当前位置:文档之家› 搅拌站配料计量系统常见故障与维修

搅拌站配料计量系统常见故障与维修

搅拌站配料计量系统常见故障与维修
搅拌站配料计量系统常见故障与维修

搅拌站配料计量系统常见故障与维修

摘要:介绍了混凝土搅拌站配料计量系统的计量及显示单元、称重装置、上料系统及卸料装置和线路的常见故障,并通过实例介绍了故障的排除方法。

砼搅拌站配料计量系统常见故障主要分为计量及显示单元故障、称重装置故障、上料系统及卸料装置等设备故障。

1计量及显示单元故障

1.1计量及显示单元损坏

1)开机时控制单元的运行指示灯不闪亮,则说明系统不正常,控制单元本身有故障,需更换计量单元;也可能是控制系统电源不正常或正负极接反,或供电线路脱落,需检查线路。

2)搅拌站控制系统打开后,人机界面单元只显示开机界面或不显示,则说明计量单元与显示单元之间的通讯有问题或计量、显示单元损坏,应该检查通讯线路是否断线或正负极是否接反。若接线正常,就可能是计量单元与显示单元之一有问题,必须检修,必要时更换。

3)报警灯灭,而称重读数不在零位,显示有波动,则说明料斗摆动幅度大,或电脑受潮,应干燥或更换相应单元。

1.2配料不准

1)配完料后配料设定值与称重显示值一致,而实际的物料却远大于或小于此值,说明秤不准,需检查秤斗是否被卡住,或其它原因造成秤斗不能活动自如,必要时重新校秤。

2)配料后显示的称重读数与设定的物料值相差很大,应重点检查某些参数如超差延迟时间等是否正确,参数不合适时参照出场值修改。还应检查设定的物料值是否太小,例如PLD1600 型配料机物料设定值应在300kg 以上,设定值太小配料就不准确。此外还应检查储料仓储量是否稳定,是否时多时少;检查料仓储料料质是否均匀,石子粒径不能相差太大,砂子的粗细和干湿不能相差太大;更换配方后,是否进行了落差测量,如没有应重新操作。

3)配料机配料不停,可能是料斗被卡住,加料时传感器不受力,也可能是传感器线路故障或传感器故障,应马上检查。

1.3 卸料不正常

配料后按卸料按钮不起作用,可能是卸料按钮有故障,或者是没有使用的物料没有设置为零,或者是相应电器元件或计量单元故障。第一、三种情况要用万用表仔细检查,排除故障。第二种情况表现为配料完毕,没有使用的物料的指示灯亮,接触器吸合。如果是卸料不停,可能就是物料零位范围设定太小(物料零位范围应该在5~10kg 左右),也可能是卸料延迟时间太长,这种情况要仔细检查卸料参数,必要时重新调整。

案例1施工现场一HZ50 的搅拌站,其控制系统为HD3320/10A 型。水

泥秤上料计量时,显示器显示读数漂移大,加砝码时读数增加,但数值不正确,加70kg 砝码,数值只增加30kg;标好秤后停一段时间,秤显示不归0,检查传感器正常,接头及接线牢固,初步判断为激励线路正负极接反,调线后显示器显示数值恢复正常。

2 称重装置故障

称重装置故障一般分为水泥秤故障、骨料秤故障及水秤故障等,其中有的属于安装错误、接线错误及料斗卡滞等,有的就属于显示器故障、传感器老化等,下面以具体案例说明。

案例2施工现场一座HZ50 型的搅拌站,其控制系统为H Z K 1 0 - 3 A 系列型。施工过程中出现显示器显示的数字漂移大、不稳定的症状,有时会显示一很大的数值,称量斗中料多时好一点。检查发现各处接线无误,接头良好,周围无剧烈震动,无卡滞现象;显示单元干燥后故障依旧,表明显示单元应无故障。通过以上检查初步断定应为传感器故障,随后对传感器进行检查,方法如下:一般传感器有5 根线,其中1根为屏蔽线,红、蓝2 根为电源激励线,连接传感器输入端,其输入端电阻值为390 Ω;绿、黄2 根为信号线,连接传感器输出端,其输出端电阻值为350 Ω,如3个传感器并联使用,则分别为130 Ω和120 Ω。也可通过检查电压的方式进行检查,如接线正确,加电后,该故障搅拌站计量单元HD4710/F(M)单元与传感器连接的接线端子激励信号正极端EXC(+)和激励信号负极端EXC(-)端及称重信号正极端SIG(+)和称重信号负极端SIG(-)的端电压应为如显示器显示的为负重量,则交换称重信号SIG(+)、SIG(-)端接线。如阻值或电压偏离过大,则为传感器损坏,应更换;如阻值正常,再检查接头及接线是否正常,视情进行修理。该搅拌站经过检查,发现传感器阻值过高且不稳,最后确定为传感器故障,更换传感器后,故障解除。

在静态校秤时,有时也出现读数不准的故障,应首先检查料斗是否活动自如、是否被卡住。如读数调不到所需的数,或加载后读数反而变小,或显示4095(小型搅拌站)或其他很大值,或显示0.0 后不再动,应检查接线是否有误,如激励正负极接反、信号线接反、电源线接在信号线上,或者是其他故障。如读数显示大值、漂移大、不稳定,可能就是传感器性能不好,应更换传感器。

案例3 施工现场一座型号为HZ50 的搅拌站,其控制系统为HD3320D50 型,其水秤计量不准,与实际值相差几十公斤。检查发现,传感器正常,线路及接头无误,计量单元工作正常,但是水秤秤斗排水管与罐体连接处被焊接,软连接变成硬连接,故水秤计量不准。把秤斗焊接处割开后,计量恢复正常。

总之,配料计量系统故障是搅拌站多发易发的故障,为保障施工生产的顺利进行,要对搅拌站操作人员进行严格培训,并要求操作人员持证上岗,严格按操作规程操作,严格按保养计划或使用说明书进行维修与保养,杜绝安全隐患,尽量减少故障的发生。

全自动称重配料系统

全自动称重配料系统 (广州南创内部培训资料整理编辑:冯工) 全自动称重配料系统系统描述自动称重配料系统是完全自主研发,用于专业生产对粉状,散粒状物料(如粮食,面粉,饲料,PVC粉体,PP颗粒等)进行连续输送,精确计量,自动配料的称重系统。广州南创中国“称重控制系统”行业领导者、称重系统专家!中国进口传感器、仪器仪表、工业备件十大供应商;系统由上位机-工业电脑,下位机-PLC可编程序控制器,粉体配料,液体配料,微量加料及控制系统等部分组成。它是以真空上料,加料螺杆定量加料,称重料斗自动称重配料,同时进行累加称重的一种自动称重系统。适合于物料的精确计量和生产过程中的自动配料作业。 1.全自动称重配料系统: a)AT-WS系列全自动称重配料系统; b)SAT-WS半自动称重配料系统; c)M-WS人工称重配料系统。 2.全范围的中央和独立的加料系统: a)NP -FDS负压加料系统; b)SC-FDS螺旋加料系统; 3.弹簧上料器: a)SP-FD100型弹簧上料器; b)SP-FD300型弹簧上料器; c)SP-FD700型弹簧上料器 4.真空上料器: a)VF-P型粉末真空上料器; b)VF-G型颗粒真空上料器 5.抽屉式磁力架: a)HP-MS高强力磁力架; b)DR-MS抽屉式磁力架一, c) AT-WS系列全自动称重配料系统;SAT-WS半自动称重配料系统;M-WS人工称重配料系统:计量范围:500g;5Kg;10Kg;30kg;50kg─2000kg

计量精度:±0.05%;±0.1%;±0.2%;±0.5% 可按用户要求,加工特殊规格。 二,全范围的中央和独立的加料系统中央上料系统可以说是规模化塑料加工生产线中使用最普遍的辅助设备,它可节省原料搬运的人力与时间以及生产现场原料堆放所占的空间。 产品系列: 1,NP-FDS负压加料系统我司NP-FDS负压加料系统采用负压高速低浓度输送方式,该方式是利用真空泵产生足够的真空吸引力,再调整原料与空气之间的比例来达到输送的方式,其具有操作控制简便,输送速度快,生产安全稳定,生产现场清洁,成本低的特点。 2,SC-FDS螺旋加料系统螺旋输送机俗称绞龙,是矿产,饲料,粮油,建筑业中用途较广的一种输送设备,它适用于颗粒,粉状和小块状物料的水平输送,倾斜输送,垂直输送等形式,其输送距离从2米到70米,规格多种,并可根据客户需求制作。 三,弹簧上料器该产品可与各种规格的塑料挤出机配套使用,使塑料原料(粉末,颗粒等)从储料箱自动输送到挤出机料斗内,并由挤出机料斗内料位仪自动控制加料。具有性能稳定,节省人力,安全可靠等特点。 四,真空上料器VF-P型粉末真空上料器,VF-G型颗粒真空上料器是一种设计简洁,价格合适的轻巧型气动上料机。可以根据客户的要求安装在料斗,喂料机,干燥机或任何其他附属设备上。除主体设备外,还有一个可远程安装的控制盒和一根用于上料的软管和吸料用料枪。 五,抽屉式磁力架:HP-MS高强力磁力架;DR-MS抽屉式磁力架1,HP-MS高强力磁力架2,抽屉式磁力架

搅拌站设备的常见故障

混凝土拌合站设备的常见故障工地施工现场的混凝土拌合站是多发易发故障设备,加强对该设备的维护保养对保障工地现场的安全施工,提高设备完好率,减少设备故障,保障混凝土质量都有不可忽视的作用。通常情况下,拌合站的维护保养分为罐体的维护、卷扬系统的维护调整、行程限位器的调整及维护、钢丝绳及滑轮的维护、提升料斗的维护、轨道及轨道支架的维护等,下面一一说明。 罐体是混凝土拌合站的工作装置,磨损最为严重,一般情况下,衬板、叶片、搅拌臂和料门密封要经常视磨损情况进行调整和更换。每次拌完混凝土后,必须及时冲洗罐体,把罐内余存的混凝土以及料门粘附的混凝土彻底冲洗干净,以防罐内混凝土凝固。应经常检查料门启闭的灵活性,防止料门卡滞。每班扳动浓油泵向罐体轴端供油两次,以润滑轴承,排出沙、水等。罐体维护时一定要断开电源,专人看护,以免发生意外,每次开机前一定要确保罐内无异物存在,并严禁带载启动主机。 1故障实例处理案例一: 某工地HZS50B型拌合站,主机出料容量为1000L,但拌合0.6m3混凝土就超载。检查发现:主电机性能良好,传动机构也没什么故障,但是主机叶片与衬板之间间隙过大,衬板、叶片、搅拌臂磨损严重;搅拌机双卧轴轴端有轻微漏浆的情况,用浓油泵向轴端打黄油时,发现轴端黄油管道已堵死;罐内积料较多。由此可见,该搅拌站出料容量下降,从而造成生产率下降的主要原因是由于平时保养不善,衬板、叶片、搅拌臂磨损严重,浮动密封损坏,双卧轴转动阻力过大造成的。更换搅拌站的衬板和叶片及搅拌臂,叶片和衬板之间的间隙调整到小于5mm以内,以减少石子的卡滞;更换轴端密封,打通堵塞的油道,更换损坏的轴承。这样处理以后,主机性能恢复正常。 拌合站卸料门也是一处常发、易发故障的部位之一,卸料门开关不利是应重点检查:系统气压是否正常(大于4个大气压);气缸电磁阀是否损坏;料门气缸是否漏气,气缸行 程是否超限;料门是否卡滞;料门轴承是否损坏等。 2故障实例处理案例二: 某工地HZ50型拌合站卸料门打开时比较顺利,但卸完料后却关不上门,每次都要借 助于外力帮助。检查发现:系统气压正常,气缸电磁阀性能良好,料门无卡滞,气缸也无漏气现象,料门轴承亦无损坏。最后发现,料门有变形,气缸开门时行程超限,导致关门时关门力矩发生变化,出现关不上门的现象。仔细清理料门,调整气缸行程后,故障消除。 上料架及支架的维护: 经常在上料架与滚轮接触的槽内、槽外面上涂抹润滑脂,减少滚轮上、下时的运行阻力,上料架与支架出现变形现象要及时处理,防止事故发生。 3故障实例处理案例三: 某工地HZ50型拌合站上料斗门自动打开,料斗滚轮脱出轨道,经检查发现,轨道支 架安装时从料坑底面向上沿斜面无支撑且在料坑顶处又没有支座支撑,在3m的长度内轨 道悬空,造成轨道下沉并弯曲变形,料斗把轨道横撑挂断,从而造成轨道横向变形,间距加大,造成料斗滚轮脱轨,料斗门自动打开。维修、校正轨道,增加支座、焊上轨道横撑后,恢复正常。 行程限位器的故障处理及维护: 拌合站的限位器分为极限限位、上限位、下限位和断路器等。要经常及时检查各限位开关的灵敏度及可靠性,检查各控制线路元器件、接头、接线是否良好,线路是否正常,这对于拌合站的安全运行关系重大。

电动机常见机械故障检修

电动机常见机械故障检 修 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

电动机常见机械故障检修 1.定、转子铁芯故障检修 定、转子都是由相互绝缘的硅钢片叠成,是电动机的磁路部分。定、转子铁芯的损坏和变形主要由以下几个方面原因造成。 ①轴承过度磨损或装配不良,造成定、转子相擦,使铁芯表面损伤,进而造成硅钢片间短路,电动机铁损增加,使电动机温升过高。这时应用细锉等工具去除毛刺,消除硅钢片短接,清理干净后涂上绝缘漆,并加热烘干。 ②拆除旧绕组时用力过大,使盗槽歪斜和向外张开。此时应用尖嘴钳、木榔头等工具予以修整,使齿糟复位,并在不好复位的有缝隙的硅钢片间加入青壳纸、胶木板等硬质绝缘材料。 ③因受潮等原因造成铁芯表面锈蚀。此时需用砂纸打磨干净,清理后涂上绝缘漆。 ④围绕组接地产生高热烧毁铁芯糟或齿部。可用凿子或刮刀等工具将熔积物剔除干净,涂上绝缘漆烘干。 ⑤铁芯与机座间结合松动,可拧紧原有定位螺钉。若定位螺钉失效,可在机座上重钻定位孔并攻丝,旋紧定位螺钉。 2.轴承故障检修 转轴通过轴承支撑转动,是负荷最重的部分,又是容易磨损的部件。

①故障检查 运行中检查; 滚动轴承缺油时,会听到“骨碌骨碌”的声音;若听到不连续的“梗梗”的声,可能是轴承钢圈破裂。轴承内混有沙土等杂物或轴承零件有轻度磨损时,会产生轻微的杂音。 拆卸后检查; 先察看轴承滚动体、内外钢圈是否有破损、锈蚀、疤痕等,然后用手捏住轴承内圈,并使轴承摆平,另一只手用力推外刚圈,如果轴承良好,外钢圈应转动平稳,转动中无振动和明显的卡滞现象,停转后外钢圈没有倒退现象。否则说明轴承已不能再用了。左手卡住外圈,右手捏住内钢圈,用力向各个方向推动,如果推动时感到很松,就是磨损严重。 ②故障修理 轴承外表面上的锈斑可用00号砂纸擦除,然后放入汽油中清洗;或轴承有裂纹、内外圈碎裂或轴承过度磨损时,应更换新轴承。更换新轴承时,要选用与原来型号相同的轴承。 3.转轴故障检修 ①轴弯曲; 若弯曲不大,可通过磨光轴颈、滑环的方法进行修复;若弯曲超过0.2mm,可将转轴放于压力机下,在拍弯曲处加压矫正,矫正后的轴表面用车床切削磨光;如果弯曲过大,则需另换新轴。

常见仪表常见故障及处理办法

仪表常见故障检查及分析处理 一、磁翻板液位计: 1、故障现象:a、中控远传液位和现场液位对不上或者进液排液时液位无变化;b、现场液位计和中控远传均没有问题的情况下,中控和现场液位对不上; 2、故障分析:a、在确定远传液位准确的情况下,一般怀疑为液位计液相堵塞造成磁浮子卡住,b、现场液位变送器不是线性; 3、处理办法:a、关闭气相和液相一次阀,打开排液阀把内部液体和气体全部排干净,然后再慢慢打开液相一次阀和气相一次阀,如果液位还是对不上,就进行多次重复的冲洗,直到液位恢复正常为止;b、对液位计变送器进行线性校验。 二、3051压力变送器:压力变送器的常见故障及排除 1)3051压力变送器输出信号不稳 出现这种情况应考虑A.压力源本身是一个不稳定的压力B.仪表或压力传感器抗干扰能力不强C.传感器接线不牢D.传感器本身振动很厉害E.传感器故障 2)加压变送器输出不变化,再加压变送器输出突然变化,泄压变送器零位回不去,检查传感器器密封圈,一般是因为密封圈规格原因(太软或太厚),传感器拧紧时,密封圈被压缩到传感器引压口里面堵塞传感器,加压时压力介质进不去,但是压力很大时突然冲开密封圈,压力传感器受到压力而变化,而压力再次降低时,密封圈又回位堵住引压口,残存的压力释放不出,因此传感器零位又下不来。排除此原

因方法是将传感器卸下看零位是否正常,如果正常更换密封圈再试。 3)3051压力变送器接电无输出 a)接错线(仪表和传感器都要检查) b)导线本身的断路或短路 c)电源无输出或电源不匹配 d)仪表损坏或仪表不匹配 e)传感器损坏 总体来说对3051压力变送器在使用过程中出现的一些故障分析和处理主要由以下几种方法。 a)替换法:准备一块正常使用的3051压力变送器直接替换怀疑有故障的这样可以简单快捷的判定是3051压力变送器本身的故障还是管路或其他设备的故障。 b)断路法:将怀疑有故障的部分与其它部分分开来,查看故障是否消失,如果消失,则确定故障所在,否则可进行下一步查找,如:智能差压变送器不能正常Hart远程通讯,可将电源从仪表本体上断开,用现场另加电源的方法为变送器通电进行通讯,以查看是否电缆是否叠加约2kHz的电磁信号而干扰通讯。 c)短路检测:在保证安全的情况下,将相关部分回路直接短接,如:差变送器输出值偏小,可将导压管断开,从一次取压阀外直接将差压信号直接引到差压变送器双侧,观察变送器输出,以判断导压管路的堵、漏的连通性 三、雷达液位计:

自动上料配料系统方案设计

自动配料灌装生产线计量系统方案 一、企业现有生产过程情况概述 目前企业的生产过程基本为:粉料采用人工称料用行车或叉车人工运料、手工填料的方式,液料采用称重计量,人工泵送料,反应釜一般采用手动变频启动方式、水计量采用就地显示流量计,需要人工看数手动控制开关,从以上看出企业目前基本没有自动计量及传输控制设备。 1、现存问题 (1)、人工上料,劳动强度大,速度慢; (2)、液体原料采用桶装称重计量或流量计显示,桶内残留和流量计显示误差,造成计量精度差。 (3)、整个产品生产过程采用人工手动控制,劳动强度大,差错率高,废品率高,致使产品质量控制困难大、生产效率低。 (4)、为了适应产品规模化、高质量生产的需要,系统的布局、控制模式、管理软件系统均需要有重新设计、实施。 2、用户需求分析 (1)、产品规模生产要求系统具有更大的产能、更高的稳定性; (2)、降低人工上料劳动强度、提高计量精度; (3)、固体及液体物料均应自动上料、自动计量; (4)、每次生产的不同配方(原料配比)均可在电脑上进行操作; (5)、生产过程实现自动化控制。 二、本方案自动上料配料系统组成 生产线配料主要完成水和4 中液料的配料混合。计量罐单独设置,液体原料分开计量加料,现场3排搅拌釜分别为1排3个搅拌罐、2 排3个搅拌罐、3排5个搅拌罐。 1、原料罐四个,分别盛放四种不同的液体原料;水料罐1 个,用于暂存水,预留用水 量。现场分别在3排搅拌罐的上部设置5T原料计量罐1台,15T 水计量罐1

台; 2、每个原料罐底部都安装有送料管道(管道口径DN65),分别由自动阀门和手动阀门 控制开关,每种液料的自动阀门安装在靠近管道出口位置,由送料泵负责将料通过 管道打到计量罐,送料泵两端预留回流管及回流阀(回流管口径与主管道相同),在计量罐进料口处的安装自动阀门,实现物料的快投和慢投料控制;3、液料或水通过管道可直接加进计量罐,计量罐的四个支撑底脚与支撑架基础之 间各安装一只称重压力传感器模块,负责计量进入计量罐的物料重量,支撑架基础需做水平调试; 4、液体原料计量完毕通过计量罐底部的的自动分流装置,分别自动加到相应的搅 拌罐中。自动分流装置结构(见图一):在计量罐的总卸料阀后水平安装到各个搅拌釜的分料自动阀门,把各个分料自动阀门的前端进料管用管道联通,这样可以保证卸料后基本无存料,到各个搅拌釜的卸料管道水和液料管道可以合并一条管道,以减少管道用料成本; 5、搅拌好的成品通过反应釜底部的管道泵送至成品罐,由自动阀门和泵控制; 6、全部配料数据均存储于控制中心的工控机数据库内; 7、全部配料过程均由组态软件实施监控,通过控制界面实施过程操作,生产数据 适时存储到系统数据库,以完成对各种生产数据进行存储和分析,同时还能实现原料进存用料管理、成品管理、人员管理、合同管理等各项功能。 三、系统控制方案 1、在生产现场设置一个集中控制操作台,动态称重计量仪表安装在操作台上,安装 在六个计量罐支撑腿下部的称重传感器数据线与动态计量仪表相连,实时数据由计量仪表经通信线上传给控制中心的工控机,配方及控制命令由控制中心的工控机经通信线下传给仪表及PLC控制器; 2、操作台内部安装西门子S 系列PLC可编程控制器及继电器等,负责控制各自动 阀门和泵的启停; 3、计量仪表在PLC 的控制下启动,在不同计量阶段输出不同的信号(快投、慢 投、卸料等)给PLC,由PLC对外部设备直接控制;

混凝土搅拌站机械常见故障的排除与日常养护 张岭

混凝土搅拌站机械常见故障的排除与日常养护张岭 发表时间:2019-10-10T09:27:11.507Z 来源:《建筑学研究前沿》2019年13期作者:张岭 [导读] 混凝土搅拌站的大力应用,促使设备维护与保养工作愈发的突显,而其中最为重要的便是搅拌站内部的各个零件运行情况,一般主机有异响则代表设备存在故障,且气路内部的每一个气缸均是执行元件,如果气缸动作缓慢,则将引发搅拌站生产效率低下,导致计量误差偏大,需进行系统化检查,维护设备的常规运转。 身份证号码:32088219861026XXXX;徐州徐工施维英机械有限公司江苏徐州 223800 摘要:混凝土搅拌站的大力应用,促使设备维护与保养工作愈发的突显,而其中最为重要的便是搅拌站内部的各个零件运行情况,一般主机有异响则代表设备存在故障,且气路内部的每一个气缸均是执行元件,如果气缸动作缓慢,则将引发搅拌站生产效率低下,导致计量误差偏大,需进行系统化检查,维护设备的常规运转。混凝土搅拌站广泛应用于各种建筑工程、预制件和商品混凝土厂。根据实际经验,介绍了混凝土搅拌设备的故障处理及日常维护保养。 关键词:混凝土搅拌站;故障处理;日常养护 混凝土搅拌站的基本作用是生产混凝土,在具体的运行过程中,它能够参照混凝土水灰比对混凝土加水量实施有效控制,但这却极有可能遭受到人为因素和环境因素的干扰,为此,本文对关于混凝土搅拌站问题的探究具有重大意义。本文剖析了常见故障,探究了维护与保养策略。 一、故障分析及处理 (一)搅拌系统 1)故障现象:搅拌机主电机不启动、启动困难或无法启动。 检查方法:检查SB2常闭点、SB3常开点及KMY,KM1常开触点是否接触不良;检查热继电器FR1,2是否未复位或坏;检查是否过载,搅拌机叶片与衬板间是否有石子卡住;热继电器整定电流设置偏小,热继电器动作;检查搅拌机检修门是否被打开;检查检修门安全限位常闭点是否接触不好;检查电压是否偏低,电压降过大或变压器容量过小。 处理方法:修复或更换各按钮及触点;使FR1,2复位或更换;排除搅拌机叶片与衬板间卡住的石子;调整热继电器整定电流值,使其不小于电机的Ie(85%Ie~105%Ie);关闭好检修门;检修或更换安全限位;使机器尽量靠近电源或更换粗电源线,若变压器容量过小则应更换变压器。 2)故障现象:中储仓仓门未关好,不上骨料。 检查方法:检查仓门是否有石子卡住,中储仓蝶阀门是否关到位;检查悬臂气缸活塞杆是否未回到位;检查限位开关;检查与限位开关接触的碰块位置;检查继电器KA40,KA61触点输出及接线。 处理方法:移去卡住仓门的石子,检修蝶阀门使之关到位;用外力使气缸活塞杆回到位;调整或更换限位开关;调整碰块位置;检修或更换KA40,KA61并正确接线。 3)故障现象:搅拌机卸料门不开门。 检查方法:检查卸料门气路压力是否达到要求;检查气缸是否有内、外泄漏;检查电磁阀与继电器之间的接线有无脱落、虚接现象;检查卸料电磁阀线圈有无烧损或阀芯卡滞现象;检查限位开关;检查继电器KA46,KA58触点输出及接线;检查卸料门有无石头卡住。处理方法:调整气路压力达到0.5MPa~0.8MPa;排除气缸内、外泄漏;处理电磁阀与继电器间的接线脱落、虚接现象;检修或更换卸料电磁阀;调整或更换限位开关;检修或更换KA46,KA58并正确接线;移去卡住卸料门的石头。 4)故障现象:搅拌机卸料门不关门。 检查方法:检查卸料门气路压力是否达到要求;检查气缸是否动作;检查限位开关位置;检查与限位开关接触的碰块位置是否合适,碰块是否脱落;检查继电器KA60触点输出及接线。 处理方法:调整气路压力达到0.5MPa~0.8MPa;检修或更换气缸;调整或更换限位开关;调整碰块位置,将脱落的碰块重新固定;检修或更换KA60并正确接线。 5)故障现象:搅拌机闷机跳闸。 检查方法:检查配料系统是否超标,是否有二次投料现象;检查搅拌机叶片与衬板之间的间隙是否在3mm~8mm;检查搅拌机观察门是否被打开;检查搅拌机观察门安全限位开关是否未工作。 处理方法:调整配料使之在正常范围,将二次投料的骨料卸出重新投料;更换搅拌机叶片使之与衬板间隙符合要求;关闭好观察门;调整或更换安全限位开关。 (二)粉料、骨料配料系统 1)故障现象:粉煤灰不上料或上料慢。 检查方法:检查气吹破拱装置;检查继电器KA44,KA18,接触器KM8触点输出及接线;检查粉煤灰罐卸料碟阀开启是否灵活及碟阀开度;检查粉煤灰罐出口处物料是否结块;检查螺旋机中是否有异物或堵料;检查螺旋机叶片是否变形。 处理方法:开启气吹破拱装置;检修或更换KA44,KA18,KM8并正确接线;检修或更换卸料碟阀,调整蝶阀开度;取出粉煤灰罐出口处的结块;将螺旋机电机线反接使螺旋轴倒转排出异物或堵料;拆除校正或更换螺旋机叶片。 2)故障现象:粉煤灰不下料。 检查方法:检查主机门是否未关闭;检查关门信号开关是否有故障;检查粉煤灰计量斗卸料碟阀有无电信号输出,碟阀开启是否灵活,是否被异物卡住;检查粉煤灰是否有结块,管道是否有堵塞;检查继电器KA19,KA64触点输出及接线。 处理方法:关闭好主机门;检修或更换关门信号开关;检修或更换卸料碟阀,排除异物;取出粉煤灰结块,排除管道堵塞;检修或更换KA19,KA64并正确接线。 3)故障现象:水泥不上料或上料慢。 检查方法:检查气吹破拱装置;检查继电器KA42,KA13,接触器KM5触点输出及接线;检查水泥罐卸料碟阀开启是否灵活及碟阀开

智能电能表计量故障原因及预防控制措施

智能电能表计量故障原因及预防控制措施 发表时间:2018-06-19T16:22:04.187Z 来源:《电力设备》2018年第4期作者:钱浩 [导读] 摘要:随着人们生活水平的提高和工业的不断发展,人们对电能的依赖越来越突出,电力资源显得越来越重要。 (盐城供电公司江苏省盐城市 224000) 摘要:随着人们生活水平的提高和工业的不断发展,人们对电能的依赖越来越突出,电力资源显得越来越重要。也正因为如此,企业运维管理人员的工作变得越来越复杂,智能电能表的计量故障也越来越多。智能电能表是电能计量的基础装置,供电企业抄核收工作是以电能表上的计量数据为依据,如果计量数据不准确,就会影响供电企业的整体效益。因此,运维管理人员需要对智能电能表的计量故障原因引起重视,并设法排除这些故障。维护配电网的稳定迫在眉睫,只有配电网稳定,才能保障人们的正常生活和工业的发展。 关键词:智能电能表计量;故障;原因分析;预控措施 1智能电能表计量在电力行业中的重要性 电力资源是我们最平常使用的能源,我们消耗电能,计算方式是通过电能表进行计量来实现的。电能表计量的数据是供电企业和用尸进行结算的基础,而在进行结算时,计量误差会严重损害到双方的经济效益。当电能表数据计量多了,则会损害到供电企业的经济利益,长期以往,会导致供电企业的亏本。总之,电能表计量的准确性不仅影响供电企业和用户两者的经济利益和交易的公平性,甚至还影响到发电企业的经济利益。最近几年,我国电力市场的不断发展完善,对电能表计量工作提出了更高的要求。研究电能表计量准确性是当前大势所趋,尽可能减少误差,保护好发电企业、供电企业和用户三者之间的共同利益。因此,对电能表计量误差性的研究是电力工作者当前重要的研究课题之一。 2 故障分析 2.1 环境方面 通常情况下,智能电能表的精密性较高,因此,环境方面的各种影响因素,都可能影响其计量准确性。因此,在正式使用之前,需要严格按照相关规定,对其进行调试与校准,才能避免计量准确性降低。同时,智能电能表应在一个烟尘较少、磁场较弱的环境中运行,对于保证其运行稳定性和长时间运行的可靠性有着极大作用。与此同时,智能电能表可能出现液晶屏被损坏、驱动电机出现变位、电池突然脱位等问题,从而造成其计量存在误差的情况。因此,在进行智能电能表运输时,要尽量避免颠簸、振动等情况,以确保智能电能表不会出现损坏现象。 2.2 烧表方面 根据相关研究来看,智能电能表出现烧表故障,一般是在其运行过程中产生的,因而其无法正常运转,最终降低其质量可靠性,是当前电力工作人员必须高度重视的一个内容。从总体上来说,烧表故障产生的原因有:①表内采样回路端子如果存在接触不良好的情况,则负荷会不断增加,最终出现烧毁问题;②如果线路板的工艺质量较差,则可能出现短路问题,并且,人为因素造成的安全因素,如接线在安装时,其接线端钮盒的螺丝没有拧到位,用户超负荷使用的时间比较长,从而导致烧表故障出现;③脉冲输出端存在接入强电的现象,从而使光耦被烧毁等。 2.3 材料方面 根据故障分析的具体情况来看,智能电能表计量方面可能因其材料质量出现一些问题,例如:电解电容器的质量不够好,使得正离子、负离子之间产生一定电压,最终降低其计量准确性。一般在环境温度不大于6℃时,智能电能表的电解电容正极板、负极板是不会聚积电荷的,因而极板电压不断降低后,电能表内部的电压会存在与相关标准不相符的问题,给计量芯片正常运行带来影响,最终出现电能表指示灯无法正常显示的问题。所以,智能电能表的材料具有的质量是否良好,会给各种组成元件的运行带来直接影响,最终导致相关故障问题出现。 2.4 电池方面 在相关资料记载中,智能电能表的电池一般是3.6V,并且,其是锂亚电池,在化学特性上具有一定独特性。总的来说,上述电池每年的自放电电力低于1%,因而使用寿命比较长,可以很好的满足智能电能表使用周期的需求。但是,在实践应用中,电池存在欠压问题,从而降低计量准确性,最终电池的寿命很短。究其原因是:①电池在生产和出厂时,会存在一些次品,使得其出现输出电压不足的问题;②在使用过程中,电池可能会钝化,或是智能电能表安装的位置,其湿度比较大,则会使电极表面出现快速氧化、钝化的现象,最终降低其计量准确性;③在外部交流电出现停电情况时,智能电能表自身带有电池,因而消耗量较大,最终出现电池欠压问题,给其计量可靠性造成影响。 3 智能电能表计量故障的预控措施 3.1 采用科学的方式对电能表进行控制 根据智能电能表的计量情况来看,采用哪一种控制方式是否恰当,决定了其控制的有效性。当前,由于每个地区的形式和技术水平都存在一定的差异,因此,智能电能表的开关设置显得尤为重要,需要注重控制方式的合理选择,才能保证其计量可靠性。同时,开关设置具有一定合理姓,不仅能维持智能电能表的正常运行,还能减少计量故障发生的频率和概率,从而提高计量准确性。 比如,根据智能电能表的使用需求,在家庭中可以将开关置于智能电能表的外部,不仅能够实现远程控制,还能保证智能电能表结构的合理性。总的来说,将智能电能表的开关设计成外置开关的优势主要有两点:第一,许多智能电能表不必要安装控制回路,或者在较短的时间内不能使用,在不安装内置继电器的情况下,不但能够降低智能电能表的制造成本,还能够满足不同客户的个性化需求。第二,能够将智能电能表的计量功能充分的体现出来,使其它辅助功能得到简化,在提高智能电能表的稳定性,同时,还能有效延长其使用寿命。 3.2 保证电能表各软硬件设计的可靠度 根据相关资料的内容来看,在智能电能表的运行过程中,可能会出现内置继电器误动作的问题,也可能因为电压不稳定、触点不灵敏等引起不可靠动作。因此,为了避免此种故障出现,需要对继电器的误动作和不可靠动作进行预控。在实践过程中,应该注意各元件和软硬件设计的合理性、科学性。比如,在设计中应该包含相应的检测机制,还应对不动作机制有所设计。与此同时,智能电能表在运输过程中,可能因为一些不可控的因素,如碰撞、雨水天气等,导致继电器的触点不灵敏,最早出现接触不良的情况。如果是继电器接触不良,就会影响智能电能表的计量功能,导致计量的精准度下降。所以,针对这种情况,相关设计人员在智能电能表的检测和安装上,应设计上

旋转机械常见故障

旋转机械常见故障 1. 转子质量不平衡 转子质量不平衡是汽轮发电机组最常见的振动故障,它约占故障总数的80%。 转子质量不平衡的一般特征 (1)量值上,工频振幅的绝对值通常在30μm以上,相对于通频振幅的比例大于80% (2)频振幅为主的状况应该是稳定的,这包括: 1) 各次启机 2) 升降速过程 3) 不同的工况(负荷,真空,油温,氢压,励磁电流等) (3)工频振动同时也是稳定的 1.1原始质量不平衡 原始质量不平衡指的是转子开始转动之前在转子上已经有的不平衡。它通常是在加工制造过程中产生的,或是在检修时更换转动部件造成的。这种不平衡的特点除了上面介绍的振幅和相位的常规特征外,它的最显著特征是“稳定”,这个稳定是指在一定的转速下振动特征稳定,振幅和相位受机组参数影响不大,与升速或带负荷的时间延续没有直接的关联,也不受启动方式的影响。具体所测数据中,在同一转速下,工况相差不大时,振幅波动约20%,相位在10°~20°范围内变化的工频振动均可视为是稳

定的。 1.2松动 发生松动的部件可能有转子线圈.槽楔.联轴器等。这类松动包括设备底脚、基础平板和混凝土基础强度刚度不够,出现变形或开裂,地脚螺栓松动等。这类松动的振动频谱中占优势的是工频(或转速频率),这与不平衡状态相同,但振动幅值大的部位很确定,有局限性,这点与不平衡或不对中情况不同。另外,还要进一步比较各方向之间的相对幅值,观察它们的相位特性。如轴承座水平与垂直方向振幅、相位差,这类松动的振动具有方向性,在松动方向振动较大,如垂直方向振动远大于水平方向,水平和垂直方向相位差为0°或180° (而不平衡故障中水平和垂直方向相位差约为90°)。 详见《振动故障松动》pdf文档 1.3 部件缺损、飞脱 振动发生转动部件飞脱可能有叶片、围带、拉金以及平衡质量块。飞脱时产生的工频振动是突发性的,在数秒内以某一瓦振或轴振为主,振幅迅速增大到一个固定值,相位也同时出现一个固定的变化。相邻轴承振动也会增大,但变化的量值不及前者大。这种故障一般发生在机组带有某一负荷的情况。 1.4 转子热弯曲 转子热弯曲引起的质量不平衡的主要特征是工频振动随时间的变化,随机组参数的提高和高参数下运行时间的延续,工频振幅逐渐增大,相位也随之缓慢变化,一定时间内这种变化趋缓,基本保持不变。

现场仪表故障分析实例

1 故障现象:硫磺装置汽提塔液面测量仪表为浮筒液位计,相同高度安装有一台玻璃板液位计。现工艺人员反映,DCS显示液位处于100%,而工艺人员去现场检查玻璃板指示60%。浮筒液位计的现场显示也为100%。试分析其原因? 原因分析:经工艺人员现场检查,玻璃板指示正常。仪表工将放空阀打开排污,发现有污物阻塞现象。判断原因是筒内的污物将浮筒卡在了100%处,造成了浮筒指示有偏差、不变化。 故障处理:仪表工将污物清理干净,重新投用浮筒,指示正常 2 故障现象:某装置锅炉在开工时,仪表(差压变送器)指示总是比玻璃板高,请分析其原因。 (注:玻璃板液位计与差压测量引压口等高) 答案: 分析与判断:采用差压变送器测量密闭容器液位时,导压管内充满冷凝液,用100%负迁移将负压管内多于正压管内的液柱迁掉,使差压变送器的正负压力差△P=ρgh,h为液面高度,ρ为水的密度, g为重力加速度。差压变送器的量程就是Hρg, H为汽包上下取压阀门之间的距离。调校时,水的密度取锅炉正常生产时状态的值,ρ=0.76g/cm3锅炉刚开车时,温度、压力没有达到设计值,此时水的密度ρ=0.98g/cm3,虽然h不变,但是ρgh值增大了,所以输出增加。玻璃板液位计只和h有关,所以它指示正常,但是差压变送器的指示却大于玻璃板的指示。 处理方法:这种情况是暂时的,过一段时间锅炉运行正常时,两表的指示就能一致,不必加以处理,但是要和工艺人员解释清楚。要防止一点,由于仪表工解释不清这个现象产生的原因,而工艺人员又要坚持两表指示一致,这时仪表工将变送器的零位下调至两表指示一样,待锅炉运行一段时间后,若不将变送器的零点调回来,差压变送器的指示将偏低 3 某装置用差压变送器配合孔板测量高压蒸汽流量。可是仪表在投用后,好长时间无指示。过了一段时间,仪表指示慢慢上升,直至正常。请问是什么原因? 公布答案:由于测量蒸汽系统的差压变送器再投用时需要将正负压室的冷凝液充满,可是仪表工忽略了这一点,直接将仪表投用了,造成两侧的液注不平衡,仪表无指示。待冷凝水自动充满导压管时,仪表只是就恢复正常了。 4 有一台锅炉上水控制阀(双作用气缸阀),工艺人员反映操作室给信号控制阀不动作,仪表工去现场测量有4~20mA的信号送过来,检查定位器输出也正常,但是控制阀还是不动作,试分析其原因? 答案:操作工将控制阀切换至旁路控制,仪表工去现场后用万用表测量来自DCS的信号,4~20mA均正常,检查定位器的输出(将挡板靠近喷嘴或远离喷嘴),能输出最大或最小也正常,但是控制阀一点也不动,检查汽缸中的活塞O型圈,也无漏气的迹象,此时将执行机构与阀体脱开,用扳手转动阀杆发现,阀芯动作自如,无卡、涩的现象,此时需要将缸体打开来检查,打开后,发现与中轴相连接的齿轮以破碎,成碎渣状,也就是当气缸中的活塞动作时,无法带动与之相连的齿轮转动(因为破碎、没有齿轮了)也就无法使齿轮带动中轴继而带动阀芯产生动作。事后分析齿轮破碎的原因为,产品质量不过关,齿轮不能用铸铝、铸钢的材质,否则长时间使用后,就会磨损、破碎。 5某装置一调节阀用于压差较大的场合,作为停车保护用(见下图)。仪表工用普通的校验方法将阀调校合格后安装。开车后,联锁动作使三通电磁阀动作,调节阀膜头压力放空为零时,该控制阀仍然没有关死,导致透平转速降不下来。试分析,控制阀没有关死的原因?以

混凝土搅拌站常见故障及处理

混凝土搅拌站常见故障及处理 一、搅拌机系统故障 1、搅拌机不能启动 故障现象:按下操作台上搅拌机启动按钮,搅拌机不启动。 原因分析: 2、搅拌机闷机跳闸 故障现象:在正常投料搅拌过程中,搅拌主机出现闷机跳闸现象。 原因分析及故障处理:

3、搅拌机异响 4、搅拌机卸料门关门无信号 故障现象:搅拌机卸完料后,卸料门关闭,但无关门信号,造成

程序停止运行。 原因分析:搅拌机卸料门接近开关与卸料门上的转柄指针接近距离不超过5mm 才能感应信号。当卸料门因油泵压力未达到要求或卸料门在关闭时被搅拌机里的残料卡住时,接近开关接近不到转柄指针而没有信号,因接近开关或转柄指针松动,使接近距离超过5mm时,接近开关也感应不到信号。如接近开关损坏也没有信号输出。 处理过程: 1)、检查卸料门液压系统工作压力是否达到要求。 2)、切换到手动,把搅拌机卸料门打开,使卡住的残料掉落后再关上。 3)、检查接近开关和转柄指针是否松动。 4)、检查接近开关是否损坏。 二、物料输送系统故障 1、粉料称料缓慢 故障现象:粉料计量很慢,称料时间超过2分钟,而正常称料在20秒以内。 原因分析:影响因素主要是粉料罐下料不畅和螺旋输送机损坏等。粉料称料不畅的表现形式有粉料起拱、粉料罐出料口处物料结块、出料蝶阀开度过小、粉料罐内物料不足等。而螺旋输送机损坏主要是螺旋叶片变形,不能正常输送。 处理过程: 1)、开启气吹破拱装置。

2)、检查粉料罐卸料碟阀的开度,并使碟阀处于全开的位置。 3)、检查粉料罐出口处物料是否结块。 4)、检查螺旋机叶片是否变形,如变形则拆除校正或更换。 2、皮带跑偏 故障现象:皮带输送机在空载或负载运行过程中,出现往一边跑偏或一会而左边跑一会而右边跑的现象,引起漏料、设备的非正常磨损与损坏、降低生产率,而且会影响整套设备的正常工作 原因分析:胶带所受的外力在胶带宽度方向上的合力不为零或垂直于胶带宽度方向上的拉应力不均匀而引起的。由于导致胶带跑偏的因素很多,故应从输送机的设计、制造、安装调试、使用及维护等方面来着手解决胶带的跑偏,如胶带两侧的松紧度不一样、胶带两侧的高低不一样、托辊支架等装置没有安装与胶带运行方向的垂直截面上等都会引起皮带跑偏。 处理过程: (1)调整张紧机构法 胶带运行时,若在空载与重载的情况下都向同一侧跑偏,说明胶带两侧的松紧度不一样,则调整左右松紧度;如果胶带左右跑偏且无固定方向,则说明胶带松弛,应调整张紧机构。 (2)调整滚筒法 如果胶带在滚筒处跑偏,说明滚筒的安装欠水平,滚筒轴向窜动,或滚筒的一端在前一端在后。此时,应校正滚筒的水平度和平行度

电能计量装置检测及常见故障分析与处理

电能计量装置检测及常见故障分析与处理 发表时间:2018-04-13T11:44:20.087Z 来源:《电力设备》2017年第31期作者:张建军 [导读] 摘要:自从改革开放以来,人民生活水平得到不断提高,同时,人们在日常生活和生产中用电量也在不断增加。 (国网山西省电力公司太原市小店区供电公司山西太原 030012) 摘要:自从改革开放以来,人民生活水平得到不断提高,同时,人们在日常生活和生产中用电量也在不断增加。随着电力的使用,电量增加,消费者与电力企业之间的电力计量系统的稳定性和准确性的问题出现了矛盾。电能计量装置主要用于对用户用电电量计量的装置,所以电能计量装置的应用不仅可以保护电力用户的利益,同时也保护供电企业的利益。但是,在电能计量装置用电过程中,由于各种原因导致出现故障,会对双方造成十分严重的经济损失。因此,我们需要采取有效措施,保持电能计量装置运转的稳定。 关键词:电能计量装置;检测;常见故障;分析与处理 引言 在电能资源实际应用过程中,电能计量装置受到很多因素影响而产生了不同的故障,对电能分配产生了一定的影响,还会对电力企业和用户造成一些麻烦,因此,研究电能计量装置监测和故障分析与处理有重要的研究意义,对电能计量装置进行有效的监测管理,促进其正常运行,提高电能计量装置的有效性,为用户提供可靠的电能结算数据。 1电能计量设备含义及含义 电能计量设备在实践使用内首要效果就是对用户电能使用数量进行记载,是电能计量内首要设备。电能计量设备首要包三部分构成,分别为电流互感器、二次回路及计量电压设备。电能计量设备与相同类别设备相比较,在电力生计工序上面具有明显特征,有效将供电部分、发电部分及用电部分进行整合,添加不同部分之间的结合。供电部分怎样对电能进行出售、发电部分怎样出产电能、用户部分怎么对电能计量,这些作业全部都需求专门计量东西进行计量,一起对不同环节电能数量核算,电能计量设备就是首要设备。要是短少电能计量设备,计量作业也就无法顺利开展,电能出售作业也就无法准确实现。 2电能计量装置故障分析 2.1显示故障 智能电表通常为LCD显示屏,显示屏同时具备背光功能,常见的故障包括接通电源时显示屏不显示、液晶屏缺少笔画、闪烁、背光功能失灵等故障。造成故障的主要原因通常为液晶屏本身存在质量问题,包括电路虚焊或焊错,同时液晶屏显示还与温度有关,长时间的高温状态同样会影响显示屏的显示效果。 2.2电表负载量过大 目前,我国的电力企业往往借助电流互感器进行电力计量的工作。但事实上,该设备虽然能够实现对于电力消耗的准确计量,但是当电力系统的电流量较大时,其往往会导致电表负载量大状况的出现,继而导致计量准确性的降低以及计量误差的增大,导致计量管理效率的进一步降低。 2.3互感器差错 互感器差错分为电压互感器差错和电流互感器差错。电流互感器的差错是由铁芯的结构和资料的性能决议的,即与磁路长度、铁芯截面和导磁率有关,与线圈的匝数和电阻、二次负载的巨细和负载功率因数角有关。别的二次电流(或一次电流)、二次负载、功率因数以及频率也会影响电流互感器的差错。电压互感器差错也是因为绕组阻抗、铁芯励磁电流及漏抗等引起。 3减少电能计量装置故障的主要措施 3.1加强电能计量装置的技术改造 电气元件损坏、线路虚焊以及接线错误等是导致电子式电能计量表计数误差的主要原因。为了消除这些因素对电能计量表的影响,技术人员需要在电子式电能计量表技术优化方面付出更多的精力。首先,技术人员需要合理选择电能计量表类型,保证实际运行负荷在电能计量表可以承受的范围内,以减少电能表超负荷运行所产生的热量对电子元件造成的损害。其次,技术人员需要提高电流表、电压表、电能表精度,提高计量的准确性,特别是对于用电负荷变化大的用户,更需要使用计量精度高的电表。最后,技术人员还需要检测芯片、电压电流传感器、电源等是否存在故障,以及电能表是否因为制作工艺不良而在运输及使用过程中出现松动、接触不良情况,导致误差超过规范要求。 3.2电能计量装置改造要保持安全稳定性 电能计量装置作为一种电能计量的工具设备,承受着电力系统的各种干扰压力,比如说过度电压、负荷超载、电流突变等干扰因素以及自然界外部的风吹雨淋、太阳暴晒和电闪雷鸣的不利因素。电能计量装置一旦出现问题、发生故障,便会大大降低电能计量的安全性、稳定性和有效性,会给电能计量的正常工作带来不必要的麻烦,阻碍电能计量工作的有效进行,不能获取真实可靠的电能计量数据和信息,破坏了电力交易的公平性和公正性,严重的电能计量装置故障还极有可能造成人员的伤亡,造成不可估计的损失。所以说,在进行电能计量装置改造的过程中,必须保持装置的安全性和稳定性。在电能计量仪器的选购问题上,必须要严谨对待,要选择优质的计量设备,坚决不选用低价而质量不高的计量仪器;在电能计量装置的安装过程中,要注意因地制宜的原则,根据使用场所的不同选用恰当适宜的电能计量仪器;安装于户外的电能计量装置要做好保护箱的改造工作,要充分考虑到保护箱的通风散热、防水防尘、防潮防腐蚀等方面因素,最大限度减少电能计量装置的维修护理次数,提高电能计量装置的使用寿命,保证装置改造的安全稳定性;在电能计量装置改造完成之后,应该请有丰富经验的专业检测人员进行计量装置设备的运行检查工作,进一步保障电能计量装置的安全性和稳定性,确保电能计量结果的真实可靠性,从而最大限度达到电能计量装置改造的最佳效果。 3.3计算节点优化 依据现有资源优化比例,实现资源综合化处理,计算节点优化能耗控制,分为虚拟处理控制和实体结构控制。虚拟程序控制,建立虚拟控制的分段模型,实施资源信息分段处理,视频监控系统设定不同节能控制标准,服务器按照不同节能标准进行能耗控制。比如,假设某主服务器的耗能水平为10/h,按照这一损耗水平,确定虚拟控制系统处理过程的损耗总量,假设该服务器共计工作10h,则一共损耗能效100,依据主服务器的做功标准,实行能耗优化限制层次性划分,第一阶段为100,第二阶段为100-200,第三阶段为200-300,逐一增加。当主服务器出现处理视频数量增加,系统将会按照能耗控制标准,实现视频监控处理中能耗控制,达到虚拟信息节能优化的目的。

水泵机械密封常见故障及解决办法

水泵机械密封常见故障及解决办法 一、常见的渗漏现象机械密封渗漏的比例占全部维修泵的50%以上,机械密封的运行好坏直接影响到水泵的正常运行,现总结分析如下 1、周期性渗漏 (1)泵转子轴向窜动量大,辅助密封与轴的过盈量大,动环不能在轴上灵活移动。在泵翻转,动、静环磨损后,得不到补偿位移。 对策:在装配机械密封时,轴的轴向窜动量应小于0、1mm,辅助密封与轴的过盈量应适中,在保证径向密封的同时,动环装配后保证能在轴上灵活移动(把动环压向弹簧能自由地弹回来)。 (2)密封面润滑油量不足引起干摩擦或拉毛密封端面。 对策:油室腔内润滑油面高度应加到高于动、静环密封面。 (3)转子周期性振动。原因是定子与上、下端盖未对中或叶轮和主轴不平衡,汽蚀或轴承损坏(磨损),这种情况会缩短密封寿命和产生渗漏。 对策:可根据维修标准来纠正上述问题。2、小型潜污泵机封渗漏引起的磨轴现象 (1)715kW以下小泵机封失效常常产生磨轴,磨轴位置主要有以下几个:动环辅助密封圈处、静环位置、少数弹簧有磨轴现象。 (2)磨轴的主要原因:①BIA型双端面机械密封,反压状态是不良的工作状态,介质中的颗粒、杂质很容易进入密封面,使密封失

效。②磨轴的主要件为橡胶波纹管,且是由于上端密封面处于不良润滑状态,动静环之间的摩擦力矩大于橡胶波纹管与轴之间的传递转矩,发生相对转动。③动、静环辅助密封由于受到污水中的弱酸、弱碱的腐蚀,橡胶件已无弹性。有的已腐烂,失去了应有的功能,产生了磨轴的现象。 (3)为解决以上问题,现采取如下措施:①保证下端盖、油室的清洁度,对不清洁的润滑油禁止装配。②机封油室腔内油面线应高于动静环密封面。③根据不同的使用介质选用不同结构的机封。对高扬程泵应重新设计机封结构,对腐蚀性介质橡胶应选用耐弱酸、弱碱的氟橡胶。机封静环应加防转销。 二、由于压力产生的渗漏 (1)高压和压力波造成的机械密封渗漏由于弹簧比压力及总比压设计过大和密封腔内压力超过3MPa时,会使密封端面比压过大,液膜难以形成,密封端面磨损严重,发热量增多,造成密封面热变形。对策:在装配机封时,弹簧压缩量一定要按规定进行,不允许有过大或过小的现象,高压条件下的机械密封应采取措施。为使端面受力合理,尽量减小变形,可采用硬质合金、陶瓷等耐压强度高的材料,并加强冷却的润滑措施,选用可*的传动方式,如键、销等。 (2)真空状态运行造成的机械密封渗漏泵在起动、停机过程中,由于泵进口堵塞,抽送介质中含有气体等原因,有可能使密封腔出现负压,密封腔内若是负压,会引起密封端面干摩擦,内装式机械

现场仪表常见的温度、压力、流量液位故障及处理(30个)

现场仪表常见的温度、压力、流量液位故障及处理(30个) 一、现场测量仪表。一般分为温度、压力、流量、液位四大类 一):温度仪表系统常见故障分析 (1):温度突然增大:此故障多为热电阻(热电偶)断路、接线端子松动、(补偿)导线断、温度失灵等原因引起,这时需要了解该温度所处的位置及接线布局,用万用表的电阻(毫伏)档在不同的位置分别测量几组数据就能很快找出原因。 (2):温度突然减小:此故障多为热电偶或热电阻短路、导线短路及温度失灵引起。要从接线口、导线拐弯处等容易出故障的薄弱点入手,一一排查。现场温度升高,而总控指示不变,多为测量元件处有沸点较低的液体(水)所致。 (3):温度出现大幅度波动或快速震荡:此时应主要检查工艺操作情况(参与调节的检查调节系统)。 二):压力仪表系统常见故障及分析 (1):压力突然变小、变大或指示曲线无变化:此时应检查变送器引压系统,检查根部阀是否堵塞、引压管是否畅通、引压管内部是否有异常介质、排污丝堵及排污阀是否泄漏等。冬季介质冻也是常见现象。变送器本身故障可能性很小。 (2):压力波动大:这种情况首先要与工艺人员结合,一般是由操作不当造成的。参与调节的参数要主要检查调节系统。 三):流量仪表系统常见故障及分析 (1):流量指示值最小:一般由以下原因造成:检测元件损坏(零点太低。;显示有问题;线路短路或断路;正压室堵或漏;系统压力低;参与调节的参数还要检查调节器、调节阀及电磁阀。 (2):流量指示最大:主要原因是负压室引压系统堵或漏。变送器需要调校的可能不大。 (3):流量波动大:流量参数不参与调节的,一般为工艺原因;参与调节的,可检查调节器的PID参数;带隔离罐的参数,检查引压管内是否有气泡,正负压引压管内液体是否一样高。 四):液位仪表系统常见故障及分析 (1):液位突然变大:主要检查变送器负压室引压系统是否堵、泄漏、集气、缺液等。灌液的具体方法是:按照停表顺序先停表;关闭正负压根部阀;打开正负压排污阀泄压;打开双室平衡容器灌液丝堵;打开正负压室排污丝堵;此时液位指示最大。关闭排污阀;关闭正负压室排污丝堵;用相同介质缓慢灌入双室平衡容器中,此时微开排污丝堵排气;直至灌满为止,此时打开正压室丝堵,变送器指示应回零位。然后按照投表顺序投用变送器。

相关主题
文本预览
相关文档 最新文档