当前位置:文档之家› 五年级奥数逻辑推理题讲座及练习答案 (优选.)

五年级奥数逻辑推理题讲座及练习答案 (优选.)

五年级奥数逻辑推理题讲座及练习答案 (优选.)
五年级奥数逻辑推理题讲座及练习答案 (优选.)

wo最新文件---------------- 仅供参考--------------------已改成-----------word文本--------------------- 方便更改

rd

五年级奥数集训专题讲座——逻辑推理

解答推理问题常用的方法有:排除法、假设法、反证法。一般可以从以下几方面考虑: 1 、选准突破口,分析时综合几个条件进行判断。 2、根据题中条件,在推理过程中,不断排除不可能的情况,从而得出要求的结论。

3、对可能出现的情况作出假设,然后再根据条件推理,如果得到的结论和条

件不矛盾,说明假设是正确的。4、遇到比较复杂的推理问题,可以借助图表进行分析。

例1:有三个小朋友在谈论谁做的好事多。冬冬说:“兰兰做的比静静多。”

兰兰说:“冬冬做的比静静多”静静说:“兰兰做的比冬冬少。”这三位小朋友中,谁做的好事最多?准做的好事最少?

【思路导航】我们用“ > ”来表示每个小朋友之间做好事多少的关系。

兰兰>静静冬冬>静静冬冬>兰兰所以,冬冬>

兰兰>静静,冬冬做的好事最多,静静做的最少答:冬冬

做的最多,静静做的最少。

【疯狂操练】

( l )卢刚,丁飞和陈瑜一位是工程师,一位是医生,一位是飞行员。现在只知道:卢刚和医生不同岁;医生比丁飞年龄小;陈瑜比飞行员年龄大。请问,谁是

工程师,谁是医生,谁是飞行员?

解:卢刚和医生不同岁,那么卢刚是工程师或者飞行员。

医生比丁飞年龄小;那么医生只能是卢刚或者陈瑜。这里可以知道,医生就是陈琦。(卢刚和陈瑜不同岁;陈瑜比丁飞年龄小)

陈琦比飞行员年龄大。那么飞行员是卢刚,工程师就是丁飞了。

〔 2 )小李、小徐和小张是同学,大学毕业后分别当了教师,数学家和工程师。小张年龄比工程师大;小李和数学家不同岁;数学家比小徐年龄小。想一想,谁是教师,谁是数学家,谁是工程师。

解:(1)此题解答的关键在于抓住“小张年龄比工程师大;小李和数学家不同岁;数学家比小徐年龄小”这一条件来推理.

①小张年龄比工程师大→小张不是工程师,

②②小李和数学家不同岁→小李不是数学家,

③③数学家比小徐年龄小→小徐也不是数学家.

④由②③→小张是数学家.进一步推出小徐是教师,小李是工程师.

解:(2)小张比工程师年龄大,说明小张不是工程师,小李和数学家不同岁,说明小李不是数学家,数学家比小徐年龄小,说明小徐也不是数学家,而小李和小徐都不是数学家,那只有小张是数学家了.然而从小张比工程师年龄大,又比小徐年龄小这两句话可以看出小徐不是工程师,那只有小

徐是教师,小李是工程师了.

因此,小徐是教师,小张是数学家,小李是工程师.

( 3 )江波、刘晓、吴萌三位老师,其中一位教语文,一位教数学,一位教英语。已知:江波和语文老师是邻居;吴萌和语文老师不是邻居;吴萌和数学老师是同学。请问:三位老师分别教什么科目?

解:江波和语文老师是邻居=》江波不是语文老师;

吴萌和语文老师不是邻居=》吴萌不是语文老师=》刘晓是语文老师

吴萌和数学老师是同学=》吴萌不是数学老师=》吴萌是英语老师

=》江波是数学老师

例2:有一个正方体,每个面分别写上汉字:数学奥林匹克。三个人从不同角度观察的结果如下图所示。问这个正方体的每个汉字的对面各是什么字?

【思路导航】想想某个汉字的对面不是什么字。从图( l )中可知,“奥”的对面不是“林”、“匹”,从图( 2 ) 中可知:“奥”的对面不是‘数’、“学”,所以,“奥”的对面一定是“克”。从图( 2 )中可知:“数”的对面不是“奥”、“学”,从图( 3 ) 中可知,“数”的对面不是“克”、“林”,所以“数”的对面

一定是“匹”。剩下的“学”的对面一定是?“林”。答:“奥”的对面是“克” , “数”的对面是“匹”, “学”的对面是“林”。

【疯狂操练】

( l )下面三块正方体的六个面都是按相同的规律涂有红黄蓝绿白黑六种色。

请判断黄色的对面是什么颜色?白色的对面是什么颜色?红色的对面是

什么颜色?

解:根据A 图来看,1、黑色的对面不可能是黑,不可能是白,不可能是黄,在横栏黑的下面,

纵栏分别在黑,白,黄上划×白色的对面不要能

是白,也不可能是黑,也不可能黄,依次在纵栏

的黑、白、黄上划×,黄色的对面不可能是黄,

也不可能是黑和白 依次在纵栏的黑、白、黄上划× 这样,依次根据B 图、C 图完成表格 从横栏来看。白的对面只能是蓝,黄的对面只

黑 白 黄 红 绿 蓝 黑 × × × 白 × × × × × 黄 × × × ×

× 红

× × × × × 绿

× × × 蓝 × ×

×

能是绿,红的对面只能是黑.

或从纵栏来看,白的对面只能是蓝,黄的对面只能是绿,红的对面只能是黑.

( 2 )一个正方体,六个面分别写上ABCDEF 、你能根据这个正方体不同的摆法,求出相对的两个面的字母是什么?

例3:甲、乙、丙

三个孩子踢球打碎了

玻璃窗,甲说:“是丙打碎的”。乙说:“我没有打碎玻璃窗”,丙说:“是乙打碎

A B C D E F A

× × × × √ × B

× × × ⊙ C

× × × × × √ D

× √ × × × × E

⊙ × × × F × ⊙ × ×

的。”他们当中只有一个人说了谎话,到底是谁打碎了玻璃窗?

【思路导航】由题意推出结论,必须符合他们中只有一个说了谎,推理时可以先假设,看结论和条件是否矛盾。

如果是甲打碎的,那么是甲说谎话,乙说的是实话,丙说的是谎话,这样两人说的是谎话,与他们中只有一个说谎相矛盾.所以不是甲打碎的。

如果是乙打碎的,那么甲说的是谎话,乙说的是谎话,丙说的是实话,也与他们中只有一个说谎相矛盾,所以不是乙打碎的。

如果是丙打碎的,那么甲说的是实话,乙说的是实话,而丙说的是谎话。这样有两个说的是实话,符合条件他们中只有一个说的是谎话,所以玻璃窗是丙打碎的。

【疯狂操练】

( l )已知甲、乙、丙三个中,只有一个人会开汽车。甲说:“我会开汽车”。

乙说:“我不会开”。丙说:“甲不会开汽车。”如果三个人中有一个讲的是真话,那么谁会开汽车?

解:假设只有甲会开,那么甲说的是真话。乙说的也是真话,所以与条件不成立

假设只有乙会开,那么甲说的是假话,乙说的是假话,丙说的是真话,

与条件成立。

假设只有丙会开,那么甲说的是假话,乙和丙说的都是真话,与条件不

成立

条件是只有一句真话,所以真会开车的是乙

( 2 )某学校为表扬好人好事核实一件事,老师找了 A 、 B 、 C 三个学生。 A 说:“是 B 做的”。 B 说:“不是我做的”。 C 说:“不是我做的”。这三个中只有一个人说了实话,这件好事是谁做的?

解:用假设法去考虑:

如A说的是实话,那这件好事应是B做的,此时C的话以是实话了

如C说的是实话,那这件好事应是A或B做的,因他两人话是相互矛盾的,不合题意

那只能是B说的是实话,A和C说的是假话,是C做了好事

( 3 ) ABCD 四个孩子踢球打碎了玻璃。 A 说:“是 C 或 D 打碎的”。 B 说:“是 D 打碎的”。 C 说:“我没有打碎玻璃窗”。 D 说:“不是我打碎的。”他们中只有一个人说了谎,到底是谁打碎了玻璃窗?

解:如果A打碎的,那么A说了谎,B也说了谎,所以A没说谎,同理,B 也没说谎。

如果C打碎的,那么A说了谎,C也说了谎。

如果D打碎的,那么ABC就都没有说谎,只有D在说谎。

所以是D打碎的

(4)、A,B,C,D,E共五位选手进行乒乓球循环赛,即每两人都要打一盘。规定胜者2分,负者0分,没有平局。现在知道:A与B并列第一名,D比C的名次高。每个人都至少胜了一盘,求每个人的得分。

解:A.B.C.D.E五位选手进行兵乓球循环赛,每两人都只赛一盘.规定胜者得2分,负者不得分.现在知道的比赛结果是:A.B并列第一,(不设第二名,直接第三名),D比C的名次高,每个人都至少胜了一盘.个人得分多少:A(6 ),B( 6),C(2),D( 4),E( 2).

(5) 、A、B、C三名同学参加了一次标准化考试,试题共10道,都是正误题,每道题10分,满分为100分.正确的画“√”,错误的画“×”.他们的答卷如下表:

1 2 3 4 5 6 7 8 9 10

A ×√√√×√××√×

B ××√√√×√√××

C √×√×√√√×√√

考试成绩公布后,三人都是70分.问各题的正确答案是什么?

观察A与B的答案可知,A、B有4道题答案相同,6道题答案不同.因为每人都是70分,

所以4道答案相同的题都答对了,6道答案不同的题各对了3道.

由此可知第1、3、4、10题的答案分别是×、√、√、×.

同理,B、C有4题答案相同,根据每人都是70分,所以4道答案相同的题都答对了,

即第2、3、5、7题的答案分别是×、√、√、√.

同理,A、C也有4题答案相同,这4道题都答对了,

即第3、6、8、9题的答案分别是√、√、×、√.

由此可知,1至10题的答案分别是×、×、√、√、√、√、√、×、√、×.

【请思考】:

甲、乙、丙、丁四个人同时参加数学竞赛,赛后,

甲说:“丙是第一名,我是第三名。”乙说:“我是第一名,丁是第四名”。丙说:“丁是第二名,我是第三名”。丁没有说话,成绩揭晓时,大家发现甲、乙、丙三个人各说对了一半,你能说出他们的名次吗?

提示:推理时,必须以“他们都只说对了一半”为前提,为了帮助分析,可以借助图表分析:

解:乙第一名,丁第二名。甲第三名,丙第四名。

分析:因为各预测对了一半,所以我们假设甲说:“丙第一名”是正确的,那么根据乙所说的,就只能是丁第四名,这样的话丙就一个也没预测准。

所以甲预测“我第三名”是正确的,根据丙的预测可判断丙不是第三名,而“丁第二名”是正确的,同理再根据乙的预测可判断乙是第一名,那么丙就

是第四名。

最新文件---------------- 仅供参考--------------------已改成-----------word文本--------------------- 方便更改

赠人玫瑰,手留余香。

小学五年级奥数题集锦

小学五年级奥数题集锦 及答案 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

小学五年级奥数题集锦及答案 1、甲乙两车同时从AB两地相对开出。甲行驶了全程的5/11,如果甲每小时行驶千米,乙行了5小时。求AB两地相距多少千米 解:AB距离=(×5)/(5/11)=千米 2、一辆客车和一辆货车分别从甲乙两地同时相向开出。货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。甲乙两地相距多少千米解:客车和货车的速度之比为5:4 那么相遇时的路程比=5:4 相遇时货车行全程的4/9 此时货车行了全程的1/4 距离相遇点还有4/9-1/4=7/36 那么全程=28/(7/36)=144千米 3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。求乙绕城一周所需要的时间解:甲乙速度比=8:6=4:3 相遇时乙行了全程的3/7 那么4小时就是行全程的4/7 所以乙行一周用的时间=4/(4/7)=7小时 4、甲乙两人同时从A地步行走向B地,当甲走了全程的1\4时,乙离B地还有640米,当甲走余下的5\6时,乙走完全程的7\10,求AB两地距离是多少米 解:甲走完1/4后余下1-1/4=3/4 那么余下的5/6是3/4×5/6=5/8

此时甲一共走了1/4+5/8=7/8 那么甲乙的路程比=7/8:7/10=5:4 所以甲走全程的1/4时,乙走了全程的1/4×4/5=1/5 那么AB距离=640/(1-1/5)=800米 5、甲,乙两辆汽车同时从A,B两地相对开出,相向而行。甲车每小时行75千米,乙车行完全程需7小时。两车开出3小时后相距15千米,A,B两地相距多少千米 解:一种情况:此时甲乙还没有相遇 乙车3小时行全程的3/7 甲3小时行75×3=225千米 AB距离=(225+15)/(1-3/7)=240/(4/7)=420千米 一种情况:甲乙已经相遇 (225-15)/(1-3/7)=210/(4/7)=千米 6、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟已相遇 解:甲相当于比乙晚出发3+3+3=9分钟 将全部路程看作单位1 那么甲的速度=1/30 乙的速度=1/20 甲拿完东西出发时,乙已经走了1/20×9=9/20 那么甲乙合走的距离1-9/20=11/20 甲乙的速度和=1/20+1/30=1/12 那么再有(11/20)/(1/12)=分钟相遇

小学五年级奥数题50道及答案精编版

1、25除以一个数的2倍,商是3余1,求这个数.[4] 2、学校今年绿化面积1800平方米,比去年的绿化面积的2倍还多40平方米,去年绿化面积是多少平方米? [3] 3、洗衣机厂今年每日生产洗衣机260台,比去年平均日产量的2.5倍少40台,去年平均日产洗衣机多少台? [3] 4、化肥厂用大、小两辆汽车运47吨化肥,大汽车运了8次,小汽车运了6次正好运完,大汽车每次运4吨,小汽车每次运多少吨? [3] 5、一匹布长36米,裁了10件大人衣服和8件儿童衣服,每件大人衣服用布2.4米,每件儿童衣服用布多少米? 6、甲车每小时行48千米,乙车每小时行56千米,两车从相距12千米的两地同时背向而行,几小时后两车相距272千米? [4] 7、饲养场共养4800只鸡,母鸡只数比公鸡只数的1.5倍还多300只,公鸡、母鸡各养了多少只? 8、哥哥和弟弟的年龄相加为35岁,哥哥比弟弟大3岁,哥哥和弟弟各多少岁? [4] 9、甲、乙两车同时从相距528千米的两地相向而行,6小时后相遇,甲车每小时比乙车快6千米,求甲、乙两车每小时各行多少千米? 10、小张买苹果用去7.4元,比买2千克橘子多用0.6元,每千克橘子多少元? [4] 11、学校图书馆购买的文艺书比科技书多156本,文艺书的本数比科技书的3倍还多12本,文艺书和科技书各买了多少本? [4] 12、甲有书的本数是乙有书的本数的3倍,甲、乙两人平均每人有82本书,求甲、乙两人各有书多少本. [4] 13、一只两层书架,上层放的书是下层的3倍,如果把上层的书搬60本到下层,那么两层的书一样多,求上、下层原来各有书多少本.[4] 14、有甲、乙两缸金鱼,甲缸的金鱼条数是乙缸的一半,如从乙缸里取出9条金鱼放人甲缸,这样两缸鱼的条数相等,求甲缸原有金鱼多少条.[4] 15、汽车从甲地到乙地,去时每小时行60千米,比计划时间早到1小时;返回时,每小时行40千米,比计划时间迟到1小时.求甲乙两地的距离.[5] 16、同学们种向日葵,五年级种的棵数比四年级种的3倍少10棵,五年级比四年级多种62棵,两个年级各种多少棵? 17、电视机厂生产一批电视机,如果每天生产40台,要比原计划多生产6天,如果每天生产60台,可以比原计划提前4天完成,求原计划生产时间和这批电视机的总台数.[5] 19、一把直尺和一把小刀共1.9元,4把直尺和6把小刀共9元,每把直尺和每把小刀各多少元? 20、甲、乙两个粮仓存粮数相等,从甲仓运出130吨、从乙仓运出230吨后,甲粮仓剩粮是乙粮仓剩粮的3倍,原来每个粮仓各存粮多少吨? 21、甲、乙两堆煤共100吨,如从甲堆运出10吨给乙堆,这时甲堆煤的质量正好是乙堆煤质量的1.5倍,求甲、乙两堆煤原来各有多少吨? 22、甲仓存粮32吨乙仓存粮57吨以后甲仓每天存人4吨,乙仓每天存人9吨,几天后乙仓存粮是甲仓的2倍? 23、两根电线同样长短,将第一根剪去2米后,第二根长是第一根的1.8倍,原来两根电线各长多少米? [4] 24、一批香蕉,卖掉140千克后,原来香蕉的质量正好是剩下香蕉的5倍,这批香蕉共有多少千克? 25、小明去爬山,上山花了45分钟,原路下山花了30分钟,上山每分钟比下山每分钟少走9米,

五年级奥数题及答案56924

五年级奥数题 问题1 如果一个四位数与一个三位数的和是1999,并且四位数和三位数是由7个不同的数字组成的。那么,这样的四位数最多能有多少个 这是北京市小学生第十五届《迎春杯》数学竞赛决赛试卷的第三大题的第4小题,也是选手们丢分最多的一道题。 得到a=1,b+e=9,(e≠0),c+f=9,d+g=9。 为了计算这样的四位数最多有多少个,由题设条件a,b,c,d,e,f,g互不相同,可知,数字b有7种选法(b≠1,8,9),c有6种选法(c≠1,8,b,e),d有4种选法(d≠1,8,b,e,c,f)。于是,依乘法原理,这样的四位数最多能有(7×6×4=)168个。 在解答完问题1以后,如果再进一步思考,不难使我们联想到下面一个问题。 问题2 有四张卡片,正反面各写有1个数字。第一张上写的是0和1,其他三张上分别写有2和3,4和5,7和8。现在任意取出其中的三张卡片,放成一排,那么一共可以组成多少个不同的三位数

此题为北京市小学生第十四届《迎春杯》数学竞赛初赛试题。其解为: 后,十位数字b可取其他三张卡片的六种数字;最后个位数c可取剩余两张卡片的四种数字。综上所述,一共可以组成不同的三位数共(7×6×4=)168个。 如果从甲仓库搬67吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的2倍;如果从甲仓库搬17吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的5倍,原来两仓库各存货物多少吨 67×(2+1)-17×(5+1) =201-102 =99(吨) 99÷〔(5+1)-(2+1)〕 =99÷3 =33(吨)答:原来的乙有33吨。 (33+67)×2+67 =200+67 =267(吨)答:原来的甲有267吨。 分析:

名师推荐小学五年级奥数题集锦及答案

小学数学知识点—简便运算 计算作为数学学习的基本能力,在各类考试中占据整张试卷30%的分值。 一、提取公因式 这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项 相加减,会出现一个整数。注意相同因数的提取。 例如: 0.92×1.41+0.92×8.59 =0.92×(1.41+8.59) 二、有借有还法 看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要 注意还哦,有借有还,再借不难。 考试中,看到有类似998、999或者1.98等接近一个非常好计算的整数的时候,往往使用借来借去法。 例如: 9999+999+99+9 =9999+1+999+1+99+1+9+1—4 三、拆分法 顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆还要注意不要改变数的大小哦。 例如: 3.2×12.5×25 =8×0.4×12.5×25 =8×12.5×0.4×25 四、加法结合律 注意对加法结合律 (a+b)+c=a+(b+c) 的运用,通过改变加数的位置来获得更简便的运算。 例如: 5.76+13.67+4.24+ 6.33 =(5.76+4.24)+(13.67+6.33)

五、拆分法和乘法分配律结合 这种方法要灵活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一个整数的时候,要首先考虑拆分。 例如: 34×9.9 = 34×(10-0.1) 案例再现:57×101=? 六、利用基准数 在一系列数种找出一个比较折中的数字来代表这一系列的数字,当然要记得这个数 字的选取不能偏离这一系列数字太远。 例如: 2072+2052+2062+2042+2083 =(2062x5)+10-10-20+21 七、利用公式法 (1) 加法: 交换律,a+b=b+a, 结合律,(a+b)+c=a+(b+c). (2) 减法运算性质: a-(b+c)=a-b-c, a-(b-c)=a-b+c, a-b-c=a-c-b, (a+b)-c=a-c+b=b-c+a. (3):乘法(与加法类似): 交换律,a*b=b*a, 结合律,(a*b)*c=a*(b*c), 分配率,(a+b)xc=ac+bc, (a-b)*c=ac-bc. (4) 除法运算性质(与减法类似): a÷(b*c)=a÷b÷c, a÷(b÷c)=a÷bxc, a÷b÷c=a÷c÷b, (a+b)÷c=a÷c+b÷c, (a-b)÷c=a÷c-b÷c. 前边的运算定律、性质公式很多是由于去掉或加上括号而发生变化的。其规律是同 级运算中,加号或乘号后面加上或去掉括号,后面数值的运算符号不变。

五年级奥数题集锦答案

五年级奥数题集锦 1、甲乙两数的和是32,甲数的3倍与乙数的5倍的和是122,求甲、乙二数各是多少? 解:设甲数为X,乙数为(32-X)。 3X+(32-X)×5=122 3X+160-5X=122 2X=38 X=19 32-X=32-19=13 答:甲数是19,乙数是13。 2、弟弟有钱17元,哥哥有钱25元,哥哥给弟弟多少元后,弟弟的钱是哥哥的2倍? 解:设哥哥给弟弟X元后,弟弟的钱是哥哥的2倍。 (25-X)×2=17+X 50-2X=17+X 3X=33 X=11 答:哥哥给弟弟11元后,弟弟的钱是哥哥的2倍。 3、有两根绳子,长的比短的长1倍,现在把每根绳子都剪掉6分米,那么长的一根就比短的一根长两倍。问:这两根绳子原来的长各是多少? 1+1=2 1+2=3 解:设原来短绳长X分米,长绳长2X分米。 (X-6)×3=2X-6 3X-18=2X-6 X=12 2X=2×12=24 答:原来短绳长12分米,长绳长24分米。 4、有大、中、小三筐苹果,小筐装的是中筐的一半,中筐比大筐少装16千克,大筐装的是小筐的4倍,大、中、小筐共有苹果多少千克。 解:设小筐装苹果X千克。 4X=2X+16 2X=16 X=8 8×2=16(千克) 8×4=32(千克) 答:小筐装苹果8千克,中筐装苹果16千克,大筐装苹果32千克。

5、30枚硬币,由2分和5分组成,共值9角9分,两种硬币各多少枚? 9角9分=99分 解:设2分硬币有X枚,5分硬币有(30-X)枚。 2X+5×(30-X)=99 2X+150-5X=99 3X=51 X=17 30-X=30-17=13 6、搬运100只玻璃瓶,规定搬一只得搬运费3分,但打碎一只不但不得搬运费,而且要赔5分,运完后共得运费2.60元,搬运中打碎了几只? 2.60元=260分 解:设搬运中打碎了X只。 3×(100-X)-5X=260 300-3X-5X=260 8X=40 X=5 答:搬运中打碎了5只。 7、参加校学生运动会团体操表演的运动员排成一个正方形队列,如果要使这个正方形队列减少一行和一列,则要减少33人,参加表演的运动员有多少人? 解:设团体操原来每行X人。 2X-1=33 2X=34 X=17 17×17=289(人) 答:参加团体操表演的运动员有289人。 8、京华小学五年级的学生采集标本,采集昆虫标本的有25人,采集植物标本的有19人,两种标本都采集的有8人,全班学生共有40人,没有采集标本的有多少人? 解:设没有采集标本的有X人。 25+19-8+X=40 36+X=40 X=4 答:没有采集标本的有4人。 9、一个四位数,最高位上是7,如果把这个数字调动到最后一位,其余的数字依次迁移,则这个数要减少864,求这四位数。 解:设四位数的末三位为X。 7000+X=10X+7+864 9X=6129 X=681 7000+681=7681 答:这四位数是7681。

五年级奥数测试题及答案

五年级奥数测试题 一、解方程 (5×6=30) 1.512424=-÷x 2.x x 644762-=- 3.x x +=-03.123.7 4.)2(10)2(8-=+x x 5.5)2(40=-÷x 6.)6(237+=-x x 二、解答题(22) 1、如果a ☆b=(a-2)×b,则3☆4=(3-2)×4=4,那么当C ☆8=32时,C 等于多少?(5分) 2、对于任意的数a,b,定义:f(a)=4a-1,k(b)=b 2;(6分) (1)求f(4)+k(3)的值;(2)求f(k(2))+k(f(2))的值。

3、计算 15 131131111191971751531311?+?+?+?+?+?+?(6分) 4、根据下面的两个算式,求▲与□各代表多少?(5分) ▲+▲+▲+□+□=44 ▲+▲+□+□+□=46 三、应用题(6×8=48) 1、小王骑自行车从单位到局里开会,每小时行16千米。他出发0.8小时后,小张有急事要通知小王,乘汽车从单位出发,经过0.2小时追上小王。汽车每小时行多少千米?

2、某班学生合买一件纪念品,如果每人出6元则多48元,如果每人出5元,则少3元。这个班有学生多少人? 3、妈妈买来一些桃子,分给全家人吃。如果每人分4个,则多12个,如果每人分6个,则多2个。妈妈买来多少桃子?全家共有几人? 4、五(1)班同学为汶川地震灾区捐款。中队长数了数,发现面值是5元,10元的人民币共40张,合计325元。面值是5元、10元的人民币各多少张?

5.有一篮苹果,第一天吃了一半又一个,第二天吃了余下的一半又一个,这样每天吃前一天余下的一半又一个,第五天吃了以后只剩下一个苹果了。原来苹果有多少个? 6、如下图:请根据正方形的面积8平方厘米,计算出阴影部分的面积。 7、六一儿童节,那天,学校的画廊里展出了每个年级学生的书法作品,其中有26幅不是五年级的,有23幅不是六年级的,五六年级参展的作品共有9幅,其他年级参展的作品共有多少幅? 8、甲乙两船分别从相距680千米的A、B两港相向开出,甲船每小时行驶40千米,出发3小时后,乙船从B港开出,速度每小时驶30千米。求乙船开出后几小时与甲船相遇?

小学五年级奥数题集锦及答案

小学五年级奥数题集锦及答案 1、甲乙两车同时从AB两地相对开出。甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。求AB两地相距多少千米? 2、一辆客车和一辆货车分别从甲乙两地同时相向开出。货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。甲乙两地相距多少千米? 3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。求乙绕城一周所需要的时间? 4、甲乙两人同时从A地步行走向B地,当甲走了全程的1\4时,乙离B地还有640米,当甲走余下的5\6时,乙走完全程的7\10,求AB两地距离是多少米? 解:甲走完1/4后余下1-1/4=3/4 那么余下的5/6是3/4×5/6=5/8 此时甲一共走了1/4+5/8=7/8 那么甲乙的路程比=7/8:7/10=5:4 所以甲走全程的1/4时,乙走了全程的1/4×4/5=1/5 那么AB距离=640/(1-1/5)=800米 5、甲,乙两辆汽车同时从A,B两地相对开出,相向而行。甲车每小时行75千米,乙车行完全程需7小时。两车开出3小时后相距15千米,A,B两地相距多少千米? 解:一种情况:此时甲乙还没有相遇 乙车3小时行全程的3/7 甲3小时行75×3=225千米 AB距离=(225+15)/(1-3/7)=240/(4/7)=420千米 一种情况:甲乙已经相遇 (225-15)/(1-3/7)=210/(4/7)=367.5千米 6、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟已相遇? 解:甲相当于比乙晚出发3+3+3=9分钟 将全部路程看作单位1 那么甲的速度=1/30 乙的速度=1/20 甲拿完东西出发时,乙已经走了1/20×9=9/20 那么甲乙合走的距离1-9/20=11/20 甲乙的速度和=1/20+1/30=1/12 那么再有(11/20)/(1/12)=6.6分钟相遇 7、甲,乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车? 解:路程差=36×2=72千米 速度差=48-36=12千米/小时 乙车需要72/12=6小时追上甲 8、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a地出发至1千米时,发现有物品以往在a地,便立即返回,去了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的终点处相遇,又知甲每小时比乙多走0.5千米,求甲、乙两人的速度? 解: 甲在相遇时实际走了36×1/2+1×2=20千米

20道简单的五年级奥数题 及答案

1.有一些糖,每人分5块多10块;如果现有的人数增加到原人数的 1.5倍,那么每人4块就少2块.问这些糖共有多少块? 【分析与解】方法一:设开始共有x人,两种分法的糖总数不变,有5x+10=4×1.5x-2,解得x=12,所以这些糖共有12×5+10=70块. 方法二:人数增加 1.5倍后,每人分4块,相当于原来的人数,每人分 1.5×4=6块. 有这些糖,每人分5块多10块,每人分6块少2块,所以开始总人数为(10+2)÷(6-5)=12人,那么共有糖12×5+10=70块. 2.甲、乙两个小朋友各有一袋糖,每袋糖不到20粒.如果甲给乙一定数量的糖后,甲的糖就是乙的糖 粒数的2倍;如果乙给甲同样数量的糖后,甲的糖就是乙的糖粒数的3倍.那么,甲、乙两个小朋友 共有糖多少粒? 【分析与解】由题意知糖的总数应该是3的倍数,还是4的倍数.即为12的倍数,因为两袋糖每袋 都不超过20粒,所以总数不超过40粒.于是糖的总数只可能为12、24或36粒. 如果糖的总数为12的奇数倍,那么“乙给甲同样数量的糖后”,甲的糖为12÷(3+1)×3=9的奇数倍.那么在甲给乙两倍“同样的数量糖”后,甲的糖为12÷(2+1)×2=8的奇数倍. 也就是说一个奇数加上一个偶数等于偶数,显然不可能.所以糖的总数不能为12的奇数倍. 那么甲、乙两个小朋友共有的糖只能为12的偶数倍,即为24粒. 3.甲班有42名学生,乙班有48名学生.已知在某次数学考试中按百分制评卷,评卷结果各班的数学 总成绩相同,各班的平均成绩都是整数,并且平均成绩都高于80分.那么甲班的平均成绩比乙班高多 少分? 【分析与解】方法一:因为每班的平均成绩都是整数,且两班的总成绩相等,所以总成绩既是42的倍数,又是48的倍数,所以为[42,48]=336的倍数. 因为乙班的平均成绩高于80分,所以总成绩应高于48×80=3840分. 又因为是按百分制评卷,所以甲班的平均成绩不会超过100分,那么总成绩应不高于42×100=4200分.

小学五年级奥数思维训练题及答案

小学五年级奥数思维训练题及答案 【篇一】小学五年级奥数思维训练题及答案 1.297+293+289+…+209 解:(209+297)*23/2=5819 2.计算: 解:原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99) =50*(1/99)=50/99 3.有7个数,它们的平均数是18。去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下的5个数的平均数是20。求去掉的两个数的乘积。 解:7*18-6*19=126-114=12 6*19-5*20=114-100=14 去掉的两个数是12和14它们的乘积是12*14=168 4.有七个排成一列的数,它们的平均数是30,前三个数的平均数是28,后五个数的平均数是33。求第三个数。 解:28×3+33×5-30×7=39。 5.有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8。问:第二组有多少个数? 解:设第二组有x个数,则63+11x=8×(9+x),解得x=3。【篇二】小学五年级奥数思维训练题及答案 1.765×213÷27+765×327÷27 解:原式=765÷27×(213+327)=765÷27×540=765×

20=15300 2.(9999+9997+...+9001)-(1+3+ (999) 解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1) =9000+9000+…….+9000(500个9000) =4500000 3.19981999×19991998-19981998×19991999 解:(19981998+1)×19991998-19981998×19991999 =19981998×19991998-19981998×19991999+19991998 =19991998-19981998 =10000 4.(873×477-198)÷(476×874+199) 解:873×477-198=476×874+199 因此原式=1 5.2000×1999-1999×1998+1998×1997-1997×1996+…+2×1 解:原式=1999×(2000-1998)+1997×(1998-1996)+… +3×(4-2)+2×1 =(1999+1997+…+3+1)×2=2000000【篇三】小学五年级奥数思维训练题及答案 1.小明参加了六次测验,第三、第四次的平均分比前两次的平均分多2分,比后两次的`平均分少2分。如果后三次平均分比前三次平均分多3分,那么第四次比第三次多

小学五年级奥数题及答案

小学五年级经典奥数题 题1、营业员把一张5元的人民币和一张5角的人民币换成了28张票面为1元和1角的人民币,求换来的这两种人民币各多少张? 题2、有一元,二元,五元的人民币共50张,总面值为116元,已知一元的比二元的多2张,问三种面值的人民币各多少张? 题3、有3元,5元和7元的电影票400张,一共价值1920元,其中7元和5元的张数相等,三种价格的电影票各多少张? 题4、用大、小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱,现在有18车货,价值3024元,若每箱便宜2元,则这批货价值2520元,问:大、小汽车各有多少辆? 题5、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次,平均每天运14次,这几天中有几天是雨天? 题6、运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样卖这批西瓜共值290元,如果每千克西瓜降价0.05元,这批西瓜只能卖250元,问:有多少千克大西瓜? 题7、甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶每次倒扣6分,两人各投10次,共得152分,其中甲比乙多得16分,问:两人各中多少次? 题8、某次数学竞赛共有20条题目,每答对一题得5分,错了一题不仅不得分,而且还要倒扣2分,这次竞赛小明得了86分,问:他答对了几道题? 答案: 1.解:设有1元的x张,1角的(28-x)张

x+0.1(28-x)=5.5 0.9x=2.7 x=3 28-x=25 答:有一元的3张,一角的25张。 2.解:设1元的有x张,2元的(x-2)张,5元的(52-2x) x+2(x-2)+5(52-2x)=116 x+2x-4+260-10x=116 7x=140 x=20 x-2=18 52-2x=12 答:1元的有20张,2元18张,5元12张。 3.解:设有7元和5元各x张,3元的(400-2x)张 7x+5x+3(400-2x)=1920 12x+1200-6x=1920 6x=720

小学五年级奥数题集锦及答案更新版

小学五年级奥数题集锦 及答案更新版 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

小学五年级奥数题集锦及答案 1、甲乙两车同时从AB两地相对开出。甲行驶了全程的5/11,如果甲每小时行驶千米,乙行了5小时。求AB两地相距多少千米? 解:AB距离=(×5)/(5/11)=千米 2、一辆客车和一辆货车分别从甲乙两地同时相向开出。货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。甲乙两地相距多少千米? 解:客车和货车的速度之比为5:4 那么相遇时的路程比=5:4 相遇时货车行全程的4/9 此时货车行了全程的1/4 距离相遇点还有4/9-1/4=7/36 那么全程=28/(7/36)=144千米 3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。求乙绕城一周所需要的时间? 解:甲乙速度比=8:6=4:3 相遇时乙行了全程的3/7 那么4小时就是行全程的4/7 所以乙行一周用的时间=4/(4/7)=7小时 4、甲乙两人同时从A地步行走向B地,当甲走了全程的1\4时,乙离B地还有640米,当甲走余下的5\6时,乙走完全程的7\10,求AB两地距离是多少米

解:甲走完1/4后余下1-1/4=3/4 那么余下的5/6是3/4×5/6=5/8 此时甲一共走了1/4+5/8=7/8 那么甲乙的路程比=7/8:7/10=5:4 所以甲走全程的1/4时,乙走了全程的1/4×4/5=1/5 那么AB距离=640/(1-1/5)=800米 5、甲,乙两辆汽车同时从A,B两地相对开出,相向而行。甲车每小时行75千米,乙车行完全程需7小时。两车开出3小时后相距15千米,A,B两地相距多少千米 解:一种情况:此时甲乙还没有相遇 乙车3小时行全程的3/7 甲3小时行75×3=225千米 AB距离=(225+15)/(1-3/7)=240/(4/7)=420千米 一种情况:甲乙已经相遇 (225-15)/(1-3/7)=210/(4/7)=千米 6、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟已相遇? 解:甲相当于比乙晚出发3+3+3=9分钟 将全部路程看作单位1 那么甲的速度=1/30 乙的速度=1/20 甲拿完东西出发时,乙已经走了1/20×9=9/20

2013年五年级奥数题练习及答案(55题)

2013年五年级奥数题练习(55题) 1、(1 +2 +8 )÷(1 +2 +8 )= 2、奥运吉祥物中的5个“福娃”取“北京欢迎您”的谐音:贝贝、京京、欢欢、迎迎、妮妮。如果在盒子中从左向右放5个不同的“福娃”,那么,有种不同的放法。 3、有一列数:1,1,3,8,22,60,164,448……其中的前三个数是1,1,3,从第四个数起,每个数都是这个数前面两个数之和的2倍。那么,这列数中的第10个数是。 4、有一排椅子有27个座位,为了使后去的人随意坐在哪个位置都有人与他相邻,则至少要先坐人。 5、五年级一班共有36人,每人参加一个兴趣小组,共有A,B,C,D,E五个小组,若参加A组的有15人,参加B组的仅次于A组,参加C组、D组的人数相同。参加E组的人数最少,只有4人,那么,参加B组的有人。 6、菜地里的西红柿获得丰收,摘了全部的2/5时,装满了3筐还多16千克。摘完其余部分后,又装满6筐,则共收得西红柿千克。 7、工程队修一条公路,原计划每天修720米,实际每天比原计划多修80米。因而提前3天完成任务。这条路全长千米。 8、两个完全相同长方体的长、宽、高分别是5厘米、4厘米、3厘米,把它们拼在一起可组成一个新长方体,在这些长方体中,表面积最小的是平方厘米。 9、著名的哥德巴赫猜想:“任意一个大于4的偶数都可以表示为两个质数的和”。如6=3+3,12=5+7,等。那么自然数100可以写成种两个不同质数和的形式?请分别写出来(100=3+97和100=97+3算作同一种形式)

10、号码分别为2005、2006、2007、2008的4名运动员进行乒乓球赛,规定每2人比赛的场数是他们号码的和被4除所得的余数。那么2008号运动员比赛了场。 11、0.15÷2.1×56= 12、15+115+1115+ (1111111115) 13、一个自然数除以3,得余数2,用所得的商除以4.得余数3。若用这个自然数除以6,得余数。 14、有一些自然数(0除外)既是平方数,又是立方数(平方数可以写成两个相同的自然数的乘积,立方数可以写成三个相同自然数的乘积)。如:1=1×1=1×1×1,64=8×8=4×4×4。那么,1000以内的自然数中,这样的数有个。 15、有一个自然数,它的最小两个因数的差是4,最大两个因数的差是308,这个自然数是。 16、先将4黑1白共5个棋子放在一个圆圈上,然后在同色的两子之间放入一个白子,在异色的两子之间放入一个黑子,再将原来的5个棋子拿掉。如此不断操作下去,圆圈上的5个棋子中最多有个白子。 17、甲、乙两人分别从A、B两地同时相向而行,甲的速度是乙的速度的3倍,经过60分钟,两人相遇。然后,甲的速度减为原来的一半,乙的速度不变,两人各自继续前行。那么,当甲到达B地后,再经过分钟,乙到达A地。18、将一个棱长为1米的正方体木块分别沿长、宽、高三个方向锯开3次,得到24个长方体木块。这24块长方体木块的表面积的和是平方米。 19、将1~2011的奇数排成一列,然后按每组1,2,3,2,1,2,3,2,…个数的规律分组如下(每个括号为一组):(1),(3,5),(7,9,11),(13,

小学五年级奥数题试卷及答案-50题

小学五年级奥数题 一、工程问题 1.甲乙两个水管单独开,注满一池水,分别需要20 小时,16 小时.丙水管单独开, 排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还需要多少小时? 2.修一条水渠,单独修,甲队需要20天完成,乙队需要30 天完成。如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天? 3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5 小时完成。现在先请甲、丙合做 2 小时后,余下的乙还需做 6 小时完成。乙单独做完这件工作要多少小时? 4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。已知乙单独做这项工程需17 天完成,甲单独做这项工程要多少天完成? 5.师徒俩人加工同样多的零件。当师傅完成了1/2 时,徒弟完成了120 个。当师傅完成了任务时,徒弟完成了4/5 这批零件共有多少个?

6.一批树苗,如果分给男女生栽,平均每人栽6 棵;如果单份给女生栽,平均每人栽 10 棵。单份给男生栽,平均每人栽几棵? 7.一个池上装有3根水管。甲管为进水管,乙管为出水管,20 分钟可将满池水放完,丙管也是出水管,30 分钟可将满池水放完。现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18 分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完? 8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天? 9.两根同样长的蜡烛,点完一根粗蜡烛要2 小时,而点完一根细蜡烛要1 小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的 2 倍,问:停电多少分钟? 二.鸡兔同笼问题 1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,, 问鸡与兔各有几只? 三.数字数位问题 1.把1至2005这2005个自然数依次写下来得到一个多位数123456789 ...... 2005, 这 个多位数除以9余数是多少?

2018小学五年级奥数测试题及答案

2018小学五年级奥数试题及答案 班级姓名等级 一:填空题 1.1997+1996-1995—1994+1993+1992—1991—1990+…+9+8—7—6+5+4—3—2+1=______. 3.在图中的七个圆圈内各填一个数,要求每一条直线上的三个数中,当中的数是两边两个数的平均数,现在已经填好两个数,那么,x=______ 4.把1、2、3、4、5填入下面算式的方格内,使得运算结果最大: □+□-□×□÷□那么这个最大结果是_______. 5.设上题答数为a,a的个位数字为b,2×b的个位数字为c.如图, 积的比是______.

6.要把A、B、C、D四本书放到书架上,但是,A不能放在第一层,B不能放在第二层,C不能放在第三层,D不能放在第四层,那么,不同的放法共有______种. 7.从一张长2109毫米,宽627毫米的长方形纸片上,剪下一个边长尽可能大的正方形,如果剩下的部分不是正方形,那么在剩下的纸片上再剪下一个边长尽可能大的正方形,按照上面的过程,不断地重复,最后剪得的正方形的边长是______毫米. 8.龟兔赛跑,全程5.4千米.兔子每小时跑25千米,乌龟每小时跑4千米,乌龟不停地跑,但兔子却边跑边玩,它先跑1分,然后玩15分,又跑2分,玩15分.再跑3分,玩15分,……,那么先到达终点的比后到达终点的快______分.9.从1,2,3,4,5中选出四个数,填入图中的方格内,使得右边的数比左边的数大,下面的数比上面的数大,那么,共有______种填法. 比女生少人.

二、解答题: 1.小明从甲地到乙地,去时每小时走5千米,回来时每小时走7千米,来回共用4小时,小明去时用了多长时间? 2.有一个长方体,它的正面和上面的面积之和是119,如果它的长、宽、高都是质数,那么这个长方体的体积是多少? 3.在400米环形跑道上,A、B两点相距100米(如图),甲、乙两人分别从A、B两点同时出发,按逆时针方向跑步,甲每秒跑7米,乙每秒跑5米,他们每人跑100米都停5秒.那么,甲追上乙需要多少秒? 4.五年级三班有26个男生,某次考试全班有30人超过85分,那么女生中超过85分的比男生中未超过85分的多几人? 5. 一个长方体,长4米,宽3米,高2.4米,它的占地面积最大是多少平方米?表面积是多少平方米?体积是多少立方米?

小学五年级奥数题及答案解析(五篇)

小学五年级奥数题及答案解析(五篇) 篇一 油库里有6桶油,分别装着汽油、柴油和机油。油桶上只标明15公升、16公升、18公升、19公升、20公升和31公升,却没有注明是哪一种油。只知道柴油是机油的2倍,汽油只有一桶。请你分析一下,各个油桶里装的是什么油? 【答案解析】 根据“柴油是机油的2倍”这一条件可知,这两种油之和一定是3的倍数。而六桶油的和为15+16+18+19+20+31=119(公升),119除以3得到的余数为2,说明汽油量是3的倍数还多2公升。又知“汽油只有一桶”,在油桶上标明的六个数中,只有20是3的倍数多2的数,所以标明20公升这一桶装的是汽油。从而可求出机油量为 (15+16+18+19+31)÷3=33(公升),柴油量为33×2=66(公升) 通过观察可知,标明15公升与18公升的两桶装的是机油,标明16公升、19公升与31公升的三桶装的是柴油。 篇二 甲、乙、丙三个桶内各装了一些油,先将甲桶内三分之一的油倒入乙桶,再将乙桶内五分之一的油倒入丙桶,这时三个桶内的油一样多,如果最初丙桶内有油48千克,那么最初甲桶内有油_____千克。乙桶内有油_____千克。 【答案解析】 甲桶里面应该有96千克,乙桶里有48千克。 假设甲桶往乙桶倒过油之后乙桶的油是5份,那么它将五分之一给了丙桶,结果两桶一样多,说明丙桶原来有3份,那么三桶都一样的时候都是4份,可以知道,甲桶倒出去三分之一之后还有4份,那么原来就有6份,甲桶往乙桶倒过2份油之后乙桶的油是5份,说明原来乙桶

也是3份,那么丙桶的3份相当于48千克,一份就是16千克,最初的甲桶里面应该有96千克,乙桶里有48千克。 篇三 学校参加体操表演的学生人数在60~100之间。把这些同学按人数平均分成8人一组,或平均分成12人一组都正好分完。参加这次表演的同学至少有()人。 【答案解析】 考点:公因数和公倍数应用题。 分析:按人数平均分成8人一组,或平均分成12人一组都正好分完,那么总人数就是8和12的公倍数,再根据总人数在60~100之间进行求解。 解答: 8=2×2×2; 12=3×2×2; 8和12的最小公倍数是:2×2×2×3=24; 那么8和12的公倍数有:24,48,72,96,… 由于总人数在60~100,所以总人数就是72人或者96人,最少是72人。 答:参加这次表演的同学至少有72人。 故答案为:72。 篇四

小学五年级奥数题各类题型及答案

小学五年级各类题型奥数及答案面积计算(五年级奥数题) 1、(05年三帆中学考题)右图中AB=3厘米,CD=12厘米,ED=8厘米,AF=7厘米.四边形ABDE的面积是( )平方厘米. 2、如图,已知每个小正方形格的面积是1平方厘米,则不规则图形的面积是______. 面积计算(答案) 1、(05年三帆中学考题)右图中AB=3厘米,CD=12厘米,ED=8厘米,AF=7厘米.四边形ABDE的面积是( )平方厘米. 解:阴影面积=1/2×ED×AF+1/2×AB×CD=1/2×8×7+1/2×3×12=28+18=46。 2、如图,已知每个小正方形格的面积是1平方厘米,则不规则图形的面积是______.

解答:基本的格点面积的求解,可以用解答种这样的方法求解,当然也可以用格点面积公式来做,内部点有16个,周边点有8个,所以面积为16+8÷2-1=19 图形面积(一)(五年级奥数题) 1、(06年清华附中考题)如图,在三角形ABC中,D为BC的中点,E为AB上的一点,且BE=1 /3AB,已知四边形EDCA的面积是35,求三角形ABC的面积. 2、正方形ABFD的面积为100平方厘米,直角三角形ABC的面积,比直角三角形(CDE的面积大30平方厘米,求DE的长是多少? 04.jpg 图形面积(一)(答案) 1、(06年清华附中考题)如图,在三角形ABC中,D为BC的中点,E为AB上的一点,且BE=1 /3AB,已知四边形EDCA的面积是35,求三角形ABC的面积. 解答:根据定理: 所以四边形ACDE的面积就是6-1=5份,这样三角形35÷5×6=42。

2、正方形ABFD的面积为100平方厘米,直角三角形ABC的面积,比直角三角形(CDE的面积大30平方厘米,求DE的长是多少? 解:公共部分的运用,三角形ABC面积-三角形CDE的面积=30, 两部分都加上公共部分(四边形BCDF),正方形ABFD-三角形BFE=30, 所以三角形BFE的面积为70,所以FE的长为70×2÷10=14,所以DE=4。 图形面积(二)(五年级奥数题) 1、求出图中梯形ABCD的面积,其中BC=56厘米。(单位:厘米) 2、(全国第四届“华杯赛”决赛试题)图中图(1)和图(2)是两个形状、大小完全相同的大长方形,在每个大长方形内放入四个如图(3)所示的小长方形,深色区域是空下来的地方,已知大长方形的长比宽多6厘米,问:图(1),图(2)中深色的区域的周长哪个大?大多少? 图形面积(二)(答案) 1、求出图中梯形ABCD的面积,其中BC=56厘米。(单位:厘米)

五年级奥数题及答案-(1)

第六届小学“希望杯”全国数学邀请赛 一、填空题(每小题5分,共60分) 1、(1 +2 +8 )÷(1 +2 +8 )= 2、奥运吉祥物中的5个“福娃”取“北京欢迎您”的谐音:贝贝、京京、欢欢、迎迎、妮妮。如果在盒子中从左向右放5个不同的“福娃”,那么,有种不同的放法。 3、有一列数:1,1,3,8,22,60,164,448……其中的前三个数是1,1,3,从第四个数起,每个

数都是这个数前面两个数之和的2倍。那么,这列数中的第10个数是4、有一排椅子有27个座位,为了使后去的人随意坐在哪个位置都有人与他相邻,则至少要先坐人。 5、一个拧紧瓶盖的瓶子里装着一些水(如图1),由图中的数据可推知瓶子的容积 是立方厘米;(取3.14)

6、某小区有一块如图2所示的梯形空地,根据图中的数据计算,空地的面积 是平方米。 7、如图3,棱长分别为1厘米,2厘米,3厘米,5厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是平方厘米。 8、五年级一班共有36人,每人参加一个兴趣小组,共有A,B,C,D,E 五个小组,若参加A组的有15人,

参加B组的仅次于A组,参加C组、D组的人数相同。参加E组的人数最少,只有4人,那么,参加B组的有人。 9、菜地里的西红柿获得丰收,摘了全部的时,装满了3筐还多16千克。摘完其余部分后,又装满6筐,则共收得西红柿千克。 10、工程队修一条公路,原计划每天修720米,实际每天比原计划多修

80米。因而提前3天完成任务。这条路全长千米。 11、王叔叔开车从北京到上海,从开始出发,车速即比原计划的速度提高了,结果提前一个半小时到达;返回时,按原计划的速度行驶280千米后,将车速提高,于是提前1小时40分到达北京。北京、上海两市间的路程是千米。 12、两个完全相同长方体的长、宽、高分别是5厘米、4厘米、3厘米,

2019-2020年小学五年级奥数题及答案

2019-2020年小学五年级奥数题及答案 一、工程问题 1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时? 2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天? 六.抽屉原理、奇偶性问题 1.一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出几只手套才能保证有3副同色的? 2.有四种颜色的积木若干,每人可任取1-2件,至少有几个人去取,才能保证有3人能取得完全一样? 3.某盒子内装50只球,其中10只是红色,10只是绿色,10只是黄色,10只是蓝色,其余是白球和黑球,为了确保取出的球中至少包含有7只同色的球,问:最少必须从袋中取出多少只球? 七.路程问题 1.狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。问:狗再跑多远,马可以追上它? 2.甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米?

3.在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟? 11.快车和慢车同时从甲乙两地相对开出,快车每小时行33千米,相遇是已行了全程的七分之四,已知慢车行完全程需要8小时,求甲乙两地的路程。 八.比例问题 1.甲乙两人在河边钓鱼,甲钓了三条,乙钓了两条,正准备吃,有一个人请求跟他们一起吃,于是三人将五条鱼平分了,为了表示感谢,过路人留下10元,甲、乙怎么分?快快快 2.一种商品,今年的成本比去年增加了10分之1,但仍保持原售价,因此,每份利润下降了5分之2,那么,今年这种商品的成本占售价的几分之几?

相关主题
文本预览
相关文档 最新文档