当前位置:文档之家› 配电网理论线损计算方法及降损措施研究

配电网理论线损计算方法及降损措施研究

华北电力大学(北京)

硕士学位论文

配电网理论线损计算方法及降损措施研究

姓名:王浩锐

申请学位级别:硕士

专业:电气工程

指导教师:艾欣;赵云

20080301

低压线损管理中存在的问题及降损措施

线损管理是供电所在生产技术管理、经营管理中的关键环节,直接影响到供电企业的经济效益,是供电企业的一项重要经济指标。影响线损升高的主要有技术因数和管理因数,但在对线路、台区进行普查后分析往往技术因数的影响只占10%--20%左右,主要是管理人员不规范管理造成的,因而降低低压线损的关键在管理降损上,建立线损管理机制,提高管理水平,通过内部的强化管理,综合考虑影响线损起伏不稳的客观条件,分析和排查存在的各种因素,找出关键点,逐步消除,是降低线损提高经济效益的关键所在。一、低压线损管理中存在的问题目前,农村低压用户用电量一般在农村供电所的比例占在60%—90%之间,低压线损如果居高不下不仅影响供电所综合线损指标的完成,还影响台区管理员的线损考核工工资减少,以致影响台区管理员的工作积极性,形成恶性循环。按照省公司有关规定,低压线损指标值一般定在12%以下,虽然低压线损率比以前有了降低,但部分供电所都没能完成规定的低压线损值,降低高损台区降低低压台区线损成为当前营销工作的重点工作。 (一)低压线损管理网络松散,线损管理档案资料不齐全。县公司和供电所都建立了降损节能管理组织,但没有充分发挥小组的作用,只有所长和营业班长在日常抓线损管理,其他成员没有履行职责。另外,没有建立台区线路的负荷资料和电网设备的各项基础参数资料台帐,致使线损管理依据不详实。 (二)低压线损理论计算不科学,线损考核指标值定制随意。供电所在台区精细化系统收集线路、计量等基本参数时都是在现场目测的,不能真实反映现场情况,台区现状发生设备变更后没有及时在精细化系统更新,造成理论测算的线损值只能作为一种参考,线损考核指标每年测算靠营业管理人员根据公司下达的指标值再参考各台区上年完成情况综合确定,对部分台区不尽合理。 (三)线损分析制度执行坚持不好,台区管理员素质不高。供电所线损分析会效果不明显,有的台区管理员年龄大、文化水平低,有的语言组织能力差、有的不用心总结,造成线损分析会总是几个管理人员在分析,台区管理员既写不出分析材料又讲不出线损高低的原因,更不知道采取哪些措施降损。 (四)抄表管理制度执行不力,随意性大。部分台区管理员思想观念没有及时转变,每月抄表不能严格按照制订的抄表日程进行,而是根据自己的时间

配电网节能降损优化研究综述

配电网节能降损优化研究综述 摘要:伴随我国经济的快速发展,我国电网的负荷也在不断的提升,配电网的 电能损耗也在逐渐的增加。怎样有效的减少电能在运输过程中的损耗,即节能降 损已成为配电网中亟待解决的问题。节能降损是当前企业发展的一个重要标准, 也是提高企业在市场上竞争力的一个重要举措。这篇文章根据配电网中节能降损 和优化的措施进行探索,对配电网节能降损的现状和问题做出分析,提出了有效 的降损方式。 关键词:配电网;节能现状;存在问题;优化措施 引言 电网运输是电能传输的重要渠道,电网本身的节能降耗是我国节能工作中的 一个重要组成成分。当前电网配置比较弱,这是我国电网结构中急需解决的一个 问题。因为配电网点比较多,配电线路也比较繁复,电能损失比较大,大约占电 网损失的一半以上,所以说它可节能地方比较大。城镇之间的配电网是电力系统 的主要部分,该文章根据配电网对如何节能降耗进行研究探索,对节能降损的现 状进行分析,提出了当前节能降耗中存在的一些问题以及解决措施[1]。 一、配电网节能降损的现状 现在我国对配电网节能降损的探究还处于比较独立的阶段,对部分地区的电 网线损进行计算,无功优化,变压器经济运转期,并且这些部分的技术都是由不 同的企业掌控,过于离散,缺少整合。各个系统之间的信息合成率过低,数据之 间的连接也不符合规定,运行员工没法及时的掌控配电网运行的现时情况,这会 导致工作繁复以及效率低的后果。而现在配电网中无功补偿节能设施和电力质量 处理装备分布面积还不够广,不仅没有数据上传和收集的单位,也没有设备的整 体调控单位,在设施的运转状态,故障以及节能成效和电力质量的治理成效也没 法知晓。所以,按照配电网的建设和发展需求,研发一种新型的配电网节能减损 和电力质量综合调控设备是非常重要的。利用先进技术逐渐推行电网的节能和提 升电力质量的工作。 电力降损系统的硬件装备的发展过程有:电网发展的初级阶段只是无功调节 和优化的要求,经过了由同步调相机到开关投切电容器到静止无功补偿的变化过程,他们的共有特征是用来调控无功功率从而达到降耗的目的。然而它们在不同 的方面也会出现一些弊端,比如说同步调相机的反应速度不高,噪声大,耗损多,技术老旧,所以属于过去式了。开关投切电容器反应较慢,而且连续控制能力比 较弱。而静止型动态无功补偿器的压制能力弱,体积大,本身谐波污染就比较大。 二、配电网节能降损工作存在的问题。 (一)无功补偿不足而造成的无功损耗问题 现在配电网应用的降损方式主要是电容的补偿,但是因为速度比较低,不能 动态调整,很易过量补偿的现象,所以说电网的损耗现象仍然很重[2]。 (二)能设备无法治理电能质量的问题 电网损耗以及电力质量的问题主要体现在电网的谐波波动、三相负载不平衡。引发的问题主要有:第一,谐波对供电变压器来说会产生额外的损耗,升高变压 器温度,降低了绝缘期限;第二,谐波对旋转电机也会产生一定的副作用,不仅 能产生额外的损耗,还能导致发生机械震动,产生噪音和谐波过电压等;第三,

线损理论计算方法

线损理论计算方法 线损理论计算是降损节能,加强线损管理的一项重要的技术管理手段。通过理论计算可发现电能损失在电网中分布规律,通过计算分析能够暴露出管理和技术上的问题,对降损工作提供理论和技术依据,能够使降损工作抓住重点,提高节能降损的效益,使线损管理更加科学。所以在电网的建设改造过程以及正常管理中要经常进行线损理论计算。 线损理论计算是项繁琐复杂的工作,特别是配电线路和低压线路由于分支线多、负荷量大、数据多、情况复杂,这项工作难度更大。线损理论计算的方法很多,各有特点,精度也不同。这里介绍计算比较简单、精度比较高的方法。 理论线损计算的概念 1.输电线路损耗 当负荷电流通过线路时,在线路电阻上会产生功率损耗。 (1)单一线路有功功率损失计算公式为 △P=I2R 式中△P--损失功率,W; I--负荷电流,A; R--导线电阻,Ω (2)三相电力线路 线路有功损失为 △P=△PA十△PB十△PC=3I2R (3)温度对导线电阻的影响: 导线电阻R不是恒定的,在电源频率一定的情况下,其阻值 随导线温度的变化而变化。 铜铝导线电阻温度系数为a=。 在有关的技术手册中给出的是20℃时的导线单位长度电阻值。但实际运行的电力线路周围的环境温度是变化的;另外;负载电流通过导线电阻时发热又使导线温度升高,所以导线中的实际电阻值,随环境、温度和负荷电流的变化而变化。为了减化计算,通常把导线电阴分为三个分量考虑: 1)基本电阻20℃时的导线电阻值R20为 R20=RL 式中R--电线电阻率,Ω/km,; L--导线长度,km。 2)温度附加电阻Rt为 Rt=a(tP-20)R20 式中a--导线温度系数,铜、铝导线a=0.004; tP--平均环境温度,℃。 3)负载电流附加电阻Rl为 Rl= R20 4)线路实际电阻为 R=R20+Rt+Rl (4)线路电压降△U为 △U=U1-U2=LZ 2.配电变压器损耗(简称变损)功率△PB

10kV及以下配电网理论线损计算5页

10kV及以下配电网理论线损计算 0 引言 10kV及以下配电网的网架结构、设备和用电负荷都比较复杂,占了电网电量损耗的大头。加强配电网线损计算是降损节能的重要管理手段[1]。线损计算是根据电网的网架和运行电气参数,应用相应的电路原理计算电网中各个原件的理论线损电量。在配电网规划中,规划年的理论线损计算是不可缺少的内容,但相对于高压配电网,中低压配电网由于设备规模和数量较为庞大,大量缺乏网架内的元件参数和运行参数,特别是规划年的网络参数和运行环境缺失,使得使用精确模型建模和运用成熟的计算软件进行计算较为困难。根据中低压配电网的实际特点,充分利用配电网规划方案可以获取的有限条件进行理论线损计算是配电网理论计算在工程应 用方向的可行路径[2]。本文采用简化负荷模型对配电网进行降低规模计算,求得各类负荷分布类型线路的功率损耗,最后采用最大负荷利用小时法得到规划区域内的理论电量损耗。 1 10kV中压配电网理论线损计算 根据地区线路特性和计算结果,把线路简化为5种负荷分布形式的线路,包括末端集中分布、均匀分布、递增分布、递减分布和中间集中分布。下面具体对各种负荷分布线路模型进行分析。 1.1 中压线路负荷分布模型 1.1.1 末端集中分布 设10kV中压线路主干始端电流为I,单位阻抗为r,负荷集中于线路的末端,则主干的线路损耗为:

1.1.2 线路负荷均匀分布 线路负荷均匀分布于线路上,假设线路始端主干电流为I,末端电流为i0,距离始端x距离的分置电流为ix。图1为负荷均分布模型,X轴为距离线路始端的距离,线路全长为L;Y轴为线路分支线电流的总和。 1.1.3 负荷递增分布 1.1.4 负荷递减分布 1.1.5 负荷中间集中分布 1.2 功率损耗系数 根据以上的计算分析,可以得到各种负荷分布模型的线路功率损耗系数,见下表。 1.3 中压线路损耗估算流程 1.3.1 中压线路主干损耗估算 (1)按照线路主干型号,查找相应的线路的单位电阻r,根据线路长度L得到主干的阻抗为R=L×r; (2)分析线路的分布模型,获得该线路的的功率损耗系数β; (3)计算该线路的功率损耗 1.3.2 中压线路装接配变损耗估算 根据变压器型号和单台变压器容量S,查找变压器参数表得到该型号变压器的空载损耗为ΔPk,负载损耗为ΔP T。中压线路装接配变损耗为:公式中,ST为变压器实际运行容量,采用年最高负荷。 1.3.3 中压线路的总功率损耗 每回中压线路的功率损耗为中压线路功率损耗ΔPL和中压线路装接

变损和线损的计算word精品

、变损: 变压器损耗计算公式 (1) 有功损耗:AP^PO+KT B 2PK ( 1) (2) 无功损耗:△Q M QO+KT B 2 QK —— (2) (3) 综 合功率损耗: 4PZ= AP + K QAQ -- -- (3) QO"I O%SN,QK~UK%SN 式中:Q O 空载无功损耗(kvar PO ——空载损耗(kW) PK ―― 额定负载损耗(kW) SN —— 变压器额定容量 (kVA) IO% ——变压 器空载电流百分比。 UK% 短路电压百分比 B ――平均负载系数 KT ——负载波动损耗系数 QK 额定负载漏磁功率(kvar) KQ ——无功经济当量(kW/kvar 上式计算时各参 数的选择条件: (1) 取 KT=1 . O5 ; (2) 对城市电网和工业企业电网的6 k 系统最小负荷 时,其无功当量KQ=O.1k (3) 变压器平均负载系数,对于农用变 工业企业,实 行三班制,可取 3=7 5%; (4) 变压器运行小时数T= 8 7 6 Oh =5500h ; (5) 变压器空载损耗 P0、额定负载损 耗PK 、 IO%、UK%, 见产品资料所示。 变压器损耗的特征 变损和线损的计算 V ?1OkV 降压变压器取 W/kvar; 压器可取3=20% ;对于 ,最大负载损耗小时数:t

P0 空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。

涡流损耗 与频率、最大磁通密度、矽钢片 P C 负载损耗,主要是负载电流通过 称铜损。 其大 小随负载电流而变化,与负载电 准线圈温度换 算值来表示)。 负载损耗还受变压器温度的影响,同时负 组内产生涡流损耗,并在绕组外的金属部分产 变压器的全损耗AP =P0 P C 变压器的 损耗比=P C/P 0 变压器的 效率=PZ / (PZ A P),以百分比表示;其中PZ 为变压 器二次侧输出功率。 变压器节能技术推广 1)推广使用低损耗变压器; (1)铁 变压器损 芯损耗的控制 耗中的空载损耗,即铁损,主要 发生在变压器铁芯叠片内, 主要是因交变 的磁力线通过铁芯产生磁滞及涡 流而带来的损耗。 最早用于 变压器铁芯的材料是易于磁化和 退磁的软熟铁,为了克服磁 回路中由周期 性磁化所产生的磁阻损失和铁芯 由于受交变磁通切割而产生 的涡流,变压 器铁芯是由铁线束制成,而不是 由整块铁构成。 19 0 0 年左右,经研究发现在铁中加入 少量的硅或铝可大大降低磁 路损耗,增大 导磁率,且使电阻率增大,涡流 损耗降低。经多次改进,用 0.35mm 厚的硅钢片来代替铁线制作变压 器铁芯。 近年来世 界各国都在积极研究生产节能材 料,变压器的铁芯材料已发 展到现在最新 的节能材料 非晶态磁性材料 如2 6 0 5 S2,非晶合金 铁芯变压器便 应运而生。使用2 6 0 5 S2制 作的变压器,其铁损仅为硅 钢变压器的1 /5,铁损大幅度降低。 (2)变压 E 器系列的节能效果 上述非晶 合金铁心变压器,具有低噪音、 低损耗等特点,其空载损耗 仅为常规产品 的1/5,且全密封免维护,运 行费用极低。 我国S7 系列变压器疋1 9 8 0年后推出 的变压器,其效率较SJ 、 SJL 、SL 、SL1系列的变压器咼,其负 载损耗也较咼。 8 0年代 中期又设计生产出S9系列变压 器,其价格较S7系列平均 高出2 0%, 空载损耗较S7系列平均降低8 %,负载损耗平均降低2 的厚度三者的积成正比。 绕组时在电阻上的损耗,一般 流的平方成正比;(并用标 载电流引起的漏磁通会在绕 生杂散损耗。

(完整word版)低压台区线损分析及降损措施

低压台区线损分析及降损措施 2019年5月 380V低压台区网络线损是10kV配电网络线损的重要组成部分,其损失约占整条线路损失的60%~70%左右,因此,降低台区的低压损失,是开展线路降损增效工作的重点。台区线损率主要由两部分构成。一是实际线损,是技术方面的,是配电线路、变压器、电能表计等设备自身消耗的电量,它还与低压网络的分布、低压线路设备状况、用电负荷的性质及运行情况有关。由于电能在传输分配过程中不可避免的损失一部分电量,这部分电量就构成了实际损耗,实际损耗可以减小,但不能完全避免。二是管理线损,是由管理因素决定的。这方面引起线损的原因比较复杂,比如窃电、错漏抄表、计量故障等。管理线损是供电企业线损的主要部分,可以通过加强管理来减小甚至完全避免管理线损。 1.影响低压台区线损率的主要因素 1.1技术方面 1.1.1线路状况 低压配电线路的材质、截面、长度及好坏程度,是影响低压网络实际损耗的主要因素。一段导线的电阻公式为: R——电阻;ρ——电阻率;l——导线长度;s——导线截面

由此公式可知,导线的电阻与导线的电阻率、导线长度成正比,与导线截面积成反比。导线电阻越大其消耗的电能也就越大。如果现场低压线路截面过小,会导致损耗加大。另外,线路老化、破损现象严重,与树木相碰触,也会加大线路自身的电能损耗。 2.1.2供电半径 一般来说,一个低压台区的供电半径不应大于300米(市区不应大于150米),即以变台为中心,低压线路的半径长度不应超过300米,否则线路的损耗将加大。现场实际运行中,低压线路供电半径过长的现象有很多,特别是在远离市区的平房区域、城乡结合部区域,此类现象比较突出,个别低压线路有的延伸到500米以上。这样,一方面线路损耗增加,线损加大,另一方面导致线路末端电压质量急剧下降,造成电压损失,使用户电压质量下降。 2.1.3三相负荷不平衡率 现场大部分配电变压器均采用三相变压器,变压器出口三相负荷理论上应该达到对称,而实际上很难达到这一点,现场三相负荷基本上都是非对称性的,变压器三相负载的不平衡率也是一项重要的技术指标,规程规定变压器三相负载不平衡率不能大于20%。变压器三相负载不平衡率过大,将使线路损耗增加,各相电压超差,影响用电设备的使用寿命。 配变三相负荷不平衡,将降低配变出力,增大线路上的功率损失,影响电压质量。经计算证明,将负荷接到一相上,导线上的功率损失是三相负荷平衡时的6倍。

关于配电网节能降损措施分析

摘要:从合理选择配电变压器、改善低压供电网网架结构、改造老旧低压计量装置、 保持变压器低压三相负荷平衡运行、加大无功补偿力度、改善供电电压水平六个方面,阐 述了配电网节能降损的技术措施,指出了配电网节能降损的管理措施。 供电企业“跑、冒、滴、漏”和配电网线损居高不下的问题,一直是困扰供电企业经 济效益的瓶颈。通过近几年的电网改造,电网装备水平得到了较大改善,线损率逐年下降,但一些台区特别是乡镇居民密集区低压线损率依然居高不下,个别台区线损高达30%以上,这给供电企业线损管理和经营带来了巨大压力。 配电网的损耗分为管理线损和技术线损,管理线损通过科学的管理方法来降低,技术 线损主要采取技术措施来降低,包括对电网进行技术改造和改善电网运行方式等措施。下 面谈谈农村配电网节能降损几项技术措施。 一、合理选择配电变压器 配电变压器的选择包括配电变压器容量、型号的选择以及变压器安装位置的选择。 1.配电变压器容量选择 配电变压器容量应根据该区域的现状和发展趋势选择,如果容量选择过大,会出现 “大马拉小车”现象,变压器利用率低,空载损耗增加。选择容量过小,会引起变压器过载,损耗同样增加,严重时将可能导致变压器过热或烧毁,因此,配电变压器必须根据所 安装区域平时负荷和最大负荷进行合理的选择。 2.配电变压器型号的选择 主要是选用应用了新技术、新材料、新工艺的新型号高效节能配电变压器,降低能耗。 (1)选用非晶合金铁芯变压器。非晶合金铁芯变压器是用新型导磁材料——非晶合金制 作铁芯而成的变压器,它比硅钢片作铁芯变压器的空载损耗下降80%左右,空载电流下降 约85%,是目前节能效果较理想的配电变压器,特别适用于农村电网和变压器负载率较低 的地方使用。三相非晶合金铁心配电变压器与S9型配电变压器相比,其年节约电能量相当可观。 (2)选用卷铁芯全密封型配电变压器。卷铁芯全密封型配电变压器是近几年研制的新一 代低噪声、低损耗型变压器,卷铁芯无接缝,全部磁通磁化方向与硅钢片轧压方向相同, 充分地发挥了硅钢片的取向性能,在条件相同的情况下,卷铁芯与叠片铁芯相比,空载损 耗下降了7%~10%,空载电流可下降50%~70%。由于变压器高低压线圈在芯柱上连续绕制,绕组紧实,同心度好,更加增强了产品的防盗性能,噪声下降10分贝以上,温升低16~ 20K。 由于该型号变压器空载电流小,因此降损效果明显,可提高网络功率因数,减少无功 补偿设备的投入,节省设备投资和降低运行能耗。 (3)选择有载自动调容配电变压器。有载自动调容变压器是将变压器线圈采用串、并联 接线,在变压器的低压线圈上接有有载调容开关,在变压器低压侧接有电流互感器和自动 控制器,通过电流互感器提供变压器负荷状态,自动控制器可按负荷自动调挡运行。有载 自动调容变压器解决了长期以来电磁线圈变压损耗较高、需要人工操作的缺点,进一步降 低了变压器的空载损耗和空载电流。有载自动调容变压器特别适用于负荷分散、季节性强、平均负荷率低的用户。 3.配电变压器安装位置的选择 变压器安装位置除满足场地、环境要求外,还要考虑将配电变压器接近负荷中心位置,使供电半径尽量缩短,最好控制在500米范围内。对于负荷比较分散的台区,也应将绝大 部分负荷尽量控制在500米范围内。

配电网理论线损计算方法._secret

配电网理论线损计算方法 配电网线损是电力部门一项综合性的经济、技术指标。准确合理的配电网线损理论计算是电力部门分析线损构成、制定降损措施的有力工具,对促进供电企业降低能耗,内部挖潜,提高经济效益,优化电网规划设计方案,加强运行管理具有重要意义。目前,由于配电网结构的复杂性、参数多样性和资料不完善以及缺乏实时监控设备,准确计算配电网理论线损比较困难,一直是个难题。配电网理论线损计算的主要目的是通过对电能在输送和分配过程中各元件产生的电能损耗及各类损耗所占比例的计算,来确定配电网线损的变化规律。配电网理论线损计算方法,主要分为两类:一类是依据网络主要损耗元件的物理特征建立的各种等值模型算法;另一类是根据馈线数据建立的各种统计模型和神经网络模型等算法。传统计算方法,如均方根电流法、平均电流法等,计算结果精度不高,不便于降损分析。针对这种情况,近几年来,部分学者将遗传算法(GA)、人工神经网络(ANN)和模糊识别等理论应用于配电网理论线损计算,研究计算速度快、计算结果精度高的数学模型,丰富和发展了理论线损计算方法,拓宽了研究思路。 1传统的主要的配电网理论线损计算方法 1.1均方根电流法均方根电流法是基本计算方法 均方根电流法的物理概念是,线路中流过的均方根电流所产生的电能损耗相当于实际负荷在同一时间内所产生的电能损耗。

均方根电流法的优点是:方法简单,按照代表日24小时整点负荷电流或有功功率、无功功率或有功电量、无功电量、电压、配电变压器额定容量、参数等数据计算出均方根电流就可以进行电能损耗计算,易于计算机编程计算。缺点是:代表日选取不同会有不同的计算结果,计算误差较大。 1.2 平均电流法平均电流法 平均电流法平均电流法也称形状系数法,是利用均方根电流法与平均电流的等效关系进行电能损耗计算的,由均方根电流法派生而来。平均电流法的物理概念是,线路中流过的平均电流所产生的电能损耗相当于实际负荷在同一时间内所产生的电能损耗。平均电流法的优点是:用实际中较容易得到并且较为精确的电量作为计算参数,计算结果较为准确,计算出的电能损耗结果精度较高;按照代表日平均电流和计算出形状系数等数据计算就可以进行电能损耗计算,易于计算机编程计算。缺点是:对没有实测记录的配电变压器,形状系数不易确定,计算误差较大。1.3最大电流法最大电流法 最大电流法最大电流法也称损失因数法,是利用均方根电流法与最大电流的等效关系进行电能损耗计算的,由均方根电流法派生而来。最大电流法的物理概念是,线路中流过的最大电流所产生的电能损耗相当于实际负荷在同一时间内所产生的电能损耗。最大电流法的优点是:计算需要的资料少,只需测量出代表日最大电流和计算出损失因数等数据就可以进行电能损耗计算,

配电网理论线损计算方法的应用探讨

配电网理论线损计算方法的应用探讨 摘要:计算理论线损是分析线损构成、制定降损措施及确定线损指标的必要手段。本文笔者结合多年的实际工作经验,介绍了配电网理论线损计算方法,指出目前各种线损计算方法的局限性,在此基础上,提出采用电量潮流法计算线损的新方法,供同行参考。 关键词:配电网线损计算方法 配电网线损是电力部门一项综合性的经济、技术指标,是国家考核电力部门的一项重要指标,也是表征电力系统规划设计水平和经营管理水平的一项综合性技术经济指标。只有通过加大技术降损力度,提高技术含量以及加强管理降损水平,走上精细管理之路,才能取得显著的经济效益和社会效益。因此,线损的理论计算还需要进一步深入研究。 1、配电网理论线损计算方法 传统理论线损计算方法主要有: 损失因数法、均方根电流法、等值功率法、回归分析法和人工神经网络法(ANN) 1.1 损失因数法 损失因数法是利用日负荷曲线的最大值与均方根值之间的等效关系(即损失因数)进行线损计算的方法。其计算式为: (1) 式中,为最大电流;F为负荷损失因数。负荷损失因数F因配电网结构、损失种类、负荷分布及负荷曲线形状不同而异,特别是与负荷率密切相关。由于最大负荷电流取自电流表,而损失因数F是由负荷率通过统计得到的,其精度不高,因此这种算法只适用于电网规划的线损测算和35kV及以上电压等级电网(如城市电网)的线损计算。 1.2 均方根电流法 均方根电流法是目前l0kV配电网中最常见的理论线损计算方法,算法原理是将线路中流过的均方根电流所产生的电能损耗, 近似于实际负荷在同一时期所消耗的电能。电流通过电力网元件(电阻为R)时产生的三相有功功率损耗为△P = 3I2R,则该元件在24h内的电能损耗可以表示为: (2) 其中是随机变量一般不能准确获得,通常可由代表日的均方根电流代替,即: (3) 其中, 均方根电流法原理简单,方法易于掌握,应用广泛,但是算法在实际应用时所需数据计算量大,而且没有考虑负荷曲线形状的差异和负荷功率因数不同对计算结果的影响,在一定程度上降低了算法精度。用代表日的线损率近似系统全年线损率误差较大,另外典型日的数据很难保证准确性,这样又增加了计算结果的误差。因此算法只适用于供用电较为平衡,负荷峰谷差较小(日负荷曲线较为平坦) 且精度要求不高的情况。 1.3 等值功率法 等值功率法由准确级别高的电能表读数求取平均功率,通过将负荷曲线梯形化或查负荷曲线形状系数的方式获取节点等效功率,将电能损失的计算转化为功率损失的计算,将计算时段内随时间变化的各节点注入功率处理为节点等值功率,

配电网中理论线损计算方法及降损措施的研究

华北电力大学 毕业设计 题目配电网中理论线损计算方法及降损措施的研究学院自动化与电气工程学院 专业电气工程及其自动化 二〇一七年三月三十一

配电网中理论线损计算方法及降损措施的研究 [摘要]线损率是综合反映电力网规划设计、生产运行和经营管理水平的主要经济技术指标。降低线损率,可以减少电能传输能耗,提高电力供应能力,增加供电企业经济效益。研究配电网理论线损计算方法有很重要的理论与实际意义。本文阐述了进行配电网线损计算的意义和线损的基本概念,在理论研究方面,本文通过对几种常用配电网线损计算方法的分析比较,主要采用改进等值电阻法进行配电网线损计算,目的是为了降低配电网电能损耗、加强电网的经济运行。 [关键词]配电网;理论线损计算;改进等值电阻法;电能损耗 Research on Calculation Methods of Theoretical Line Losses and

Reducing Energy Loss Methods in Distribution Network Wu Tao (Grade07,Class1,Electrical Engineering and Automation ,Department of Electrical Engineering ,ShaanXi University of Technology, Han Zhong 723003,ShaanXi) Tutor: Yang Zhangyong [Abstract] The distribution lines loss rate is an important norm which comprehensively reflectes the degree of programing ,designing ,producing working and managing in distribution network. Lowing the distribution lines loss rate can not only reduce the energy loss in transporting, improve the electricity supply ability, but also increase the economic performance of Power Company. It was very important in theory and actual to study on the method of theoretical energy loss calculation for distribution network. The calculation significance of distribution network and the basic concepts were introduced in this paper. In theory,through analysis and comparison of some commonly-used calculation of line losses of distribution network methods, the equivalent resistance method to improve the distribution network calculation of line losses was adopted in order to reduce energy loss and operating economicly. [Key Words] distribution network;theoretical energy loss calculation;improving of the equivalentelectric resistance method;energy loss 目录 引言 (5) 1 配电网理论线损计算简介 (6) 1.1国内外研究动态和趋势 (7) 1.2传统的配电网理论线损计算方法 (7)

变损和线损的计算

变损和线损的计算 一、变损: 变压器损耗计算公式 (1)有功损耗:ΔP=P0+KTβ2PK-------(1)(2)无功损耗:ΔQ=Q0+KTβ2QK-------(2)(3)综合功率损耗:ΔPZ=ΔP+KQΔQ----(3)Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比。 UK%——短路电压百分比 β——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05;

(2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量KQ=0.1kW/kvar; (3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品资料所示。 变压器损耗的特征 P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。 涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。 PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗。 变压器的全损耗ΔP=P0PC 变压器的损耗比=PC/P0 变压器的效率=PZ/(PZΔP),以百分比表示;其中PZ为变压器二次侧输出功率。

浅谈电力企业线损管理的具体降损措施

浅谈电力企业线损管理的具体降损措施 发表时间:2018-11-26T09:38:42.973Z 来源:《基层建设》2018年第29期作者:王晓伟[导读] 摘要:随着我国经济的快速发展,我国电量的增长十分迅速,电力系统随之发展的比较充分,新时代的环境保护越来越重要,所以电力企业在发展过程中需要大力进行节能减耗研究,切实做好降低电线损坏的相关工作,对电力企业在线损方面的管理问题,虽然通过技术与管理的策略提高管理有效性,保障电力企业的经济效益。 黑龙江省明水县电业局 摘要:随着我国经济的快速发展,我国电量的增长十分迅速,电力系统随之发展的比较充分,新时代的环境保护越来越重要,所以电力企业在发展过程中需要大力进行节能减耗研究,切实做好降低电线损坏的相关工作,对电力企业在线损方面的管理问题,虽然通过技术与管理的策略提高管理有效性,保障电力企业的经济效益。本文主要研究电力企业供电线损管理及降损措施,保障线损的有效降低,对电能的输送效率提高。 关键词:电力企业;线损;管理;消耗 一、电网线损的成因 1.物理原因 物理原因是物质的基本属性对于电能的输送、变电、配电等环节中所产生的损耗,依据其具体的作用情况的不同分为在输电过程中由电源、线路、用电器所组成的电路中具有电阻,当电流通过电阻的时候,会使得线路与用电器产生热量,这种线损是随着电路中电流的大小而发生改变,称为可变损耗。由于电源、线路、用电器上应用的绝缘材料,会产生介质极化的作用,正式极化作用使得电能发生损耗,称为介质损耗,其与电路中电压的平方是正比例关系。 2.气候及环境原因 气候环境对电能在输送、变电配电各环节中会带来损耗,在正常的自然环境下,气候对电能的传输影响并不大,损耗也并非主要损耗。在极端天气下,电力系统正常的物理状态受到严重的影响,其绝缘与受力状态超出额定承受的水平,在原有的损耗基础上添加新的电能损耗。 3.数据统计原因 由于数据统计原因产生的线损主要体现在负荷不均衡,在统计线损的时候,供电状况会随着气候等多重因素发生变化,所以是不断变化的,使得售出的抄见电量和迈入的抄见电量出现不符,时间差与符合不均衡差针对统计线损的影响具有一定的限制。 4. 配网结构方面的缺陷,主要是结构很不合理 因为我国的国土面积广阔,地形复杂,电网铺设工作变得比较复杂,同时使得电网的结构也越发多样,在山区的电网线路长,受到高山和峡谷等的影响,铺设的长度和距离都不合理,而在平原地区稍微好一些,但是在经济发展的过程中用电需求也在增加,原来的电网结构不能负担起太大的用电压力。由于现代电网的发展速度过快,导致原有的电网发展估计与实际不符,出现规划无法满足现阶段供电需求的情况,并且由于许多的老旧设备长时间处于负荷运行之中,时常出现老坏的情况,同时由于许多的输电线路较长,变压器距离负荷中心较远容易出现线损问题,当用电高峰期出现的时候,有部分的线路会出现满负荷运行的情况,由于电流太大增加了线损的数量。 二、线损的分类 1.技术线损 技术线损也可以被称为理论线损。主要指的是电力工作人员根据电网实际运行情况和电力设备的实际运行参数,采用相应的计量装置和理论公式来得出的理论线损,但是由于在实际的电网运行中造成线损的因素有很多,所以理论线损比实际线损要低,技术线损主要包括这样几个方面:首先是输配电线路中,由于线路的长短和材质而出现的电能损耗;另外是与运行电压有关的变压器铁心损耗和电容器等绝缘介质损耗;最后是高压电晕所产生的电能损耗。另外,在电网的运行过程中,可以根据电能损耗的变化规律和实际运行特点,来将线损分为固定电能损耗和可变电能损耗等两种类型,其主要表现在以下几个方面: ①固定电能损耗可以被称为不变损耗,这样的损耗是在电网运行过程中不可避免出现的电能损耗,这种电能损耗的具体情况与电网运行电流的变化情况没有太大的关系,而是与电力系统中各个电力元件所承受的电压变化有关,但是电网系统中,电压是保持相对稳定的,这样的电能损耗变化情况相对来说较小。通常情况下,固定损耗主要包括电气设备铁心的电能损耗和高压线路的电晕损耗。 ②可变电能损耗。在输配电线路中,由于线路材质问题,会产生相应的电阻,这样的可变损耗主要是电网中各个电力元件中的电阻在通过电流的时候所产生的,这样的电能损耗大小与电流的平方成正比,可变电能损耗主要包括电力线路损耗和变压器绕组中的损耗。 2.管理线损 管理损耗主要指的是电网企业在对电网运行管理中,由于人为管理问题所造成的电能损耗,通常包括计量方式、抄表错误和用户窃电等这样几种情况,这样的管理线损可以通过加强管理来进行降低和避免。 三、配电网管理线损及降损措施 1.强化营销专业管理 (1)重视业扩报装时的档案建立,确保用户所在线路的信息正确,同时加强用户侧无功管理,要求新上用户设备必须配备无功补偿设备。 (2)加强计量管理,落实电能表、互感器的检验、轮换周期制度,按期进行农户表校验,并全部加封或贴封条,确保表计正确,减少因计量原因引起的漏计,少计等原因(特别是专项用户),对台区计量总表计量箱柜进行改造,并建立健全农户表计计量台帐。 (3)加大用电检查(普查)力度,做到高压供电客户每半年至少检查一次,低压供电客户每年至少检查一次,农村居民客户每年至少检查一次。同时要加强单相水泵的检查,特别是在农忙和抽水季节防止乱接乱挂,减少电量损失。 2. 完善线损管理组织体系 形成供电公司、供电所、电工组三级管理网络,将台区线损指标承包到营销和供电所抄表员人头,供电所实行线损“四分”管理(分级、分压、分线、分台区),各岗位实行线损指标管理。明确责任,层层落实,严格考核,做到线损的精细化管理。 3.强化低压线路设备日常维护力度

配电网降损节能的措施

配电网降损节能的措施 摘要电网的经济运行与用电管理是降低供电成本的有效途径。本文结合某油田供电系统实际情况,总结了近年来在供电降损工作中的成绩,客观地分析了电网电量损失的原因,进一步阐述了降低供电网损的途径,应重视技术措施和管理措施降等,对今后降低供电网损有一定的指导意义。 关键词电网降损节能 线损率是电力企业经营中的一项重要经济指标,如何降低电力线路损耗,加强电网运行管理至关重要。近年来,油田供电系统在降低供电网损率方面做了大量工作,供电网损率逐年下降,取得了较好的成绩。随着社会的进步,现代化管理方法的应用和科学技术的发展,为进一步降低供电网损提供了可能。扎实地做好降损工作,落实各项降损措施是每一位工作人员义不容辞的责任,是供电企业管理的重要内容。本文通过对供电网损的进一步分析,查找生产、经营、管理各环节存在的问题,挖掘降低网损的可能,实现电网经济合理运行,提高企业的管理水平。 一、线损情况分析 近年来,油田供电系统围绕降低供电网损做了大量工作,采取了一系列切实可行的管理和技术措施,取得了较好成绩,但是,仍然存在以下有待进一步改进的问题:1.线损波动较大,过程管理、预控能力还有待加强和提高。如有些变电站更换CT、电能表、计量回路异常等原因形成的可追补的损失电量参数没有详细记录下来;购进电量与抄回电量未同时抄录;供、售电量实时跟踪能力较差,有时贻误处理问题的最佳时机。 2.电网结构老化。油田电网点多线长,电网老化严重,还存在一定数量的配电变压器容量与实际用电负荷不匹配的情况,造成电量损失较高。 3.人员素质需加强,分析处理问题能力有待提高。日常工作中存在抄表不同步现象;线损管理制度在执行过程中仍然存在管理流程不畅现象。

低压线路损耗理论计算

在农村用电管理工作中,低压配电网理论线损的计算和实际线损的考核是一个薄弱环节。 笔者推荐一种简单实用的计算方法,以供广大城乡电工参考。 1低压线路理论线损的构成 1.1低压线路本身的电能损耗。 1.2低压接户线的电能损耗。 1.3用户电能表的电能损耗。 1.4用户电动机的电能损耗。 1.5用户其他用电设备的电能损耗。 以上所有供电设备的电能损耗之和,即构成低压线路的理论线损电量,其线损电量与线路供电量之比百分数,即为线路的理论线损率。 要说明的是,在实际线损计算中,只计算到用户电能表,用户的用电设备不再参与实际线损计算。但在理论计算中,凡连接在低压线路上的用电设备的电能损耗,均应计算在内。 2低压线路理论线损计算通用公式 △A=NKI pjR dzt×10 式中N——配电变压器低压侧出口电网结构系数; ①单相两线制照明线路N=2; ②三相三线制动力线路N=3; ③三相四线制混合用电线路N=3.5;

K——负荷曲线形状系数,即考虑负荷曲线变化而采用的对平均电流(I pj)的修正系数,K值按推荐的理论计算值表1选用; 表1负荷曲线形状系数k 值表 最小负荷率 K值0.20.30.4 1.050.5 1.030.6 1.020.7 1.010.8 1.000.8 1.001.0 1.00。2。2。。-3 1.171.09 (最小负荷率a=最小负荷/最大负荷) t——线路月供电时间,h;Rdz——线路导线等值电阻,Ω。 等值电阻可按下式计算: Rdz=ΣN KI zd。 kR k/N×I

zd 式中I zd——配电变压器低压出口实测最大电流,A; 22KI pj——线路首端负荷电流的月平均值,A。可根据以下不同情况计算选用。 ①配电室装有电流表,并有记录的,可直接计算月平均负荷电流值。 ②如装有电流表,但无记录的,可选取代表性时段读取电流值,然后计算平均负荷电流值。 ③如未装电流表时,可选取代表性时段,直接用钳形电流表读取负荷电流值。 ④配电室装有有功电能表和无功电能表时,可按下式计算。 式中U pj——线路平均运行电压值,kV,也可近似地用额定电压(Un)代替;AP——线路月有功供电量,kW。h;AQ——线路月无功供电量,kvar。h; t——线路月供电量时间,h。 ⑤如配电室装有有功电能表和功率因数表时,可按下式计算: 式中cosφ pj——线路负荷功率因数的平均值。 3低压接户线的理论线损计算 从低压线路至用户电能表,从电能表到用电器具的连接线称接户线(或下户线),其理论线损电量可按每10m月损耗为0.05kW。h计算,当接户线长度为L 时,月损耗电量为:

低压线路损耗理论计算

N——配电变压器低压出口结构常数(如前); ——低压线路各分段结构常数,取值与N相同; N K ——线路首端负荷电流的月平均值,A。可根据以下不同情况计算选用。 I pj ①配电室装有电流表,并有记录的,可直接计算月平均负荷电流值。 ②如装有电流表,但无记录的,可选取代表性时段读取电流值,然后计算平均负荷电流值。 ③如未装电流表时,可选取代表性时段,直接用钳形电流表读取负荷电流值。 ④配电室装有有功电能表和无功电能表时,可按下式计算。 ——线路平均运行电压值,kV,也可近似地用额定电压(Un)代替; 式中U pj A ——线路月有功供电量,kW。h; P ——线路月无功供电量,kvar。h; A Q t——线路月供电量时间,h。 ⑤如配电室装有有功电能表和功率因数表时,可按下式计算: 式中cosφ ——线路负荷功率因数的平均值。 pj 3低压接户线的理论线损计算 从低压线路至用户电能表,从电能表到用电器具的连接线称接户线(或下户线),其理论线损电量可按每10m月损耗为0.05kW。h计算,当接户线长度为L时,月损耗电量为: ΔA=0.05L/10kW。h。 4电能表的理论线损计算 4.1单相电能表每只每月损耗按1kW。h计算。 4.2三相三线表每只每月损耗按2kW。h计算。 4.3三相四线表每只每月损耗按3kW。h计算。 5电动机的电能损耗计算 电动机的额定输入功率与额定输出功率的差值即为其损失功率(包括铁损、铜损等),乘以当月运行小时数即为其电量损失,其计算公式为: ——电动机的额定运行电压,kV; 式中U n I ——电动机的额定电流,A; n ——电动机的额定功率因数; cosφ n P ——电动机的额定功率,kW; n t——电动机的月运行时间,h。 6其他用电器具的电能损耗 △A=Σ(各类电器总台数×额定功率×运行时间)×0.01kW。h

变压器损耗计算公式

变压器损耗 分为铁损和铜损,铁损又叫空载损耗,就是其固定损耗,实是铁芯所产生的损耗(也称铁芯损耗,而铜损也叫负荷损耗, 1、变压器损耗计算公式 (1)有功损耗:ΔP=P0+KTβ2PK -------(1) (2)无功损耗:ΔQ=Q0+KTβ2QK -------(2) (3)综合功率损耗:ΔPZ=ΔP+KQΔQ ----(3)Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比。 UK%——短路电压百分比 β——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; (2)对城市电网和工业企业电网的6kV~10kV降压变压器取

系统最小负荷时,其无功当量KQ=0.1kW/kvar;(3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品资料所示。 2、变压器损耗的特征 P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗。 变压器的全损耗ΔP=P0+PC 变压器的损耗比=PC /P0 变压器的效率=PZ/(PZ+ΔP),以百分比表示;其中PZ为变压器二次侧输出功率。一、变损电量的计算:变压器的损失电量有铁损和铜损两部分组成。铁损与运行时间有关,铜损与负荷大小有关。因此,应分别计算损失电量。

相关主题
文本预览
相关文档 最新文档