——正是因为,才能保证数列收敛。这里的相当于是一个“压缩比例” 或“压缩因子”。所以,如果只是证明出来了,是证明不出数列收敛的;, 才能说明数列收敛,也就是说,这个是不可缺少的,在解题时一定要找到这个具体的,切记!)

第二章极限习题及答案:极限的四则运算

分类讨论求极限 例 已知数列{}n a 、{}n b 都是由正数组成的等比数列,公比分别为q p ,,其中q p >,且1≠p ,1≠q ,设n n n b a c +=,n S 为数列{}n C 的前n 项和,求1lim -∞→n n n S S . (1997年全国高考试题,理科难度0.33) 解: ()() 1 1 1111--+--=q q b p p a S n n n ()( )()() ()( )()( ) 1 1111 1111111111--+----+--= ---n n n n n n q p b p q a q p b p q a S S . 分两种情况讨论; (1)当1>p 时,∵ 0>>q p ,故10<< p q , ∴1 lim -∞→n n n S S ()()()()????? ? ?????????????????? ??--+???? ??--?????????? ??--+???? ??-------1111111111111111111lim n n n n n n n n n n p p q p b p q a p p p q p b p q a p ()()()()()()010110 10111111?-+--?-+--? =p b q a p b q a p ()() p q a q a p =--? =1111 (2)当1

数列极限的运算性质

极限的运算 教学目标 1.熟练运用极限的四则运算法则,求数列的极限. 2.理解和掌握三个常用极限及其使用条件.培养学生运用化归转化和分类讨论的思想解决数列极限问题的能力. 3.正确认识极限思想和方法是从有限中认识无限,从近似中认识精确,从量变中认识质变的一种辩证唯物主义的思想. 教学重点与难点 使用极限四则运算法则及3个常用极限时的条件. 教学过程 (一)运用极限的四则运算法则求数列的极限 师:高中数学中的求极限问题,主要是通过极限的四则运算法则,把所求极限转化成三个 常用极限:n n 1 lim ∞→=0,∞→n lim C=C ,∞ →n lim q n =0(|q|<1)来解决。 例1:求下列极限: 1 45 37lim )1(323-++-∞→n n n n n 师:(1)中的式子如何转化才能求出极限. 生:可以分子、分母同除以n 3,就能够求出极限.

师:(2)中含有幂型数,应该怎样转化? 师:分子、分母同时除以3n-1结果如何? 生:结果应该一样. 师:分子、分母同时除以2n或2n-1,能否求出极限?

(二)先求和再求极限 例2求下列极限: 由学生自己先做,教师巡视. 判断正误. 生:因为极限的四则运算法则只适用于有限个数列加、减、乘、除的情况.此题当n →∞,和式成了无限项的和,不能使用运算法则,所以解法1是错的. 师:解法2先用等差数列的求和公式,求出分子的和,满足了极限四则运算法则的条件,从而求出了极限.第(2)题应该怎样做?

生:用等比数列的求和公式先求出分母的和. =12. 师:例2告诉我们不能把处理有限项和问题的思路及方法随意地搬到无限项和的问题中去,要特别注意极限四则运算法则的适用条件. 例3求下列极限: 师:本例也应该先求出数列的解析式,然后再求极限,请同学观察所给数列的特点,想出对策. 生:(1)题是连乘积的形式,可以进行约分变形. 生:(2)题是分数和的形式,可以用“裂项法”变形.

高中数学复习——数列的极限

●知识梳理 1.数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n }的项a n 无限地趋近于某个常数a (即|a n -a |无限地接近于0),那么就说数列{a n }以a 为极限. 注:a 不一定是{a n }中的项. 2.几个常用的极限:①∞ →n lim C =C (C 为常数);②∞ →n lim n 1 =0;③∞→n lim q n =0(|q |<1). 3.数列极限的四则运算法则:设数列{a n }、{b n }, 当∞ →n lim a n =a , ∞ →n lim b n =b 时,∞ →n lim (a n ±b n )=a ±b ; ∞ →n lim (a n ·b n )=a ·b ; ∞ →n lim n n b a =b a (b ≠0). 特别提示 (1)a n 、b n 的极限都存在时才能用四则运算法则; (2)可推广到有限多个. 1.下列极限正确的个数是 ①∞→n lim αn 1 =0(α>0) ②∞→n lim q n =0 ③∞ →n lim n n n n 3232+-=-1 ④∞ →n lim C =C (C 为常数) A.2 B.3 C.4 D.都不正确 解析:①③④正确. 答案:B 2. ∞ →n lim [n (1- 31)(1-41)(1-51)…(1-2 1+n )]等于 A.0 B.1 C.2 D.3 解析: ∞→n lim [n (1-31)(1-41)(1-51)…(1-2 1 +n )] =∞→n lim [n ×32×43×54×…×2 1 ++n n ] =∞→n lim 2 2+n n =2. 答案:C 3.下列四个命题中正确的是 A.若∞ →n lim a n 2=A 2,则∞ →n lim a n =A B.若a n >0,∞ →n lim a n =A ,则A >0 C.若∞ →n lim a n =A ,则∞ →n lim a n 2=A 2

第二节 数列的极限

第二节 数列的极限 ㈠本课的基本要求 理解数列极限的定义,了解数列极限的性质,会用ε──N 的语言证明数列的极限 ㈡本课的重点、难点 本课重点是数列极限的定义,难点是对ε──N 的语言的掌握 ㈢教学内容 引入(从“穷竭法”到“极限”): 从Archimedes 的穷竭法到Newton 和Leibniz 的极限思想,是微积分得以诞生的至关重要的一步飞跃。我们用Archimedes 做过的一个例子来看看穷竭法和极限思想的差异。为了叙述方便和计算简洁,例中的图形和解题细节与Archimedes 的略有差别。 例1 计算由抛物线x x x y ),0(2≥=轴及直线1=x 所围图形的面积A ,见图1. 这块区域称为抛物线弓形。可以看到,它包含在边长为1的正方形内而且不难得到2 1

相关主题
文本预览
相关文档 最新文档