当前位置:文档之家› ANSYS CFX-TurboGrid 2.2 涡轮机械流体分析

ANSYS CFX-TurboGrid 2.2 涡轮机械流体分析

ANSYS CFX-TurboGrid 2.2 涡轮机械流体分析
ANSYS CFX-TurboGrid 2.2 涡轮机械流体分析

ANSYS CFX-TurboGrid 2.2 涡轮机械流体分析

用CFD分析涡轮机械时,叶栅通道网格是决定CFD分析效果的重要而又挑战性的因素。CFX-TurboGrid专为解决这一问题而开发。CFX-TurboGrid的根本出发点是高效、自动化和高质量,因此CFX-TurboGrid采用了创新性的网格模板技术,结合参数化能力,工程师不仅可以既快又简单地为绝大多数叶片类型生成高效高质量网格,而且叶片的设计和分析更紧密地耦合在了一起。

CFX-TurboGrid为设计者提供了一个非常简单易用而又高效的设计环境,力求简化用户输入,所需用户提供的只是叶片数目,叶片、轮毂和外罩的外形数据文件。它具有一个设计人员熟悉的二维blade-to-blade视窗,消除了在三维透视图中因视觉效果而导致的尺寸变形,并具有一个二维的子午面视窗,可用来观察流动通道和叶片位置。用户设计网格时,通过控制面板以交互方式进行。

CFX-TurboGrid的丰富的预定义网格模板几乎包括所有叶轮机械的叶片:从轴流、径流到混流,从压缩机、涡轮机到各种水泵,其专业性还包括考虑了叶片间隙,并能处理大小叶片等方面。

CFX-TurboGrid的最新版本2.2,CFX-TurboGrid是一个给旋转机械设计师和工程师使用的专业软件工具,结合了ANSYS CFX中旋转机械CFD仿真的专业知识和ANSYS ICEM CFD 领先的网格生成技术。

在设计旋转机械的叶片进行CFD分析时,CFX-TurboGrid被用于创建高质量的特殊网格。在机器性能增长很小就能产生巨大产量增长的行业,为工程仿真提供快速网格剖分能力将带来很大利润。CFX-TurboGrid 能为泵、涡轮机、压缩机、风扇、转矩变换器、喷嘴和其他种旋转机械进行网格划分。

CFX-TurboGrid 2.2版本,主要提高的是CFX旋转机械网格生成的功能,为各类轴向和径向的旋转机械叶片部件提供了快速、自动、灵活和高质量网格。CFX-TurboGrid 2.2版本仅需用户输入少量网格参数,便能自动生成高质量网格。网格使用六面体单元,能够处理象叶尖间隙这样的重要区域。交互式的响应时间和3D网格生成速度被提升到一个新水平。用新的交互式功能细化网格能使得网格瞬时显现,而且在一台典型的现代台式电脑上全3D网格的生成时间只需要10秒就可得到一百万节点的网格。

“有了这个最新版本的CFX-TurboGrid,我们将得到更好的网格质量,并且更容易使用、速度更快。我们对这能为我们客户提供一个独特的工具帮他们成为旋转机械设计中的领先者感到很兴奋,” ANSYS公司CFX产品研发副总裁Michael Raw博士说。“当然CFX-TurboGrid 补充了ANSYS结构仿真工具系列,提供用户旋转机械工程仿真的完整CAE解决方案。

有限单元法与有限元分析

有限单元法与有限元分析 1.有限单元法 在数学中,有限元法(FEM,Finite Element Method)是一种为求解偏微分方程边值问题近似解的数值技术。求解时对整个问题区域进行分解,每个子区域都成为简单的部分,这种简单部分就称作有限元。它通过变分方法,使得误差函数达到最小值并产生稳定解。类比于连接多段微小直线逼近圆的思想,有限元法包含了一切可能的方法,这些方法将许多被称为有限元的小区域上的简单方程联系起来,并用其去估计更大区域上的复杂方程。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。 随着电子计算机的发展,有限单元法是迅速发展成一种现代计算方法。它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。 1.1.有限元法分析本质 有限元法分析计算的本质是将物体离散化。即将某个工程结构离散为由各种单元组成的计算模型,这一步称作单元剖分。离散后单元与单元之间利用单元的节点相互连接起来;单元节点的设置、性质、数目等应视问题的性质,描述变形形态的需要和计算精度而定(一般情况单元划分越细则描述变形情况越精确,即越接近实际变形,但计算量越大)。所以有限元中分析的结构已不是原有的物体或结构物,而是同新材料的由众多单元以一定方式连接成的离散物体。这样,用有限元分析计算所获得的结果只是近似的。如果划分单元数目非常多而又合理,则所获得的结果就与实际情况相符合。 1.2.特性分析 1)选择位移模式: 在有限单元法中,选择节点位移作为基本未知量时称为位移法;选择节点力作为基本未知量时称为力法;取一部分节点力和一部分节点位移作为基本未知量时称为混合法。位移法易于实现计算自动化,所以,在有限单元法中位移法应用范围最广。 当采用位移法时,物体或结构物离散化之后,就可把单元总的一些物理量如

基于有限元法和极限平衡法的边坡稳定性分析

目录 摘要 (1) 1引言 (1) 2 简要介绍有限元和极限平衡方法 (1) 3影响边坡稳定性的因素 (2) 3.1水位下降速度的影响 (2) 3.2 不排水粘性土对边坡失稳的影响 (5) 3.3 裂缝位置的影响 (9) 4 总结和结论 (12)

基于有限元法和极限平衡法的边坡稳定性分析 摘要:相较于有限元分析法,极限平衡法是一种常用的更为简单的边坡稳定性分析方法。这两种方法都可用于分析均质和不均质的边坡,同时考虑了水位骤降,饱和粘土和存在张力裂缝的条件。使用PLAXIS8.0(有限元法)和SAS-MCT4.0(极限平衡方法)进行了分析,并对两种方法获得的临界滑动面的安全系数和位置进行了比较。 关键词:边坡稳定;极限平衡法;有限元法;PLAXIS;SAS-MCT 1.引言 近年来,计算方法,软件设计和高速低耗硬件领域都得到快速发展,特别是相关的边坡稳定性分析的极限平衡法和有限元方法。但是,使用极限平衡方法来分析边坡,可能会在定位临界滑动面(取决于地质)时出现几个计算困难和前后数值不一致,因此要建立一个安全系数。尽管极限平衡法存在这些固有的局限性,但由于其简单,它仍然是最常用的方法。然而,由于个人电脑变得更容易获得,有限元方法已越来越多地应用于边坡稳定性分析。有限元法的优势之一是,不需要假设临界破坏面的形状或位置。此外,该方法可以很容易地用于计算压力,位移,路堤空隙压力,渗水引起的故障,以及监测渐进破坏。 邓肯(1996年)介绍了一个综合观点,用极限平衡和有限元两种方法对边坡进行分析。他比较了实地测量和有限元分析的结果,并且发现一种倾向,即计算变形大于实测变形。Yu 等人(1998年)比较了极限平衡法和严格的上、下界限法对于简单土质边坡的稳定性分析的结果,同时,他们也将采用毕肖普法和利用塑性力学上、下限原理的界限法得到的结果进行了比较。Kim等人(1999年)同时使用极限平衡法和极限分析法对边坡进行分析,发现对于均质土边坡,得自两种方法的结果大体是一致的,但是对于非均质土边坡还需要进行进一步分析工作。Zaki(1999年)认为有限元相对于极限平衡法更显优势。Lane和Griffiths (2000年) 提出一个看法,用有限元方法在水位骤降条件下评价边坡的稳定性,应绘制出适用于实际结构的操作图表。Rocscience有限公司(2001年)提出了一个文件,概述了有限元分析方法的能力,并通过与各种极限平衡方法的结果比较,提出了有限元方法更为实用。Kim等人(2002年)用上、下界限法和极限平衡法分析了几处非均质土体且几何不规则边坡的剖面。这两种方法给出了类似有限元分析法产生的安全系数,临界滑动面位置。 2.简要介绍有限元和极限平衡方法 有限元法(FEM)是一个应用于科学和工程中,求解微分方程和边值问题的数值方法。进一步的细节,读者可参考Clough和Woodward(1967年),Strang和Fix(1973年),Hughes(1987年),Zienkiewicz和Taylor(1989年)所做的研究工作。 PLAXIS 8版(Brinkgreve 2002年)是一个有限元软件包,应用于岩土工程二维的变形和 折稳定性分析。该程序可以分析自然成型或人为制造的斜坡问题。安全系数的确定使用c

有限元分析理论基础

有限元分析概念 有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件 有限元模型:它是真实系统理想化的数学抽象。由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。 有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。 线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。 非线性问题与线弹性问题的区别: 1)非线性问题的方程是非线性的,一般需要迭代求解; 2)非线性问题不能采用叠加原理; 3)非线性问题不总有一致解,有时甚至没有解。 有限元求解非线性问题可分为以下三类:

1)材料非线性问题 材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。 2)几何非线性问题 几何非线性问题是由于位移之间存在非线性关系引起的。 当物体的位移较大时,应变与位移的关系是非线性关系。研究这类问题一般都是假定材料的应力和应变呈线性关系。它包括大位移大应变及大位移小应变问题。如结构的弹性屈曲问题属于大位移小应变问题,橡胶部件形成过程为大应变问题。 3)非线性边界问题 在加工、密封、撞击等问题中,接触和摩擦的作用不可忽视,接触边界属于高度非线性边界。 平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减振器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通常要考虑非线性边界条件。 实际的非线性可能同时出现上述两种或三种非线性问题。

有限元极限载荷分析法在压力容器分析设计中的应用2010

有限元极限载荷分析法在压力容器分析设计中的应用2010-07-15 10:39:54| 分类:分析设计| 标签:极限分析分析设计asme规范先进设计方法经验分享|字号大 中 小订阅 在某炼化一体化项目中,几个加氢反应器均采用分析法设计。详细设计时,国内计算后,反应器的主要受压元件厚度均要比专利商建议的厚度多出10~30mm不等。这其中有国内设计出于保守的考虑,另一个原因:同是采用分析设计,ASME的非线性分析相对先进一点。参与国际竞争时,先进的设计方法值得我们研究。 1.背景 随着中国加入WTO,国内各工程公司正积极走向海外。随之进入国际市场的压力容器产品也面临着严峻的挑战,为了在国际舞台上获得竞争优势,各工程公司必须采用先进的技术设计出更安全和更低成本的产品。压力容器分析设计是力学与工程紧密结合产物,解决了常规设计无法解决的问题,代表了近代设计的先进水平[1]。过去,国内分析设计通常采用弹性应力分析法,通过路径分析,应力线性化处理获得路径上的一次应力和二次应力,进而进行强度评定。该方法主要存在以下问题:⑴对大多数情况是安全可靠的,但对某些结果可能出现安全裕度不足的情况(如球壳开打孔);⑵如何对有限元法求解获得的总应力分解并正确分类遇到了困难。假如把一次应力误判为二次,则设计的结果将非常危险,反之,把二次应力误判为一次,则又非常保守。文[2]5.2.1.2节明确提到:应力分类需特殊的知识和识别力,应力分类方法可能产生模棱两可的结果。国内专家亦也认为对应力进行正确的分类存在一定困难[3-6]。 以弹性分析代替塑性分析,是一种工程近似方法。实际结构的破坏往往是一个渐进过程,随着载荷的增加,高应力区首先进入屈服,载荷继续增加时塑性区不断夸大,同时出现应力重新分布。当载荷增大到某一值时,结构变为几何可变机构,此时即使载荷不在增加,变形也会无限增大,发生总体塑性变形(overall plastic deformation),此时的载荷称为“极限载荷(limit load)”。 极限载荷分析法(下文简称极限分析)的目的是求出结构的极限载荷。在防止塑性垮塌失效时,极限分析相比弹性应力分析更接近工程实际,同时避免了应力分类,对防止塑性垮塌有比较精确的评定。 2.极限载荷的求解方法 塑性力学提出极限分析法由来已久。经典的极限分析方法有如下3种[8]:(1)广义内力与广义变形法;(2)上限定理与下限定理法;(3)静力法和机动法。经典解法的分析与计算均很复杂,只能应用于少数结构简单的压力容器元件,从而使极限分析的工程应用受到了限制。 上世纪七十年代出现三维有限元计算后,有限元的应用大大扩展。为了适应工程需要,有限元极限分析应运而生,形成了分析设计中的一个重要分支,它使得复杂的塑性极限分析可以通过计算机数值计算得以解决。在不久的将来,极限分析必与弹性应力分析法、弹-塑性应力分析法一同形成三足鼎立之势。极限分析的模型精度和计算成本居后两者之间。

岩土工程极限分析有限元法及其应用

岩土工程极限分析有限元法及其应用 摘要:通过研究分析发现,将工程结构离散化是极限分析有限元法的核心内容,简单地说实际的工程结构是通过想象进行离散一定数量的规则单元组合体,然后 分析这些组合,结果应用于实际的结构中,通过这种实践在一定程度上解决了工 程建设过程中的问题。因此,本文笔者将详细对极限分析有限元法进行分析阐述。关键字:岩土工程;极限分析有限元法;应用 引言 自上世纪初,岩土工程的极限分析方法(包括极限平衡法、滑移线场法、上下限分析法)取得了较好进展,在实际工程得到了广泛的应用。其中一些方法需要一些人工架设,一些方 法的解决方案非常有限,这限制了该方法的开发和应用。其中有限元法数值方法适应力较强 且应用广泛,但在工程设计中,不能求出稳定安全系数 F 和极限承载力,从而限制了岩土工 程中有限元数值分析方法的运用。 一、经典岩土极限分析法的发展及问题 基于力学的极限分析方法,土体处于理想的弹塑性或者刚塑性状态,处于极限平衡状态,即土体滑动面上各点的剪应力与土体的抗剪强度相等或者滑动面上的作用力与抗剪力相等。 极限平衡状态下的土体有两个力学性质:第一是土体处于不稳定的状态,所以它可以作为一 个岩土工程破坏失稳的判据;第二是岩土材料强度充分发挥,达到最大经济效益,因此,在 岩土工程中常把土体极限平衡作为设计依据。有两种方法可以将地基或土坡引入极限状态: 一是增量加载,如地基的极限承载力;二是强度折减,如土坡的稳定安全系数。 经典极限分析方法普遍应用于均质材料。极限状态的设计计算仅参考破坏条件及屈服条件,不需要参考岩土复杂的本构关系,从而大大简化了岩土工程的设计计算。极限状态计算 应满足以下条件: (1)屈服条件或者破坏条件。 (2)静力平衡条件和力的边界条件。 (3)应变、位移协调条件和位移边界条件。 目前主要采用以下4种经典极限分析法:上、下限分析法、滑移线场法、变分法与极限 平衡法。每种都具有各自的特点,但还有一些需作假定,如上限法、滑移线场法、极限平衡 法等都需对临界滑动面作假定,不适用于非均质材料,特别是岩石工程强度的不均性,从而 限制了极限分析法的应用,这正是极限分析法在经典岩土工程的缺陷。 二、极限分析有限元法的基本原理 2.1 安全系数的定义 有两种方法可以将地基或者土坡引入极限状态:一是增量加载,如求地基的极限承载。 力二是强度折减,如求土坡的稳定安全系数。 极限平衡方法是先假定滑动面,再使用传统边坡稳定分析,按照力(矩)的平衡计算安全系 数并将其定义为滑动面的抗滑力(矩)与下滑力(矩)之比。 目前,不平衡推力法(传递系数法)在我国滑坡稳定分析中得到广泛应用,该方法是我国 独立开创的滑坡稳定分析方法。有关推力安全系数,一般将增加下滑力的分项系数作为安全 贮备,但严格意义上不是荷载增加系数,因为边(滑)坡工程中荷载增加,不但会导致下滑力 增加,还会导致抗滑力增加,但目前的传递系数法中不考虑抗滑力增加,这与力学规律相符。一般,滑坡推力的标准值为:

有限元极限分析发展及其在岩土工程中的应用

科技论坛 有限元极限分析发展及其在岩土工程中的应用 何小红 (长春科技学院,吉林长春130000) 有限元极限分析法实际应用于岩土工程中,能够对岩土工程的安全系统、失稳数据等做出判断,但是在应用的过程中,需要做出假设,并且求解范围相对有限,在应用上有一定的限制。尽管如此,有限元极限分析法的适应性能也比较强,尽管它在使用的过程中不能对稳定安全系数F做出明确计算,受到了限制,但是在实际应用中依然能够发挥出其自身价值,为工作人员提供有用的数据信息,让岩土工程的发展也得到促进性作用。 1有限元极限分析法发展历程 有限元极限法最初的提出者是英国科学家,时间在20世纪70年代中期,这也是首次将有限元极限分析法应用于岩土工程中,计算出岩土工程额极限荷载及其安全系数。在20世纪90年代,该方法又应用于边坡和地基的稳定性分析中,但当时收到技术限制,并没有较强大和可靠的元程序支持,计算的精度也不够,在岩土工程中的推广使用收到了限制。 在20世纪末,国际又对有限元极限分析法做出了新的研究,主要以有限元强度折减法的求解上比较集中,计算结果和之前的结果仍然很相似,慢慢也就被学术界接受到,从此有限元极限分析法也就进入了一个新的发展时期。直到20世纪末,有限元分析法才在我国开始应用,主要是应用于土坡分析上。在21世纪初,我国学者分析边坡稳定性上,有效应用了有限元折减法,这也是我国最早对有限元强度折减法的应用,并在基本理论以及计算精度上做出了细致研究。在这两方面,我国也得到了较好的应用,并向着长远发展目标推进。 在研究方面,有限元强度折减法主要集中在安全系数与滑面系数方面,而有限元增量超载法主要是在地基极限车承载力方面。这方面的研究文献虽然不多,但是却取得了可观的研究成果。这两种方法,统称为有限元极限分析法,从根本上来说,均为采用数值分析方法求解的一种极限分析法。在国际上,有限元极限分析法大都采用编数值分析程序比较多,而该方法的应用范围仅局限于二维平面土基与土坡分析中。而在国内方面,大都采用大型通用程序,在计算、程序可靠性、功能等方面,均有很大的优势。近年来,国内在有限元极限分析法方面,取得了很大的进展。但是从整体情况来看,仍然研究的起步阶段,距离革新设计方法,尚有一段很长的距离。 2有限元极限分析法原理 2.1安全系数概念。对于有限元极限分析法安全系数有很多种定义,这些定义都是和岩土工程受破坏状态有直接关系。安全系数定义主要非两种,即有限元强度折减法以及有限元增量超载法;有限元强度折减法主要指受到环境影响,让岩土强度较低,边坡失去稳定性,通过岩土强度的降低计算出最终破坏的状态;有限元增量超载法主要指岩土地基上的荷载持续性增加,让地基稳定性受到破坏,导致超载安全系数呈现倍数递增上涨趋势;这两种方式计算的安全系数是有所不同的。 2.2有限元极限分析法原理。(1)有限元强度折减法原理。在岩土工程中,主要采用莫尔-库仑材料,安全系数w的计算式为:T= c'=c/ω,tanφ'=(tanφ)/ω(2) 有限元增量超载法。在工程中,岩土的破坏,不是朝夕之事,而是一个循序渐进的过程,由线弹性状态,逐步过渡到塑性流动,最终达到 极限破坏状态。因此,这就给增量超载方法求解地基的极限承载力,提供了有利的条件。 3有限元极限分析法基本理论 3.1判断岩土工程整体失稳的依据。所谓岩土工程整体失稳破坏,主要是指岩土沿滑面出现滑落或者是坍塌情况,导致岩土不能达到极限的平衡状态,不能继续承载,滑面的岩土也会有位移现象发生。在滑面节点上位移导致的塑形或者是突变性就是对边坡整体失稳的判断标志。所以,可以利用有限元静力计算来确定边坡是否失稳,判断出边坡失稳特征。 3.2提高计算精度的条件。在有限元极限分析法中,要想将计算的精度提高上来,就要满足一定的条件。首先是成熟可靠、程序的功能足够强大,尤其是通用于国际的程序;其次是强度准则以及结构模型有较高的实用性;最后是满足计算的需要,即计算的范围、网络划分以及边界条件等。只有满足这些条件,有限元极限分析法的计算精度才能够提高上来,降低计算的误差。 4有限元极限分析法的应用 4.1在二维边坡中的应用。结合下面的算例,探讨该方法的应用。通过大型有限元ANSYS5.62软件建立有限元模型,根据平面建立有限元模型,左右两侧为边界约束条件。按照边坡破坏的特点,在边坡遭到破坏时,滑面上的塑性应变和节点上的位移,将发生突变、塑性应变突变和滑动面水平位移。所以,这就能够按照塑性应变值云图方法来确定滑动面,并与之前的滑面方法相比。 4.2有限元超载法在土基上的应用。光滑刚性条形地基的极限承载力,均承受为垂直半无限、无重量地基,计算的方法如下:qu=ccosφ[exp(πtanφ)tan2(π/4+φ/2)-1 根据上述公式,当地基处于极限状态下,基础附近局部位移矢量将随着基础附近局部的等效塑性应变等发生变化。通过计算结果可看出,计算的结果与实际相符合。而对于有重地基极限承载力的计算,已经存在各种公式,但是相比较而言,魏锡克经验公式计算的记过比较准确。此外,有限元极限分析法在隧道工程、滑坡支档结构等均有着实际的应用,而且该方法的应用范围还在不断扩大。 结束语 从有限元极限分析法的自身应用方法来看,主要有有限元强度折减法以及有限元超载法这两种,这两种方法在当前的应用上都处于快速发展阶段,对其的研究也一直在进行,应用于岩土工程中也有着较好的效果。本文中,主要是从岩土工程的实际工作中应用有限元极限分析法做出简单分析,从其发展历程,再到安全系数定义,最后到岩土工程中的应用,这些都能够有效促进有限元极限分析法的进一步发展,以期有着借鉴价值。 参考文献 [1]赵尚毅,郑颖人.基于Drucker-Prager 准则的边坡安全系数转换[J].岩石力学与工程学报,2013(11). [2]张鲁渝,郑颖人,赵尚毅.有限元强度折减系数法计算土坡稳定安全系数的精度研究[J].水利学报,2013(21). [3]郑颖人,赵尚毅.有限元强度折减法在土坡与岩坡中的应用[J].岩石力学与工程学报,2014(23). [4]郑颖人,赵尚毅,宋雅坤.有限元强度折减法研究进展[J].后勤工程 学院学报,2011(21). [5]宋亚坤,赵尚义,郑颖人.有限元强度折减法在三维边坡中的应用 与研究[J].地下空间与工程学报,2010(12). 摘要:从有限元极限分析法的优点上来看,该方法特别适合在岩土工程中应用,也得到了较好的发展。在实际应用过程中,是需要做 出假设并求解的,而且应用的范围有一定的局限性,这是有限元极限分析法应该创新的地方,在科技进步之下,对方法进行完善,让其适用的范围有所扩大,同时也推动在岩土工程中应用的价值。本文主要从有限元极限分析法做出了介绍,进而分析其在岩土工程中实际的应用。 关键词:有限元极限分析法;应用;岩土工程92··

极限分析有限元法讲座_岩土工程极限分析有限元法

第26卷第1期 岩 土 力 学 V ol.26 No.1 2005年1月 Rock and Soil Mechanics Jan. 2005 收稿日期:2004-08-02 修改稿收到日期:2004-10-25 作者简介:郑颖人,男,1933年生,中国工程院院士,教授,博士生导师,从事岩土本构关系理论与数值分析及岩土工程稳定性研究。E-mail:zhaoshangyi@https://www.doczj.com/doc/7e7054413.html, 文章编号:1000-7598-(2005) 01―0163―06 极限分析有限元法讲座—— Ⅰ岩土工程极限分析有限元法 郑颖人,赵尚毅,孔位学,邓楚键 (后勤工程学院 土木工程系,重庆 400041) 摘 要:经典岩土工程极限分析方法一般采用解析方法,有些还要对滑动面作假设,且不适用于非均质材料,尤其是强度不均的岩石工程,从而使极限分析法的应用受到限制。随着计算技术的发展,极限分析有限元法应运而生,它能通过强度降低或者荷载增加直接算得岩土工程的安全系数和滑动面,十分贴近工程设计。为此,探讨了极限分析有限元法及其在边坡、地基、隧道稳定性计算中的应用,算例表明了此法的可行性,拓宽了该方法的应用范围。随着计算机技术与计算力学的发展,岩土工程极限分析有限元法正在成为一门新的学问,而且有着良好的发展前景。 关 键 词:极限分析有限元法;边坡稳定分析; 地基极限承载力;隧道稳定性 中图分类号:O 241 文献标识码:A Geotechnical engineering limit analysis using finite element method ZHENG Ying-ren ,ZHAO Shang-yi, KONG Wei-xue, DENG Chu-jian (Department of civil Engineering, Logistical Engineering University, ChongQing, 400041,China) Abstract: The analytical method is adopted in classical geotechnical engineering limit analysis method. It cannot involve the stress-strain behavior of soil and sometimes assumptions needs to be made in advance about the shade or location of the failure surface. It is not suitable for heterogeneous materials, especially the rock engineering. So its application still remains limited. With the development of computer and computing technology, the limit analysis finite element method was put forward. With the strength reduction or load increase, the stability safety factor and failure surface can be obtained directly at limit state. It is very practical for geotechnical engineering design. This paper studies the limit analysis finite element method and its application in the slope 、tunnel 、ultimate bearing capacity of foundations. Through a series of case studies, the applicability of the proposed method is clearly exhibited. Keywords: limit analysis finite element method, slope stability analysis, ultimate bearing capacity of foundations, tunnel stability. 1 经典岩土极限分析法的发展及问题 极限分析法的力学基础是土体处于理想弹塑性或者刚塑性状态,并处于极限平衡状态,即土体滑动面上每点的剪应力与土体的抗剪强度相等或者滑动面上的作用力与抗剪力相等。土体处于极限平衡状态有两个力学特征:一是土体已处于濒临破坏失稳状态,因而它可作为岩土工程破坏失稳的判据;二是岩土材料强度得到充分发挥,达到了最经济的效果,因而土体极限平衡状态常被作为岩土工程设计的依据,它是安全可靠、经济合理的最佳结合状 态。 将地基或者土坡引入极限状态有两种方法:一是增量加载,例如求地基的极限承载力;二是强度折减,例如求土坡的稳定安全系数。 经典极限分析方法一般采用解析方法,适用于均质材料。极限状态的设计计算只引用屈服条件或破坏条件,不必引用复杂的岩土本构关系,从而使岩土工程的设计计算大为简化。极限状态计算应满足如下条件: (1) 静力平衡条件和力的边界条件; (2) 应变、位移协调条件和位移边界条件;

有限元分析法

有限元分析法 麻省理工学院 材料科学与工程系 2001 年 2 月 28 日 引言 有限元分析法(FEA )近年来已应用得非常广泛,现已成为年创收达数十亿美元的相关产业的基础。即使是很复杂的应力问题的数值解,现在用有限元分析的常规方法就能得到。此方法是如此的重要,以至于即便像这些只对材料力学作入门性论述的模块,也应该略述其主要特点。 不管有限元法是如何的卓有成效,当你应用此法及类似的方法时,计算机解的缺点必须牢记在心头:这些解不一定能揭示诸如材料性能、几何特征等重要的变量是如何影响应力的。一旦输入数据有误,结果就会大相径庭,而分析者却难以觉察。所以理论建模最重要的作用可能是使设计者的直觉变得敏锐。有限元程序的用户应该为此目标部署设计策略,以尽可能多的封闭解和实验分析作为计算机仿真的补充。 与现代微机上许多字处理和电子制表软件包相比,有限元的程序不那么复杂。然而,这些程序的复杂程度依然使大部分用户无法有效地编写自己所需的程序。可以买到一些预先编好的商用程序1,其价格范围宽,从微机到超级计算机都可兼容。但有特定需求的用户也不必对程序的开发望而生畏,你会发现,从诸如齐凯维奇(Zienkiewicz 2)等的教材中提供的程序资源可作为有用的起点。大部分有限元软件是用Fortran 语言编写的,但诸如felt 等某些更新的程序用的是C 语言或其它更时新的程序语言。 在实践中,有限元分析法通常由三个主要步骤组成: 1、预处理:用户需建立物体待分析部分的模型,在此模型中,该部分的几何形状被分割成若干个离散的子区域——或称为“单元”。各单元在一些称为“结点”的离散点上相互连接。这些结点中有的有固定的位移,而其余的有给定的载荷。准备这样的模型可能极其耗费时间,所以商用程序之间的相互竞争就在于:如何用最友好的图形化界面的“预处理模块”,来帮助用户完成这项繁琐乏味的工作。有些预处理模块作为计算机化的画图和设计过程的组成部分,可在先前存在的CAD 文件中覆盖网格,因而可以方便地完成有限元分析。 2、分析:把预处理模块准备好的数据输入到有限元程序中,从而构成并求解用线性或 非线性代数方程表示的系统 式中,u 和f 分别为各结点的位移和作用的外力。矩阵K 的形式取决于求解问题的类3、分析的早期,用户需仔细地研读程序运算后产生的大量数字,即型,本模块将概述桁架与线弹性体应力分析的方法。商用程序可能带有非常大的单元库,不同类型的单元适用于范围广泛的各类问题。有限元法的主要优点之一就是:许多不同类型的问题都可用相同的程序来处理,区别仅在于从单元库中指定适合于不同问题的单元类型。 后处理:在有限元1 C.A.Brebbia, ed.,有限元系统(Finite Element System ), A Handbook , Springer-Verlag, Berlin, 1982. 2 O. C. Zienkiewicz and R.L. Taylor, 有限元法(The Finite Element Method ), McGraw-Hill Co., London, 1989.

有限元分析的基本原理

有限元分析的基本原理 有限元原理和基本概念是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。 有限元是那些集合在一起能够表示实际连续域的离散单元。有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。 有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。 有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的子域中。 20世纪60年代初首次提出结构力学计算有限元概念的克拉夫(Clough)教授形象地将其描绘为:“有限元法=Rayleigh-Ritz法+分片函数”,即有限元法是Rayleigh-Ritz法的一种局部化情况。不同于求解(往往是困难的)满足整个定义域边界条件的允许函数的Rayleigh-Ritz法,有限元法将函数定义在简单几何形状(如二维问题中的三角形或任意四边形)的单元域上(分片函数),且不考虑整个定义域的复杂边界条件,这是有限元法优于其他近似方法的原因之一。 对于不同物理性质和数学模型的问题,有限元求解法的基本步骤是相同的,只是具体公式推导和运算求解不同。有限元求解问题的基本步骤通常为:第一步:问题及求解域定义 根据实际问题近似确定求解域的物理性质和几何区域。 第二步:求解域离散化 将求解域近似为具有不同有限大小和形状且彼此相连的有限个单元组成的

相关主题
文本预览
相关文档 最新文档