当前位置:文档之家› 化学工程与工艺课程设计

化学工程与工艺课程设计

化学工程与工艺课程设计
化学工程与工艺课程设计

2009级化学工程与工艺课程设计

设计题目:分离苯-甲苯混合物的连续精馏装置

姓名:

学院:

学号:

成绩:

目录

第一章绪论

1.1精馏的定义及原理 (1)

1.2精馏的分类……………………………………………………………………1.3精馏的操作特点………………………………………………………………1.4精馏的操作评价………………………………………………………………1.5苯﹑甲苯的相关物性参数……………………………………………………1.6符号说明………………………………………………………………………

第二章设计任务

2.1 技术参数………………………………………………………………………

2.2 设计的主要内容………………………………………………………………

第三章设计内容

3.1 方案的确定和工艺流程说明…………………………………………………

3.2 全塔物料衡算…………………………………………………………………

3.3 塔板的层数……………………………………………………………………

3.4 塔的操作工艺条件及计算……………………………………………………

3.4.1平均压强…………………………………………………………………………………3.4.2 平均温度…………………………………………………………………………………

3.4.3 平均黏度…………………………………………………………………………………

3.4.4 平均分子量………………………………………………………………………………

3.4.5 平均表面张力……………………………………………………………………………

3.4.6平均相对密度……………………………………………………………………………3.5 塔体尺寸的工艺计算…………………………………………………………

3.5.1 塔径的计算……………………………………………………………………

3.5.2 精馏塔有效高度的计算………………………………………………………

第四章辅助设备的选择和计算

4.1冷凝器的设计┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉……

4.2换热器的设计……………………………………………………………………

4.3再沸器的设计┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉……

4.4离心泵的设计……………………………………………………………………附录:参考资料…………………………………………………‥

第一章绪论

1.1精馏的定义及原理

精馏是一种利用回流使液体混合物得到高纯度分离的蒸馏方法,是工业上应用最广的液体混合物分离操作,广泛用于石油、化工、轻工、食品、冶金等部门。

对于一次汽化,冷凝来说,由于液体混合物中所含的组分的沸点不同,当其在一定温度下部分汽化时,因低沸点物易于气化,故它在气相中的浓度较液相高,而液相中高沸点物的浓度较气相高,这就改变了气液两相的组成。当对部分汽化所得蒸汽进行部分冷凝时,因高沸点物易于冷凝,使冷凝液中高沸点物的浓度较气相高,而为冷凝气中低沸点物的浓度比冷凝液中要高。这样经过一次部分汽化和部分冷凝,使混合液通过各组分浓度的改变得到了初步分离。如果多次的这样进行下去,将最终在液相中留下的基本上是高沸点的组分,在气相中留下的基本上是低沸点的组分,混合物就分离为纯或比较纯的组分。

1.2精馏的分类

精馏操作按不同方法进行分类。⑴根据操作方式,可分为连续精馏和间歇精馏;⑵根据混合物的组分数,可分为二元精馏和多元精馏;⑶根据是否在混合物中加入影响汽液平衡的添加剂,可分为普通精馏和特殊精馏(包括萃取精馏、恒沸精馏、水蒸汽精馏、分子精馏和加盐精馏等);⑷按照精馏操作的条件(如压力)不同,可分为加压精馏、常压精馏、减压精馏等。

1.3精馏的操作特点

⑴通过精馏分离可以直接获得所需要的产品,较其它一些分离方法,如吸收、萃取等精馏的操作流程较为简单。

⑵精馏分离的适用范围广,它不仅可以分离液体混合物,而且可用于气态或固态混合物的分离。

⑶精馏过程适用于各种浓度混合物的分离,而像吸收、萃取、结晶、膜分离等操作,只有当被提取组分浓度较低时才比较经济。

⑷精馏操作是通过对混合液加热建立汽液两相体系的,所得到的汽相还需要再冷凝液化。因此,精馏操作耗能较大。

⑸精馏技术经过多年的发展及广泛的使用,目前已具有相当成熟的工程设计

经验与一定的基础理论研究,并发展出了以精馏为基础的许多新型复合传质分离技术。

⑹精馏过程操作简单,易于工程化。即可连续操作,也可间歇操作,可应用于各种批量的操作中。

1.4精馏的操作评价

评价精馏操作的主要指标是:⑴产品的纯度。板式塔中的塔板数或填充塔中填料层高度,以及料液加入的位置和回流比等,对产品纯度均有一定影响。调节回流比是精馏塔操作中用来控制产品纯度的主要手段。⑵组分回收率。这是产品中组分含量与料液中组分含量之比。⑶操作总费用。主要包括再沸器的加热费用、冷凝器的冷却费用和精馏设备的折旧费,操作时变动回流比,直接影响前两项费用。此外,即使同样的加热量和冷却量,加热费用和冷却费用还随着沸腾温度和冷凝温度而变化,特别当不使用水蒸气作为加热剂或者不能用空气或冷却水作为冷却剂时,这两项费用将大大增加。选择适当的操作压力,有时可避免使用高温加热剂或低温冷却剂(或冷冻剂),但却增添加压或抽真空的操作费用。

1.5苯、甲苯的相关物性参数

1.6符号说明

第二章设计任务书

2.1技术参数

⑴设计任务:在一常压操作的连续精馏塔内分离苯-甲苯混合物。已知原料液的处理量为8000kg/h(按7200h/年),组成为0.04(摩尔分数),要求塔顶馏出液的组成为0.97,塔底釜液的组成为0.02,平均α=2.5。

⑵设计条件:

2.2设计的主要内容

㈠编写设计任务书:

⑴设计方案的确定

⑵精馏塔的工艺计算

⑶精馏塔和塔板主要尺寸的计算

㈡绘制精馏装置流程图

第三章 主要内容

3.1设计方案的确定

本设计任务为分离苯—甲苯混合物。对于二元混合物的分离,应采用连续精馏流程。设计中采用泡点进料,将原料液通过预热器加热至泡点后送入精馏塔内。塔顶上升蒸汽采用全冷凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却器冷却后送至储罐。该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的1.8倍。塔釜采用间接蒸汽加热,塔底产品经冷却后送至储罐。

3.2全塔物料衡算

1)原料液及塔顶,塔底产品的摩尔分率

苯的摩尔质量 M A =78.11 kg/kmol

甲苯的摩尔质量 M B =92.13 kg/kmol

4402.013

.92/60.011.78/40.011

.78/40.0=+=

F x

9744.013

.92/03.011.78/97.011

.78/97.0=+=

D x 0235.013

.92/98.011.78/02.011

.78/02.0=+=

W x 2)原料液及塔顶,塔底产品的平均摩尔质量 96.8513.92*)4402.01(11.78*4402.0=-+=F M 47.7813.92*)9744.01(11.78*9744.0=-+=D M 80.9113.92*)0235.01(11.78*0235.0=-+=W M 3)物料衡算

原料处理量 07.9396

.858000

===

F m m q F 总物料衡算 F=D+W 93.07=D+W

苯物料衡算 W D F x x x W D F += 93.07*0.4402=0.9744D+0.0235W 联立解得 D=40.79kmol/h W=52.28kmol/h

4)求最小回流比及操作回流比

平均挥发度α=2.5

泡点进料q=1 所以4402.0==F q x x

混合物的相平衡方程为q

q

q x x y )1(1-+=

αα 6628.0=q y

故最小回流比为 40.14402

.06628.06628

.09744.0min =--=

--=

q

q q D x y y x R

取操作回流比为 52.240.1*8.18.1min ===R R

5)求精馏塔的气,液相负荷

79.10279.40*52.2===RD L h kmol /

58.14379.40*)152.2()1(=+=+=D R V h kmol / 86.19507.9379.102'=+=+=F L L h kmol / 58.143'==V V h kmol /

6)求操作线方程

精馏段操作线方程为

2768.07159.01

52.29744.0152.252.211+=+++=+++=

+n n D n i n x x R x x R R y 提馏段操作线方程

28.20235

.04402.00235.09744.0=--=--=W F W D x x x x D F 代入得

0085.03636.11

1

/1/1

-=+--+++n w n n x x R D F x R D F R y 3.3塔板的层数

1)理论板层数T N 的求取

①逐板法计算理论板数

泡点进料 q=1 4402.0==F q x x 第一块板上升的蒸汽组成9744.01==D x y

从第一块板下降的液体组成式由 n

n

n y y x )1(--=

αα求取

9384.09744

.05.15.29744

.05.15.2111=?-=-=

y y x

第二块板上升的气相组成用式求取 9486.02768.09384.0*7159.02=+=y 第二块板下降的液体组成

8807.09486.0*5.15.29486

.02=-=

x 如此反复计算

9073.03=y 7965.03=x

8470.04=y 6889.04=x 7700.05=y 5725.05=x 6867.06=y 4672.06=x

6113.07=y 3862.07

=x

因7x

5181.00085.03862.0*3636.18=-=y 第八块板下降的液体组成 3007.05181

.0*5.15.25181

.08=-=x

同理:

4015.09=y 2116.09=x

2800.010=y 1346.010=x 1750.011=y 0782.011=x 0981.012=y 0417.012=x

0484.013=y 0199.013=x < 0235.0=w x

所需总理论板数为13块,精馏段需6块板,第7块加料。

2)实际板层数的求取

精馏段实际板层数:120.506

==

精N 提馏段实际板层数:140

.507

==

提N 所以,实际加料在第13块板。

3.4塔的操作工艺条件及计算

3.41平均压强

塔顶操作压力 kPa P D 3.10543.101=+=

每层塔板压降 kPa p 7.0=?

进料板压力 kPa P F 5.116167.03.105=?+= 精馏段平均压力kPa P m 2.1102/)1.1153.105(=+= 塔底操作压力 p w =105.3+0.7×26=123.5(kPa ) 提馏段平均压降 p m =(116.5+123.5)/2=120.0(kPa )

3.42平均温度

根据汽液相平衡数据画出汽液相平衡图:

又因为:9744.0=D

x

0235.0=W

x

4402

.0=F x

由不同部位的含量在图中查得塔顶、塔釜、及加料板处的温度并计算精馏段、提馏段的平均温度:

塔顶温度 t D =81. 5℃ 塔底温度 t W = 109.5℃ 进料板温度 t F =93.5℃

精馏段平均温度 t m =(81.5.1 +93.5)=87.5℃ 提馏段平均温度 t m =(109.5 +93.5)=101.5℃

3.43平均黏度 1)精馏段

液相平均粘度计算公式:

㏒μLm =∑x i ㏒μi

塔顶液相平均粘度: t D=81.5℃ ,查附表μ A =0.304mPa.s μB =0.307mPa.s lg(0.307)0.0256lg(0.304)9744.0lg LDm ?+?=μ

计算得,μLDm =0.304mPa.s

进料板液相平均粘度: t F=93.5℃,查附表μ A =0.271mPa.s μB =0.278mPa.s )278.0(lg 5598.0)271.0(lg 4402.0lg ?+?=LFm μ

计算得,μLFm =0.275mPa.s 精馏段的液相平均粘度:

μLm =(0.304+0.275)/2=0.2895 mPa.s 2)提馏段

液相平均粘度计算公式:

㏒μLm =∑x i ㏒μi

塔顶液相平均粘度: t w=109.5℃ ,查附表μ A =0.234mPa.s μB =0.255mPa.s

lg(0.255)0.0256lg(0.234)9744.0lg LDm ?+?=μ

计算得,μLDm =0.234mPa.s

进料板液相平均粘度: t F=93.5℃,查附表μ A =0.271mPa.s μB =0.278mPa.s )278.0(lg 5598.0)271.0(lg 4402.0lg ?+?=LFm μ 计算得,μLFm =0.275mPa.s 提馏段的液相平均粘度:

μLm =(0.234+0.275)/2=0.2545mPa.s 3.44平均分子量

1)精馏段: 塔顶气液混合物平均摩尔质量:

9744.01==y x D

9384

.01=x

47.7813.92)9744.01(11.789744.0=?-+?=VD m M kg/kmol 97.7813.92)9384.01(11.789384.0=?-+?=LD m M kg/kmol 进料板平均摩尔质量计算 6113.0=F y 3862.0=F x

56.8313.92)6113.01(11.786113.0=?-+?=VFm M (kg/kmol) 72.8613.92)3862.01(11.783862.0=?-+?=LFm M (kg/kmol) 精馏段平均摩尔质量

02.812/)56.8347.78(=+=Vm M (kg/kmol) 85.822/)72.8697.78(=+=Lm M (kg/kmol) 2)提馏段: 塔底气液混合物平均摩尔质量:

0609.0=w y 0235.0=w x

M VDm =0.0609×78.11+(1-0.0609)×92.13=91.28kg/kmol)

M LDm =0.0235×78.11+(1-0.0235)×92.13= 91.80(kg/kmol) 进料板气、液混合物平均摩尔质量:

6113.0=F y 3862.0=F x

56.8313.92)6113.01(11.786113.0=?-+?=VFm M (kg/kmol) 72.8613.92)3862.01(11.783862.0=?-+?=LFm M (kg/kmol)

提馏段气液混合物的平均摩尔质量:

M Vm =(91.28+83.56)/2=87.42kg/kmol)

M Lm = (91.80+86.72) / 2 =89.26(kg/kmol)

3.45平均表面张力 1)精馏段

液相平均表面张力计算公式: σLm =∑x i σi

塔顶液相平均表面张力:t D=81.5℃,查表可得,σ A =0.0210N/m, σB =0.0215N/m

σLDm =0.9744× 0.0210+ 0.0256×0.0215= 0.0210N/m

进料板液相平均表面张力:t F=93.5℃,查表可得,σ A =0.0196N/m, σB =0.0204N/m

σLFm =0.4402×+ 0.0196+ 0.5598×0.0204=0.0537N/m 精馏段液相平均表面张力:

σLm =(0.0210+0.0537)=0.0374 N/m 2)提馏段

液相平均表面张力计算公式: σLm =∑x i σi

塔底液相平均表面张力:t w=109.5℃,查表可得,σ A =0.0163N/m, σB =0.0174N/m

σLDm =0.9744× 0.0163+ 0.0256×0.0174=0.0163N/m

进料板液相平均表面张力:t F=93.5℃,查表可得,σ A =0.0196N/m, σB =0.0204N/m

σLFm =0.4402×+ 0.0196+ 0.5598×0.0204=0.0200N/m 提馏段液相平均表面张力:

σLm =(0.0163+0.0200)= 0.0182N/m 3.46平均密度计算 1)精馏段

①气相平均密度计算

由理想气体状态方程式计算,即 97.2)

15.2735.87(314.802

.812.110=+??==

m Vm m Vm RT M P ρ ②液相平均密度计算

液相平均密度依 i i Lm a ρρ//1∑=计算 塔顶液相平均密度计算 由 5.81=D t 0C ,查手册得

3/65.812m kg A =ρ 8.807=B ρ kg/3m 53.8128

.807/0256.065.812/9744.01

=+=

LDm ρ kg/3m

进料板液相平均密度计算 由 5.93=F t 0C ,查手册得

1.800=A ρ kg/m 3 5.797=B ρ kg/m 3 进料板液相的质量分率

3479.013

.92*6138.011.78*3862.011

.78*3862.0=+=

A a 40.7985.797/6521.01.800/3479.01

=+=

LFm ρ kg/m 3 精馏段液相平均密度为

97.8002/)40.78953.812(=+=Lm ρ kg/m 3

2)提馏段

①气相平均密度

由理想气体状态方程计算,即

ρvm= (kg/m 3)

②液相平均密度:

液相平均密度计算公式

由塔底液相平均密度 :

由 tw=109.5℃,查手册得

ρ A =778.65(kg/m 3) ρ B =780.55(kg/m 3)

kg/m 3

进料板液相平均密度计算: 由 5.93=F t 0C ,查手册得

1.800=A ρ kg/m 3 5.797=B ρ kg/m 3

进料板液相的质量分数:

(kg/m 3

)

精馏段液相平均密度为

ρLm =(780.50+798.61/2=789.56(kg/m 3)

3.5塔体尺寸的工艺计算

3.51塔径的计算 1)精馏段

精馏段的气液相体积流率为:

q v,v = (m 3

/s)

q l,l = =0.0029(m 3/s)

图中横坐标:

0880.197

.2360002.8158.1433600q m ,=??=Vm V V n M ρ97

.800360085

.8279.1023600q m ,??=Lm L L n M ρ0438

.096.297.80036000880.136000029.0,q q 2

1

21.=??

? ?????=??? ??V L V V L L ρρ37.3)

15.2735.101(314.842

.870.120T =+??=m Vm m R M P 50.78055

.780/9765.065.778/0235.01

m =+=LV ρ4260.013

.92/6138.011.78/3862.011

.783862.0=+?=A ω61

.7985.797/5740.01.800/4260.01m =+=LF ρ

取板间距H T =0.45m ,板上层液的高度h L =0.05m,则 H T - h L =0.45-0.05=0.4m

从图中查出C 20 =0.0825

由公式C=C 20(σ/0.02)0.2 可求出C= 0.0825×(0.0374/0.02)0.2=0.0935

=1.5352(m/s)

取安全系数为0.6,则空塔气速υ=0.6υmax =0.6×1.5352=0.9211(m/s)

塔径:23.19211

.0*0880

.1*44,==

=

ππu

q D v

v

按标准塔径圆整后为 D=1.4m

塔截面积为 m 2

实际空塔气速为

2)提馏段

提馏段的气液相体积流率为

96.296

.297.8000935

.0max -=-=V V L C ρρρυ5394.14.14422=?==π

πD A T s

m A T V V /7068.05394.10880.1,q ===υ

q V,V ‘ = (m

3/s)

q L,L’ =

(m 3/s) 图中横坐标

同上,取板间距H T =0.45m ,板上层液的高度h L =0.05m,则 H T - h L =0.45-0.05=0.4m 从图中查出C 20=0.082

由公式C=C 20(σ/0.02)0.2 可求出C=0 .082(0.0182/0.02)0.2=0.0805

(m/s)

取安全系数为0.6.则空塔气速为,

υ=0.6υmax =0.6×1.230=0.738(m/s)

塔径:34.1738

.0*0346

.1*44,==

=

ππu

q D v

v m

按标准塔径圆整后为 D=1.4m

塔截面积为 m 2

实际空塔气速为

综上:将精馏段和提溜段相比较可以知道二者的塔径一致,因此在设计塔的时候塔径取1.4 m 。

3.52精馏塔有效高度的计算

精馏段有效高度为 4.44.0)112(H )1(Z T =?-=-=精精N

提馏段有效高度为 2.54.0)114()1(Z =?-=-=T H N 提提 在进料板上方开一人孔,其高度为0.8m ,故精馏塔的有效高度为 m 4.108.02.54.4.80Z Z Z =++=++=提精

0032.056

.789360026

.8979.1023600q m ',=??=Lm L L n M ρ0346.137

.3360042

.8758.1433600q m ,=??=Vm V V n M ρ‘0473

.037.356.78936000346.136000032.0,q q 2

121

.=??? ?????=??? ??V L V V L V ρρ’‘230.137.337

.356.7890805.0max =-=-=V V L C ρρρυ5394.14.14422=?==π

πD A T s

m A T V V /6721.05394

.10346

.1,q ===‘υ

第四章辅助设备的选择和计算

精馏装置的主要附属设备包括蒸气冷凝器、产品冷凝器、塔底再沸器、原料预热器、直接蒸汽鼓管、物料输送管及泵等。前四种设备本质上属换热器,并多采用列管式换热器,管线和泵属输送装置。

4.1冷凝器的设计

㈠冷凝器选型

按冷凝器与塔的位置,可分为:整体式、自流式和强制循环式。

①整体式

如图(a)和(b)所示。将冷凝器与精馏塔作成一体。这种布局的优点是上升蒸汽压降较小,蒸汽分布均匀,缺点是塔顶结构复杂,不便维修,当需用阀门、流量计来调节时,需较大位差,须增大塔顶板与冷凝器间距离,导致塔体过高。

该型式常用于减压精馏或传热面较小场合。

②自流式

如图(c)所示。将冷凝器装在塔顶附近的台架上,靠改变台架的高度来获得回流和采出所需的位差。

③强制循环式

如图(d)、(e)所示。当冷凝器换热面过大时,装在塔顶附近对造价和维修都是不利的,故将冷凝器装在离塔顶较远的低处,用泵向塔提供回流液。在一般情况下,冷凝器采用卧式,因为卧式的冷凝液膜较薄,故对流传热系数较大,且卧式便于安装和维修。

㈡冷凝器相关的计算

塔顶温度t D=81.5℃冷凝水t1=20℃t2=40℃

?T=50.85

由t D =81.5℃ 查液体比汽化热共线图得kg KJ /5.390=苯

γ

又气体流量V=2.142m 3/s

塔顶被冷凝量q=V ρ=2.142×2.97=6.36 冷凝的热量Q=q γ=6.36×390.5=2483.58kJ/s 取传热系数K=600W/m 2k ,则传热面积:

冷凝水流量:

4.2换热器的设计

(1)流体流动阻力(压强降)的计算

①管程流动阻力

管程阻力可按一般摩擦阻力公式求得。对于多程换热器,其阻力ΣΔp i 等于各程直管阻力、回弯阻力及进、出口阻力之和。一般情况下进、出口阻力可忽略不计,故管程总阻力的计算式为

12()i t s p p p p F N N ∑?=?+? (6-1)

式中 ΔP 1、ΔP 2——分别为直管及回弯管中因摩擦阻力引起的压强降,P a ; F t ——结垢校正因数,对Φ25mm ×2.5mm 的管子取1.4;对Φ19mm ×2mm 的管子取1.5;

C

5

. 41 40 5 . 81 t C

5 . 61 20 5 . 81 2 2 1 1 。

。 = - = - = ? = - = - = ? t t t t t D

D

s

m V p

nRT /

2.142 3

3600 10

15)

. 273 . (81.5 314 . 8 10 89 . 274 3 3 =

=

=

? ? . 13) 101 (4 + + ? ? ? 2

85 . 50 600 2483580

t 40 . 81 m

m

A K Q = =

=

? ? ( ) s

kg W t Cp Q

/ 69 . 29 20 4183 2483580

t 2

1

= = = ? -

N P ——管程数;

N s ——串联的壳程数。

上式中直管压强降ΔP 1可按第一章中介绍的公式计算;回弯管的压强降ΔP 2

由下面的经验公式估算,即

2232u p ρ??

?= ??? (6-2)

②壳程流动阻力

壳程流动阻力的计算公式很多,在此介绍埃索法计算壳程压强降ΔP 0的公式,即

012S p p p N ∑?=?+?’’S ()F (6-3)

式中 ΔP 1’

——流体横过管束的压强降,Pa ;

ΔP 2’——流体通过折流板缺口的压强降,Pa ;

F S ——壳程压强降的结垢校正因数;液体可取1.15,气体可取1.0。

2'0

1

02

'0

2(1)

2

2(3.5)

2

c B B u p Ff n N u h p N D ρρ?=+?=- (6-4) 式中 F ——管子排列方法对压强降的校正因数,对正三角形排列F =0.5,对转

角三角形为0.4,正方形为0.3; f 0——壳程流体的摩擦系数;

N c ——横过管束中心线的管子数;N c 值可由下式估算:

管子按正三角形排列:c n =管子按正方形排列:

c n =式中 n ——换热器总管数。

N B ——折流挡板数; h ——折流挡板间距;

u 0——按壳程流通截面积A 0计算的流速,m /s ,而A 0=h(D-n c d 0)。

(2)管壳式换热器的选型 ①计算并初选设备规格

a .确定流体在换热器中的流动途径

b .根据传热任务计算热负荷Q 。

c .确定流体在换热器两端的温度,选择列管换热器的形式;计算定性温度,并确定在定性温度下的流体物性。

d .计算平均温度差,并根据温度差校正系数不应小于0.8的原则,决定壳程数。

e .依据总传热系数的经验值范围,或按生产实际情况,选择总传热系数K 值。

f .由总传热速率方程Q = KS Δt m ,初步计算出传热面积S ,并确定换热器的基本尺寸(如D 、L 、n 及管子在管板上的排列等),或按系列标准选择设备规格。 ②计算管程、壳程压强降

根据初定的设备规格,计算管程、壳程流体的流速和压强降。检查计算结果是否合理或满足工艺要求。若压降不符合要求,要调整流速,在确定管程数或折流板间距,或选择另一规格的换热器,重新计算压强降直至满足要求为止。

③核算总传热系数

计算管程、壳程对流传热系数,确定污垢热阻R si和R so,在计算总传热系数K’,比较K的初设值和计算值,若K’ /K=1.15~1.25,则初选的换热器合适。否则需另设K值,重复以上计算步骤。

4.3 再沸器的设计

㈠再沸器的选型

再沸器可分为釜式式再沸器、热虹吸式再沸器及强制循环再沸器。

①釜式式再沸器

如图(a)和(b)所示。(a)是卧式再沸器,壳方为釜液沸腾,管内可以加热蒸汽。塔底液体进入底液池中,再进入再沸器的管际空间被加热而部分汽化。蒸汽引到塔底最下一块塔板的下面,部分液体则通过再沸器内的垂直挡板,作为塔底产物被引出。液体的采出口与垂直塔板之间的空间至少停留8~10分钟,以分离液体中的气泡。为减少雾沫夹带,再沸器上方应有一分离空间,对于小设备,管束上方至少有300mm高的分离空间,对于大设备,取再沸器壳径为管束直径的1.3~1.6倍。(b)是夹套式再沸器,液面上方必须留有蒸发空间,一般液面维持在容积的70%左右。夹套式再沸器,常用于传热面较小或间歇精馏中。

②热虹吸式再沸器

如图(c)、(d)、(e)所示。它是依靠釜内部分汽化所产生的汽、液混合物其密度小于塔底液体密度,由密度差产生静压差使液体自动从塔底流入再沸器,因此该种再沸器又称自然循环再沸器。这种型式再沸器汽化率不大于40%,否则传热不良。

③强制循环再沸器

如图(f)所示。对于高粘度液体和热敏性气体,宜用泵强制循环式再沸器,因流速大、停留时间短,便于控制和调节液体循环量。

原料预热器和产品冷却器的型式不象塔顶冷凝器和塔底再沸器的制约条件那样多,可按传热原理计算。

机械制造工艺学课程设计目的

机械制造工艺学课程设计目得、内容与要求 1 课程设计得目得 学生通过设计能获得综合运用过去所学过得全部课程进行机械制造工艺及结构设计得基本能力,为以后做好毕业设计、走上工作岗位进行一次综合训练与准备。它要求学生全面地综合运用本课程及有关选修课程得理论与实践知识,进行零件加工工艺规程得设计与机床夹具得设计。其目得就是: (1)培养学生综合运用机械制造工程原理课程及专业课程得理论知识,结合金工实习、生产实习中学到得实践知识,独立地分析与解决机械加工工艺问题,初步具备设计中等复杂程度零件工艺规程得能力。 (2)培养学生能根据被加工零件得技术要求,运用夹具设计得基本原理与方法,学会拟订夹具设计方案,完成夹具结构设计,进一步提高结构设计能力。 (3)培养学生熟悉并运用有关手册、图表、规范等有关技术资料得能力。 (4)进一步培养学生识图、制图、运算与编写技术文件得基本技能。 (5)培养学生独立思考与独立工作得能力,为毕业后走向社会从事相关技术工作打下良好得基础。 2课程设计得内容与要求 2、1课程设计得内容 课程设计题目通常定为:设计××零件得机械加工工艺规程及相关工序得专用夹具。零件图样、生产纲领与生产条件就是设计得主要原始资料,由指导教师提供给学生。零件复杂程度以中等为宜,生产类型为成批生产。 学生根据教师设计任务书中规定得设计题目,分组进行设计,按照所给零件编写出相应得加工工艺规程,设计出其中由教师指定得一道重要工序(如:工艺规程中所要求得车、铣、钻夹具中得一种)得专用夹具,并撰写说明书。学生在指导教师得指导下,参考设计指导书,认真地、有计划地、独立按时完成设计任务. 具体设计内容如下: 1。对零件进行工艺分析,拟定工艺方案,绘制零件工作图1张。 2.确定毛坯种类及制造方法,绘制毛坯图1张。 3。拟定零件得机械加工工艺过程,选择各工序加工设备及工艺装备(刀具、夹具、量具、辅具),确定某一代表工序得切削用量及工序尺寸.编制机械加工工艺规程卡片(工艺过程卡片与工序卡片)1套。 4.设计重要工序中得一种专用夹具,绘制夹具装配总图与大件零件图(通常为夹具体)各1张。 5.撰写设计说明书1份. 2、2课程设计中对学生得要求

化工原理课程设计---水吸收氨气-资料

《化工原理》课程设计水吸收氨气填料塔设计 学院医药化工学院 专业化学工程与工艺 班级 姓名姚 学号 090350== 指导教师蒋赣、严明芳 2011年12月25日

目录 前言 (1) 1. 水吸收氨气填料塔工艺设计方案简介 (4) 1.1任务及操作条件 (4) 1.2设计案的确定 (4) 1.3填料的选择 (4) 2. 工艺计算 (6) 2.1 基础物性数据 (6) 2.1.1液相物性的数据 (6) 2.1.2气相物性的数据 (6) 2.1.3气液相平衡数据 (6) 2.1.4 物料衡算 (7) 2.2 填料塔的工艺尺寸的计算 (7) 2.2.1 塔径的计算 (7) 2.2.2 填料层高度计算 (9) 2.2.3 填料层压降计算 (12) 2.2.4 液体分布器简要设计 (13) 3. 辅助设备的计算及选型 (15) 3.1 填料支承设备 (15) 3.2填料压紧装置 (16) 3.3液体再分布装置 (16) 4. 设计一览表 (17) 5. 后记 (18) 6. 参考文献 (10) 7. 主要符号说明 (10) 8. 附图(工艺流程简图、主体设备设计条件图)

前言 在炼油、石油化工、精细化工、食品、医药及环保等部门,塔设备属于使用量大应用面广的重要单元设备。塔设备广泛用于蒸馏、吸收、萃取、洗涤、传热等单元操作中。所以塔设备的研究一直是国内外学者普遍关注的重要课题。 在化学工业中,经常需要将气体混合物中的各个组分加以分离,其主要目的是回收气体混合物中的有用物质,以制取产品,或除去工艺气体中的有害成分,使气体净化,以便进一步加工处理,或除去工业放空尾气中的有害成分,以免污染空气。吸收操作是气体混合物分离方法之一,它是根据混合物中各组分在某一种溶剂中溶解度不同而达到分离的目的。 塔设备按其结构形式基本上可分为两类;板式塔和填料塔。以前在工业生产中,当处理量大时多用板式塔,处理量小时采用填料塔。近年来由于填料塔结构的改进,新型的、高负荷填料的开发,既提高了塔的通过能力和分离效能又保持了压降小、性能稳定等特点。因此,填料塔已经被推广到大型气、液操作中,在某些场合还代替了传统的板式塔。如今,直径几米甚至几十米的大型填料塔在工业上已非罕见。随着对填料塔的研究和开发,性能优良的填料塔必将大量用于工业生产中。 综合考察各分离吸收设备中以填料塔为代表,填料塔技术用于各类工业物系的分离,虽然设计的重点在塔体及塔内件等核心部分,但与之相配套的外部工艺和换热系统应视具体的工程特殊性作相应的改进。例如在DMF回收装置的扩产改造项目中,要求利用原常压塔塔顶蒸汽,工艺上可以在常压塔及新增减压塔之间采用双效蒸馏技术,达到降低能耗、提高产量的双重效果,在硝基氯苯分离项目中;改原多塔精馏、两端结晶工艺为单塔精馏、端结晶流程,并对富间硝基氯苯母液进行精馏分离,获得99%以上的间硝基氯苯,既提高产品质量,又取得了降低能耗的技术效果。 过程的优缺点:分离技术就是指在没有化学反应的情况下分离出混合物中特定组分的操作。这种操作包括蒸馏,吸收,解吸,萃取,结晶,吸附,过滤,蒸发,干燥,离子交换和膜分离等。利用分离技术可为社会提供大量的能源,化工产品和环保设备,对国民经济起着重要的作用。为了使1填料塔的设计获得满足分离要

泵盖铸造工艺设计说明书

课程设计说明书 泵盖铸造工艺设计 院系:机械工程学院 专业:材料成型及控制工程 班级: 姓名: 学号: 指导老师: 时间:

目录 1.铸造工艺分析 (1) 1.1零件介绍 (1) 1.2零件生产方式选择 (1) 1.3技术要求分析 (1) 1.4 合金铸造性能分析 (2) 2.确定铸造工艺方案 (2) 2.1确定铸造方法 (2) 2.2确定浇注位置和分型面 (2) 2.3确定型内铸件数目 (3) 2.4不铸出孔及槽的确定 (3) 2.5机械加工余量和铸造圆角的确定 (3) 2.6起模斜度和分型负数的确定 (5) 2.7砂芯的确定 (7) 2.8铸造收缩率的确定 (7) 2.9冒口的确定 (7) 2.10浇注系统的确定 (8) 3.芯盒的设计 (9) 3.1芯盒材质和分盒方式的确定 (9) 4.总结 (9) 参考资料 (10)

1.铸造工艺分析 零件简介: 1.1零件介绍: 零件名称:泵盖 零件材料:HT200 1.2零件生产方式选择: 大批量生产,零件图如下:

1.3技术要求分析 按照国家标准,对于HT200,其抗拉强度应达到200Mpa。铸件在使用时工作条件较好,但此铸件需起隔爆作用,按照技术要求,需在粗加工后进行时效处理及相应的热处理工艺。另外,铸件清砂后,焖火铲除毛刺喷砂后喷G04-6铁红过氯乙烯底漆。除此外无特殊技术要求。 注:其中φ21H7内孔为重要加工面,不允许存在气孔、夹砂等铸造缺陷。 1.4 合金铸造性能分析 灰铸铁具有良好的铸造性能: (1)流动性。灰铸铁的熔点较低,结晶温度范围较小,在适宜的浇注温度下,具有良好的流动性,容易填充形状复杂的薄壁铸件,且不易产生气孔、浇不足、冷隔等缺陷。 (2)收缩性。灰铸铁的浇注温度较低,凝固中发生共析石墨化转变,使其线收缩小,产生的铸造应力也较小,所以铸件出现翘曲变形和开裂的倾向以及形成缩孔、缩松的倾向都较小。 (3)灰铁充型能力好,强度较高,耐磨、耐热性好,减振性良好,铸造性较好,但需人工时效。 2.确定铸造工艺方案 2.1确定铸造方法 铸件材质为HT200,,其轮廓尺寸25×φ110,属中小件,联结结构合理,符合灰铸铁铸造要求,可以进行铸造工艺设计。采用湿砂型机器造型大批量生产。 采用湿砂型机器脱箱造型,热芯盒水玻璃砂射芯机制芯。 2.2确定浇注位置和分型面 浇注位置选择原则: (1)重要加工面应朝下或呈直立状态; (2)铸件的大平面应朝下; (3)应有利于铸件的补缩; (4)应保证铸件有良好的金属液导入位置,保证铸件能充满; (5)应尽量少用或不用砂芯; (6)应使合型、浇注和补缩位置一致。

材料成型工艺

材料成型工艺 (Material Molding Process) 课程代码:(07310060) 学分:6 学时:90(其中:讲课学时78:实验学时:12) 先修课程:材料成型原理、金属学及热处理、机械设计基础 适用专业与培养计划:材料成型及控制工程专业2012年修订版培养计划 教材:《金属材料液态成型工艺》、贾志宏主编、化学工业出版社、第一版; 《金属材料焊接工艺》、雷玉成主编、化学工业出版社、第一版; 《冲压工艺与模具设计》、姜奎华主编、机械工业出版社、第一版开课学院:材料科学与工程学院 课程网站:(选填) 一、课程性质与教学目标 (一)课程性质与任务(需说明课程对人才培养方面的贡献) 《材料成型工艺》是材料成型及控制工程专业的主干课程之一。该课程主要任务是学习液态成型、塑性成型及焊接成型的工艺原理、方法、特点、质量影响因素及其规律、质量控制、适用范围等。学习过程中侧重于实际经验、工程技术及其理论知识的综合应用。通过系统学习,在掌握成型工艺过程基本规律及其物理本质的基础上,学生能够根据不同的零件需求,灵活选择和全面分析成型工艺、完成合理的工艺设计;同时,针对成型过程中出现的质量问题进行科学分析,找到解决措施,消除和减少工件质量缺陷; 本课程以数学、物理、化学、物理化学、力学、金属学与热处理、材料成型原理等作为理论基础,主要应用物理冶金、化学冶金、成形力学理论,系统阐述金属材料成型工艺过程的相关现象及其影响因素、规律、形成机制;同时,还汇总了大量的工程技术经验和实用技术。 通过本课程的学习,可以为材料成型工艺课程设计、金属综合性实验、毕业设计等后续课程学习奠定必要的基础知识。 (二)课程目标(需包括知识、能力与素质方面的内容,可以分项写,也可以合并写) 1. 掌握铸造成型、冲压成型和焊接成型工艺过程所涉及的主要物理原理; 2. 掌握各种成型方法的工艺特点及应用范围,能够根据实际产品需要选择高效、优质低成本的成型工艺方法;

化工原理课程设计-填料吸收塔的设计

化工原理课程设计-填料吸收塔的设计

课程设计 题目:填料吸收塔的设计 教学院:化学与材料工程学院 专业:化学工程与工艺(精细化工方向) 学号: 学生姓名: 指导教师: 2012 年 5 月31 日

《化工原理课程设计》任务书 2011~2012 学年第2学期 学生姓名:专业班级:化学工程与工艺(2009) 指导教师:工作部门:化工教研室 一、课程设计题目:填料吸收塔的设计 二、课程设计内容(含技术指标) 1. 工艺条件与数据 煤气中含苯2%(摩尔分数),煤气分子量为19;吸收塔底溶液含苯≥0.15%(质量分数);吸收塔气-液平衡y*=0.125x;解吸塔气-液平衡为y*=3.16x;吸 收回收率≥95%;吸收剂为洗油,分子量260,相对密度0.8;生产能力为每小时 处理含苯煤气2000m3;冷却水进口温度<25℃,出口温度≤50℃。 2. 操作条件 吸收操作条件为:1atm、27℃,解吸操作条件为:1atm、120℃;连续操作;解吸气流为过热水蒸气;经解吸后的液体直接用作吸收剂,正常操作下不再补充 新鲜吸收剂;过程中热效应忽略不计。 3. 设计内容 ①吸收塔、解吸塔填料层的高度计算和设计; ②塔径的计算; ③其他工艺尺寸的计算。 三、进度安排 1.5月14日:分配任务; 2.5月14日-5月20日:查询资料、初步设计; 3.5月21日-5月27日:设计计算,完成报告。 四、基本要求 1. 设计计算书1份:设计说明书是将本设计进行综合介绍和说明。设计说明 书应根据设计指导思想阐明设计特点,列出设计主要技术数据,对有关工艺流程 和设备选型作出技术上和经济上的论证和评价。应按设计程序列出计算公式和计 算结果,对所选用的物性数据和使用的经验公式、图表应注明来历。 设计说明书应附有带控制点的工艺流程图。 设计说明书具体包括以下内容:封面;目录;绪论;工艺流程、设备及操作 条件;塔工艺和设备设计计算;塔机械结构和塔体附件及附属设备选型和计算; 设计结果概览;附录;参考文献等。 2. 图纸1套:包括工艺流程图(3号图纸)。 教研室主任签名: 年月日

铸造工艺课程设计课程教学改革研究

铸造工艺课程设计课程教学改革研究 结合《铸造工艺课程设计》实践教学的实际教学中存在的问题,采取及时更新工艺设计题目、增设工艺设计方案验证环节、引入任务驱动型自主学习模式、强化教师实践教学能力以及改善考核方法等一系列措施,从而有效提高学生的工程实践能力和自主学习能力,以适应铸造行业对人才的需求。《铸造工艺课程设计》作为材料成型及控制工程专业的重要实践教学环节,其教学目标是能够运用所学铸造理论及工艺设计知识比较系统地学习掌握铸造工艺及工装设计方法,使学生能够制定出比较合理的铸造工艺,并设计出结构合理的工装模具;同时通过课程设计,也使学生进一步提高设计绘图能力、查阅工艺设计资料的基本技能以及分析解决铸造工程实际问题的能力,以满足铸造行业用人需求。然而在《铸造工艺课程设计》实践教学过程中还存在一些不足之处。(1)课程设计题目陈旧且数量较少现有题目陈旧,缺乏时效性,与铸造生产实际脱节,致使学生的专业素质很难达到铸造行业的需求。图纸数量较少,难以满足1人1题,甚至需要多人共用1题或每年重复使用,这就导致存在学生之间相互抄袭或抄袭往届学生作品的现象,不利于培养学生具备独立自主从事铸造工艺设计工作的能力。(2)缺乏工艺验证环节课程设计通常只包括工艺设计、工装设计以及设计说明书的撰写等内容,而不进行实际生产验证,这就导致学生无法判断工艺设计方案的合理性及可行性。(3)教师指导不足通常1名老师指导1个班级的课程设计工作,人数在40人左右,这就导致指导教师无法详细指导每位学生。(4)考核评价机制不够全

面课程考核更侧重于图纸质量以及设计说明书的规范性,而忽略了对设计过程中学生的自主性、创新性及工程实践应用能力的考核与评价。鉴于此,以《铸造工艺课程设计》核心课程建设为契机,本文归纳总结了铸造工艺课程设计实践教学中所采取的的改革与实践方法。 1.及时更新工艺设计题目 铸造工艺课程设计题目要做到推陈出新,以激发学生的设计热情。为此建立了以企业实际在生产零件为主的课程设计零件图纸库,且图纸数量要多于专业人数,且要保证每年有10%以上的题目更新,以保证课程设计与企业生产实际接轨。图纸库的建立与更新由教研室每年定期审核通过,以保证图纸的规范性及零件结构复杂程度适中。课程设计分配设计任务时,保证1人1题,且指导教师要综合考虑所带学生的设计基础差异问题,题目的选择与分配要有难度区分,并在课程设计任务分配时给出明确说明及评分标准。 2.增设工艺设计方案验证环节 本课程增设了工艺设计方案验证环节,有两种不同方式可供学生自主选择。第一种验证方法是引入Procast及AnyCasting等铸造模拟软件对铸件充型、铸造温度场以及铸造缺陷出现的位置和数量等进行模拟分析,进而优化工艺设计方案。模拟仿真环节的引入有利于学生发现和解决工艺设计中存在的问题,使铸造工艺设计更符合铸造生产实际,同时也提高了学生学习与应用软件的能力。第二种验证方法则是按照其工艺设计方案进行实际铸造生产,铸造生产可直接在校内铸造生产实训中心进行,该中心不仅有砂型铸造所需设备及原材料,且

高聚物成型工艺学课设

目录 第一章绪论 1.1设计题目 (3) 1.2设计任务 (3) 1.3 ABS塑料简要概述及研究意义 (3) 1.4 ABS的燃烧机理 (4) 1.5阻燃剂的作用机理 (4) 第二章制备阻燃ABS原料的选取及配方设计 2.1 主要原料的选取 (6) 2.2 助剂的选择 (7) 2.3 配方设计 (7) 第三章生产中物料相关计算 3.1物料衡算内容及选定基准 (8) 3.2物料衡算相关计算 (8) 3.3物料衡算流程图 (11) 第四章生产设备的选型 4.1设备选型的原则及其分类 (12) 4.2设备的技术条件和要求 (13) 4.3 定性设备的选取 (13) 4.3.1 储罐的选取 (13) 4.3.2 自动配料秤的选取 (15) 4.3.3 高速搅拌机的选取 (16) 4.3.4 失重式喂料机 (17) 4.3.5 仓壁振动器的选取 (17) 4.3.6 挤出机的选取 (18)

4.3.7 水槽的选取 (19) 4.3.8 风力吹干机的选取 (20) 4.3.9 切粒机的选取 (20) 4.3.10 振动筛的选取 (21) 4.3.11设置搅拌槽混匀前、后期物料 (21) 4.3.12 烘干机的选取 (21) 4.3.13 台秤的选取 (22) 4.3.14 打包机的选择 (23) 第五章阻燃ABS树脂生产工艺流程 5.1 概述 (24) 5.2 生产方法的确定 (24) 5.3 工艺流程 (24) 5.3.1 工艺流程 (24) 5.3.2 造粒方法 (25) 5.3.3 物料输送方式 (25) 设计体会 (26) 参考文献 (27)

第一章绪论 1.1设计题目 设计题目为:年产1000吨阻燃ABS树脂成型工艺设计。 1.2设计任务 (1)生产方法论证; (2)阻燃ABS树脂配方的确定; (3)挤出生产过程的物料衡算、挤出设备选型、挤出成型工艺参数设计; (4)工艺流程图纸1张; (5)设计说明书1份; 1.3ABS 塑料简要概述及研究意义 ABS(Acrylonitrile Butadiene Styrene)树脂是是五大合成树脂之一,由丙烯腈、丁二烯和苯乙烯组成的三元共聚物,因而能表现三种组分之间的协同性能:丙烯晴组分在ABS中表现的特性是耐热性、耐化学性、刚性、抗拉强度,丁二烯表现的特性是抗冲击强度,苯乙烯表现的特性是加工流动性,光泽性。这三组分的结合,优势互补,使ABS树脂具有优良的综合性能, 刚性好,冲击强度高、耐热、耐低温、耐化学药品性、机械强度和电器性能优良,较好的热稳定性和化学稳定性、较好的流动性,易于加工,加工尺寸稳定性和表面光泽好,容易涂装,着色,还可以进行喷涂金属、电镀、焊接和粘接等二次加工。ABS树脂是目前产量最大,应用最广泛的聚合物,它将PS,SAN,BS的各种性能有机地统一起来,兼具韧,硬,刚相均衡的优良力学性能。 ABS是一种用途极广的热塑性工程塑料,在ABS消费结构中主要是家用电器、机械配件、办公用品和用具等。主要有电视机、电冰箱、洗衣机、电风扇、空调、计算机、复印机、电话、吸尘器等,此外还有汽车、摩托车和管道等。上述用途中ABS主要做内外壳体、支撑和各种零配件。同时在通讯器材、商品器材、文教娱乐用品及建材的需求前景也十分看好。ABS树脂已是目前我国产量最大、应用最广泛的通用工程塑料。但ABS氧指数

化工原理课程设计

《化工原理》课程设计 水吸收氨气填料吸收塔设计 学院河南城建学院 专业化学工程与工艺 指导教师王要令 班级 1014112 姓名喻宏兴 学号 101411252 2013年 12月24日

附:设计任务书 (1) 设计题目 年处理量为吨氨气吸收塔设计 试设计一座填料吸收塔,用于脱除混于空气中的氨气。混合气体的处理量为2600m3/h,其中含空气为94%,氨气为6%(体积分数,下同)。要求塔顶排放气体中含氨低于0.02%,采用清水进行吸收,吸收塔的用量为最小用量的 1.5 倍【20℃氨在水中的溶解度系数为H=0.725kmol/(m3·kPa)】 (2) 工艺操作条件 ①操作平均压力:常压; ②操作温度:t=20℃; ③每年生产时间:7200h; ④填料类型选用:聚丙烯阶梯环填料; 规格:DN50 (3)设计任务 1.填料吸收塔的物料衡算; 2.填料吸收塔的工艺尺寸设计与计算; 3.填料吸收塔有关附属设备的设计和选型; 4.绘制吸收系统的工艺流程图; 5.编写设计说明书; 6.对设计过程的评述和有关问题的讨论。

目录 0. 前言 (5) 1. 设计方案简述 (5) 1.1 设计任务的意义 (5) 1.2 设计结果 (5) 2. 工艺流程简图及说明 (7) 3. 工艺计算及主体设备设计 (8) 3.1 液相物性数据 (8) 3.2 气相物性数据 (8) 3.3 物料计算 (8) 3.4 平衡曲线方程及吸收剂用量的选择 (9) 3.5 塔径的计算 (10) 3.6 填料层高度的计算 (11) 3.7 填料层压降计算 (14) 4. 附属设备计算及选型 (15) 4.1 液体分布器简要设计 (15) 4.2 填料支承装置 (15) 4.3 填料压紧装置 (15) 4.4 液体再分布装置 (16) 4.5 塔顶除沫装置 (16) 4.6 塔附属高度及塔总高的计算 (16)

支座铸造工艺课程设计3

2.1 确定零件材料及牌号 零件的支座的零件图如图所示,其轮廓尺寸为Φ80×200×110,平均壁厚30,支座底部需螺栓固定,留有2个螺栓孔,尺寸Φ15,可在铸件完成后切削加工,且有一定的表面精度要求。 支架在铸造过程中,应该选用灰铸铁作为材料。灰铸铁流动性好,易浇注,且收缩率最小,并且随着含碳量的增加而减少,使铸件易于切削加工。采用砂型铸造,简单而且工艺性好。 此铸铁为200×110mm的灰铸铁件,其型号应为HT150。

2.2 铸造方案的拟定 2.2.1 铸型种类的选择 支座零件具有内腔,小孔,圆角,凸台以及锥角,形状较为复杂,表面质量无特殊要求,最大轮廓尺寸为200mm,应选用砂型铸造成形。又采用小批量生产,所以铸件类型应使用湿砂型铸造。这样灵活性大,生产率高,生产周期短,便于组织流水生产,易于实现机械化和自动化,材料成本低,节省烘干设备、燃料、电力等。模样采用金属模是合理的。 2.2.2 画出零件图 图2 零件图

2.3 分型面的确定 2.3.1分型选择原则 分型面是指两半铸型相互接触的表面。分型面的优劣在很大程度上影响铸件的尺寸精度、成本和生产率。应满足以下要求 1.应使铸件全部或大部分置于同一半型内 2.应尽量减少分型面的数目 3.分型面应尽量选用平面 4.便于下芯、合箱和检测 5.不使砂箱过高 6.受力件的分型面的选择不应削弱铸件结构强度 7.注意减轻铸件清理和机械加工量 2.3.2 几种分型方案 初步对支座进行分析,有以下四种方案Ⅰ,Ⅱ,Ⅲ,Ⅳ,如图3所示

图3 分型方案图 2.3.3 分析各个方案的优缺点 Ⅰ方案以支架的底面为分型面在分型面少而平的原则中,其分型面数量不仅少而且还平直,铸件全部放在下型,既便于型芯安放和检查,又可以使上型高度减低而便于合箱和检验壁厚,还有利于起摸及翻箱操作。 Ⅱ方案铸件没有能尽可能的位于同一半型内,这样会因为合箱对准误差使铸件产生偏错。也有可能因为合箱不严在垂直面上增加铸件尺寸。

塑料成型工艺与模具设计课程设计教案资料

塑料成型工艺与模具设计课程设计

塑料成型工艺与模具设计 课程设计说明书 设计题目: 外壳注塑成型模具设计 姓名: 施春猛 班级: 11级模具(1)班 学号: 2011061486 设计时间: 指导教师: 尹甜甜 目录

设计任务书……………………………………………………………………………………..…… 1. 工艺分析……………………………………………………………………………………........ 1.1 塑件材料分析…………………………………………………………………………… 1.2 注射工艺规程编制…………………………………………………………………… 1.2.1 工艺过程…………………………………………………………………………… 1.2.2 确定型腔数目…………………………………………………………………… 1.2.3 塑件体积计算…………………………………………………………………… 1.2.4 型腔型芯尺寸确定…………………………………………………………… 1.2.5 初选设备及工艺参数确定…………………………………………….…2.塑件在型腔中的位置确定…………………………………………………………. 2.1分型面设计……………………………………………………………………………… 2.2 型腔排布…………………………………………………………………………………. 3.浇注系统设计……………………………………………………………………………… 3.1 主流道设计……………………………………………………………………………... 3.1.1 浇口套的结构设计……………………………………………………….. 3.1.2 浇口套的尺寸确定…………………………………………………..……. 3.2 分流道设计……………………………………………………………………………… 3.3 浇口设计…………………………………………………………………………………… 3.4 流动距离比校核……………………………………………………………….………4.模架选用………………………………………………………………………………………… 4.1 模具整体结构分析…………………………………………………………………… 4.2 模架确定……………………………………………………………………………..………

机械制造工艺学课程设计实例

~ 机械制造工艺学课程设计任务书 设计题目:拨叉(二)(CA6140) 机械加工工艺规程编制及工装设计(年产量:4,000件) 设计内容: 1.编制机械加工工艺规程,填写工艺文献1套,绘 制零件毛坯图1张 2.设计夹具1套,绘制夹具装配图和主要结构零 件 图各1张 " 3.撰写课程设计说明书1份 设计时间: [

前言 机械制造工艺学课程设计是在我们完成了大学的全部基础课程、技术基础课以及大部分专业课之后进行的。通过机床加工工艺及夹具设计,汇总所学专业知识如一体(如《机械零件设计》、《金属切削机熟悉与理解,并为以后的实际工作奠定坚实的基础!床》、《机械制造工艺》等)。让我们对所学的专业课得以巩固、复习及实用,在理论与实践上有机结合;使我们对各科的作用更加深刻的 设计目的: 机械制造工艺学课程设计,是在学完机械制造工艺学及夹具设计原理课程,经过生产实习取得感性知识后进行的一项教学环节;在老师的指导下,要求在设计中能初步学会综合运用以前所学过的全部课程,并且独立完成的一项工程基本训练。同时,也为以后搞好毕业设计打下良好基础。通过课程设计达到以下目的: ; 1、能熟练的运用机械制造工艺学的基本理论和夹具设计原理的知识,正确地解决一个零件在加工中的定位,夹紧以及合理制订工艺规程等问题的方法,培养学生分析问题和解决问题的能力。 2、通过对零件某道工序的夹具设计,学会工艺装备设计的一般方法。通过学生亲手设计夹具的训练,提高结构设计的能力。

3、课程设计过程也是理论联系实际的过程,并学会使用手册、查询相关资料等,增强学生解决工程实际问题的独立工作能力。 一.零件的分析 (一)、零件的作用: 题目给定的拨叉(CA6140)位于车床变速机构中,主要起换挡使主轴回转运动按照工作者的要求进行工作。工作过程:拨叉零件是在传动系统中拨动滑移齿轮,以实现系统调速。转向。其花键孔?25与轴的配合来传递凸轮曲线槽传来的运动。零件的2个交叉头补位与滑移齿轮相配合。 — (二)、零件的工艺分析 CA6140车床拨叉(二)共有两个加工表面,它们之间有一定的位置

化工工艺学课程设计

课程设计 专业名称 班级 学生姓名 学号 课题名称化工工艺学课程设计指导教师

目录 1 课程设计任务书 2 概述 (6) 2.1乙醇的性质及质量标准 (6) 2.1.1物理性质 (6) 2.1.2化学性质 (6) 2.1.3生化性 (6) 2.1.4质量标准 (6) 2.2乙醇生产的意义及发展史 (7) 2.2.1乙醇生产的意义 (7) 2.2.2乙醇生产的发展 (7) 2.3乙醇的应用领域 (8) 2.4主要生产工艺 (8) 2.5 乙醇发酵常用的微生物 (10) 3 乙醇发酵工艺 3.1 乙醇发酵分类 (10) 3.2 操作要点 (12) 3.3 结果 (12) 4 参考文献 5 感谢

1 “精细化工工艺学”课程设计任务书 1.1课程设计的目的: 精细化工是化学或化工专业的一门专业课,是继无机化学、有机化学、化工原理等专业基础课之后,把基础知识用于具体化工生产的一个专业体现。而精细化工课程设计是继前面专业课之后的一个总结性教学环节,是化工类人才培养中进行的一次实践,它犹如学生搞毕业设计那样的一次“预演习”,无疑对学生毕业前进行毕业设计将有很大的帮助,而对于一些毕业前只搞毕业论文不搞毕业设计的学生,是使他们得到工程师训练的不可缺少的一环。 1.2课程设计的要求: 以表面活性剂、涂料、香料、化妆品、抗静电剂、热稳定剂、纳米材料以及新型功能材料等精细化工研究领域为基本方向,相应的组别选择相应的方向中具体的精细化学品作为设计目标,进行合成设计。 设计题目举例:

1.3 设计内容 课程设计的基本要求就是要对所选择的设计目标做出文献综述及实验方案的设计,具体要求为: 1、查阅至少四篇相关文献,写出文献综述,并设计相应的设计方案; 2、设计方案要求画出具体的设计工艺及参数,要求工艺及方案合理可行; 3、课程设计期间遵守有关规章制度; 1.4 设计数据基础 可查相关教材或工具手册 1.5 工作计划 1、领取设计任务书,查阅相关资料(3天); 2、确定设计方案,进行相关的工艺设计(5天); 3、校核验算,获取最终的设计结果(2天); 4、编写课程设计说明书(论文),绘制工艺流程图(3天)。 1.6设计成果要求 1、通过查阅资料、设计计算等最终提供课程设计说明书(论文)电子稿及

铸造工艺学课程设计案例

前言 铸造工艺学课程就是培养学生熟悉对零件及产品工艺设计的基本内容、原则、方法与步骤以及掌握铸造工艺与工装设计的基本技能的一门主要专业课。课程设计则就是铸造工艺学课程的实践性教学环节,同时也就是我们铸造专业迎来的第一次全面的自主进行工艺与工装设计能力的训练。在这个为期两周的过程里,我们有过紧张,有过茫然,有过喜悦,从中感受到了学习的艰辛,也收获到了学有所获的喜悦,回顾一下,我觉得进行铸造工艺学课程设计的目的有如下几点: 通过课程设计实践,树立正确的设计思想,增强创新意识,培养综合运用铸造工艺学课程与其她先修课程的的理论与实际知识去分析与解决实际问题的能力。 通过制定与合理选择工艺方案,正确计算零件结构的工作能力,确定尺寸,掌握了浇冒口的作用及其原理,具有正确设计浇冒口系统的初步能力;掌握铸造工艺与工装设计的基本技能。 熟悉型砂必须具备的性能要求,原材料的基本规格及作用,并初步具备分析与解决型砂有关问题的能力。 熟悉涂料的作用、基本组成及质量的控制;了解提高铸件表面质量与尺寸精度的途径。 了解合金在铸造过程中容易产生的铸造缺陷以及采取相关的防止途径,并初步具备分析、解决这类缺陷的基本解决途径 学习进行设计基础技能的训练,例如:计算、绘图、查阅设计资料与手册等。 目录 第一章零件铸造工艺分析 (4) 1、1零件基本信息 (4) 1、2材料成分要求 (4) 1、3铸造工艺参数的确定 (4) 1、3、1铸造尺寸公差与重量公差 (5) 1、3、2机械加工余量 (5) 1、3、3铸造收缩率 (5) 1、3、4拔模斜度 (5) 1、4其她工艺参数的确定 (5) 1、4、1工艺补正量 (5) 1、4、2分型负数 (5) 1、4、3非加工壁厚的负余量 (5)

机械制造工艺学课程设计实例

机械制造工艺学课程设计任务书 设计题目:拨叉(二)(CA6140) 机械加工工艺规程编制及工装设计(年产量:4,000件) 设计内容: 1、编制机械加工工艺规程,填写工艺文献1套,绘制零件毛坯图1张 2、设计夹具1套,绘制夹具装配图与主要结构零 件 图各1张 3、撰写课程设计说明书1份 设计时间: 前言

机械制造工艺学课程设计就是在我们完成了大学的全部基础课程、技术基础课以及大部分专业课之后进行的。通过机床加工工艺及夹具设计,汇总所学专业知识如一体(如《机械零件设计》、《金属切削机熟悉与理解,并为以后的实际工作奠定坚实的基础!床》、《机械制造工艺》等)。让我们对所学的专业课得以巩固、复习及实用,在理论与实践上有机结合;使我们对各科的作用更加深刻的 设计目的: 机械制造工艺学课程设计,就是在学完机械制造工艺学及夹具设计原理课程,经过生产实习取得感性知识后进行的一项教学环节;在老师的指导下,要求在设计中能初步学会综合运用以前所学过的全部课程,并且独立完成的一项工程基本训练。同时,也为以后搞好毕业设计打下良好基础。通过课程设计达到以下目的: 1、能熟练的运用机械制造工艺学的基本理论与夹具设计原理的知识,正确地解决一个零件在加工中的定位,夹紧以及合理制订工艺规程等问题的方法,培养学生分析问题与解决问题的能力。 2、通过对零件某道工序的夹具设计,学会工艺装备设计的一般方法。通过学生亲手设计夹具的训练,提高结构设计的能力。 3、课程设计过程也就是理论联系实际的过程,并学会使用手册、查询相关资料等,增强学生解决工程实际问题的独立工作能力。 一.零件的分析

(一)、零件的作用: 题目给定的拨叉(CA6140)位于车床变速机构中,主要起换挡使主轴回转运动按照工作者的要求进行工作。工作过程:拨叉零件就是在传动系统中拨动滑移齿轮,以实现系统调速。转向。其花键孔?25与轴的配合来传递凸轮曲线槽传来的运动。零件的2个交叉头补位与滑移齿轮相配合。 (二)、零件的工艺分析 CA6140车床拨叉(二)共有两个加工表面,它们之间有一定的位置要求。 1、一花键孔的中心线为基准的加工面 这一组面包括?25H7的六齿方花键孔、?22H2的花键低空及两

支座铸造工艺课程设计-2

热加工工艺课程设计支座铸造工艺设计 院系:工学院机械系 专业:机械设计制造及其自动化 班级: 姓名: 学号: 指导老师: 时间:

黄河科技学院课程设计任务书 工学院机械系机械设计制造及其自动化专业 2011级 1班 学号姓名指导教师 设计题目: 支座铸造工艺设计 课程名称:热加工工艺课程设计 课程设计时间:5 月 22 日至 6 月 6 日共 2 周 课程设计工作内容与基本要求(已知技术参数、设计要求、设计任务、工作计划、所需相关资料)(纸张不够可加页) 1、已知技术参数 图1 支座零件图 2、设计任务与要求 1)设计任务 1 选择零件的铸型种类,并选择零件的材料牌号。 2 分析零件的结构,找出几种分型方案,并分别用符号标出。 3 从保证质量和简化工艺两方面进行分析比较,选出最佳分型方案,标出浇注位 置和造型方法。 4 画出零件的铸造工艺图(图上标出最佳浇注位置与分型面位置、画出机加工余 量、起模斜度、铸造圆角、型芯及型芯头,图下注明收缩量) 5 绘制出铸件图。

2)设计要求 1设计图样一律按工程制图要求,采用手绘或机绘完成,并用三号图纸出图。 2 按所设计内容及相应顺序要求,认真编写说明书(不少于3000字)。 3、工作计划 熟悉设计题目,查阅资料,做准备工作 1天 确定铸造工艺方案 1天 工艺设计和工艺计算 2天 绘制铸件铸造工艺图 1天 确定铸件铸造工艺步骤 2天 编写设计说明书 3天 答辩 1天 4.主要参考资料 《热加工工艺基础》、《金属成形工艺设计》、《机械设计手册》 系主任审批意见: 审批人签名: 时间:2013年月日

支座铸造工艺设计 摘要 铸造是指将液态金属或合金浇注到与零件尺寸、形状相适应的铸型型腔里,待其冷却凝固后获得毛坯或零件的方法。铸造成形是机械类零件和毛坯成形的重要工艺方法之一,尤以适合于制造内腔和外形复杂的毛坯或零件。 本文主要分析了支座的结构,并根据其结构特点确定了它的砂型铸造工艺。支座是支撑其他零部件的重要承力零件,主要承受着径向压缩及轴向摩擦的作用,它具有结构稳定、形状简单、廉价实用等特点,故在机械零件的设计、加工制造中支座都起着不可替代的作用。 本文设计了支座的砂型铸造工艺,包括铸型(型芯)及造型方法的选择、分型面选择和浇注位置的确定、浇注系统及冒口的设置、落砂清理及检验等。绘制了铸件的零件图及铸造工艺图。本文还对支座的铸造质量指标(包括加工余量、拔模斜度、收缩率及变形等)进行了分析与评估,以便于工艺更好的完善。 关键词:砂型铸造,浇注,加工余量,拔模斜度,收缩率

《塑料成型工艺及模具设计》课程设计

长春工业大学 课程设计说明书 《塑料成型工艺及模具设计》 课程设计名称 课程设计 专业机械工程及其自动化(模具) 班级 学生姓名 指导教师 2015年 12 月 21 日 目录 课程设计任务书 (3) 1、塑件的工艺分析 (5) 1.1塑件的成型工艺性分析 (5) 1.2塑件材料pp的使用性能 (6) 1.3成型工艺 (7)

1.4特点 (8) 2、模具的基本结构及模架选择 (9) 2.1确定成型方法 (9) 2.2 选择成型设备 (9) 2.3 型腔布置 (10) 2.4确定分型面 (11) 2.5选择浇注系统 (11) 2.6 确定推出方式 (11) 2.7 模具的结构形式 (12) 2.8 模架的结构 (13) 2.9 模架安装尺寸校核 (13) 3.模具结构、尺寸的设计计算 (13) 3.1各模板尺寸的确定 (14) 3.2 模架各尺寸的校核 (14) 3.3导向与定位结构的设计 (14) 3.4 模具成型尺寸设计计算 (15) (15)

(16) (16) 3.4.4 型芯高度尺寸 (16) 4、模具的装配、试模 (17) 4.1模具装配图 (17) 4.2 模具的安装试模 (18) 4.3 试模前的准备 (18) 4.4模具的安装及调试 (18) 4.5 试模 (19) 4.6检验 (20) 5、结论 (20) 参考文献 (21) 课程设计任务书 2015—2016学年第1学期 机电工程学院(系、部)机制专业 120116 班级 课程名称:塑料成型工艺及模具设计 设计题目:小勺注射模设计

完成期限:自 2015 年 12 月 9 日至 2015 年 12 月 22日共 2 周

制造工艺学课程设计.doc

设计输出轴零件的机械加工工艺规程 一、初步分析 1.零件图样分析 1)两个mm 024 .0011.060++φ的同轴度公差为mm 02.0φ 2)mm 05.004.54+φ与mm 024 .0011.060++φ同轴度公差为mm 02.0φ 3)mm 021.0002.080++φ与mm 024 .0011.060++φ同轴度公差为mm 02.0φ 4)保留两端中心孔 5)调质处理28—32HRC 6)材料45 2.输出轴机械加工工艺过程卡片 3.工艺分析 1)该铀的结构比较典型,代表了一般传动轴的结构形式, 其加工工艺过程具有普遍性。 在加工工艺流程中,也可以采用粗车加工后进行调质处理 2)图样小键槽未标注对称度要求.但在实际加工小应保证 mm 025.0±的对称度。这样便于与齿轮的装配,键槽对称度的 检查,可采用偏摆仪及量块配合完成,也可采用专用对称度检具 进行检查。 3)输出轴各部向轴度的检查,可采用偏摆仪和百分表综合 进行检查。

二、工艺设计 该步骤主要拟定工艺路线,并对加工设备与工艺装备进行选择,以及填写工艺过程卡片 1、定位基准的选择 ①粗基准的选择 粗基准的选择有如下四点要求,保证相互位置要求的原则,保证加工表面加工余量合理分配的原则,便于工件装夹原则,一般不得重复使用原则。 该轴选取左端为粗基准,便于装夹。 ②精基准的选择 精基准的选择有如下五条原则,基准重合原则,统一基准原则,互为基准原则,自为基准原则,便于装夹原则。 该轴在精车加工中选取两端和与其对应的中心孔为精基准,采用互为基准原则,提高轴的同轴度,在磨削加工过程中,采用两顶尖为精基准,保证该轴各轴段的同轴度要求。 2、加工方法的选择 加工方法的选择根据加工表面、零件材料和加工精度以及生产率的要求,考虑现有工艺

化工原理课程设计填料吸收塔的设计

化工原理课程设计填料吸收塔的设计

课程设计 题目:填料吸收塔的设计 教学院:化学与材料工程学院 专业:化学工程与工艺(精细化工方向) 学号: 学生姓名: 指导教师:

年5月31日 《化工原理课程设计》任务书 ~年第2学期 学生姓名:专业班级:化学工程与工艺( ) 指导教师:工作部门:化工教研室 一、课程设计题目:填料吸收塔的设计 二、课程设计内容(含技术指标) 1. 工艺条件与数据 煤气中含苯2%(摩尔分数),煤气分子量为19;吸收塔底溶液含苯≥0.15%(质量分数);吸收塔气-液平衡y*=0.125x;解吸塔气-液平衡为y*=3.16x;吸收回收率≥95%;吸收剂为洗油,分子量260,相对密度0.8;生产能力为每小时处理含苯煤气m3;冷却水进口温度<25℃,出口温度≤50℃。 2. 操作条件 吸收操作条件为:1atm、27℃,解吸操作条件为:1atm、120℃;连续操作;解吸气流为过热水蒸气;经解吸后的液体直接用作吸收剂,正常操作下不再补充新鲜吸收剂;过程中热效应忽略不计。 3. 设计内容 ① 吸收塔、解吸塔填料层的高度计算和设计;

② 塔径的计算; ③ 其它工艺尺寸的计算。 三、进度安排 1.5月14日:分配任务; 2.5月14日-5月20日:查询资料、初步设计; 3.5月21日-5月27日:设计计算,完成报告。 四、基本要求 1. 设计计算书1份:设计说明书是将本设计进行综合介绍和说明。设计说明书应根据设计指导思想阐明设计特点,列出设计主要技术数据,对有关工艺流程和设备选型作出技术上和经济上的论证和评价。应按设计程序列出计算公式和计算结果,对所选用的物性数据和使用的经验公式、图表应注明来历。 设计说明书应附有带控制点的工艺流程图。 设计说明书具体包括以下内容:封面;目录;绪论;工艺流程、设备及操作条件;塔工艺和设备设计计算;塔机械结构和塔体附件及附属设备选型和计算;设计结果概览;附录;参考文献等。 2. 图纸1套:包括工艺流程图(3号图纸)。 教研室主任签名: 年月日

端盖零件铸造工艺课程设计说明书

课程设计说明书(论文)课程名称:成型工艺及模具课程设计II 设计题目:端盖零件铸造工艺设计 院系: 班级: 设计者: 学号: 指导教师: 设计时间:

1、设计任务 1.1、设计零件的铸造工艺图 1.2、设计绘制模板装配图 1.3、设计并绘制所需芯盒装配图 1.4、编写铸造工艺设计说明书 2、生产条件和技术要求 2.1、生产性质:大批量生产 2.2、材料:HT200 2.3、零件加工方法: 零件上有多个孔,除中间的大孔需要铸造以外,其他孔在考虑加工余量后不宜铸造成型,采用机械方法加工,均不铸出。 造型方法:机器造型 造芯方法:手工制芯 2.4、主要技术要求: 满足HT200的机械性能要求,去毛刺及锐边,未注明圆角为R3-R5,未注明的筋和壁厚为8,铸造拔模斜度不大于2度,铸造表面不允取有缺陷。 3、零件图及立体图结构分析 3.1、零件图如下: 图1.零件主视图图2.零件左视图 3.2三维立体图如下: 图3.三维图(1) 图4.三维图(2) 4、工艺设计过程 4.1、铸造工艺设计方法及分析 4.1.1铸件壁厚 为了避免浇不到、冷隔等缺陷,铸件不应太薄。铸件的最小允许壁厚与铸造的流动性密切相关。在普通砂型铸造的条件下,铸件最小允许壁厚见表1。 表1. 铸件最小允许壁厚引【1,表1-3】

查得灰铁铸件在100~200mm的轮廓尺寸下,最小允许壁厚为5~6mm。由零件图可知,零件中不存在壁厚小于设计要求的结构,在设计过程中,也没有出现壁厚小于最小壁厚要求的情况。 4.1.2造型、制芯方法 造型方法:该零件需批量生产,为中小型铸件,应创造条件采用技术先进的机器造型,暂选取水平分型顶杆范围可调节的造型机,型号为Z145A。 制芯方法:由生产条件决定,采用手工制芯。 4.1.3砂箱中铸件数目的确定 当铸件的造型方法、浇注位置和分型面确定后,应当初步确定一箱中放几个铸件,作为进行浇冒口设计的依据。一箱中的铸件数目,应该是在保证铸件质量的前提下越多越好。 本铸件在一砂箱中高约52mm,长约130mm,宽约100mm,重约2.75Kg。这里选用一箱四件,根据本铸件分型面的确定,可以先确定下箱的尺寸。根据铸件重量在<5kg时,查得模型的最小吃砂量a=20mm, h=30mm, c=40mm,d或e=30mm, f=30mm, g=200mm,其中各字母所代表的含义如图5所示。先确定下箱的尺寸,再根据表格可以选择标准的砂箱。选用Z145A顶杆式起模的震实式造型机,砂箱最大内尺寸为500mm X 400mm X 300mm。根据本铸件的大概尺寸,在设计中采用一箱四件,因为浇注系统位于上箱,所以上砂箱的高度我们还要考虑到浇注系统才可以确定。铸件在砂箱中的放置方式初步设计为图6所示方式。 图5. 最小吃砂量示意图图6. 铸件排布的初步设计 4.2、铸造工艺参数的确定 4.2.1铸件尺寸公差和重量公差 在实际生产中,铸件的实际尺寸和重量与设计图纸所规定的尺寸和重量相比,总会有一些偏差,这种偏差愈小,铸件的精度也愈高。但铸造过程中影响铸件精度的因素很多,如铸造收缩率等工艺参数的选择,分型面、浇冒口系统和砂芯的设计,造型和制芯的工艺操作以及工艺装备本身的精度等。如果其中某个因素处理不当,就会降低铸件的精度。也不应该不顾铸件的要求和具体生产条件,盲目提高对铸件的精度要求,否则会导致铸件成本的提高和使工艺复杂化,造成不必要的浪费。二级精度灰铸铁铸件的尺寸偏差如表2所示,重量偏差如表3所示。

相关主题
文本预览
相关文档 最新文档