当前位置:文档之家› 低介电常数新型绝缘纸板及其在变压器绝缘上的应用

低介电常数新型绝缘纸板及其在变压器绝缘上的应用

低介电常数新型绝缘纸板及其在变压器绝缘上的应用
低介电常数新型绝缘纸板及其在变压器绝缘上的应用

变压器绝缘电阻降低的原因分析

变压器绝缘电阻降低的原因分析 2009-01-02 20:21:42 来源: 作者: 【大中小】浏览:172次评论:0条 1.故障概况 一台sfz9—50000/110主变在厂内各项试验均合格,运到现场安装完成后,在做交接试验时,所测绝缘电阻值折算至厂内试验温度下的绝缘电阻值降低30以上。不符合dl/t572—95中变压器的安装、检修、试验和验收的规定。为慎重起见,决定暂停交接,查找原因。 2.故障原因分析及处理 经初步分析认为可能是安装过程中变压器受潮导致绝缘电阻下降。决定对变压器进行热油循环及抽真空处理。 第一次热油循环及抽真空处理并静放后进行试验,绝缘电阻值并未增长。分析认为由于当时夜间气温低,白天气温高可能有凝露现象发生,决定再进行热油循环。 第二次热油循环及抽真空处理并静放后,绝缘电阻仍未有明显增长。 但在两次热油循环期间取油样分析发现油介损高达2.1已达到污油标准。 根据以上处理试验结果,经再次分析认为造成绝缘电阻低的主要原因是油介损过高引起油绝缘性能降低,致使主变绝缘电阻降低。 变压器油的介质损耗是由离子电导和电泳电导共同决定的,若变压器油中混入尘埃、杂质就会生成胶体杂质及杂质离子,当外加电场的强度远小于其击穿场强时,油介质的离子电导率为一与电场强度无关的常量,其导电规律服从欧姆定律。而带电胶粒在油中呈现溶解状态,它本身具有足够大的自由能,易与水结合形成乳化物。它们均带有一定的电荷。胶粒在电场作用下定向迁移构成电泳电导。因此,胶粒在变压器油中是除杂质离子之外的另一种主要载流子,并且这两种电导率均与所带电荷成比例。在温度一定且油中两种载流子共存时,当两种载流子带有同一种极性电荷,在直流电压作用下,油中混入的带电离子和带电胶粒将相应地增加了变压器油的电导,也就是造成变压器油绝缘电阻降低的原因。最后认定变压器主体绝缘电阻降低的主要原因是在安装过程中变压器油受污染,其中胶粒的电泳电导或杂质电导是主因,油介损高是现象。 3.处理方法及几点建议 本着安全第一的原则,决定对主变整体换油,并采取防尘、防污染措施,杜绝环境及人为因素对变压器油的污染。换油结束后现场试验结果与厂内试验结果基本相同,从而解决了这一问题。 通过这次处理我们有以下建议: (1)杂质粒子的胶粒是造成变压器油介损增加及绝缘电阻降低的主因,所以在交接试验时应先对变压器油做全面试验包括油介损。尤其对添加油更要严格把关。 (2)在安装过程中严格避免尘埃、杂质的污染,提高安装人员的责任心及认识,加强现

电力变压器固体绝缘故障的诊断

电力变压器固体绝缘故障的诊断 发表时间:2008-12-11T13:50:28.780Z 来源:《中小企业管理与科技》供稿作者:南俊彪[导读] 摘要:通过对故障涉及固体绝缘时其它特征气体组分与CO、CO2间的伴生增长情况研究,提出了一种动态分析变压器绝缘故障的方法,着手建立故障气体的增长模式,为预测故障的发展提供新的判据。关键词:固体绝缘变压器绝缘故障故障气体摘要:通过对故障涉及固体绝缘时其它特征气体组分与CO、CO2间的伴生增长情况研究,提出了一种动态分析变压器绝缘故障的方法,着手建立故障气体的增长模式,为预测故障的发展提供新的判据。 关键词:固体绝缘变压器绝缘故障故障气体中图分类号:TM4 文献标识码:B 文章编号:1673-1069(2008)10-0000-00 引言 为了使设备的外形尺寸保持在可接受的水平,现代变压器的设计采用了更为紧凑的绝缘方式。这就要求显著升高其运行中内部各组件间的绝缘所承受的热和电应力水平。110kV及以上等级的大型电力变压器主要采用油纸绝缘结构,其主要绝缘材料是绝缘油和绝缘纸、纸板。当变压器内部故障涉及固体绝缘时,无论故障的性质如何,通常认为是相当严重的。因为,一旦固体材料的绝缘性能受到破坏,很可能进一步发展成主绝缘或纵绝缘的击穿事故,所以,纤维材料劣化引起的影响在故障诊断中格外受重视。但是,如能确定变压器发生异常或故障时是否涉及固体绝缘,也就初步确定了故障的部位,对设备检修工作很有帮助。 1 判断固体绝缘故障的常规方法CO、CO2是纤维材料的老化产物。一般,在非故障情况下也有大量积累,往往很难判断经分析所得的CO、CO2含量是因纤维材料正常老化产生的,还是故障的分解产物。月岗淑郎研究了使用变压器单位质量纸分解并溶于油中碳的氧化物总量,即以(CO+CO2)mL/g(纸)来诊断固体绝缘故障。但是,已投运的变压器的绝缘结构、选用材料和油纸比例,随电压等级、容量、型号及生产工艺的不同而差别很大,不可能逐一计算每台变压器中绝缘纸的合计质量。该方法因实际操作困难而难以应用;并且,在分析整体老化时,考虑全部纸质量是较合理的。但是,在故障点仅涉及固体绝缘很小一部分时,比单独考虑CO、CO2含量相比,用这种方法很难更有效。IEC599推荐以CO/CO2的比值作为判据,来确定故障与固体绝缘间的关系。认为CO/CO2>0.33或<0.09时表示可能有纤维绝缘分解故障。在实践中,这种方法也有相当大的局限性。作者对59例过热性故障和69例放电性故障进行了统计。结果表明,应用CO/CO2比例的方法正判率仅为49.2%,这种方法对悬浮放电故障的识别正确率较高,可达74.5%;但对围屏放电的正判率仅为23.1%。 2 固体绝缘故障的动态分析方法新的预防性试验规程规定,运行中330kV及以上等级变压器每3个月进行一次油中溶解气体分析。但目前很多电业局为保证这些重要设备的安全,有的已将该时间间隔缩短为1个月,也有部分电业局已开展了油色谱在线监测的尝试。这为实现故障的连续追踪,提供了良好的技术基础。 电力变压器内部,涉及固体绝缘的故障包括:围屏放电、匝间短路、过负荷或冷却不良引起的绕组过热、绝缘浸渍不良等引起的局部放电等。无论是电性故障或过热故障,当故障点涉及固体绝缘时,在故障点释放能量作用下,油纸绝缘将发生裂解,释放出CO和CO2,但它们的产生不是孤立的,必然因绝缘油的分解产生各种低分子烃和氢气,并能通过各特征气体与CO和CO2间的伴生增长情况分析来判断故障原因。 判断故障的各特征气体与CO和CO2含量间是否是伴随增长的,需要一个定量标准。本文通过对变压器连续色谱监测结果的相关性分析,来获得对这一标准的统计性描述。这样可以克服溶解气体累积效应的影响,消除测量的随机误差干扰。本文采用Pearson积矩相关来衡量变量间的关联程度,被测变量序列对(xi,yi),i=1,…,相关系数γ的显著性选择两种检验水平:以α=1%作为变量是否显著相关的标准,而以α=5%作为变量间是否具有相关性的标准。即:当相关系数γ>γ0.01时,认为变量间是显著相关的;γ<γ0.05时,二者没有明确的关联。γ0.01、γ0.05的取值与抽样个数N有关,可通过查相关系数检验表获得。由于CO为纤维素劣化的中间产物,更能反映故障的发展过程,故通过对故障的主要特征气体与CO的连续监测值进行相关性分析可进一步判断故障是否涉及固体绝缘。当通过其它分析方法确定设备内部存在放电性故障时,可以CO与H2的相关程度作为判断电性故障是否与固体绝缘有关的标准;而过热性故障则以CO与CH4的相关性作为判断标准。通过对59例过热性故障和69例放电性故障实例的分析,表明该方法在一定程度上可以反映故障的严重程度。在过热性故障情况下,如果CO不仅与CH4有较强的相关性,还与C2H4相关,表明故障点的温度较高;而在发生放电性故障时,如果CO与H2和C2H2都有较强的相关性,说明故障的性质可能是火花放电或电弧放电。 3 故障的发展趋势确认故障类型后,如能进一步了解故障的发展趋势,将有助于维修计划的合理安排。而产气速率作为判断充油设备中产气性故障危害程度的重要参数,对分析故障性质和发展程度(包括故障源的功率、温度和面积等)都很有价值。通过回归分析,可将这3种典型模式归纳整理。 3.1 正二次型总烃随时间的变化规律大致为Ci=a.t2+b.t+c(a>0),即产气速率γ=a.t+b不断增大,与时间成正比。这常与突发性故障相对应,故障功率及所涉及的面积不断变大,这种故障增长模式往往非常危险。 3.2 负二次型总烃和产气速率的变化规律与(a)相同,只是a<0,即总烃Ci增高到一定程度后,在该值附近波动而不再发生显著变化。多与逐渐减弱的或暂时性的故障形式相对应,如在系统短路情况下的绕组过热及系统过电压情况下发生的局部放电等。 3.3 一次型即线性增长模型,是一种与稳定存在的故障点相对应的产气形式。总烃的变化规律为Ci=k.t+j,产气速率为固定的常数k,通常只有当故障产气率k或总烃Ci大于注意值时才认为故障严重。 4 实例分析

变压器的常见故障及处理方法

浅议变压器常见故障及处理 令狐采学 摘要:变压器在电力系统的安全、平稳运行中起着至关重要的作用。本文从变压器的结构和原理入手,结合我场变压器的实际情况,针对实际变电运行中变压器的主要异常现象和原因进行分析,提出一些自己的观点。 关键词:变压器原理结构参数异常处理 引言:电力是现在工业的主要能源,并且电能的输送能量之大、距离之远也决定了必须采用超高压输送电能,以减少此过程中的损耗。而实际中由于发电机结构上的限制,通常只能发出10kv 的电压,因此,必须经过变压器的升压才可以完成电能的输送。变压器也理所应当成为电力系统中核心设备之一。如果变压器出现了故障,就会在很大程度上影响电能的输送以及正常的变电运行,所以能够掌握和分析变压器常见的故障和异常现象,及主要原因,提出防范解决措施,就显得尤为重要。 电力变压器是利用电磁感应原理制成的一种静止的电力设备。它可以将某一电压等级的交流电能转换成频率相同的另一种或几种电压等级的交流电能,是电力系统中重要电气设备。下面将从变压器的分类、结构、异常现象和原因分析等几个方面进行介绍: 一、变压器的分类、结构及主要参数

(一)、变压器的分类 根据用途的不同,变压器可以分为电力变压器(220kv以上的是超高压变压器、35-110kv的是中压变压器、10kv为配电变压器)、特种变压器(电炉变压器、电焊变压器)、仪用互感器(电压、电流互感器)。 根据相数分为,单相变压器和三相变压器。 根据冷却方式分为,油浸自冷式、强迫风冷式、强迫油冷式和水冷式变压器。 根据分接开关的种类分为有载调压变压器和无载调压变压器。 根据绕组数分为,单绕组变压器、双绕组变压器和三绕组变压器。 (二)、变压器的结构 虽然变压器的种类依据不同方式进行分类,有很多种,但是一般常用的变压器的结构都很相似: 1、绕组:变压器的电路部分。 2、铁芯:变压器的磁路部分。 3、油箱:变压器的外壳,内装满变压器油(绝缘、散热)。 4、油枕:对油箱里的油起到缓冲作用,同时减小油箱里的油与空气的接触面积,不易受潮和氧化。 5、呼吸器:利用硅胶吸收空气中的水分。 6、绝缘套管:变压器的出线从油箱内穿过油箱盖时必须经过绝缘套管以使带电的引线与接地的油箱绝缘。

变压器几种常见故障产生的原因及其处理方法

自爱迪生发明了电灯以后,电在人们生产、生活中的作用越来越重要。为满足人们各种用电需要,作为发电厂和变电站主要设备之一的变压器,不但能把电压降低为各级标准,而且能把电压升高为各级标准,进而将电能输送到各个不同的用电地区,这样有助于减少送电损失。 变压器几种常见故障产生的原因及其处理方法 袁世豪 (湛江中粤能源有限公司 广东 湛江 524099) 力运行人员应具备的基本技能,同时亦是其重点关注、研究的问题。 二、变压器故障产生的原因 1、自身原因 变压器在制造时,由于工艺不佳或者人为因素影响,而使得设备本身就存在着诸如焊接不良、端头松动、垫块松动、抗短路强度不足、铁心绝缘不良等问题。 2、运行原因 首先,变压器的超常负荷。变压器的长期超负荷工作,必然会使其内部零部件及连接件有着过高的温度,进而导致冷却装置不能正常运行,零部件受损。其次,变压器的使用不当。工作人员使用方式、方法不当,或者当设备出现问题时没有进行及时、正确维护,这必然加快变压器绝缘老化的速度。 3、线路干扰 线路干扰在致使变压器产生故障的所有因素中,它是最为重要的,其所引起的故障在所有故障中占有很大的比例。主要包括:在低负荷阶段出现的电压峰值、线路故障,合闸时产生的过电压,以及其他方面的异常现象 一、加强变压器故障及时、准确检修的必要性 在电力系统中占有至关重要地位的变压器,是电网传输电能的枢纽,它由油箱、油枕、铁心、线圈、绝缘导管、分接开关、散热器、防暴管、瓦斯继电器,以及热虹吸、温度计等附件组成,变压器运行、检修,及维护质量的高低,将直接影响电力生产安全和经济效益。 虽然变压器较于其他电力设备的故障率低,但据运行经验表明、相关数据显示,近几年电力系统变压器故障呈现出不断上升的趋势。按照故障发生的程度不同,故障有轻有重,当故障较轻时,虽然变压器能够继续运行,但若不及时处理,将会进一步损害其内部零部件或者外部辅助设备;当故障较重时,则直接影响变压器的正常运行,若不及时处理,将会损害设备的使用寿命,甚至发生安全事故。总之,变压器一旦发生故障,轻则影响电力系统的正常运作,并直接或间接地影响人民群众正常的生产、生活;重则带来较大的安全隐患及经济损失。因此,对变压器运行或停运后异常、故障问题的检修、确认与维护,是电 DOI :10.3969/j.issn.1001-8972.2011.03.032

常见物质介电常数汇总知识交流

常见物质介电常数汇 总

精品资料 Sir-20说明书普通材料的介电值和术语集材料介电值速度毫米/纳秒 空气 1 300 水淡81 33 水咸81 33 极地雪 1.4 - 3 194 - 252 极地冰 3 - 3.15 168 温带冰 3.2 167 纯冰 3.2 167 淡水湖冰 4 150 海冰 2.5 - 8 78 - 157 永冻土 1 - 8 106 - 300 沿岸砂干燥10 95 砂干燥 3 - 6 120 - 170 砂湿的25 - 30 55 - 60 粉沙湿的10 95 粘土湿8 - 15 86 - 110 粘土土壤干 3 173 沼泽12 86 农业耕地15 77 畜牧土地13 83 土壤平均16 75 花岗岩 5 - 8 106 - 120 石灰岩7 - 9 100 - 113 白云岩 6.8 - 8 106 - 115 玄武岩湿8 106 泥岩湿7 113 砂岩湿 6 112 煤 4 - 5 134 - 150 石英 4.3 145 混凝土 6 - 8 55 - 112 沥青 3 - 5 134 - 173 聚氯乙烯 pvc 3 173 仅供学习与交流,如有侵权请联系网站删除谢谢2

常见物质的相对介电常数值和电磁波传播速度(RIS-K2说明书) 常见介质的相对介电常数—网上搜集

------------------《探地雷达方法与应用》(李大心)

2007第二期勘察科学与技术

电磁波在部分常见介质中的传播参数 (The propagation parameters of the electromagnetic wave in the medium) 地球表面大部分无水的物质(如干燥的土壤和岩石等)的介电常数,实部一般介于1.7-6之间,水的介电常数一般为81,虚部很小,一般可以忽略不计。岩石和土壤的介电常数与其含水量几乎呈线形关系增长,且与水的介电常数特性相同。所以天然材料的电学特性的变化,一般都是由于含水量的变化所致。

浅析变压器的过电压现象及其保护措施

【tips】本文由李雪梅老师精心收编,值得借鉴。此处文字可以修改。 浅析变压器的过电压现象及其保护措施 论文导读:变压器运行时,如果电压超过它的最大允许工作电压,称为变压器的过电压。过电压往往对变压器的绝缘有很大的危害,甚至使绝缘击穿。匝间电容相对于对地电容愈大时,则电压的起始分布愈均匀,电压梯度越小,因此增加匝间电容是有效的过电压保护措施。 关键词:变压器,过电压,保护措施 变压器运行时,如果电压超过它的最大允许工作电压,称为变压器的过电压。过电压往往对变压器的绝缘有很大的危害,甚至使绝缘击穿。过电压分为内部过电压和大气过电压两种。输电线路直接遭雷击或雷云放电时,电磁场的剧烈变化所引起的过电压称为大气过电压(外部过电压);当变压器或线路上的开关合闸或拉闸时,因系统中电磁能量振荡和积聚而产生的过电压称为内部过电压。变压器的这两种过电压都是作用时间短促的瞬变过程。科技论文。内部过电压一般为额定电压的3.0-4.5倍,而大气过电压数值很高,可达额定电压的8-12倍,并且绕组中电压分布极不均匀,端头部分线匝受到的电压很高。因此,必须采取必要的措施,防止过电压的发生和进行有效的保护。 过电压在变压器中破坏绝缘有两种情况,一是将绕组与铁心(或油箱)之间的绝缘高压绕组与低压绕组之间的绝缘(这些绝缘称为主绝缘)击穿;另一种是在同一绕组内将匝与匝之间或一段绕组与另一段绕之间的绝缘(这些绝缘称为纵绝缘)击穿。由于过电压时间极短,电压从零上升到最大值再下降到零均在极短的时间内完成,因而具有高频振荡的特性,其频率可达100kHZ以上。在正常运行时,电网的频率是50HZ,变压器的容抗很大,而感扩ωL很小,因此可以忽略电容的影响,认为电流完全从绕组内部

变压器7种常见故障解析

变压器7种常见故障解析 变压器是输配电系统中极其重要的电器设备,根据运行维护管理规定变压器必须定期进行检查,以便及时了解和掌握变压器的运行情况,及时采取有效措施,力争把故障消除在萌芽状态之中,从而保障变压器的安全运行。 1、绕组故障 主要有匝间短路、绕组接地、相间短路、断线及接头开焊等。产生这些故障的原因有以下几点: ①在制造或检修时,局部绝缘受到损害,遗留下缺陷; ②在运行中因散热不良或长期过载,绕组内有杂物落入,使温度过高绝缘老化; ③制造工艺不良,压制不紧,机械强度不能经受短路冲击,使绕组变形绝缘损坏; ④绕组受潮,绝缘膨胀堵塞油道,引起局部过热; ⑤绝缘油内混入水分而劣化,或与空气接触面积过大,使油的酸价过高绝缘水平下降或油面太低,部分绕组露在空气中未能及时处理。 由于上述种种原因,在运行中一经发生绝缘击穿,就会造成绕组的短路或接地故障。匝间短路时的故障现象使变压器过热油温增高,电源侧电流略有增大,各相直流电阻不平衡,有时油中有吱吱声和咕嘟咕嘟的冒泡声。轻微的匝间短路可以引起瓦斯保护动作;严重时差动保护或电源侧的过流保护也会动作。发现匝间短路应及时处理,因为绕组匝间短路常常会引起更为严重的单相接地或相间短路等故障。 2、套管故障 这种故障常见的是炸毁、闪落和漏油,其原因有: ①密封不良,绝缘受潮劣比,或有漏油现象; ②呼吸器配置不当或者吸入水分未及时处理; ③变压器高压侧(110kV及以上)一般使用电容套管,由于瓷质不良故而有沙眼或裂纹; ④电容芯子制造上有缺陷,内部有游离放电; ⑤套管积垢严重。 3、铁芯故障 ①硅钢片间绝缘损坏,引起铁芯局部过热而熔化; ②夹紧铁芯的穿心螺栓绝缘损坏,使铁芯硅钢片与穿心螺栓形成短路; ③残留焊渣形成铁芯两点接地; ④变压器油箱的顶部及中部,油箱上部套管法兰、桶皮及套管之间。内部铁芯、绕组夹件等因局部漏磁而发热,引起绝缘损坏。 运行中变压器发生故障后,如判明是绕组或铁芯故障应吊芯检查。首先测量各相绕组的直流电阻并进

变压器常见故障及处理

变压器常见故障及处理 1 异常响声 (1)音响较大而嘈杂时,可能是变压器铁芯的问题。例如,夹件或压紧铁芯的螺钉松动时,仪表的指示一般正常,绝缘油的颜色、温度与油位也无大变化,这时应停止变压器的运行,进行检查。 (2)音响中夹有水的沸腾声,发出"咕噜咕噜"的气泡逸出声,可能是绕组有较严重的故障,使其附近的零件严重发热使油气化。分接开关的接触不良而局部点有严重过热或变压器匝间短路,都会发出这种声音。此时,应立即停止变压器运行,进行检修。 (3)音响中夹有爆炸声,既大又不均匀时,可能是变压器的器身绝缘有击穿现象。这时,应将变压器停止运行,进行检修。 (4)音响中夹有放电的"吱吱"声时,可能是变压器器身或套管发生表面局部放电。如果是套管的问题,在气候恶劣或夜间时,还可见到电晕辉光或蓝色、紫色的小火花,此时,应清理套管表面的脏污,再涂上硅油或硅脂等涂料。此时,要停下变压器,检查铁芯接地与各带电部位对地的距离是否符合要求。 (5)音响中夹有连续的、有规律的撞击或摩擦声时,可能是变压器某些部件因铁芯振动而造成机械接触,或者是因为静电放电引起的异常响声,而各种测量表计指示和温度均无反应,这类响声虽然异常,但对运行无大危害,

不必立即停止运行,可在计划检修时予以排除。 2 温度异常 变压器在负荷和散热条件、环境温度都不变的情况下,较原来同条件时的温度高,并有不断升高的趋势,也是变压器温度异常升高,与超极限温度升高同样是变压器故障象征。 引起温度异常升高的原因有: ①变压器匝间、层间、股间短路; ②变压器铁芯局部短路; ③因漏磁或涡流引起油箱、箱盖等发热; ④长期过负荷运行,事故过负荷; ⑤散热条件恶化等。 运行时发现变压器温度异常,应先查明原因后,再采取相应的措施予以排除,把温度降下来,如果是变压器内部故障引起的,应停止运行,进行检修。 3 喷油爆炸 喷油爆炸的原因是变压器内部的故障短路电流和高温电弧使变压器油迅速老化,而继电保护装置又未能及时切断电源,使故障较长时间持续存在,使箱体内部压力持续增长,高压的油气从防爆管或箱体其它强度薄弱之处喷出形成事故。 (1)绝缘损坏:匝间短路等局部过热使绝缘损坏;变压器进水使绝缘受潮损坏;雷击等过电压使绝缘损坏等导致内部短路的基本因素。 (2)断线产生电弧:线组导线焊接不良、引线连接松动等因素在大电流冲击

油浸变压器绝缘故障分析及处理

油浸变压器绝缘故障分析及处理 发表时间:2018-06-08T15:04:31.057Z 来源:《防护工程》2018年第3期作者:芦志平 [导读] 对于不同项目中使用的各种类型电力变压器的调试和运行,我们发现油浸变压器的大部分损坏和故障都是由绝缘系统的损坏引起的。 特变电工股份有限公司新疆变压器厂新疆昌吉 831100 摘要:变压器是电力系统中最关键的设备之一。其正常运行是电力系统安全,可靠,优质,经济运行的重要保证。必须防止和尽量减少变压器故障和事故。但是,由于变压器的长期运行,绝不可能完全避免故障和事故,导致故障和事故的原因很多。本文将重点介绍油浸式变压器中许多故障的绝缘故障。 关键词:变压器;绝缘故障;原因 引言 对于不同项目中使用的各种类型电力变压器的调试和运行,我们发现油浸变压器的大部分损坏和故障都是由绝缘系统的损坏引起的。分析原因,主要是由于绝缘材料的机械损坏和工作温度过高而导致绝缘材料性能下降。因此,为确保变压器的正确安装和调试,正常运行和加强对绝缘系统的合理维护,可以在很大程度上保证变压器的使用寿命较长,并且切换测试和预测性维护都是为了提高使用寿命的变压器并增加供电可靠性的关键。在油浸式变压器中,主要绝缘材料是绝缘油和固体绝缘纸,纸板和木块。所谓变压器绝缘老化,就是这些材料被环境因素分解,降低或丧失介电强度。 1固体纸绝缘故障 1.1纸纤维材料的性能 绝缘纸纤维材料是油浸式变压器中最重要的绝缘组件材料。纸纤维是植物的基本固体成分。构成材料分子的分子带有正电荷的核和带负电荷的电子在核周围运行。区别在于导体在绝缘材料中几乎没有自由电子。绝缘体中的非常小的电流主要来自离子电导。纤维素由碳,氢和氧组成,因此由于纤维素分子结构中存在羟基,因此可能形成水,赋予纸纤维含水性。另外,这些羟基可以被认为是被各种极性分子包围的中心,这些极性分子是氢键合的,使得纤维容易受到损害:同时纤维中通常含有一定比例的杂质,其中包括一定比例的杂质数量水分,由于纤维的胶体性质,使这些水不能完全去除。这也影响纸纤维的性能。当纸纤维吸水时,极性纤维不仅容易吸收水分,而且减弱了羟基之间的相互作用力,当纤维结构不稳定时,机械强度急剧降低,因此纸绝缘部件通常需要干燥或真空分干,浸油或绝缘漆使用前,浸渍漆的设计是为了保持纤维的润湿性,保证绝缘性和化学稳定性高,机械强度高。 1.2纸纤维材料的劣化 主要包括两个方面:①纤维脆弱。当过多的热量从纤维材料中吸收湿气时,会加速纤维材料的脆化。由于纸张的脆化,在机械冲击,电应力和操作冲击的影响下可能会发生电绝缘。②纤维材料的机械强度下降。随着加热时间的延长,纤维材料的机械强度降低。当变压器发热导致绝缘材料水分再次流失时,绝缘电阻值可能会增加,但其机械强度会大大降低,而绝缘纸将无法承受短路电流或冲击载荷等机械效果。 2液体油绝缘故障 2.1变压器油的性能 运行中的变压器油必须具有稳定和优异的绝缘和导热性。从石油中提取的绝缘油是各种碳氢化合物,树脂,酸和其他杂质的混合物,它们在自然界中并不总是稳定的,在温度,电场和光合作用的影响下会不断氧化。一般情况下绝缘油的氧化过程非常缓慢,如果妥善保养即使20年后仍能保持适当的质量而不会老化,但与金属中的油混合,杂质,气体等会加速氧化的发展,油质量变差,颜色变深,不透明度不透明,含水量,酸值,灰分增加等等,劣化油的性质。 2.2变压器油劣化的过程 在降解过程中,油,酸,醇,酮和污泥是主要的石油产品。恶化的早期阶段。油中产生的过氧化物与绝缘纤维材料发生反应而形成氧化纤维素,这会降低绝缘纤维的机械强度,导致脆化和绝缘收缩。所得酸是一种粘液脂肪酸。虽然腐蚀性不如无机酸强,但其生长速度及其对有机绝缘材料的影响是相当大的。恶化的后期。是形成污泥时,酸蚀铜,铁,绝缘漆等材料的反应污泥,是一种厚而沥青状的高分子导电材料,它可以适度溶解在油中,电场产生速度快,粘附在绝缘材料或变压器外壳的边缘,沉积在油管和散热片等处,使变压器工作温度升高,电气强度下降。 3影响变压器绝缘故障的主要因素 3.1温度的影响 电力变压器油,纸绝缘,在不同温度下,油,纸具有不同的水分平衡曲线。一般情况下,温度升高,纸张内部的水份被水分沉淀;另一方面,纸吸收水中的油。因此,当温度高时,变压器中绝缘油的微水含量较大;相反,微水含量很小。当温度不同时,纤维素成环,破碎并伴随气体产生的程度不同。在一定的温度下,CO和CO2以恒定的速率产生,也就是说,油中的CO和CO2气体含量随时间呈线性关系。在更高的温度下,CO和CO2的速率呈指数增长。因此,油中CO和CO2的含量与绝缘纸的热老化有直接关系,而含量的变化可以看作是密封变压器中纸张异常的标准之一。变压器的寿命取决于绝缘老化的程度,而老化的程度又取决于工作温度。 3.2过电压的影响 ①暂态过电压的影响。三相变压器的正常运行会产生相间电压的58%的相电压和接地电压,但是在单相电压下,中性点接地系统的主绝缘电压会增加30%中性点不接地系统的相位误差为73%,这可能会损坏绝缘。②雷电过电压的影响。雷电过电压由于陡峭的波形头,垂直绝缘上的电压分布(导通,导通和绝缘)非常不均匀,并可能在绝缘上留下放电痕迹,这会损坏固体绝缘。③过电压操作。由于波前过电压相对平坦,所以电压分布近似线性,并且当过电压电涌从一个绕组传递到另一个绕组时,其大致与两个绕组之间的匝数成比例,从而使得主要绝缘或相间绝缘的降解和损坏。 3.3湿度的影响 水分的存在会加速纸张纤维素的降解。因此,CO和纤维素的产量也与含水量有关。当湿度恒定时,含水量越高,二氧化碳分解越多。相反,含水量越低,CO分解越多。绝缘油中微量水分是影响绝缘性能的重要因素之一。绝缘油中微量水分的存在对绝缘介质的电气和物理

常见介电常数

Material物质名* 温度(°C) 介电常数 ABS RESIN, LUMP 丙烯晴-丁二烯-苯乙烯树脂块2.4-4.1 ABS RESIN, PELLET 丙烯晴-丁二烯-苯乙烯树脂球1.5-2.5 ACENAPHTHENE 二氢苊21 3.0 ACETAL 聚甲醛21 3.6 ACETAL BROMIDE 溴代乙缩醛二乙醇16.5 ACETAL DOXIME 乙二醛肟20 3.4 ACETALDEHYDE 乙醛5 21.8 ACETAMIDE 乙酰胺20 41 ACETAMIDE 乙酰胺82 59 ACETANILIDE 乙醛22 2.9 ACETIC ACID 乙酸20 6.2 ACETIC ACID 乙酸2 4.1 ACETIC ANHYDRIDE 乙酸酐19 21.0 ACETONE 丙酮25 20.7 ACETONE 丙酮53 17.7 ACETONE 丙酮0 1.0159 ACETONITRILE 乙睛21 37.5 ACETOPHENONE 苯乙酮24 17.3 ACETOXIME 丙酮肟-4 3 ACETYL ACETONE 乙酰丙酮20 23.1 ACETYL BROMIDE 乙酰溴20 16.5 ACETYL CHLORIDE 乙酰氯20 15.8 ACETYLE ACETONE 乙酰丙酮20 25 ACETYLENE 乙炔0 1.0217 ACETYLMETHYL HEXYL KETONE 己基甲酮19 27.9 ACRYLIC RESIN 丙烯酸树脂2.7 - 4.5 ACTEAL 乙醛21.0-3.6 AIR 空气1 AIR (DRY) 空气(干燥)20 1.000536 ALCOHOL, INDUSTRIAL 工业酒精16-31 ALKYD RESIN 醇酸树脂3.5-5 ALLYL ALCOHOL 丙烯醇14 22 ALLYL BROMIDE 溴丙烯19 7.0 ALLYL CHLORIDE 烯丙基氯20 8.2 ALLYL IODIDE 碘丙烯19 6.1 ALLYL ISOTHIOCYANATE 异硫氰酸丙烯酯18 17.2 ALLYL RESIN (CAST) 烯丙基脂(CAST) 3.6 - 4.5 ALUMINA 氧化铝9.3-11.5 ALUMINA 氧化铝4.5 ALUMINA CHINA 氧化铝瓷3.1-3.9 ALUMINUM BROMIDE 溴化铝100 3.4 ALUMINUM FLUORIDE 氟化铝2.2 ALUMINUM HYDROXIDE 氢氧化铝2.2 ALUMINUM OLEATE 油酸铝20 2.4 ALUMINUM PHOSPHATE 硷式磷酸铝-14 ALUMINUM POWDER 铝粉1.6-1.8 AMBER 琥珀2.8-2.9 AMINOALKYD RESIN 酸硬化树脂3.9-4.2 AMMONIA 血氨-59 25 DIELECTRIC CONSTANT REFERENCE GUIDE介电常数参考表Material 物质名* 温度(°C) 介电常数DIELECTRIC CONSTANT REFERENCE GUIDE介电常数参考表AMMONIA 血氨-34 22 AMMONIA 血氨4 18.9 AMMONIA 血氨21 16.5 AMMONIA (GAS? ) 血氨(气体)0 72 AMMONIUM BROMIDE 溴化铵7.2 AMMONIUM CHLORIDE 氯化铵7 AMYL ACETATE 醋酸戊酯20 5 AMYL ALCOHOL 戊醇-118 35.5 AMYL ALCOHOL 戊醇20 15.8 AMYL ALCOHOL 戊醇60 11.2 AMYL BENZOATE 苯甲酸戊酯20 5.1 AMYL BROMIDE 溴化环戊烷10 6.3 AMYL CHLORIDE 戊基氯11 6.6 AMYL ETHER 戊基醚16 3.1 AMYL FORMATE 甲酸戊基19 5.7 AMYL IODIDE 碘化戊基17 6.9 AMYL NITRATE 硝酸戊基17 9.1 AMYL THIOCYANATE 硫氰酸盐戊基20 17.4 AMYLAMINE 戊胺22 4.6 AMYLENE 戊烯21 2 AMYLENE BROMIDE 溴戊烯14 5.6 AMYLENETETRARARBOXYLATE 19 4.4 AMYLMERCAPTAN 戊基硫醇20 4.7 ANILINE 苯胺0 7.8 ANILINE 苯胺20 7.3 ANILINE 苯胺100 5.5 ANILINE FORMALDEHYDE RESIN 苯氨-甲醛树脂3.5 - 3.6 ANILINE RESIN 苯胺树脂3.4-3.8 ANISALDEHYDE 茴香醛20 15.8 ANISALDOXINE 茴香肟63 9.2 ANISOLE 苯甲醚20 4.3 ANITMONY TRICHLORIDE 三氯化锑5.3 ANTIMONY PENTACHLORIDE 五氯化锑20 3.2 ANTIMONY TRIBROMIDE 三溴化锑100 20.9 ANTIMONY TRICHLORIDE 三氯化锑5.3 ANTIMONY TRICHLORIDE 三溴化锑74 33 ANTIMONY TRICODIDE 三碘化锑175 13.9 APATITE 磷灰石7.4 ARGON 氩-227 1.5 ARGON 氩20 1.000513 ARSENIC TRIBROMIDE 三溴化砷37 9 ARSENIC TRICHLORIDE 三氯化砷66 7 ARSENIC TRICHLORIDE 三氯化砷21 12.4 ARSENIC TRIIODIDE 三碘化砷150 7 ARSINE 胂-100 2.5

变压器瓦斯保护的原理与防护

浅谈配电变压器瓦斯保护的原理与防护 一、变压器瓦斯保护的工作原理 瓦斯保护是变压器内部故障的主要保护元件,对变压器匝间和层间短路、铁芯故障、套管内部故障、绕组内部断线及绝缘劣化和油面下降等故障均能灵敏动作。当油浸式变压器的内部发生故障时,由于电弧将使绝缘材料分解并产生大量的气体,其强烈程度随故障的严重程度不同而不同。瓦斯保护就是利用反应气体状态的瓦斯继电器(又称气体继电器)来保护变压器内部故障的。 在瓦斯保护继电器内,上部是一个密封的浮筒,下部是一块金属档板,两者都装有密封的水银接点。浮筒和档板可以围绕各自的轴旋转。在正常运行时,继电器内充满油,浮筒浸在油内,处于上浮位置,水银接点断开档板则由于自身重量而下垂,其水银接点也是断开的。当变压器内部发生轻微故障时,气体产生的速度较缓慢,气体上升至储油柜途中首先积存于瓦斯继电器的上部空间,使油面下降,浮筒随之下降而使水银接点闭合,接通延时信号,这就是所谓的“轻瓦斯”当变压器内部发生严重故障时,则产生强烈的瓦斯气体,油箱内压力瞬时突增,产生很大的油流向油枕方向冲击,因油流冲击档板,档板克服弹簧的阻力,带动磁铁向干簧触点方向移动,使水银触点闭合,接通跳闸回路,使断路器跳闸,这就是所谓的“重瓦斯”。重瓦斯动作,立即切断与变压器连接的所有电源,从而避免事故扩大,起到保护变压器的作用。

瓦斯继电器有浮筒式、档板式、开口杯式等不同型号。目前大多采用QJ-80型继电器,其信号回路接上开口杯,跳闸回路接下档板。所谓瓦斯保护信号动作,即指因各种原因造成继电器内上开口杯的信号回路接点闭合,光字牌灯亮。 二、变压器瓦斯保护的范围 瓦斯保护是变压器的主要保护,它可以反映油箱内的一切故障。包括:油箱内的多相短路、绕组匝间短路、绕组与铁芯或与外壳间的短路、铁芯故障、油面下降或漏油、分接开关接触不良或导线焊接不良等。瓦斯保护动作迅速、灵敏可靠而且结构简单。但是它不能反映油箱外部电路(如引出线上)的故障,所以不能作为保护变压器内部故障的唯一保护装置。另外,瓦斯保护也易在一些外界因素(如地震)的干扰下误动作,对此必须采取相应的措施。 三、变压器瓦斯保护的安装方式 瓦斯继电器安装在变压器到储油柜的连接管路上,安装时应注意: 1.将气体继电器管道上的碟阀关严。如碟阀关不严或有其他情况,必要时可放掉油枕中的油,以防在工作中大量的油溢出。 2.新气体继电器安装前,应检查有无检验合格证明,口径、流速是否正确,内外部件有无损坏,内部如有临时绑扎要拆开,最后检查浮筒、档板、信号和跳闸接点的动作是否可靠,并关好放气阀门。 3.气体继电器应水平安装,顶盖上标示的箭头方向指向油枕,工程中允许继电器的管路轴线方向往油枕方向的一端稍高,但与水平面倾斜不应超过4。 4.打开碟阀向气体继电器充油,充满油后从放气阀门放气。如油枕带有胶囊,应注意充油放气的方法,尽量减少和避免气体进入油枕。 5.进行保护接线时,应防止接错和短路,避免带电操作,同时要防止使导电杆转动和小瓷头漏油。 6.投入运行前,应进行绝缘摇测及传动试验。 四、使用前的试验项目 气体继电器在安装使用前应作如下一些检验和试验。 1.一般性检验项目:玻璃窗、放气阀、控针处和引出线端子等完整不渗油,浮筒、开口杯、玻璃窗等完整无裂纹。 2.一般性试验项目:

变压器故障分类

变压器故障种类 ●故障种类: ?内部故障 ◆相间短路 ◆匝间短路 ◆绕组或出线接地 ?外部故障 ◆绝缘套管闪络、破碎发生接地 ◆出线之间相间故障 ●故障种类(性质划分) ?热故障 ◆轻度过热(低于50℃) ◆低温过热(150-300℃) ◆中温过热(300-700℃) ◆高温过热(高于700℃) ?电故障 ◆局部放电 ●油中存在气泡,绝缘材料中存在空腔 ●制造质量不良,某些部位有毛刺漆瘤 ●金属部件接触不良 ◆火花放电 ●悬浮电位引起电火花放电 ●油中杂质引起火花放电 ◆高能电弧放电 ●故障种类(回路划分) ?电路故障 ?磁路故障 ?油路故障 ●故障种类(结构划分) ?绕组故障 ?铁芯故障 ?油质故障 ?附件故障 ●故障种类(易发位置) ?绝缘故障 ?铁芯故障 ?分接开关故障 ◆密封不严,雨水侵入绝缘降低 ◆分接开关滚轮卡死,切换时不到位造成相间短路 ◆分接开关缺油,显示假油位 ◆分接开关误动 ●出口短路故障: ?三相短路(短路电流最大) ?两相短路

?单相接地短路 ?两相接地短路 ●短路故障危害 ?短路电流引起绝缘过热 ?短路点动力引起绕组变形故障 ●放电对绝缘的影响 ?直接击穿绝缘 ?产生的化学物质腐蚀绝缘 ●气体继电器误动分析 ?呼吸器不畅通 ?冷却系统漏气 ?冷却器入口阀门关闭造成堵塞,引起气体继电器动作频繁 ?散热器上部进油阀门关闭,引起气体继电器动作频繁 ?潜油泵烧坏使本体油热分解产生大量气体 ?密封不严,变压器进气 ?变压器出线负压区 ?油枕油腔中有气体 ?净油器的气体进入变压器 ?忽视气体继电器防雨 ●变压器故障时产生气体 ?H2:电晕放电、油和固体绝缘热分解、水分 ?CO:固体绝缘受热及热分解 ?CO2:固体绝缘受热及热分解 ?CH4:油和固体绝缘热分解、放电 ?C2H6:固体绝缘热分解、放电 ?C2H4:高温热点下油和固体绝缘热分解、放电 ?C2H2:强弧光放电、油和固体绝缘热分解

常见物质介电常数汇总

Sir-20说明书普通材料的介电值和术语集 1

常见物质的相对介电常数值和电磁波传播速度(RIS-K2说明书)

------------------《探地雷达方法与应用》(李大心)

2007第二期勘察科学与技术

电磁波在部分常见介质中的传播参数 (The propagation parameters of the electromagnetic wave in the medium) 地球表面大部分无水的物质(如干燥的土壤和岩石等)的介电常数,实部一般介于1.7-6之间,水的介电常数一般为81,虚部很小,一般可以忽略不计。岩石和土壤的介电常数与其含水量几乎呈线形关系增长,且与水的介电常数特性相同。所以天然材料的电学特性的变化,一般都是由于含水量的变化所致。对于岩石和土壤含水量和介电常数的关系国内外进行了详细研究(P.Hoekstra, 1974; J.E.Hipp,1 974;J .L.Davis,1 976;G A.Poe,1 971;J .R.Wang,1 977;E .G.巧okue tal ,1 977)。在实验室内大量测量了不同粒度的土壤一水混合物介电常数,考虑到束缚水和游离水,提出了经验土壤介电常数混合模型(J.R.Wang, 1985)。实验室内用开路探头技术和自由空间天线技术测量干燥岩石的介电常数(F.TUlaby, 1990)。国内肖金凯等人(1984, 1988)测量了大量的岩石和土壤的介电常数,王湘云、郭华东(1999)研究了三大岩类中所含的矿物对其介电常数的影响。研究表明,土壤中

含水量的变化影响介电常数的实部,水溶液中含盐量的变化影响土壤的导电性,即介电常数的虚部。水与某些铁锰化合物具有高的介电常数,绝大多数矿物的介电常数较低,约为4--12个相对单位,由于主要造岩矿物与水的相对介电常数存在较大差异,所以,具有较大孔隙度岩石的介电常数主要取决于它的含水量,泥岩由于含有大量的弱束缚水,所以其相对介电常数可高达50--60,岩石含泥质较多时,它们的介电常数与泥质含量有明显的关系,很多火成岩的孔隙度只有千分之几,其相对介电常数主要取决于造岩矿物,一般变化范围为6--12,水的介电常数与其矿化度的关系较弱,与此相应,岩石孔隙中所含水的矿化度同样对其介电常数不应有大的影响,水的矿化度的增大只导致岩石介电常数的少许增加。 表1 常见介质的电性参数值 媒质电导率 / (S/m) 介电常 数(相对 值) 电磁波速度/ (m/ns) 空气0 1 0.3 水10-4~3х10-281 0.033 花岗岩(干)10-8 5 0.15 灰岩(干)10-97 0.11 灰岩(湿) 2.5х10-28~10 0.11~0.095 粘土(湿)10-1~1 8~12 0.11~0.087 混凝土10-9~10-86~15 0.12~0.077 钢筋∞∞

浅谈变压器瓦斯保护

浅谈变压器瓦斯保护 目前,我们使用的变压器大多数仍然是油浸式变压器。本人自工作以来经常参加变压器的安装和调试及维修工作,积累了许多关于变压器的知识,现就变压器的瓦斯保护作一详细的介绍。 1 工作原理 瓦斯保护是变压器内部故障的主要保护元件,对变压器匝间和层间短路、铁芯故障、套管内部故障、绕组内部断线及绝缘劣化和油面下降等故障均能灵敏动作。当油浸式变压器的内部发生故障时,由于电弧将使绝缘材料分解并产生大量的气体,其强烈程度随故障的严重程度不同而不同。瓦斯保护就是利用反应气体状态的瓦斯继电器(又称气体继电器)来保护变压器内部故障的。 在瓦斯保护继电器内,上部是一个密封的浮筒,下部是一块金属档板,两者都装有密封的水银接点。浮筒和档板可以围绕各自的轴旋转。在正常运行时,继电器内充满油,浮筒浸在油内,处于上浮位置,水银接点断开;档板则由于本身重量而下垂,其水银接点也是断开的。当变压器内部发生轻微故障时,气体产生的速度较缓慢,气体上升至储油柜途中

首先积存于瓦斯继电器的上部空间,使油面下降,浮筒随之下降而使水银接点闭合,接通延时信号,这就是所谓的“轻瓦斯”;当变压器内部发生严重故障时,则产生强烈的瓦斯气体,油箱内压力瞬时突增,产生很大的油流向油枕方向冲击,因油流冲击档板,档板克服弹簧的阻力,带动磁铁向干簧触点方向移动,使水银触点闭合,接通跳闸回路,使断路器跳闸,这就是所谓的“重瓦斯”。重瓦斯动作,立即切断与变压器连接的所有电源,从而避免事故扩大,起到保护变压器的作用。 瓦斯继电器有浮筒式、档板式、开口杯式等不同型号。目前大多采用QJ-80型继电器,其信号回路接上开口杯,跳闸回路接下档板。所谓瓦斯保护信号动作,即指因各种原因造成继电器内上开口杯的信号回路接点闭合,光字牌灯亮。2保护范围 瓦斯保护是变压器的主要保护,它可以反映油箱内的一切故障。包括:油箱内的多相短路、绕组匝间短路、绕组与铁芯或与外壳间的短路、铁芯故障、油面下降或漏油、分接开关接触不良或导线焊接不良等。瓦斯保护动作迅速、灵敏可靠而且结构简单。但是它不能反映油箱外部电路(如引出线上)的故障,所以不能作为保护变压器内部故障的唯一保护装置。另外,瓦斯保护也易在一些外界因素(如地震)的干扰下误动作,对此必须采取相应的措施。

相关主题
文本预览
相关文档 最新文档