当前位置:文档之家› 四川大学 川大 2003年数学(高数学、线性代数) 考研真题及答案解析

四川大学 川大 2003年数学(高数学、线性代数) 考研真题及答案解析

四川大学 川大 2003年数学(高数学、线性代数) 考研真题及答案解析
四川大学 川大 2003年数学(高数学、线性代数) 考研真题及答案解析

线性代数典型例题

线性代数 第一章 行列式 典型例题 一、利用行列式性质计算行列式 二、按行(列)展开公式求代数余子式 已知行列式412343 344 615671 12 2 D = =-,试求4142A A +与4344A A +. 三、利用多项式分解因式计算行列式 1.计算221 1231223131 5 1319x D x -= -. 2.设()x b c d b x c d f x b c x d b c d x = ,则方程()0f x =有根_______.x = 四、抽象行列式的计算或证明 1.设四阶矩阵234234[2,3,4,],[,2,3,4]A B αγγγβγγγ==,其中234,,,,αβγγγ均为四维列向量,且已知行列式||2,||3A B ==-,试计算行列式||.A B + 2.设A 为三阶方阵,*A 为A 的伴随矩阵,且1 ||2 A = ,试计算行列式1*(3)22.A A O O A -??-??? ?

3.设A 是n 阶(2)n ≥非零实矩阵,元素ij a 与其代数余子式ij A 相等,求行列式||.A 4.设矩阵210120001A ?? ??=?? ????,矩阵B 满足**2ABA BA E =+,则||_____.B = 5.设123,,ααα均为3维列向量,记矩阵 123123123123(,,),(,24,39)A B αααααααααααα==+++++ 如果||1A =,那么||_____.B = 五、n 阶行列式的计算 六、利用特征值计算行列式 1.若四阶矩阵A 与B 相似,矩阵A 的特征值为 1111 ,,,2345 ,则行列式1||________.B E --= 2.设A 为四阶矩阵,且满足|2|0E A +=,又已知A 的三个特征值分别为1,1,2-,试计算行列式*|23|.A E + 第二章 矩阵 典型例题 一、求逆矩阵 1.设,,A B A B +都是可逆矩阵,求:111().A B ---+

线性代数习题及答案(复旦版)1

线性代数习题及答案 习题一 1. 求下列各排列的逆序数. (1) 341782659; (2) 987654321; (3) n (n 1)…321; (4) 13…(2n 1)(2n )(2n 2)…2. 【解】 (1) τ(341782659)=11; (2) τ(987654321)=36; (3) τ(n (n 1)…3·2·1)= 0+1+2 +…+(n 1)= (1) 2 n n -; (4) τ(13…(2n 1)(2n )(2n 2)…2)=0+1+…+(n 1)+(n 1)+(n 2)+…+1+0=n (n 1). 2. 略.见教材习题参考答案. 3. 略.见教材习题参考答案. 4. 本行列式4512312 123122x x x D x x x = 的展开式中包含3x 和4 x 的项. 解: 设 123412341234 () 41234(1)i i i i i i i i i i i i D a a a a τ = -∑ ,其中1234,,,i i i i 分别为不同列中对应元素 的行下标,则4D 展开式中含3 x 项有 (2134)(4231)333(1)12(1)32(3)5x x x x x x x x x ττ-????+-????=-+-=- 4D 展开式中含4x 项有 (1234)4(1)2210x x x x x τ-????=. 5. 用定义计算下列各行列式. (1) 0200 001030000004 ; (2)1230 0020 30450001 . 【解】(1) D =(1)τ(2314)4!=24; (2) D =12. 6. 计算下列各行列式.

线性代数期末试题及答案

工程学院2011年度(线性代数)期末考试试卷样卷 一、填空题(每小题2分,共20分) 1.如果行列式233 32 31 232221 131211 =a a a a a a a a a ,则=---------33 32 31 232221 13 1211222222222a a a a a a a a a 。 2.设2 3 2 6219321862 131-= D ,则=+++42322212A A A A 。 3.设1 ,,4321,0121-=??? ? ??=???? ??=A E ABC C B 则且有= 。 4.设齐次线性方程组??? ?? ??=????? ??????? ??000111111321x x x a a a 的基础解系含有2个解向量,则 =a 。 、B 均为5阶矩阵,2,2 1 == B A ,则=--1A B T 。 6.设T )1,2,1(-=α,设T A αα=,则=6A 。 7.设A 为n 阶可逆矩阵,*A 为A 的伴随矩阵,若λ是矩阵A 的一个特征值,则*A 的一个特征值可表示为 。 8.若31212322 212232x x x tx x x x f -+++=为正定二次型,则t 的范围是 。

9.设向量T T )1,2,2,1(,)2,3,1,2(-=β=α,则α与β的夹角=θ 。 10. 若3阶矩阵A 的特征值分别为1,2,3,则=+E A 。

二、单项选择(每小题2分,共10分) 1.若齐次线性方程组??? ??=λ++=+λ+=++λ0 00321 321321x x x x x x x x x 有非零解,则=λ( ) A .1或2 B . -1或-2 C .1或-2 D .-1或2. 2.已知4阶矩阵A 的第三列的元素依次为2,2,3,1-,它们的余子式的值分别为 1,1,2,3-,则=A ( ) A .5 B .-5 C .-3 D .3 3.设A 、B 均为n 阶矩阵,满足O AB =,则必有( ) A .0=+ B A B .))B r A r ((= C .O A =或O B = D .0=A 或0=B 4. 设21β,β是非齐次线性方程组b X A =的两个解向量,则下列向量中仍为该方程组解的是 ( ) A .21+ββ B . ()21235 1 ββ+ C .()21221ββ+ D .21ββ- 5. 若二次型3231212 3222166255x x x x x x kx x x f -+-++=的秩为2,则=k ( ) A . 1 B .2 C . 3 D . 4 三、计算题 (每题9分,共63分) 1.计算n 阶行列式a b b b a b b b a D n Λ ΛΛΛΛΛΛ=

[四川大学]《线性代数2443》19秋在线作业1

【奥鹏】-[四川大学]《线性代数2443》19秋在线作业1 试卷总分:100 得分:100 第1题,题面如图所示: A、A B、B C、C D、D 正确答案:C 第2题,题面如图所示: A、A B、B C、C D、D 正确答案:A 第3题,题面如图所示: A、A B、B C、C D、D 正确答案:D 第4题,题面如图所示: A、A B、B C、C D、D 正确答案:A 第5题,题面如图所示: A、A B、B C、C D、D 正确答案:C 第6题,题面如图所示: A、A

B、B C、C D、D 正确答案:B 第7题,题面如图所示: A、A B、B C、C D、D 正确答案:D 第8题,题面如图所示: A、A B、B C、C D、D 正确答案:C 第9题,题面如图所示: A、A B、B C、C D、D 正确答案:A 第10题,题面如图所示: A、A B、B C、C D、D 正确答案:C 第11题,题面如图所示: A、A B、B C、C D、D 正确答案:A

第12题,题面如图所示: A、A B、B C、C D、D 正确答案:C 第13题,题面如图所示: A、A B、B C、C D、D 正确答案:B 第14题,题面如图所示: A、A B、B C、C D、D 正确答案:A 第15题,题面如图所示: A、A B、B C、C D、D 正确答案:C 第16题,题面如图所示: A、A B、B C、C D、D 正确答案:D 第17题,题面如图所示:A、A

B、B C、C D、D 正确答案:A 第18题,题面如图所示: A、A B、B C、C D、D 正确答案:A 第19题,题面如图所示: A、A B、B C、C D、D 正确答案:B 第20题,题面如图所示: A、A B、B C、C D、D 正确答案:C 第21题,题面如图所示: A、A B、B C、C D、D 正确答案:D 第22题,题面如图所示: A、A B、B C、C D、D 正确答案:C

线性代数期末考试试卷+答案合集

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示

线性代数习题及答案复旦版

线性代数习题及答案(复旦版)[] 线性代数习题及答案 习题一 1. 求下列各排列的逆序数. (1) 341782659;(2) 987654321; (3) n(n?1)…321;(4) 13…(2n?1)(2n)(2n?2)…2. 【解】 (1) τ(341782659)=11; (2) τ(987654321)=36; (3) τ(n(n?1)…32221)= 0+1+2 +…+(n?1)=; (4) τ(13…(2n?1)(2n)(2n?2)…2)=0+1+…+(n?1)+(n?1)+(n?2)+…+1+0=n(n?1). 2. 略.见教材习题参考答案. 3. 略.见教材习题参考答案. 4. 本行列式的展开式中包含和的项. 解:设,其中分别为不同列中对应元素的行下标,则展开式中含项有 展开式中含项有 . 5. 用定义计算下列各行列式. (1);(2). 【解】(1) D=(?1)τ(2314)4!=24; (2) D=12. 6. 计算下列各行列式. (1);(2) ; (3);(4) . 【解】(1) ; (2) ; 7. 证明下列各式. (1) ; (2) ; (3) (4) ; (5) . 【证明】(1) (2) (3) 首先考虑4阶范德蒙行列式:

从上面的4阶范德蒙行列式知,多项式f(x)的x的系数为 但对(*)式右端行列式按第一行展开知x的系数为两者应相等,故 (4) 对D2n按第一行展开,得 据此递推下去,可得 (5) 对行列式的阶数n用数学归纳法. 当n=2时,可直接验算结论成立,假定对这样的n?1阶行列式结论成立,进而证明阶数为n时结论也成立. 按Dn的最后一列,把Dn拆成两个n阶行列式相加: 但由归纳假设 从而有 8. 计算下列n阶行列式. (1) (2) ; (3). (4)其中; (5). 【解】(1) 各行都加到第一行,再从第一行提出x+(n?1),得 将第一行乘(?1)后分别加到其余各行,得 (2) 按第二行展开 (3) 行列式按第一列展开后,得 (4)由题意,知 . (5) . 即有 由得 . 9. 计算n阶行列式. 【解】各列都加到第一列,再从第一列提出,得 将第一行乘(?1)后加到其余各行,得

线性代数典型例题

线性代数 第一章 行列式 典型例题 一、利用行列式性质计算行列式 二、按行(列)展开公式求代数余子式 已知行列式41 234334461 5671122 D ==-,试求4142A A +与4344A A +、 三、利用多项式分解因式计算行列式 1.计算2211 23122313 1513 19x D x -=-、 2.设()x b c d b x c d f x b c x d b c d x =,则方程()0f x =有根_______.x = 四、抽象行列式的计算或证明 1、设四阶矩阵234234[2,3,4,],[,2,3,4]A B αγγγβγγγ==,其中234,,,,αβγγγ均为四维列向量,且已知行列式||2,||3A B ==-,试计算行列式||.A B + 2、设A 为三阶方阵,*A 为A 的伴随矩阵,且1||2 A =,试计算行列式1*(3)22.A A O O A -??-???? 3、设A 就是n 阶(2)n ≥非零实矩阵,元素ij a 与其代数余子式ij A 相等,求行列式

||.A 4、设矩阵210120001A ????=?????? ,矩阵B 满足**2ABA BA E =+,则||_____.B = 5、设123,,ααα均为3维列向量,记矩阵 123123123123(,,),(,24,39)A B αααααααααααα==+++++ 如果||1A =,那么||_____.B = 五、n 阶行列式的计算 六、利用特征值计算行列式 1、若四阶矩阵A 与B 相似,矩阵A 的特征值为1111,,,2345 ,则行列式1||________.B E --= 2、设A 为四阶矩阵,且满足|2|0E A +=,又已知A 的三个特征值分别为1,1,2-,试计算行列式*|23|.A E + 第二章 矩阵 典型例题 一、求逆矩阵 1、设,,A B A B +都就是可逆矩阵,求:111().A B ---+ 2、设0002100053123004 580034600A ????????=???????? ,求1.A -

线性代数期末考试试题含答案

线性代数期末考试试题含 答案 The final edition was revised on December 14th, 2020.

江西理工大学《线性代数》考题 一、 填空题(每空3分,共15分) 1. 设矩阵??????????=333222 111 c b a c b a c b a A ,??????????=333 222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________ 3. A 为3阶方阵,且2 1=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________ 5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 _____ 二、选择题(每题3分,共15分) 6. 设线性方程组?????=+=+--=-032231 3221ax cx bc bx cx ab ax bx ,则下列结论正确的是( ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. 同为n 阶方阵,则( )成立 (A) B A B A +=+ (B) BA AB = (C) BA AB = (D) 111)(---+=+B A B A 8. 设??????????=333231232221 131211 a a a a a a a a a A ,??????????+++=331332123111131211232221a a a a a a a a a a a a B ,??????????=1000010101P , ???? ??????=1010100012P 则( )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB ( ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ?矩阵,r A r =)(<n ,那么A 的n 个列向量中( )

线性代数期末考试试题(含答案)

江西理工大学《线性代数》考题 一、 填空题(每空3分,共15分) 1. 设矩阵??????????=333222 111 c b a c b a c b a A ,??????????=333 222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________ 3. A 为3阶方阵,且2 1=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________ 5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 _____ 二、选择题(每题3分,共15分) 6. 设线性方程组?????=+=+--=-032231 3221ax cx bc bx cx ab ax bx ,则下列结论正确的是( ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. A.B 同为n 阶方阵,则( )成立 (A) B A B A +=+ (B) BA AB = (C) BA AB = (D) 111)(---+=+B A B A 8. 设??????????=333231232221 131211 a a a a a a a a a A ,??????????+++=331332123111131211232221a a a a a a a a a a a a B ,??????????=1000010101P , ???? ??????=1010100012P 则( )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB ( ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ?矩阵,r A r =)(<n ,那么A 的n 个列向量中( ) (A )任意r 个列向量线性无关

(完整版)线性代数重要知识点及典型例题答案

线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??==、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式: ①转置行列式:33 23133222123121 11333231232221 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式 ⑤上(下)三角形行列式:

线性代数总结材料汇总情况+经典例题

线性代数知识点总结 1 行列式 (一)行列式概念和性质 1、逆序数:所有的逆序的总数 2、行列式定义:不同行不同列元素乘积代数和 3、行列式性质:(用于化简行列式) (1)行列互换(转置),行列式的值不变 (2)两行(列)互换,行列式变号 (3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k 乘此行列式 (4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。 (5)一行(列)乘k加到另一行(列),行列式的值不变。 (6)两行成比例,行列式的值为0。 (二)重要行列式 4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积 5、副对角线行列式的值等于副对角线元素的乘积乘 6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则

7、n阶(n≥2)德蒙德行列式 数学归纳法证明 ★8、对角线的元素为a,其余元素为b的行列式的值: (三)按行(列)展开 9、按行展开定理: (1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0 (四)行列式公式 10、行列式七大公式:

(1)|kA|=k n|A| (2)|AB|=|A|·|B| (3)|A T|=|A| (4)|A-1|=|A|-1 (5)|A*|=|A|n-1 (6)若A的特征值λ1、λ2、……λn,则 (7)若A与B相似,则|A|=|B| (五)克莱姆法则 11、克莱姆法则: (1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解 (2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0 (3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。 2 矩阵 (一)矩阵的运算 1、矩阵乘法注意事项: (1)矩阵乘法要求前列后行一致; (2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律)

四川大学2014级线性代数期末测验题(A卷)

四川大学2014级线性代数期末测验题(A 卷) 姓名:__________,学号:___________________,学院:___________,教师:杨荣奎 分) 分填空题一1553(.=×._______3A 2500230052A 3.123=?? ?????????A ,则相似于矩阵阶矩阵若.______003,14042531.2==≠? ?????????=a AB B a A ,则,满足阶矩阵若存在设. ____83344),,(.32322212332223121321=?+=?+?+?=a y y y QY X x x ax x x x x x x x x f ,则化为标准形变换可经过正交 设实二次型._________32,211-101.421212的过渡矩阵为到基,的基从?? ????=??????=??????=??????=ββααR . ___,2),,(,),1,1,2(,)2,0,1,1(,01-21.532132T 1=====a rank a T T 则若),,,(设αααααα分 分选择题二1553(.=×). ().(;)().(); ().(;).(. 0][)0(,,,2)(,4.132132122113221132211321βββββββββββββββββ?++?+++?+=≠==×k D k k k k C k k B k k A AX AX A rank m A 的通解为向量,则的三个线性无关解为矩阵是设.,,,).(;,,,).(; ,,,).(;,,,).(][ ,,,.2144332211443322114433221144332214321αααααααααααααααααααααααααααααααααααα??++?+++????++++D C B A 线性无关。线性无关,则向量组已知向量组. )().(;)2()5(n ).(;)2-(5-().(;25).(]. [,0103:A .32n A rank D n E A rank E A k ra C n E A rank E A rank B E A E A A E A A n ==++?=?++?===??)或则下列结论不正确的是满足阶矩阵设.3).(; 2).(;1).(;0).(]. [)2(,)(3,23.421D C B A A E rank A A A =?==则相似于对角阵,若一重(二重)的特征值为阶矩阵,为设λλ; ).().A ].[ .5合同矩阵等价合同矩阵的秩相同;(下列命题中不正确的是B

线性代数习题与答案(复旦版)1

线性代数习题及答案 习题一 1. 求下列各排列的逆序数. (1) 341782659; (2) 987654321; (3) n (n 1)…321; (4) 13…(2n 1)(2n )(2n 2)…2. 【解】 (1) τ(341782659)=11; (2) τ(987654321)=36; (3) τ(n (n 1)…3·2·1)= 0+1+2 +…+(n 1)= (1) 2 n n -; (4) τ(13…(2n 1)(2n )(2n 2)…2)=0+1+…+(n 1)+(n 1)+(n 2)+… +1+0=n (n 1). 2. 略.见教材习题参考答案. 3. 略.见教材习题参考答案. 4. 本行列式4512 3 12123 122x x x D x x x = 的展开式中包含3x 和4 x 的项. 解: 设 123412341234 () 41234(1)i i i i i i i i i i i i D a a a a τ = -∑ ,其中1234,,,i i i i 分别为不同列中对应元素 的行下标,则4D 展开式中含3 x 项有 (2134)(4231)333(1)12(1)32(3)5x x x x x x x x x ττ-????+-????=-+-=- 4D 展开式中含4x 项有 (1234)4(1)2210x x x x x τ-????=. 5. 用定义计算下列各行列式. (1) 0200 001030000004 ; (2)1230 0020 30450001 . 【解】(1) D =(1)τ(2314) 4!=24; (2) D =12. 6. 计算下列各行列式.

线性代数行列式经典例题

线性代数行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =- ,故 01110212 n n n D n n --= -- 1,1,,2 i i r r i n n --=-= 01 1111 111 n ---- 1,,1 j n c c j n +=-= 121 1 021 (1)2(1)020 1 n n n n n n ------=---- 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 01110 212 0n n n D n n --= -- 1 1,2,,111 1111 120 i i r r i n n n +-=----=-- 1 2,,100120 1231 j c c j n n n n +=---= --- =12(1)2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式:

= 行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+ 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 1111n x x x ----- = x D 1-n + a n 由于D 1= x + a 1,221 1x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n = = x 1 -n D 1+ a 2x 2 -n + + a 1-n x + a n =111n n n n x a x a x a --++++ 方法2 第2列的x 倍,第3列的x 2 倍, ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 21121 10010000n n n n x x x a xa a a x a -----++

大学线性代数练习试题及答案

第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有 一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ? ? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λ s αs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A.η1+η2是Ax=0的一个解 B.1 2η1+1 2 η2是Ax=b的一个解 C.η1-η2是Ax=0的一个解 D.2η1-η2是Ax=b的一个解 9.设n阶方阵A不可逆,则必有()

四川大学数一二线性代数期末考试试卷A

第 页 共6页 1 四 川大学期末考试试卷(A ) 科 目:《大学数学》(线性代数) 一、填空题(每小题3分,共15分) 1. 2 32 32 3 a a a b b b c c c = __abc()_____. 2. 向量组1(2,5,5)α=,2(2,0,1)α=,3(2,3,1)α=,4(7,8,11)α=-线性___ ____. 3. 设A =378012002?? ??-????-?? , A *是A 的伴随矩阵, 则 |1 5-A*| = _________. 4. 当t 满足______的条件时, 2 2 2 12311223(,,)222f x x x x tx x x x =+++为正定二次5. 设A, B 都是3阶矩阵, 秩(A )=3, 秩(B )=1, C =AB 的特征值为1, 0, 0, 则C =AB __相似对角化.

第 页 共6页 2 二、选择题(每小题3分,共15分) 1. 设矩阵,23?A ,32?B 33?C , 则下列式子中, ( )的运算可行. (A) AC; (B) C AB -; (C) CB ; (D) BC CA -. 2. 设D=123 012247 -, ij A 表示D 中元素ij a 的代数余子式, 则3132333 A A A ++= ( ) .(A) 0; (B) 1; (C) 1-; (D) 2 . 3. 设A 为4m ?矩阵, 秩(A)=2, 123,,X X X 是非齐次线性方程组AX =β的三个线性 无关解向量, 则( )为AX =0的通解. (A) 11223;k X k X X +- (B) 123();X k X X +- (C) 1122123(1);k X k X k k X ++-- (D) 1122123().k X k X k k X +-+ 4. 设A,B,C 都为n 阶矩阵, 且|AC|≠0, 则矩阵方程AXC=B 的解为( ). (A) 1 1 --=BC A X ; (B) 1 1 --=C BA X ; (C) 1 1 --=A BC X ; (D) 1 1 --=BA C X . 5. 设A 为n 阶方阵,A 可以相似对角化的( )是A 有n 个不同的特征值. (A) 充分必要条件 (B) 必要而非充分的条件 (C) 充分而非必要的条件 (D) 既不充分也非必要的条件 三、计算下列各题(每小题10分,共30分) 1. 计算行列式 1112 0132.1223 1 420 ------

西华大学线性代数习题答案

《线性代数》同步练习题 第5次 矩阵的初等变换与线性方程组(一) 专业: 教学班: 学号: 姓名 : 1.用行初等变换把下列矩阵化成行阶梯矩阵和行简化阶梯形矩阵: 1134 333541223203 3421A --?? ?-- ?= ? -- ? ---?? 1102300122~0000000000--?? ?- ? ? ? ?? 2. 用初等行变换求矩阵的秩,并求一个最高阶非零子式: ?????? ? ? ?---=1003011603024 22012 11A R(A)=3 11210030 1~0004000 000-?? ? ? ? - ? ?? 01113010 030 A A -=-≠的最高阶非零子式

3.求矩阵223110121A ?? ?=- ? ?-??的逆矩阵。 1 143153164A --?? ?=- ? ?--?? 4、已知方阵101221112A ?? ? =- ? ??? ,求1-A 。 1512311412A ---?? ?=-- ? ?-?? 223100(A,E)110010121001?? ?=- ? ?-?? 100143010153001164-?? ?→- ? ?--??101100(A,E)221010112001?? ?=- ? ???100512~010*********--?? ?-- ? ?-??

《线性代数》同步练习题 第6次 矩阵的初等变换与线性方程组(二) 专业: 教学班: 学号: 姓名 : 1. 解矩阵方程,B AX =其中,011210101????? ??--=A 。??? ? ? ??----=212041132B 法一: 110302 121X -?? ?= ? ?--?? 法二: 12113332 123331113 33A -?? ? ? ?=- ? ? ?- ??? 1 110302 121X A B --?? ?== ? ?--?? 2.解矩阵方程:? ?? ? ??-=???? ??-???? ??-101311022141X 101231(A,B)012140110212--?? ?= ? ?----??100 1100103 020011 2 1-?? ?→ ? ?--? ? ,A B 矩阵可逆 11 X A CB --∴=12103133211011 16 62???? -??????=??????-?????????????? 11104X ?? ?∴= ???

线性代数期末试卷及解析(4套全)2019科大

线性代数期末试卷(一) 一、填空题(每小题3分) (4)设12243311t -?? ? = ? ?-?? A , B 为3阶非零矩阵,=AB 0,则t =_________. 解:3-. 若||0≠A ,则A 可逆,由=AB 0知,=B 0,与B 为非零矩阵矛盾, 故 有||0=A . 122||0 811(8)77117(3)0 7 7 t t t -==-=-?+?=+-A 行 , 所以 3t =-. 二、选择题(每小题3分) (4)设111122232333,,a b c a b c a b c ?????? ? ? ? === ? ? ? ? ? ??????? ααα,则三条直线 1110a x b y c ++= 2220a x b y c ++= (其中22 0,1,2,3i i a b i +≠=) 3330a x b y c ++= 交于一点的充要条件是 (A )123,,ααα线性相关; (B )123,,ααα线性无关; (C )秩123(,,)r =ααα秩12(,)r αα; (D )123,,ααα线性相关,12,αα线性无关. 解:(D )正确. 1 12 2123 3(,)a b a b a b ?? ?== ? ???A αα,1 1 12 221233 33(,,)a b c a b c a b c -?? ? =-=- ? ?-??A ααα 三条直线交于一点的充要条件是方程组3x y ?? =- ??? A α有唯一解,当且仅当()()r r =A A ,且r n =时成 立,即()()2r r ==A A ,这说明12,αα线性无关,123,,-ααα线性相关,也就是123,,ααα线性相关, 12,αα线性无关,故选(D ). 仅123,,ααα线性相关,不足以保证()()r r =A A ,可能无解,故(A )不对. 123,,ααα线性无关,()2()3r r =<=A A ,无解,(B )不对. 当12312(,,)(,)r r =ααααα,说明方程组有解,但无法确保解唯一,故(C )不对. 七、(本题共2小题,第(1)题5分,第(2)题6分,满分11分) (1)设B 是秩为2的54?的矩阵,T T 12(1,1,2,3),(1,2,4,1),==--αα T 3(5,1,8,9)=--α是齐次 线性方程组=Bx 0的解向量,求x =B 0的解空间的一个标准正交基.

大一线性代数期末试卷试题附有答案.docx

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ? ? ? ? ? ?诚信应考 , 考试作弊将带来严重后果! ?线性代数期末考试试卷及答案 ? ? ? 号?注意事: 1.考前将密封内填写清楚; 位? 2.所有答案直接答在卷上( 或答上 ) ; 座? 3.考形式:开()卷; ? 4.本卷共五大,分100 分,考 120分。 题号一二三四五总分? ?得分 ?评卷人 ? ? ? ?一、(每小 2 分,共 40 分)。 ? 业? 专?1.矩A为2 2矩阵, B为23矩阵 ,C为32矩阵,下列矩运算无意的是? ?【】 ? ? ) ? 封A B. ABC C . BCA D. CAB ?. BAC 2 答?+ E =0 ,其中 E是 n 位矩,必有【】 2. n 方 A 足 A 院不 ? A.矩 A 不是矩 B. A=-E C. A=E D. det(A)=1 ? 学内 ? ? 封?3. A n 方,且行列式det(A)= 1 ,det(-2A)=【】密 ? (? A. -2-2 n-2n ? B. C. D. 1 ? ?4. A 3 方,且行列式det(A)=0,在 A的行向量中【】? ? A. 必存在一个行向量零向量 ? ? B. 必存在两个行向量,其分量成比例 ? C. 存在一个行向量,它是其它两个行向量的性合 号? 密 D. 任意一个行向量都是其它两个行向量的性合 学 ? ? 5.向量a1, a2,a3性无关,下列向量中性无关的是【】? ?A.a1a2 , a2a3 , a3a1 B.a1, a2 ,2a13a2 ? C. a2,2a3,2a2a3a1- a3, a2 , a1 ? D. ? ? 名? 6. 向量 (I):a1 ,, a m (m 3) 性无关的充分必要条件是【】 姓? ? ? ? ? ?

线性代数期末模拟考试试卷+答案(一)

×××大学线性代数期末模拟考试题(一) 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则x =__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1 A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, ,Λ21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,,Λ21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,,Λ21(3 ≤ s ≤ n )线性无关的充要条件是( )。 ① s ααα,, ,Λ21中任意两个向量都线性无关 ② s ααα,, ,Λ21中存在一个向量不能用其余向量线性表示

相关主题
文本预览
相关文档 最新文档