当前位置:文档之家› 半导体与PN结教案

半导体与PN结教案

半导体与PN结教案
半导体与PN结教案

2、模型分析法应用举例

例题1:如果图示电路(a)中设二极管为恒压模型。求电路中输出的电压Vo值说明二极管处于何种状态?

解:假设先将A、B断开,则VA = -10V, VB = -5V,∴VAB= VA-VB= -5V,可见重新接入后二极管将处于反向截止状态:电路中电流为0(反向电阻无穷大),∴电阻R上的压降为0,Vo = -5V 成立。

例题2:如果图2.13所示电路(b)中设二极管为恒压模型。求电路中输出的电压Vo值说明二极管处于何种状态?

解:∵将D1、D2断开,VB1A=9V,VB2A= -12-(-9)=-3V ∴将D1、D2接入后,D1导通,D2截止,VA被D1箝位在-0.7V上。∴Vo= VA= -0.7V成立。

2、稳压二极管的应用

稳压管常用在整流滤波电路之后,用于稳定直流输出电压的小功率电源设备中。

如图由R、D z组成的就是稳压电路,稳压管在电路中稳定电压的原理如下:

只要R参数选得适当,就可以基本上抵消V i的升高值,因而使V o基本保持不变。

可见,在这种稳压电路中,起自动调节作用的主要是稳压二极管D z,当输出电压有较小的变化时,将引起稳压二极管电流I z的较大变化,通过限流电阻R的补偿作用,保持输出电压V o 基本不变。

板书设计

课题:§1—2 PN结及其单向导电性

重点:理解掌握PN结的形成及其单向导电性的原理。杂质半导体

N型半导体(电子型半导体):自由电子为多子,空穴为少子。

P型半导体(空穴型半导体):空穴为多子,自由电子为少子。

§1—2 PN结及其单向导电性

1、PN结的形成

(1)、什么是PN结呢?

采用特殊的制作工艺,将P型半导体和N型半导体紧密地结合在一起,在两种半导体的交界处就会产生一个特殊的接触面,称之为PN结。

(2)、那么PN结是怎样形成的呢?

扩散运动:指电子和空穴从浓度高的地方向浓度低的地方运动。

复合:电子与空穴结合后同时消失的过程。

漂移运动:半导体中的少数载流子在电场力的作用下的运动。

空间电荷区:由于扩散运动使电子与空穴复合以后,在P 区与N区的交界面处留下不能移动带正电和带负电的离子的区域,称为空间电荷区,这就是PN结,在空间电荷区中不再存在载流子,因此PN结又叫耗尽层。

2、PN结的单向导电性

(1)、外加正向电压时,PN结导通(2)、外加反向电压时,PN结截止

(整理)半导体基础知识.

1.1 半导体基础知识概念归纳 本征半导体定义:纯净的具有晶体结构的半导体称为本征半导体。 电流形成过程:自由电子在外电场的作用下产生定向移动形成电流。 绝缘体原子结构:最外层电子受原子核束缚力很强,很难成为自由电子。 绝缘体导电性:极差。如惰性气体和橡胶。 半导体原子结构:半导体材料为四价元素,它们的最外层电子既不像导体那么容易挣脱原子核的束缚,也不像绝缘体那样被原子核束缚得那么紧。 半导体导电性能:介于半导体与绝缘体之间。 半导体的特点: ★在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。 ★在光照和热辐射条件下,其导电性有明显的变化。 晶格:晶体中的原子在空间形成排列整齐的点阵,称为晶格。 共价键结构:相邻的两个原子的一对最外层电子(即价电子)不但各自围绕自身所属的原子核运动,而且出现在相邻原子所属的轨道上,成为共用电子,构成共价键。 自由电子的形成:在常温下,少数的价电子由于热运动获得足够的能量,挣脱共价键的束缚变成为自由电子。 空穴:价电子挣脱共价键的束缚变成为自由电子而留下一个空位置称空穴。 电子电流:在外加电场的作用下,自由电子产生定向移动,形成电子电流。 空穴电流:价电子按一定的方向依次填补空穴(即空穴也产生定向移动),形成空穴电流。 本征半导体的电流:电子电流+空穴电流。自由电子和空穴所带电荷极性不同,它们运动方向相反。 载流子:运载电荷的粒子称为载流子。 导体电的特点:导体导电只有一种载流子,即自由电子导电。 本征半导体电的特点:本征半导体有两种载流子,即自由电子和空穴均参与导电。 本征激发:半导体在热激发下产生自由电子和空穴的现象称为本征激发。 复合:自由电子在运动的过程中如果与空穴相遇就会填补空穴,

半导体基础知识学习

我们知道,电子电路是由晶体管组成,而晶体管是由半导体制成的。所以我们在学习电子电路之前, 一定要了解半导体的一些基本知识。 这一章我们主要学习二极管和三极管的一些基本知识,它是本课程的基础,我们要掌握好在学习时我们把它的内容分为三节,它们分别是: 1、1 半导体的基础知识 1、2 PN结 1、3 半导体三极管 1、1 半导体的基础知识 我们这一章要了解的概念有:本征半导体、P型半导体、N型半导体及它们各自的特征。一:本征半导体 纯净晶体结构的半导体我们称之为本征半导体。常用的半导体材料有:硅和锗。它们都是四价元素,原子结构的最外层轨道上有四个价电子,当把硅或锗制成晶体时,它们是靠共价键的作用而紧密联系在一起。 共价键中的一些价电子由于热运动获得一些能量,从而摆脱共价键的约束成为自由电子,同时在共价键上留下空位,我们称这些空位为空穴,它带正电。我们用晶体结构示意图来描述一下;如图(1)所示:图中的虚线代表共价键。 在外电场作用下,自由电子产生定向移动,形成电子电流; 同时价电子也按一定的方向一次填补空穴,从而使空穴产生定向移动,形成空穴电流。 因此,在晶体中存在两种载流子,即带负电自由电子和带正电空穴,它们是成对出现的。二:杂质半导体 在本征半导体中两种载流子的浓度很低,因此导电性很差。我们向晶体中有控制的掺入特定的杂质来改变它的导电性,这种半导体被称为杂质半导体。 1.N型半导体 在本征半导体中,掺入5价元素,使晶体中某些原子被杂质原子所代替,因为杂质原子最外层有5各价电子,它与周围原子形成共价键后,还多余一个自由电子,因此使其中的空穴的浓度远小于自由电子的浓度。但是,电子的浓度与空穴的浓度的乘积是一个常数,与掺杂无关。在N型半导体中自由电子是多数载流子,空穴是少数载流子。 2.P型半导体 在本征半导体中,掺入3价元素,晶体中的某些原子被杂质原子代替,但是杂质原子的最外层只有3个价电子,它与周围的原子形成共价键后,还多余一个空穴,因此使其中的空穴浓度远大于自由电子的浓度。在P型半导体中,自由电子是少数载流子,空穴使多数载流子。 1、2 P—N结

第一章半导体基础知识(精)

第一章半导体基础知识 〖本章主要内容〗 本章重点讲述半导体器件的结构原理、外特性、主要参数及其物理意义,工作状态或工作区的分析。 首先介绍构成PN结的半导体材料、PN结的形成及其特点。其后介绍二极管、稳压管的伏安特性、电路模型和主要参数以及应用举例。然后介绍两种三极管(BJT和FET)的结构原理、伏安特性、主要参数以及工作区的判断分析方法。〖本章学时分配〗 本章分为4讲,每讲2学时。 第一讲常用半导体器件 一、主要内容 1、半导体及其导电性能 根据物体的导电能力的不同,电工材料可分为三类:导体、半导体和绝缘体。半导体可以定义为导电性能介于导体和绝缘体之间的电工材料,半导体的电阻率为10-3~10-9 cm。典型的半导体有硅Si和锗Ge以及砷化镓GaAs等。半导体的导电能力在不同的条件下有很大的差别:当受外界热和光的作用时,它的导电能力明显变化;往纯净的半导体中掺入某些特定的杂质元素时,会使它的导电能力具有可控性;这些特殊的性质决定了半导体可以制成各种器件。 2、本征半导体的结构及其导电性能 本征半导体是纯净的、没有结构缺陷的半导体单晶。制造半导体器件的半导体材料的纯度要达到99.9999999%,常称为“九个9”,它在物理结构上为共价键、呈单晶体形态。在热力学温度零度和没有外界激发时,本征半导体不导电。 3、半导体的本征激发与复合现象 当导体处于热力学温度0 K时,导体中没有自由电子。当温度升高或受到光的照射时,价电子能量增高,有的价电子可以挣脱原子核的束缚而参与导电,成为自由电子。这一现象称为本征激发(也称热激发)。因热激发而出现的自由电子和空穴是同时成对出现的,称为电子空穴对。 游离的部分自由电子也可能回到空穴中去,称为复合。 在一定温度下本征激发和复合会达到动态平衡,此时,载流子浓度一定,且自由电子数和空穴数相等。 4、半导体的导电机理 自由电子的定向运动形成了电子电流,空穴的定向运动也可形成空穴电流,因此,在半导体中有自由电子和空穴两种承载电流的粒子(即载流子),这是半导体的特殊性质。空穴导电的实质是:相邻原子中的价电子(共价键中的束缚电子)依次填补空穴而形成电流。由于电子带负电,而电子的运动与空穴的运动方向相反,因此认为空穴带正电。

半导体物理与器件基础知识

9金属半导体与半导体异质结 一、肖特基势垒二极管 欧姆接触:通过金属-半导体的接触实现的连接。接触电阻很低。 金属与半导体接触时,在未接触时,半导体的费米能级高于金属的费米能级,接触后,半导体的电子流向金属,使得金属的费米能级上升。之间形成势垒为肖特基势垒。 在金属与半导体接触处,场强达到最大值,由于金属中场强为零,所以在金属——半导体结的金属区中存在表面负电荷。 影响肖特基势垒高度的非理想因素:肖特基效应的影响,即势垒的镜像力降低效应。金属中的电子镜像到半导体中的空穴使得半导体的费米能级程下降曲线。附图:

电流——电压关系:金属半导体结中的电流运输机制不同于pn结的少数载流子的扩散运动决定电流,而是取决于多数载流子通过热电子发射跃迁过内建电势差形成。附肖特基势垒二极管加反偏电压时的I-V曲线:反向电流随反偏电压增大而增大是由于势垒降低的影响。 肖特基势垒二极管与Pn结二极管的比较:1.反向饱和电流密度(同上),有效开启电压低于Pn结二极管的有效开启电压。2.开关特性肖特基二极管更好。应为肖特基二极管是一个多子导电器件,加正向偏压时不会产生扩散电容。从正偏到反偏时也不存在像Pn结器件的少数载流子存储效应。 二、金属-半导体的欧姆接触

附金属分别与N型p型半导体接触的能带示意图 三、异质结:两种不同的半导体形成一个结 小结:1.当在金属与半导体之间加一个正向电压时,半导体与金属之间的势垒高度降低,电子很容易从半导体流向金属,称为热电子发射。

2.肖特基二极管的反向饱和电流比pn结的大,因此达到相同电流时,肖特基二极管所需的反偏电压要低。 10双极型晶体管 双极型晶体管有三个掺杂不同的扩散区和两个Pn结,两个结很近所以之间可以互相作用。之所以成为双极型晶体管,是应为这种器件中包含电子和空穴两种极性不同的载流子运动。 一、工作原理 附npn型和pnp型的结构图 发射区掺杂浓度最高,集电区掺杂浓度最低

晶体管PN结原理解释

PN结的定义: 在一块本征半导体中,掺以不同的杂质,使其一边成为P型,另一边成为N型,在P区和N区的交界面处就形成了一个PN结。 PN结的形成 (1)当P型半导体和N型半导体结合在一起时,由于交界面处存在载流子浓度的差异,这样电子和空穴都要从浓度高的地方向浓度低的地方扩散。但是,电子和空穴都是带电的,它们扩散的结果就使P区和N区中原来的电中性条件破坏了。P区一侧因失去空穴而留下不能移动的负离子,N区一侧因失去电子而留下不能移动的正离子。这些不能移动的带电粒子通常称为空间电荷,它们集中在P区和N区交界面附近,形成了一个很薄的空间电荷区,这就是我们所说的PN结,如图1所示。 (2)在这个区域内,多数载流子或已扩散到对方,或被对方扩散过来的多数载流子(到了本区域后即成为少数载流子了)复合掉了,即多数载流子被消耗尽了,所以又称此区域为耗 尽层,它的电阻率很高,为高电阻区。 (3)P区一侧呈现负电荷,N区一侧呈现正电荷,因此空间电荷区出现了方向由N区指向P区的电场,由于这个电场是载流子扩散运动形成的,而不是外加电压形成的,故称为内 电场,如图2所示。

(4)内电场是由多子的扩散运动引起的,伴随着它的建立将带来两种影响:一是内电场将阻碍多子的扩散,二是P区和N区的少子一旦靠近PN结,便在内电场的作用下漂移到 对方,使空间电荷区变窄。 (5)因此,扩散运动使空间电荷区加宽,内电场增强,有利于少子的漂移而不利于多子的扩散;而漂移运动使空间电荷区变窄,内电场减弱,有利于多子的扩散而不利于少子的漂移。当扩散运动和漂移运动达到动态平衡时,交界面形成稳定的空间电荷区,即PN结处于 动态平衡。PN结的宽度一般为0.5um。 PN结的单向导电性 PN结在未加外加电压时,扩散运动与漂移运动处于动态平衡,通过PN结的电流为零。 (1)外加正向电压(正偏) 当电源正极接P区,负极接N区时,称为给pN结加正向电压或正向偏置,如图3所示。由于PN结是高阻区,而P区和N区的电阻很小,所以正向电压几乎全部加在PN结两端。在PN结上产生一个外电场,其方向与内电场相反,在它的推动下,N区的电子要向左边扩散,并与原来空间电荷区的正离子中和,使空间电荷区变窄。同样,P区的空穴也要向右边扩散,并与原来空间电荷区的负离子中和,使空间电荷区变窄。结果使内电场减弱,破坏了PN结原有的动态平衡。于是扩散运动超过了漂移运动,扩散又继续进行。与此同时,电源不断向P区补充正电荷,向N区补充负电荷,结果在电路中形成了较大的正向电流IF。而 且IF随着正向电压的增大而增大。

半导体物理---PN结习题

PN 结作业题 1、 For a silicon step pn junction, the n side has a net doping of 183210D N cm -=? and the p side has a net doping of 153510A N cm -=?. (1) Find the junction width. (2) Find the widths of the n side of the depletion region and the p side of the depletion region . (3) What is the built-in voltage? 2、 对GaAs 材料突变PN 结,完成第1题给出的计算要求。 3、(1) 如果PN 结的N 区长度远大于L p , P 区长度为W p , 而且P 区引出端处少数 载流子电子的边界浓度一直保持为0,请采用理想模型推导该PN 结电流-电压关系式的表达形式(采用双曲函数表示) (2) 若P 区长度远小于n L ,该PN 结电流-电压关系式的表达形式将简化为什么形式? (3) 若P 区长度远小于n L ,由上述(2)的结果推导PN 结总电流中()n p I x -和 ()p n I x 这两个电流分量之比的表达式? (4) 如果希望提高比值()/()n p p n I x I x -, 应该如何调整掺杂浓度A N 和D N 的大小? 提示: 两个区域可以分别采用两个坐标系,将坐标原点分别位于势垒区两个边界处,可以大大简化推导过程中的表达式 4. 已知描述二极管直流特性的三个电流参数是S I =1410-A 、SR I =1110-A 、KF I =0.1A 。请采用半对数坐标纸,绘制正偏情况下理想模型电流,势垒区复合电流和特大注入电流这三种电流表达式的I -V 曲线,并在此基础上绘制实际二极管电流随电压变化的曲线。 (提示:特大注入条件下,?? ? ??=KT eVa I I I 2exp KF S ) 5、A one-side step n p +junction diode with 17310a N cm -= and 19310d N cm -=has a junction area of 2100m μ. It is known that, for the minority carrier, 6310n s τ-=?, 220/n D cm s = (1) Please compare the junction capacitance and the diffusion capacitance under reverse bias (5a V V =-) (2) Compare the junction capacitance and the diffusion capacitance under forward bias (0.75a V V =+)

半导体基础知识培训课件

外延基础知识 一、基本概念 能级:电子是不连续的,其值主要由主量子数N决定,每一确定能量值称为一个能级。 能带:大量孤立原子结合成晶体后,周期场中电子能量状态出现新特点:孤立原子原来一个能级将分裂成大量密集的能级,构成一相应的能带。(晶体中电子能量状态可用能带描述) 导带:对未填满电子的能带,能带中电子在外场作用下,将参与导电,形成宏观电流,这样的能带称为导带。价带:由价电子能级分裂形成的能带,称为价带。(价带可能是满带,也可能是电子未填满的能带) 直接带隙:导带底和价带顶位于K空间同一位置。 间接带隙:导带底和价带顶位于K空间不同位置。 同质结:组成PN结的P型区和N型区是同种材料。(如红黄光中的:GaAs上生长GaAs,蓝绿光中:U(undope)-GaN上生长N(dope)- GaN) 异质结:两种晶体结构相同,晶格常数相近,但带隙宽度不同的半导体材料生长在一起形成的结,称为异质结。(如蓝绿光中:GaN上生长Al GaN) 超晶格(superlatic):由两种或两种以上组分不同或导电类型各异的超薄层(相邻势阱内电子波函数发生交迭)的材料,交替生长形成的人工周期性结构,称为超晶格材料。 量子阱(QW):通常把势垒较厚,以致于相邻电子波函数不发生交迭的周期性结构,称为量子阱(它是超晶格的一种)。 二、半导体 1.分类:元素半导体:Si 、Ge 化合物半导体:GaAs、InP、GaN(Ⅲ-Ⅴ)、ZnSe(Ⅱ-Ⅵ)、SiC 2.化合物半导体优点: a.调节材料组分易形成直接带隙材料,有高的光电转换效率。(光电器件一般选用直接带隙材料) b.高电子迁移率。 c.可制成异质结,进行能带裁减,易形成新器件。 3.半导体杂质和缺陷 杂质:替位式杂质(有效掺杂) 间隙式杂质 缺陷:点缺陷:如空位、间隙原子 线缺陷:如位错 面缺陷:(即立方密积结构里夹杂着少量六角密积)如层错 4.外延技术 LPE:液相外延,生长速率快,产量大,但晶体生长难以精确控制。(普亮LED常用此生长方法) MOCVD(也称MOVPE):Metal Organic Chemical Vapour Deposition金属有机汽相淀积,精确控制晶体生长,重复性好,产量大,适合工业化大生产。 HVPE:氢化物汽相外延,是近几年在MOCVD基础上发展起来的,适应于Ⅲ-Ⅴ氮化物半导体薄膜和超晶格外延生长的一种新技术。生长速率快,但晶格质量较差。 MBE:分子束外延,可精确控制晶体生长,生长出的晶体异常光滑,晶格质量非常好,但生长速率慢,难以用于工业化大生产。 三、MOCVD设备 1.发展史:国际上起源于80年代初,我国在80年代中(85年)。 国际上发展特点:专业化分工,我国发展特点:小而全,小作坊式。 技术条件:a.MO源:难合成,操作困难。 b.设备控制精度:流量及压力控制 c.反应室设计:Vecco:高速旋转 Aixtron:气浮式旋转

一个PN结构成晶体二极管的原理

一个PN结构成晶体二极管的原理 一个PN结构成晶体二极管的原理 P性半导体和N型半导体----前面讲过,在纯净的半导体中加入一定类型的微量杂质,能使半导体的导电能力成百万倍的增加。加入了杂质的半导体可以分为两种类型:一种杂质加到半导体中去后,在半导体中会产生大量的带负电荷的自由电子,这种半导体叫做“N型半导体”(也叫“电子型半导体”);另一种杂质加到半导体中后,会产生大量带正电荷的“空穴”,这种半导体叫“P型半导体”(也叫“空穴型半导体”)。例如,在纯净的半导体锗中,加入微量的杂质锑,就能形成N型半导体。同样,如果在纯净的锗中,加入微量的杂质铟,就形成P型半导体。 一个PN结构成晶体二极管----设法把P型半导体(有大量的带正电荷的空穴)和N型半导体(有大量的带负电荷的自由电子)结合在一起,见图1所示。 图1 在P型半导体的N型半导体相结合的地方,就会形成一个特殊的薄层,这个特殊的薄层就叫“PN结”。晶体二极管实际上就是由一个PN结构成的(见图1)。 例如,收音机中应用的晶体二极管,其触丝(即触针)部分相当于P型半导体,N型锗片就是N型半导体,他们之间的接触面就是PN结。P端(或P端引出线)叫晶体二极管的正端(也称正极)。N端(或N端引出线)叫晶体二极管的负端(也称负极)。 如果像图2那样,把正端连接电池的正极,把负端接电池的负极,这是PN结的电阻值就小到只有几百欧姆了。因此,通过PN结的电流(I=U/R)就很大。这样的连接方法(图2a)叫“正向连接”。正向连接时,晶体管二极管(或PN结)两端承受的电压叫“正向电压”;处在正向电压下,二极管(或PN结)的电阻叫“正向电阻”,在正向电压下,通过二极管(或PN结)的电流叫“正向电流”。很明显,因为晶体二极管的正向电阻很小(几百欧姆),在一定正向电压下,正向电流(I=U/R)就会很大----这表明在正向电压下,二极管(或PN 结)具有像导体一样的导电本领。

半导体基础知识

一.名词解释: 1..什么是半导体?半导体具有那些特性? 导电性介于导体与绝缘体之间的物质称为半导体 热敏性:导电能力受温度影响大,当环境温度升高时,其导电能力增强。可制作热敏元件。 光敏性:导电能力受光照影响大,当光照增强时候,导电能力增强。可制作光敏元件。 掺杂性:导电能力受杂质影响极大,称为掺杂性。 2.典型的半导体是SI和Ge , 它们都是四价元素。Si是一种化学元素,在地壳中含量仅次于氧,其核外电子排布是?。 3.半导体材料中有两种载流子,电子和空穴。电子带负电,空穴带正电,在纯净半导体中掺入不同杂质可得到P型和N型半导体,常见P型半导体的掺杂元素为硼,N型半导体的掺杂元素为磷。P型半导体主要空穴导电,N型半导体主要靠电子导电。 4. 导体:导电性能良好,其外层电子在外电场作用下很容易产生定向移动,形成电流,常见的导体有铁,铝,铜等低价金属元素。 5.绝缘体:一般情况下不导电,其原子的最外层电子受原子核束缚很强,只有当外电场达到一定程度才可导电。惰性气体,橡胶等。 6.半导体:一般情况下不导电,但在外界因素刺激下可以导电,例如强电场或强光照射。 其原子的最外层电子受原子核的束缚力介于导体和绝缘体之间。Si,Ge等四价元素。 7. 本征半导体:无杂质的具有稳定结构的半导体。 8晶体:由完全相同的原子,分子或原子团在空间有规律的周期性排列构成的有一定几何形状的固体材料,构成晶体的完全相同的原子,分子,原子团称为基元。 9.晶体结构:简单立方,体心立方,面心立方,六角密积,NACL结构,CSCL结构,金刚石结构。 10.七大晶系:三斜,单斜,正交,四角,六角,三角,立方。 11.酸腐蚀和碱腐蚀的化学反应方程式: SI+4HNO3+HF=SIF4+4NO2+4H2O SI+2NaOH+H2O=Na2SiO3+2H2 12.自然界的物质,可分为晶体和非晶体两大类。常见的晶体有硅,锗,铜,铅等。常见的非晶体有玻璃,塑料,松香等。晶体和非晶体可以从三个方面来区分:1.晶体有规则的外形 2.晶体具有一定的熔点 3.晶体各向异性。 13.晶胞:晶体中有无限在空间按一定规律分布的格点,叫空间点阵。组成空间点阵最基本的单元叫晶胞。晶胞具有很多晶体的性质,很多晶胞在空间重复排列起来就得到整个晶体。不同的晶体,晶胞的形状不同。 14.根据缺陷相对晶体尺寸或影响范围大小,可分为以下几类: A:点缺陷 B:线缺陷 C:面缺陷 D:体缺陷 15.位错:一种晶体缺陷。晶体的位错是围绕着一条很长的线,在一定范围内原子都发生规律的错动,离开它原来的平衡位置,叫位错。 16. CZ 法生长单晶工艺过程: 装炉-融化-引晶-缩细颈-转肩-放肩-等径生长-收尾-停炉 A装炉:将腐蚀好的籽晶装入籽晶夹头,装正,装好,装牢。将清理干净的石墨器件装入单晶炉,调整石墨器件位置,使加热器,保温罩,石墨托碗保持同心。

半导体基础知识

半导体基础知识 Prepared on 24 November 2020

一.名词解释: 1..什么是半导体半导体具有那些特性 导电性介于导体与绝缘体之间的物质称为半导体 热敏性:导电能力受温度影响大,当环境温度升高时,其导电能力增强。可制作热敏元件。 光敏性:导电能力受光照影响大,当光照增强时候,导电能力增强。可制作光敏元件。 掺杂性:导电能力受杂质影响极大,称为掺杂性。 2.典型的半导体是SI和Ge , 它们都是四价元素。Si是一种化学元素,在地壳中含量仅次于氧,其核外电子排布是。 3.半导体材料中有两种载流子,电子和空穴。电子带负电,空穴带正电,在纯净半导体中掺入不同杂质可得到P型和N型半导体,常见P型半导体的掺杂元素为硼,N型半导体的掺杂元素为磷。P型半导体主要空穴导电, N型半导体主要靠电子导电。 4. 导体:导电性能良好,其外层电子在外电场作用下很容易产生定向移动,形成电流,常见的导体有铁,铝,铜等低价金属元素。 5.绝缘体:一般情况下不导电,其原子的最外层电子受原子核束缚很强,只有当外电场达到一定程度才可导电。惰性气体,橡胶等。 6.半导体:一般情况下不导电,但在外界因素刺激下可以导电,例如强电场或强光照射。 其原子的最外层电子受原子核的束缚力介于导体和绝缘体之间。Si,Ge等四价元素。

7. 本征半导体:无杂质的具有稳定结构的半导体。 8晶体:由完全相同的原子,分子或原子团在空间有规律的周期性排列构成的有一定几何形状的固体材料,构成晶体的完全相同的原子,分子,原子团称为基元。 9.晶体结构:简单立方,体心立方,面心立方,六角密积, NACL结构,CSCL结构,金刚石结构。 10.七大晶系:三斜,单斜,正交,四角,六角,三角,立方。 11.酸腐蚀和碱腐蚀的化学反应方程式: SI+4HNO3+HF=SIF4+4NO2+4H2O SI+2NaOH+H2O=Na2SiO3+2H2 12.自然界的物质,可分为晶体和非晶体两大类。常见的晶体有硅,锗,铜,铅等。常见的非晶体有玻璃,塑料,松香等。晶体和非晶体可以从三个方面来区分:1.晶体有规则的外形 2.晶体具有一定的熔点 3.晶体各向异性。 13.晶胞:晶体中有无限在空间按一定规律分布的格点,叫空间点阵。组成空间点阵最基本的单元叫晶胞。晶胞具有很多晶体的性质,很多晶胞在空间重复排列起来就得到整个晶体。不同的晶体,晶胞的形状不同。 14.根据缺陷相对晶体尺寸或影响范围大小,可分为以下几类: A:点缺陷 B:线缺陷 C:面缺陷 D:体缺陷 15.位错:一种晶体缺陷。晶体的位错是围绕着一条很长的线,在一定范围内原子都发生规律的错动,离开它原来的平衡位置,叫位错。

半导体硅材料基础知识1

半导体硅材料基础知识1

半导体硅材料基础知识讲座 培训大纲 什么是半导体? 导体(Conductor) 导体是指很容易传导电流的物质 绝缘体(Insolator) 是指极不容易或根本不导电的一类物质 半导体(Semiconductor) 导电性能介于导体和绝缘体之间且具备半导体的基本特性的一类材料。 半导体硅材料的电性能特点 硅材料的电性能有以下三个显著特点: 一是它对温度的变化十分灵敏; 二是微量杂质的存在对电阻率的影响十分显著;三是半导体材料的电阻率在受光照时会改变其数值的大小。 综上所述,半导体的电阻率数值对温度、杂质和光照三个外部条件变化有较高的敏感性。 半导体材料的分类 元素半导体

目前全世界多晶硅的生产方法大体有三种:一是 改良的西门子法;二是硅烷法;三是粒状硅法。 改良的西门子法生产半导体级多晶硅: 这是目前全球大多数多晶硅生产企业采用的方 法,知名的企业有美国的Harmlock、日本的TOKUYAMA、三菱公司、德国的瓦克公司以及乌克 兰和MEMC意大利的多晶硅厂。全球80%以上的 多晶硅是用此法生产的。其工艺流程是: 原料硅破碎筛分 (80目)沸腾氯化制成液态的SiHCl3 粗馏提纯精馏 提纯氢还原棒状多晶硅 破碎洁净分装。 经验上,新建设一座多晶硅厂需要30 —36个月时间,而老厂扩建生产线也需要大约 14—18个月时间,新建一座千吨级的多晶硅厂 大约需要10—12亿元人民币,也就是说每吨的 投资在100万元人民币以上。 硅烷法生产多晶硅 用硅烷法生产多晶硅的工厂仅有日本的小松和 美国的ASMY两家公司,其工艺流程是: 原料破碎筛分硅烷生成沉

半导体基础知识

1.1半导体基础知识 一、判断下列说法是否正确,用“√”和“×”表示判断结果填入空内。 1. 在P 型半导体中如果掺入足够量的五价元素,可将其改型为N 型半导体。 ( ) 2. 因为N 型半导体的多子是自由电子,所以它带负电。( ) 3. PN 结在无光照、无外加电压时,结电流为零。( ) 4. P 型半导体中只有一种载流子----空穴。( ) 5. N 型半导体中只有一种载流子----电子。( ) 6. 本征半导体中两种载流子的浓度相等。( ) 7. PN 结具有单向导电性。( ) 8. 本征半导体中载流子的浓度随温度的升高而减少。( )错 二、选择正确答案填入空内。 1. PN 结加正向电压时,空间电荷区将 。 A. 变窄 B. 基本不变 C. 变宽 D.不能确定 2. PN 结加反向电压时,空间电荷区将 。 A. 变窄 B. 基本不变 C. 变宽 D.不能确定 3. 设PN 结的端电压为U ,则PN 的电流方程是 。 A. I S e U B. T U U I e S C. T U U I e S -1 D. )1e (S -T U U I 4. 在本征半导体中加入 元素可形成N 型半导体。 A. 四价 B. 五价 C. 三价 D. 二价 5. 在本征半导体中加入 元素可形成P 型半导体。 A. 五价 B. 四价 C. 三价 D. 二价 6. 当温度升高时,二极管的反向饱和电流将 。 A. 增大 B. 不变 C. 减小 D.不一定 7. 当温度降低时,二极管的反向饱和电流将 。 A. 增大 B. 不变 C. 减小 D.不一定 8. 杂质半导体中 的浓度受温度的影响较大。 A.多子 B. 少子 C. 电子 D.空穴 9. N 型半导体中电子的浓度 空穴的浓度。 A.大于 B. 等于 C. 小于 D.大于或等于 10. 本征半导体中电子的浓度 空穴的浓度。 A.大于 B. 大于或等于 C. 小于 D.等于 三、填空题 1. 纯净的具有晶体结构的半导体称为 半导体。 2. 不同于导体导电,半导体内部有 和 共同参与导电。 3. P 型半导体中的多子为 。 4. PN 结的形成过程中,由于浓度差而引起的载流子的运动称为 运动;在 内电场力的作用下,少子进行 运动。上述两种运动达到 平衡时,PN 结形成。 5. PN 结外加 电压时处于导通状态,PN 结外加 电压时处于截止状态, 此即PN 结的 性。

半导体物理学[第六章pn结]课程复习(精)

山东大学《半导体物理》期末复习知识点 第六章 pn结 6.1 理论概要与重点分析 (1)pn结是将同种半导体材料的n型和p型两部分紧密结合在一起,在交界处形成一个结,即称为pn结。为使性能优越,一般采用合金法、扩散法、外延生长法和离子注入法等,改变其掺杂性质来实现这种“紧密接触”的。pn结是重要半导体器件,如结型晶体管及其相应的集成电路的工作核心。 设两种杂质的交界面为xj,如果 杂质有一个较宽的补偿过度阶段,为缓变结,较深的扩散法一般属此种情况。(2)由于在结的两边两种载流子相差悬殊而发生扩散。n区中的电子流入p区,在结附近留下不可以移动的电离施主;同样p区中的空穴流入n区在结的附近留下不可移动的电离受主,形成一个n区为正,p区为负的电偶极层,产生由n区指向p区的自建电场,此电场的作用是阻止载流子进一步相互扩散。或者说产生了一个与扩散相反的载流子漂移,当两者达到平衡时,载流子通过结的净流动为零,达到平衡。建立起一个稳定的空间电荷区和一个稳定的自建电场。n型的一边带正电,电动势高;p型一边带负电,电势低,所产生电动势差称为pn结接触电动势差。这个电动势差对n型区的电子和p型区的空穴各自向对方,运动都形成势垒,使整个结构在结区形成能带弯曲,其弯曲的高度称为势垒高度,它恰恰补偿了原来两边半导体中费米能级的高度差,使两边达到等高的统一费米能级。山东大学《半导体物理》期末复习知识点 (3)pn结上加正向电压V(p型一端接正,n型一端接负)时,外加电压电场与内建电场的方向相反,使内建电场减弱,势垒区变窄,势垒高度由平衡时的q VD变

为q(VD-V)。两区的费米能级分开为EnF-EpF=qV这时由内建电场引起载流子的漂 移减弱,扩散相对增强。于是有一个净的扩散电流从p区通过结流入n区,这便是pn结的正向电流。随外加电压V的增加,势垒高度越来越小,载流子漂移越来越小,扩散进一步增加。因此随外加正向电压的增加,正向电流迅速增大。在pn结上加反向电压(p型一端接负,n型一端接正)时,其外加电场方向与自建电场的方向相同,使势垒由平衡时的q VD增高为q(VD+V),势垒区宽度变宽, 减少了多子的相互扩散,增加了少子的漂移。因此形成了一个由n区流向p区的净电流,称之为反向电流。但因少子的浓度低,而且只有扩散到势垒边界的少子才能被势垒区的强电场拉向另一边。所以反向电流很小,而且不随外加反向电压的增加而增加,达到饱和,因此称之为反向饱和电流。 这就定性地说明了pn结的整流效应。 (4)要推导出pn结的电流电压关系,可按下面的思路得到。 在外加偏压V下(暂时设其为正偏),pn结势垒区的自建电场减弱,使p区和n区有少子的净注入,n区的电子注入p区变成p区的少子,p区的空穴注入n区,成为n区的少子,而积累在势垒区的边界。由于内部少子浓度比边界低,因此它们会从注入的边界向各自内部扩散。在忽略掉势垒区载流子的复合、产生和小注入的条件下,解两边少数载流子的稳态扩散方程,分别求出电压为V时,在势垒边界xn和(-xp)处空穴和电子的扩散电流密度,两者相加,即得到通过pn 山东大学《半导体物理》期末复习知识点

PN结及半导体基础知识

什么是PN结及半导体基础知识 在我们的日常生活中,经常看到或用到各种各样的物体,它们的性质是各不相同的。有些物体,如钢、银、铝、铁等,具有良好的导电性能,我们称它们为导体。相反,有些物体如玻璃、橡皮和塑料等不易导电,我们称它们为绝缘休(或非导体)。还有一些物体,如锗、硅、砷化稼及大多数的金属氧化物和金属硫化物,它们既不象导体那样容易导屯,也不象绝缘体那样不易导电,而是介于导体和绝缘体之间,我们把它们叫做半导体。绝大多数半导体都是晶体,它们内部的原子都按照一定的规律排列着。因此,人们往往又把半导体材料称为晶体,这也就是晶体管名称的由来(意思是用晶体材料做的管子)。 物体的导电性能常用电阻率来表示。所谓电阻率,就是某种物体单位长度及单位截面积的体积内的电阻值。电阻率越小,越容易导电;反之,电阻率越大,越难导电。 导体、绝缘体的电阻率值随温度的影响而变化很小。但温度变化时,半导体的电阻率变化却很激烈;每升高1℃,它的电阻率下降达百分之几到百分之几十。不仅如此,当温度较高时,整体电阻甚至下降到很小,以致变成和导体一样。 在金属或绝缘体中,如果杂质含量不超过干分之一,它的电阻率变化是微不足道的。但半导体中含有杂质时对它的影响却很大。以锗为例,只要含杂质一千万分之一,电阻率就下降到原来的十六分之一。 锗是典型的半导体元素,是制造晶体管的一种常用材料(注:当前的半导体元器件生产以硅Silicon材料为主)。现以锗为例来说明如何会在半导体内产生电流、整流性能和放大性能 我们知道,世界上的任何物质都是由原了构成的。原子中间都有一个原子核和者围绕原子核不停地旋转酌电子。不同元素的原子所包含的电子数目是不同的。蔗原子的原子核周围有32个电子,围绕着原子核运动。原子核带有正电荷.电子带有负电荷;正电荷的数量刚好和全部电子的负电荷数量相等,所以在平时锗原子是中性的。 电子围绕原子核运动,和地球围绕太阳远行相似。在核的引力作用下,电子分成几层按完全确定的轨道运行,而且各层所能容纳的电子数日也有一定规律。如图所示:在锗原子核周围的32个电子组成四层环,围绕原子核运动。从里往外数,第一层环上有2个电子,其余依次为8、18、4个电子。凡是环上的电子数为2、8、18时.这些环上的电子总是比较稳定的。若环上的电子数不等于以上各数时,这些环上的电子总是不太稳定。 因此,锗原子结构中,第一、二、三层的电于是稳定的,只有第四层(即最外一“层)的4个电于是不稳定的。因最

二极管的PN结介绍

二极管的PN结介绍 纯净半导体中掺入微量的杂质元素,形成的半导体称为杂质半导体。半导体根据掺入的杂质元素的不同,可以分为P 型半导体和N 型半导体。二极管有PN 结,采用不同的掺杂工艺,通过扩散作用,将P 型半导体和N 型半导体制作在同一块半导体基片上,在它们的交界处形成空间电荷区称之为PN 结,PN 结具有单向导电性。 PN 结形成 当把P 型半导体和N 型半导体制作在一起时,在它们的交界面处,由于两种半导体多数载流子的浓度差很大,因此P 区的空穴会向N 区扩散,同时,N 区的自由电子也会向P 区扩散,如图1 所示。图中虚线箭头表示P 区中空穴的移动方向,实线箭头表示N 区中自由电子的移动方向。 图1 P 区与N 区中多数载流子的扩散运动 扩散到P 区的自由电子遇到空穴会复合,扩散到N 区的空穴与自由电子也会复合,所以在交界面处多子的浓度会下降,P 区出现负离子区,N 区出现正离子区,称为空间电荷区。出现空间电荷区以后,由于正负电荷之间的相互作用,在空间电荷区会形成一个电场,电场方向由带正电的N 区指向带负电的P 区。由于这个电场是由载流子扩散运动(即内部运动)形成的,而不是外加电压 形成的,故称为内电场。随着扩散运动的进行,空间电荷区会加宽,内电场增强,其方向正好阻止了P 区中的多子空穴和N 区中的多子自由电子的扩散。 在内电场电场力的作用下,P 区的少子自由电子会向N 区漂移,N 区的少子空穴也会向P 区漂移。漂移运动的方向正好与扩散运动的方向相反。从N 区漂移到P 区的空穴补充了原来交界面上P 区失去的空穴,而从P 区漂移到N 区的自由电子补充了原来交界面上N 区所失去的自由电子,这就使得空间电荷变

半导体基础知识说课讲解

半导体基础知识

半导体基础知识(详细篇) 2.1.1 概念 根据物体导电能力(电阻率)的不同,来划分导体、绝缘体和半导体。 1. 导体:容易导电的物体。如:铁、铜等 2. 绝缘体:几乎不导电的物体。如:橡胶等 3. 半导体:半导体是导电性能介于导体和半导体之间的物体。在一定条件下可导电。半导体的电阻率为10-3~109 Ω·cm。典型的半导体有硅Si和锗Ge以及砷化镓GaAs 等。 半导体特点: 1) 在外界能源的作用下,导电性能显著变化。光敏元件、热敏元件属于此类。 2) 在纯净半导体内掺入杂质,导电性能显著增加。二极管、三极管属于此类。 2.1.2 本征半导体

1.本征半导体——化学成分纯净的半导体。制造半导体器件的半导体材料的纯度要达到99.9999999%,常称为“九个9”。它在物理结构上呈单晶体形态。电子技术中用的最多的是硅和锗。 硅和锗都是4价元素,它们的外层电子都是4个。其简化原子结构模型如下图: 外层电子受原子核的束缚力最小,成为价电子。物质的性质是由价电子决定的。 外层电子受原子核的 束缚力最小,成为价电 子。物质的性质是由价电 子决定的。 2.本征半导体的共价键结构 本征晶体中各原子之间靠得很近,使原分属于各原子的四个价电子同时受到相邻原子的吸引,分别与周围的四个原子的价电子形成共价键。共价键中的价电子为这些原

子所共有,并为它们所束缚,在空间形成排列有序的晶体。如下图所示: 硅晶体的空间排列与共价键结构平面示意图 3.共价键 共价键上的两个电子是由相 邻原子各用一个电子组成的,这 两个电子被成为束缚电子。束缚 电子同时受两个原子的约束,如 果没有足够的能量,不易脱离轨道。因此,在绝对温度 T=0°K(-273°C)时,由于共价键中的电子被束缚着,本征半导体中没有自由电子,不导电。只有在激发下,本征半导体才能导电

半导体基础知识(精)

半导体的基础知识 多数现代电子器件是由半导体材料制成的。 那么什么是半导体呢? 顾名思义:导电性能介于导体与绝缘体之间的材料,叫做半导体. 物质存在的形式多种多样,固体、液体、气体、等离子体等等。我们通常把导电性和导热性差或不好的材料,如金刚石、人工晶体、琥珀、陶瓷等等,称为绝缘体。而把导电、导热都比较好的金属如金、银、铜、铁、锡、铝等称为导体。可以简单的把介于导体和绝缘体之间的材料称为半导体。与金属和绝缘体相比,半导体材料的发现是最晚的,直到20世纪30年代,当材料的提纯技术改进以后,半导体的存在才真正被学术界认可。 半导体的发现实际上可以追溯到很久以前,1833年,英国巴拉迪最先发现硫化银的电阻随着温度的变化情况不同于一般金属,一般情况下,金属的电阻随温度升高而增加,但巴拉迪发现硫化银材料的电阻是随着温度的上升而降低。这是半导体现象的首次发现。不久,1839年法国的贝克莱尔发现半导体和电解质接触形成的结,在光照下会产生一个电压,这就是后来人们熟知的光生伏特效应,这是被发现的半导体的第二个特征。在1874年,德国的布劳恩观察到某些硫化物的电导与所加电场的方向有关,即它的导电有方向性,在它两端加一个正向电压,它是导通的;如果把电压极性反过来,它就不导电,这就是半导体的整流效应,也是半导体所特有的第三种特性。同年,舒斯特又发现了铜与氧化铜的整流效应。1873年,英国的史密斯发现硒晶体材料在光照下电导增加的光电导效应,这是半导体又一个特有的性质。半导体的这四个效应,(jianxia霍尔效应的余绩──四个伴生效应的发现)虽在1880年以前就先后被发现了,但半导体这个名词大概到1911年才被考尼白格和维斯首次使用。而总结出半导体的这四个特性一直到1947年12月才由贝尔实验室完成。很多人会疑问,为什么半导体被认可需要这么多年呢?主要原因是当时的材料不纯。没有好的材料,很多与材料相关的问题就难以说清楚。 一、半导体的电阻率 从导电性能上看,物质材料可分为三大类: 导体:电阻率ρ < 10的4 次方Ω/cm

二极管PN结原理.

PN结的定义:在一块本征半导体中,掺以不同的杂质,使其一边成为P型,另一边成为N型,在P区和N区的交界面处就形成了一个PN结。 PN结的形成 (1)当P型半导体和N型半导体结合在一起时,由于交界面处存在载流子浓度的差异,这样电子和空穴都要从浓度高的地方向浓度低的地方扩散。但是,电子和空穴都是带电的,它们扩散的结果就使P区和N区中原来的电中性条件破坏了。P区一侧因失去空穴而留下不能移动的负离子,N区一侧因失去电子而留下不能移动的正离子。这些不能移动的带电粒子通常称为空间电荷,它们集中在P区和N区交界面附近,形成了一个很薄的空间电荷区,这就是我们所说的PN结,如图1所示。 (2)在这个区域内,多数载流子或已扩散到对方,或被对方扩散过来的多数载流子(到了本区域后即成为少数载流子了)复合掉了,即多数载流子被消耗尽了,所以又称此区域为耗 尽层,它的电阻率很高,为高电阻区。 (3)P区一侧呈现负电荷,N区一侧呈现正电荷,因此空间电荷区出现了方向由N区指向P区的电场,由于这个电场是载流子扩散运动形成的,而不是外加电压形成的,故称为内 电场,如图2所示。

(4)内电场是由多子的扩散运动引起的,伴随着它的建立将带来两种影响:一是内电场将阻碍多子的扩散,二是P区和N区的少子一旦靠近PN结,便在内电场的作用下漂移到 对方,使空间电荷区变窄。 (5)因此,扩散运动使空间电荷区加宽,内电场增强,有利于少子的漂移而不利于多子的扩散;而漂移运动使空间电荷区变窄,内电场减弱,有利于多子的扩散而不利于少子的漂移。当扩散运动和漂移运动达到动态平衡时,交界面形成稳定的空间电荷区,即PN结处于 动态平衡。PN结的宽度一般为0.5um。 PN结的单向导电性 PN结在未加外加电压时,扩散运动与漂移运动处于动态平衡,通过PN结的电流为零。 (1)外加正向电压(正偏) 当电源正极接P区,负极接N区时,称为给pN结加正向电压或正向偏置,如图3所示。由于PN结是高阻区,而P区和N区的电阻很小,所以正向电压几乎全部加在PN结两端。在PN结上产生一个外电场,其方向与内电场相反,在它的推动下,N区的电子要向左边扩散,并与原来空间电荷区的正离子中和,使空间电荷区变窄。同样,P区的空穴也要向右边扩散,并与原来空间电荷区的负离子中和,使空间电荷区变窄。结果使内电场减弱,破坏了PN结原有的动态平衡。于是扩散运动超过了漂移运动,扩散又继续进行。与此同时,电源不断向P区补充正电荷,向N区补充负电荷,结果在电路中形成了较大的正向电流IF。而 且IF随着正向电压的增大而增大。 (2)外加反向电压(反偏) 当电源正极接N区、负极接P区时,称为给PN结加反向电压或反向偏置。反向电压产生的外加电场的方向与内电场的方向相同,使PN结内电场加强,它把P区的多子(空穴)和N区的多子(自由电子)从PN结附近拉走,使PN结进一步加宽,PN结的电阻增大,打破了PN结原来的平衡,在电场作用下的漂移运动大于扩散运动。这时通过PN结的电流,主要是少子形成的漂移电流,称为反向电流IR。由于在常温下,少数载流子的数量不多,

相关主题
文本预览
相关文档 最新文档