当前位置:文档之家› 第7章 高压电机局部放电测试方法

第7章 高压电机局部放电测试方法

第7章  高压电机局部放电测试方法
第7章  高压电机局部放电测试方法

第7章 高压电机局部放电测试

对于低压电机,影响绕组绝缘寿命的主要因素是机械应力、热及短时的过电压的作用。对于高压电机,影响其绕组绝缘寿命的主要原因除上述因素外,另外一个更主要的因素就是局部放电。对于6kV 及以上电压等级的高压电机定子绕圈,运行时绝缘内部及表面都可能发生局部放电。据统计,电机损坏事故均有50%是电机定子绕组绝缘损坏引起的。而很多绕组绝缘的损坏很多是局部放电造成的。所以,近年来电机中局部放电的测量与防止已为各电机制造厂家和电机使用部门所重视,局部放电的测试已逐渐用于电机绝缘质量的控制和运行可靠性的鉴定。

7.1 电机绕组绝缘内部的局部放电

现代高压电机定子绕组的对地绝缘,多采用环氧片云母或粉云母连续式绝缘或环氧片云母箔或粉云母箔卷烘式绝缘,并有多胶和少胶之分及模压、液压和整浸之分。少胶的需真空浸漆(或浸胶)现模压(整浸的则不压),多胶的则一定要模压液压成型。

不论多胶云母带(或箔)、少胶云母带(或箔),本身就有很多气泡,包扎过程中,在云母带的每匝边缘处也会形成气隙;云母带中的胶粘剂有的有溶剂,有的有低分子化合物,在线圈热压成型的过程中要挥发而产生气泡,虽然要经真空处理,但因高压电机绕组绝缘包扎的云母带层数多,这些气泡、气隙中的空气和挥发物很难抽尽。因而高压电机定子绕组绝缘内部总是有气隙的。电机运行过程中,由于热胀冷缩、冷热循环使用、机械振动作用及电热老化等也会产生新的气隙。

若高压电机定子线圈对地绝缘中的气隙如图7.1所示,我们把线圈对地绝缘作为平板电容来分析气隙中的场强。

图7.1 线圈对地绝缘中的气隙示意图

设线圈单面绝缘厚为a δ,绝缘中气隙厚度为c δ,气隙相串联的其余绝缘层厚为b δ,则

b c a δδδ+=。环氧云母绝缘介电系数4=b ε,若绝缘中的平均场强为a E ,则在交流电压作用

下气隙中的场强

(kV/mm))

(a

b

c c b c b b c E E δεδεδδε++=

(7.1)

式中)

(32c b N a U E δδ+=

为平均场强,单位为kV/mm ;b ε为环氧云母绝缘相对介电常数,约为4;

c ε为气隙中空气相对介电常数,约为1。

将b ε,c ε数值代入上式,并用N U 替换a E ,则上式可改写为

(kV/mm)4266.3432b

c N

b c N

c U U E δδδδ+=?

?? ?

?

+=

(7.2)

式中N U 为电机的额定电压(线电压有效值)。高压电机定子线圈单面绝缘厚度i δ按下式计算,

m b

N

y a E N K δααδβτ++-≥

-10)](1[21 (7.3)

式中y K 为预防性试验电压倍数,等于1.5;1α为历次试验累计效应系数,场强低于10kV 时约为0.05;2α为(负)分散度为0.1~0.15(6kV 以下取大值);β为年平均老化速率指数,为0.02~0.03(发电机取小值,电动机取大值);τ为运行年限,发电机为30年,电动机为20年; b E 为击穿场强,约25kV/mm ;m δ为考虑机械因素所要求的附加厚度,为0.5mm 。

对于发电机,若不考虑厚度对b E 的影响,当年30=τ,05.01≈α,1.02≈α,β取0.02,mm kV E b /25≈,将这些值代入上式可得

5.0268.0+≈N a U δ (7.4)

即c N c a b U δδδδ-+≈-=)5.0268.0(

将此b δ代入(7.5)得绝缘中气隙厚度c δ、场强c E 与额定电压N U 的关系

c

c

c N E E U 268.0266.3)5.03(-+=

δ (7.5)

图7.2为均匀电场中空气的场强与电极间距离的关系,从图可查得不同厚度所隙c δ的击穿场强c E ,代入(7.5)中,可得不同额定电压下电机绕组绝缘内部发生局部放电时所含的气隙厚度。额定电压下的放电的气隙厚度与发电机额定电压间的关系如图7.3所示。

0.1

0.2

0.4 0.6 0.8 1

2

4

6 8 10

2

4 6 8 10 气隙厚度δ (mm)

击穿场强E C (k V /m m )

图7.2 均匀电场中空气的击穿场强与电极间距离的关系

额定电压U N (kV)

气隙厚度δ(m m )

4

0.20.40.60.81.01.21.41.65

6

7891011

12

图7.3 额定电压下放电的气隙厚度与额定电压的关系

从图7.3所示可知:

(1) 额定电压大于5.5kV 的电机,绕组绝缘内部可能发生局部放电。 (2) 危险的气隙厚度为0.10~0.60mm ,在较低的额定电压下就发生局部放电。

(3) 现在生产的电机中,实际气隙一般为0.05~0.50mm ,因此,N U 在6kV 及以上的电机,运行中就有局部放电。

(4) 当额定电压增加时,不论是厚气隙或薄气隙,均发生局部放电,但当气隙厚度为0.05mm 以下时,额定电压为15kV 或更高电压的电机有产生内部放电的危险。

当对额定电压为N U 的电机的定子绕组的主绝缘施加试验电压t U 时,若产生局部放电,则根据 (7.2),

a

c t

c

a c t

c U U E δδδδδ+=

+

=

3657.54

2 (7.6)

对于发电机5.0268.0+=N a U δ,其气隙内的场强,

5

.0268.03657.5++=

N c t

c U U E δ (7.7)

产生局部放电的起始电压

657

.5)5.0268.03(c

N c i E U U ++=

δ (7.8)

(7.8)为表示不同额定电压的电机定子绕组主绝缘的起始放电电压与气隙厚度的关系,亦可用曲线表示,如图7.4所示。从图中可知:

(1) 产生局部放电的最低电压随额定电压的升高而升高,3kV 级电机定子线圈对地绝缘产生局部放电的最低电压只有2.5kV 。

(2) 线圈对地绝缘内产生局部放电的最危险的气隙厚度也随额定电压的增高而增大。

(3) 除3kV 的电机外,其他电压等级的电机在相电压下均有局部放电产生。电压等级越高,实际运行电压下局部放电越厉害,15.75kV 及以上电机定子绕圈主绝缘内的所有大于0.1mm 的气隙均产生局部放电。

放电电压u i (kV)

气隙厚度δ(m m )

0.20.40.60.81.01.21.41.61

2

3

4

56789

10

11

U N 1< U N 2

图7.4 不同额定电压的电机起始放电电压与气隙厚度关系

图7.5 线圈棱角处结构图

图7.5为线圈棱角处的结构示意图。线圈棱角对绝缘的最高场强max E 、平均场强av E 与棱角内外半径的关系如下式所示:

()

3

/112m ax 8.1/r r E E av = (7.9)

随额定电压的升高2r 增大,12/r r 也就增大,max E 大于av E 的倍数也增大。棱角处有气隙时,电机定子线圈对地绝缘内部出现局部放电的电压将比上面计算值低得多。不同额定电压电机定子线圈对地绝缘平均场强与最大场强见表7.1。

表7.1 线圈绝缘的最大场强与平均场强比较

电机定子线圈对地绝缘内的气隙位置有三种:一是在绝缘层的中间;二是在导线与绝缘间;三是在绝缘与防晕层间。

7.2高压电机定子线圈端部的局部放电

高压电机定子线圈出槽口处电场分布极不均匀,在槽口处场强最高。如不采取防晕措施,在高电场作用下该处将产生电晕,对于单只线圈在4kV 左右电晕就已很明显,20kV 左右就会产生滑闪放电,40kV 左右就会产生闪络。下完线后组成的绕组闪络电压将会更低,这不但会在长期运行中产生电腐蚀,而且使产品的耐压试验也无法进行,因此,必须进行防晕处理。 在没有防晕处理时,线圈端可用图7.6所示电容链等效电路来计算槽口处最高场强,用 (7.10)进行计算,

)kV/mm (/0

max

U

K C E i i x == (7.10)

未作防晕处理时,端部出槽口处起晕临界场强kef E 约为8.1kV/cm ,其对应起晕电压

)kV (4.345

.0???

? ??=i

a

k U ε

δ (7.11)

式中a δ为单边绝缘厚(mm)。

图7.6 端部未防晕处理时的等效电路

出槽口处起晕电压k U 与绝缘厚度a δ关系如图7.7所示,从图可知,6kV 级电机)47.3(kV U =?的高压端线圈已处于起晕临界状态。

绝缘厚度δi (mm)

起晕电压u k (k V )

123456789

1

2

34681020

U K

u k

图7.7 未防晕处理出槽口处起晕电压U K 与绝缘厚度关系

端部防晕处理的原理是尽量均匀槽口处的电场分布。防晕结构有下述五种:

(1) 涂刷型防晕结构 在线圈槽口外的一段端部绝缘表面上涂刷含碳黑或石墨和碳化硅的高电阻漆。这种结构工艺简单,但起晕电压不高,只能用在10.5kV 及以下电机定子线圈的端部防晕处理。我国多数电机制造厂家现使用的是碳化硅高电阻漆。

(2) 刷包型防晕结构 在线圈槽口外的一段端部绝缘表面上先涂刷一层含碳黑或石墨和碳化硅的高电阻防晕漆,再包一层玻璃丝带,再刷一层高电阻防晕漆。现在我国多数厂家用的是碳化硅高电阻防晕漆。这种结构起晕电压较高,可用于15.75kV 及以下电压等级的电机定子线圈端部防晕处理。以前用的是含碳黑或石墨的线性高电阻晕漆。6~10.5kV 用一级处理,10.5kV 以上的电机则需二级或三级处理,离槽口的越远所用高电阻防晕漆电阻越高。若用三级防晕处理,第一级所用高阻漆电阻率约为106~108Ω·m ,第二级所用高阻漆电阻率约为108~109Ω·m ,第三级所用高阻漆电阻率约为109~1010Ω·m 。 碳化硅电阻率随外施场强的变化呈指数下降。

dx

du

0βρρ-=e

(7.12)

式中0ρ为场强为零时碳化硅防晕层电阻率,单位是Ω·m 。

碳化硅防晕层能随外施场强的变化自动调整电阻率,使电场分布均匀,从而消除了线圈端部表面的电晕。因其电阻率能随场强自动调节,因而只需一级处理就相当于线性电阻的多级处理。

(3) 半导体外屏一次成型防晕结构 线圈包完主绝缘后,在槽口外的一段上包半导体高阻带,再在高阻带外用2~3层与主绝缘相同材料覆盖,然后与主绝缘一起热压成型。

这种结构现在用于13.8kV 、15.75kV 及18kV 级电机定子线圈的防晕处理,所用半导体高阻带为碳化硅高阻带。若用线性电阻的高阻带作外层,一次成型后还要进行刷包防晕处理。 (4) 外屏加刷包型防晕结构 用于18kV 及20kV 级电机防晕处理。

(5) 内屏防晕结构 用于24kV 以上电压等级的电机的防晕处理,国内在15.75kV 级、18kV 级电机上试用过,因工艺复杂,现在已不用。

7.3高压电机槽部放电

高压电机槽部放电是指线圈主绝缘表面和铁心槽壁之间的放电,其产生的原因是线圈槽部表面不能同铁心槽壁完全接触,其间总有间隙,且通风槽口处电场分布不均匀,当局部电场强度达到一定数值时,气隙中的气体发生局部电离而产生槽部放电。

图7.8 线圈槽部等效电路图

线圈绝缘表面在间隙处的法向场强,当未作防晕处理时,可当作双层介质平板电容器来计算,其等值电路如图7.8所示。设线圈上所施电压为?U ,线圈绝缘表面对地电压为a U ,则

?U C C C U a

i i

a +=

(kV) (7.13)

式中i C 为绝缘单位面积的电容(F/cm 2);a C 为线圈与铁心间隙单位面积电容(F/cm 2);?U 为相电压 (kV)。间隙法向电场幅值为

)(kV/cm 2i

a

S aM U E εδδ?

+=

(7.14)

式中S δ为线圈与铁心的间隙(mm);a δ为单边绝缘厚度(mm);i ε为主绝缘相对介电常数。 通风槽口的电场分布不均匀,其轴向场强幅值为

?αU C C C E a

i i

oM +=

(kV/cm) (7.15)

式中 )cm /1(i a i K C C +=

α;121

.010126.0-???

? ??=i i i K δε为主绝缘单位面积的表面电容(F)。

按 (7.14)和(7.15)计算的数值列于表7.2中。

表7.2 未防晕处理时槽部绝缘表面场强与电晕状况

线圈和铁心间隙3.0=i δmm 时,均匀电场下的起始电离场强kV /cm 60≈bm E ,但在通风槽口处电场不均匀,其起始场强有效值kV /cm 1.8kef =E ,幅值为kV /cm 4.11kM =E 。从表7.2可知,6kV 级线圈表面法向场强和轴向场强都处于起晕临界状态,对更高电压等级的电机绕组,若不进行防晕处理,都会发生电晕。

槽部电晕的防止,主要采用低电阻防晕层进行处理。这一方面使通风槽口处电场分布均

匀,以降低轴向场强;另一方面,低电阻防晕层与槽壁接触处处于地电位,将该处间隙短路,从而防止了电晕。

但并不是说用低阻防晕层处理后就能完全防止槽部的局部放电,若防晕层与槽壁接触不良或不稳定,在电磁振动的作用下,接触点若即若离,还会引起比电晕放电能量大数百倍的间隙火花放电,局部温度可达摄氏数百度至上千度,使绝缘表面受到严重破坏,在短期内可造成1mm 以上深度的麻坑,且腐馈位置随振动、接触等条件的变化而经常变动。

为了降低防晕层的损耗,防晕层的电阻率一般控制在1×103~1×105Ω·m 范围内。若接触点很少,离接触较远的防晕层则不是处在地电位,而是处于由电容电流在低电阻防晕层上产生的压降所决定的电位。假定线圈防晕层在槽内沿轴向有两点接地,按图7.9的分布参数电路计算跨度中的点处的电压为

()?ρωU L C U E S i 2

m ax 22

1= (kV) (7.16)

式中S ρ为防晕层的电阻率 (Ω·m)。

图7.9 线圈槽部电晕等值电路

从式(7.16)可知S ρ越小、接触点间的距离E L 越小,则max U 越小,故实际生产的电机都尽量想办法使防晕层与铁心槽壁接触点尽量多,要求两接触间距离cm 50

由于振动使线圈表面与定子铁心槽壁失去接触而产生的槽放电,是高能量的电容性放电,这种放电与端部电晕不同,也与绝缘内部放电不同。这种高能放电产生的加速电子,对定子线圈表面产生热的、机械力的作用。放电使空气电离而产生臭氧及氮的氧化物(N 2O 、NO 、N 2O 4等),氧化物与气隙内水分起化学作用,引引线圈表面防晕层、主绝缘、垫条等烧损和腐馈。实际运行发现,这一状况引起的电腐蚀,对电机绝缘的损坏非常迅速。防止的办法是使线圈在槽内固定牢靠、不松动、与槽壁接触良好。

槽部防晕质量的好坏可用线圈槽部表面对地电位的高低来衡量,但结果只能说明静止状态的质量,运行中的状况现在还未进行测量。

7.4线圈局部放电的测量

对于单只线圈(或线棒)局部放电的测量,一是检查线圈绝缘内部是否含有较大气隙,二是检查线圈端部防晕处理是否合格。

对线圈(或线棒)进行局部放电测量可用直接法,也可用平衡法。直接法又有并联测试和串

联测试两种。其原理如图7.10所示。

(a) (b)

图7.10 直接法测电机线圈局部放电原理图

a)并联测试电路;b) 串联测试电路

并联测试电路试样可以接地,试样工频电流不流经检测阻抗,若试样击穿,对设备和操作者均比较安全,但耦合电容器不能直接接地,必须用绝缘支承架支承起来。绝缘支架和电容器间不能发生局部放电。

串联测试电路,试样不能接地,试样工频电流流经检测阻抗,一旦试样击穿,对操作者和设备均很危险。但耦合电容

C选用较大值时,可削弱高压端来的干扰。

k

平衡法可以大大抑制外界干扰的影响,因而适用于现场测试。

7.5绕组局部放电的测量

线圈(线棒)下入槽中,按一定规则连接后组成绕组。这时每只线圈(线棒)的槽部外表面均是接地的,因此,不能用平衡法测局部放电,只能用直接法进行测量,而且只能用并联回路进行测量。对于运行中的电机,则不需外施高压,只需将电机绕组高压端连到耦合电容器上即可进行测试,其原理如图7.11所示。

对于停止运行的电机,则需外施高压,被测相接地端必须悬空,其他两相则应接地,其测试原理如图7.12所示。

C

图7.11 运行中电机绕组局部放电测量原理图图7.12 静止状态电机局部放电测试原理图

对运行中的电机,还可以从中性点上取信号进行测量。但局放仪必须有定相检测装置。实践证明,无论何种故障引起的局部放电信号,均反应在中性点上。而且放电信号具有特定的频率,故我们可以采用谐振回路将其表征故障频率的信号取出,其原理如图7.13所示。中性点信号再经定相检测装置分相显示。若在电机两端装等效天线,接收入电信号后送入检测装置,还可分辨出是哪一端放电。

图7.13 从中性点取信号测电机绕线局部放原理图电

7.6局部放电部位的区分

用不同的方法如无线电法、超声波法、光电法等可以测出放电部位的大概位置,但工作量大,有的还比较麻烦。比较简便的方法是用脉冲电流法检测各个部位局部放电的图形和在扫描时基上所处的相位加以区分。

以图形和相位区分,按放电的图形和相位可以区分如下:

(1)实测发现,电机线圈主绝缘内部气隙局部放电的图形在0~2/π和2/3~ππ相位上位置对称,幅值很接近,形状似绒团状,图形稳定,如图7.14所示。

π

π/2

2

图7.14 绝缘内部气隙局部放电图形

(2)主绝缘与导体间气隙局部放电图形如图7.15所示,所处相位在0~2/π和2/3~ππ相位之间,图形幅值不等,0~2/π相位间的幅值大。所占相位宽度也不等,0~2/π相位之间的窄。

2

图7.15 线圈绝缘与导体间气隙局部放电图形

(3)线圈表面与电机槽壁间气隙的局部放电,即所谓槽放电,图形如图7.16所示,图形所处相位在0~2/π和2/3~ππ相位之间。图形幅值不等, 2/3~ππ相位之间的幅值大。所占相

π相位之间的窄。

位宽度也不等,2

/

3

0π/2

2

图7.16 电机槽放电图形

(4)线圈端部表面局部放电图形如图7.17所示,图形正负半周不对称,正半周幅值大得多,形状如长须状。在未发展成刷形放电时,图形不稳定,刷形放电后,图形为稳定。随外施电压的升高,放电量增加较快。在靠铁心端部接地端表面放电时,图形也极不对称,相位与前者相反。

2

图7.17 线圈端部表面局部放电图形

实际测量中,图形是千变万化的,而且有各种干扰,但通这不断实践和积累经验是可以加以区分的。如高压端金属导体的尖端放电,第一脉冲总是出现在外施电压的负峰值处,外施电压升高、放电脉冲波形幅值不变,彼此间隔相等。接触不良引起的放电图形总出现在零点附近,而且是不规则的脉冲带。电源干扰的图形是无规则的杂乱的脉冲波。当几种放电同时存在时,放电图形是各种放电图形叠加的结果。这时可根据放电脉冲出现的相位,幅值大小、对称情况、放电脉冲随电压上升下降时的变化情况及随时间的变化情况加以区分。

步进电机成品检验标准

步进电机成品检验标准 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

CS 深圳市东兴威电机有限公司 成品检验标准 标准号:CS-19-010 步进电机 编制:日期: 审核:( R&D )( QA ) 批准:(R&D director) (QA director) 发布实施日期:版本:01 1范围 本标准规定了步进电机(以下简称“电机”)的技术要求、试验方法、试验规则、标志、包装、运输和贮存。 本标准适用于本企业的步进电机。 2引用标准 下列标准所包含的条文,通过在本标准中引用而成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB/T 1804-2000 一般公差未注公差的线性和角度尺寸的公差 GB/T 电工电子产品基本环境试验规程试验A:低温试验方法 GB/T 电工电子产品基本环境试验规程试验B:高温试验方法 GB/T2423.3-2006 电工电子产品基本环境试验规程试验Ca:恒定湿热试验方法GB 电工电子产品基本环境试验规程试验Ea:冲击试验方法

GB 电工电子产品基本环境试验规程试验Fc:振动(正弦)试验方法 GB/T 电工电子产品基本环境试验规程试验N:温度变化试验方 GB/逐批检查计数抽样程序及抽样标准(适用于连续批的检查) 3产品分类 3.1型号 电机的型号由机座号、产品名称代号、性能参数代号及派生代号四部分组成。 例如: BYG HB-A派生代号 性能参数代号 产品名称代号 机座号 3.1.1机座号 机座号用电机外径的毫米数以阿拉伯数字表示,如表1所示。 表1 3.1.2产品名称代号 产品名称及代号用大写汉语拼音字母表示。 3.1.3性能参数代号 性能参数代号由两位阿拉伯数字组成,其中第一位数字表示相数,第二位数字表示极对数。 相数代号4表示4相电机,极对数代号6和8分别表示电机的极对数为6对和8对。3.1.4派后代号

直流无刷电机反电动势过零检测方法汇总

直流无刷电机反电动势过零检测方法 一般的永磁无刷直流电机是由三相逆变桥来驱动的,根据转子位置的不同,为了产生最大的平均转矩,在一个电角度周期中,具有6个换相状态。在任意一个时间段中,电机三相中都只有两相导通,每相的导通时间间隔为120°电角度。例如,当A相和B相已经持续60°电角度时,C相不导通。这个换相状态将持续60°电角度,而从B相不导通,到C相开始导通的过程,称为换相。换相的时刻取决于转子的位置,也可以通过判断不导通相过零点的时刻来决定。通过判断不导通相反电动势过零点,是最为常用也最为适合的无位置传感器控制方法。 反电动势过零点的检测方法是,通过测量不导通相的端电压,与电机的绕组中点电压进行比较,以得到反电动势的过零点。但对于小电枢电感的永磁无刷直流电机,在许多情况下,绕组中点电压难以获取,并且需要使用电阻分压和进行低通滤波,这样会导致反电动势信号大幅地衰减,与电机的速度不成比例,信噪比太低,另外也会给过零点带来更大的相移。 与上面的方法相比,更为常用的是虚拟中点电压法。假设A相和B相导通,则A和B两相电流大小相等,方向相反,C相电流为零,则根据永磁无刷直流电机数学模型有

根据上述方程,将不导通相的端电压与所计算的虚拟中点电压进行比较,也可以获得反电动势的过零点。这种方法十分简单,实现也比较方便。但是,由于无刷直流电机按一定频率进行PWM斩波控制,其计算出的虚拟中点电压也会随着PWM的高低电平而发生相同频率的在电源和地电平之间的变化。这样,就会带来极大的共模电平和高频噪声,会影响反电动势过零点检测的精确性。同样,和中点比较法一样,这种方法也必须要对绕组端电压进行分压和低通滤波。 这样,在一个PWM周期中,电枢绕组相电流就必然存在断续状态。速度提高时,电枢绕组中会产生峰峰值极大、频率很高的反电动势。由于以上特点,一些普遍采用的BLDC无位置传感器的控制方法均不适合。现有的无位置传感器的控制方法,如端电压检测法和转子位置估计法等,将很难得到良好的控制效果,其理由如下所述: 首先,无刷直流电机要求在电机转速提高的过程中,采用现有的端电压与中点电压比较的方法,要对三相绕组进行分压阻容滤波,计算出不导通相反电动势的过零点,再延后一定时间进行换相。但是,这样得到的反电动势过零点会因为无刷直流电机转速提高而产生过大的相移,导致当检测到反电动势过零点后,真正的换相点已经过去,从而造成换相失误。另外,现有的转子位置估计法,在高速时必须以极高的采样频率对永磁无刷直流电机中多个物理量进行测量,然后运行复杂的算法估计出转子位置,这样即使采用主频较高的控制器,也很难实时得到精确的位置信号。并且,随着电机转速的提高,位置估计算法难以及时地计算出当前电机转子的位置情况,对于转速范围较大的情况,无位置传感器的检测难以实现。 其次,现有的无刷直流电机无位置传感器的控制方法一般只适用于绕组相电流不存在断续状态的情况。而当永磁无刷直流电机电枢电感较小时,在一个PWM 周期中,则可能出现绕组相电流断续状态。当相电流从续流状态向断流状态突变时,由于三相逆变桥中功率管的寄生电容和电枢绕组中的电感和电阻相互作用,端电压会存在二阶阻尼振荡过程。在振荡过程中,将检测到的电枢绕组端电压应用于无位置传感器的换相中,会得到不正确的结果。 因此,使用现有的无位置传感器的控制方法,应用于小电枢电感的磁悬浮飞轮用无刷直流电机上,都无法得到良好的控制效果。

直流电机测试方法和常见不良问题的分析

测试方法和常见不良问题的分析 一、测试方法 1.电机空载转速及电流的测试 1)定义:在额定电压下(指要求的加到电机端子上的电 压, 并不是指电源电压),无负载时的电机每分钟转动的圈 数 (空载转速)及此时流过端子的电流 2)测试方法:使用测速计、胶轮、直流电源,如下连接, 直流电源 电机测速计 参考测试 方法:使 用电机综 合测试仪测试(但誨定范围及电机的冲片槽数,测试 数据不准) 2.负载转速及电流的测试 1)定义:在额定电压下(指要求的加到电机端子上的电 压, 并不是指电源电压),额定负载时的电机每分钟转动的 圈数(负载转速)及此时流过端子的电流(负载电 流) 2)测试方法:见上图,一般选择胶轮的直径为20mm,如 果负载为M gem,则所挂舷码的重量则为M g,同时胶 轮上的圈数取决于绳子A处必须松动才行(即祛码的重 量必须全部加到轮子上才行) 3.堵转力矩和堵转电流的测试

1); “ 定义:使电机正好停止转动时的负载力矩Ts即为堵转力

矩,此时的电流即为堵转电流Is 3)一般采用两点法进行测试,选择两个负载T1及T2,测 试此负载下的nl> n2及II、12,使用下而的公式计算堵 转力矩和堵转电流: Ts=(n2Tl-nlT2)/(n2-nl) I S=(I2T1-I2T2)/(T1-T2)+(I1-I2)/(T1-T2)*T S 注意点:T1最好在最大效率点附近,而T2最好在最大 功率点附近 参考测试方法:可以采用测功计测试(不精确)或者使 用扭力计测试(较准) 4.窜动量的测试 1)定义:转子在电机中沿轴向可以松动的最大的间隙量 2)测试方法:使用百分表,电机轴前后最大窜动的位置在 百分表上显示的位置分别是A和B,则电机窜动量为B-A 电机 5.电流波形 1)定义:电机在额定电压下旋转时,流过电机两端子间的电 流的变化的波形,可以用示波器进行显示 2)测试方法:如图连接,示波器上显示的波形即为电机的电 流波形,电容一般为qf的电解电容,如果槽数为n 个,则 电机转动一周的完整的波形数为2n个

电机检验标准

电机检验标准 1.0 目的规范电机检验作业,确保电机各项性能以质量达到标准要求,杜绝不合格产品进仓、出厂。1.1 总装好的电动机要进行试验,主要验证电动机性能是否符合有关标准和技术条件的要求;设计和制造上是否存在影响运行的各种缺陷;另外,通过对试验结果的分析,从中找出改进设计和工艺、提高产品质量的途径。 2.0 范围适用于公司的电机检验作业。 3.0 定义/参考3.1 《过程和产品的 测量和控制程序》3.2 《不合格品控制程序》4.0 作业流程生产车间(产品送检) 品管课(检验) 检测结果评审检验结果填报《检验报告单》 PQC 加强监督控制判定合格入库返工处理品管课(异常反馈单) 不合格5.0 检验项目生产部门按生产工单号进行生产,生产完工的产品置于…待检?区,并通知品管课检验员进行检测。5.1 检验实施品管课检验员接到通知后按照生产工单号,即前往…待检? 区,核对产品的品名、型号规格、数量、批号等。了解任务期限,准备好记录表格和检测工具,随后进行检验。5.2 检验方式检验员对所有组装的电机全检。5.3 检验程序、方法与要求5.3.1 检验员根据生产部门的生产工单单号进行检验工 作。5.3.2 。产品检验程序和方法、要求见《电机检测基准》5.4 检验的工具、性能要点及故障处理5.4.1 检测的工具万用表、电桥、耐压仪、游标、电机检测台等。5.4.2 对外观符合要求的电机:其引出线端子、接线应紧固,不可有松脱现象。5.4.3 三相电机应测量三相直流电阻,三相电阻应平衡;单相电机应测量主、副绕组的直流电阻。5.4.4 所有电机都应做耐压试验,考验绕组对机壳或相间的绝缘强度。5.4.5 所有电机都应做空载、堵转试验。其三相电流应平衡,其空载、堵转损耗应符合标准。5.4.6 检测时出现以下情况停止做下一步试验,应排除故障: 接线端子、接线螺帽未紧,三相直流电阻不平衡超过平均值?5,耐压试验时击穿、闪络,三相空载、堵转电流过大、过小、不平衡值超过 10,、损耗过大,电

直流电机效率测试和计算技巧

直流电机效率测试和计算方法 效率测试是所有电传动部件及系统重要检验项目,GB 755 旋转电机定额及性能标准中对各类电机设备效率检测方法进行了详细的介绍。旋转电机效率测试主要有直接测试法及损耗分析法,效率的直接测试方法是通过对直流电机输入输出功率的直接测试而求得效率的方式,下面本文对直流电机效率的直接测试相关试验方法及计算进行详细介绍。 一、直流电机输入功率和输出功率的测量 直接测定效率时,电动机的输入功率用电工仪表测量,输出功率的机械功率用测功机、转矩测量仪测量;发电机的输出功率用电工仪表测量,输入功率用测功机、转矩测量仪测量。 输入功率用电压乘电流来计算,试验电源为整流电源时要求采用真实读书瓦特表或指示电压、电流瞬时值乘积平均值的其他测量装置直接测取电枢回路输入功率,也可分别测量直流功率分量和交流功率分量然后求和。 测功机的功率,在与被试电机同样的转速下应不超过被试电机额定功率的三倍;转矩测量仪的标称转矩,应不超过被试电机额定转矩的三倍。测功机与被试电机之间应用弹性联轴器连接,连接应保证良好、同心。

二、直流电机效率直接测试方法 直流电机效率直接测试试验时,被试电机应在额定功率或额定转矩、额定电压及额定转速下运行至热稳定,读取输入或输出的电压、电流、功率、转速及转矩,并保存周围冷却空气温度,然后立即测定串励、并(他)励及电枢绕组的电阻,并将冷却空气温度换算至25℃。 三、直流电机效率直接测试相关计算 被试电动机的输出机械功率P2按照下式1计算: (1) 式中: TM——被试电动机输出转矩,N.m; nM——被试电动机转速,r/min。 被试电动机的效率ηM按照下式2计算: (2) 式中: P1——被试电动机输入功率,W。 被试发电机的输入机械功率P1(W)按下式3计算: (3) 式中: TG——被试发电机输入转矩,N.m;

电机检验标准

电机检验标准 1、外观要求: 1、1、整机装配完整,螺丝紧固,并有可靠得防腐措施,无污损、碰撞、裂痕等缺陷。 1、2、外壳电镀有良好得光泽,无锈蚀,铁心表面无明显锈蚀; 1、3、电机涂层应均匀,不应有刷痕、收缩、起泡、桔皮、起皱、流卦、针孔、浮色与渗色等缺陷。 1、4、电机铭牌标明项目齐全、正确;电机上有安全警告标志牌,安全标志牌正确可靠;电机上应有明显得红色旋转方向标志;上述标志粘贴牢固、字迹清楚不易磨灭。 铭牌标志包括以下内容: 1、4、1、制造商名或标记; 1、4、 2、产品型号; 1、4、3、额定电压与频率; 1、4、4、产品批号与日期。 1、5、定位孔位置正确,外壳与轴得结构尺寸符合图纸要求。 1、6、引线规格为18AWG1015塑胶线,引线颜色为红蓝白三色,红线为主线,蓝线为副线,白线为公共端,引线出线方向正确,线头剥线15mm。电机引线长短、颜色符合要求,标志完好,裸线不应有氧化。 1、7、接地标志检查:电机应有可靠得接地装置与接地线 2、电机运行状态检查: 2、1、电机应转动平稳、自如、无卡阻停滞等现象。 2、2、电机在额定频率、额定电压得空载电流与空载损耗应控制在某一数值范围内,该数值范围应能保证制造得电机性能符合相应得产品标准。 2、3、振动:通电30S感觉不麻手,振动值小于10、0mm/S。 2、电气参数:

2、1、主要电气参数在自制测试架上,接好电机引线,将开关打到对应挡,用数字转速表测其空载转速, 额定电压: 110V(110V型) 220V(220V型) 380V(380V型) 额定频率: 60Hz(110V型) 50Hz(220V型) 50Hz(380V型) 空载功率: 750W (110V型)(220V型)(380V型) 额定转速: 1380rpm±15%rpm 2、2、噪音:在安静得检测室内,用分贝检测仪在距离电机500mm处测其空载噪音,应小于70dB 2、3、绝缘强度:大于50MΩ/500VDC。 2、4、常温常压下,实际工作状态可连续运行3000小时以上。 2、5、空载温升:在额定电压与频率下,电机装机后空载运行四十分钟后,电机绕组温升小于70K。 2、6、负载温升:在额定电压与频率下,电机装机后负载运行三十分钟后,电机绕组温升小于75K。 3、检验规则 进厂检验按AQL抽样方案,质量水平0、65,检查水平Ⅱ,进行抽样检查。 电机得噪音与扭矩要求全检。

ZZGJK-II高压电机绕组绝缘在线监控仪使用说明书

ZZGJK-II型 高压电机绕组绝缘在线监控仪产品说明书 中国·合肥 合肥致臻电子科技有限公司

一、概述 GJK-Ⅱ型高压电机绕组绝缘在线监控仪克服现有功能单一的同类产品,能同时实现动态和静态两种状态监控(绝缘电阻和漏电电流监控)。是专门用于潜水高压电动机在停运或在线运行情况下的安全保护和测量对地绝缘电阻和漏电电流的仪表,便于运行人员根据绝缘电阻的变化采取措施,有效地防止事故的突然发生和扩大。对潜水泵机组进行全程(动态和静态)停运或在线运行绝缘电阻及泄漏电流进行综合保护监控。适用于3KV、6KV、10KV高压电机、高压电力不接地系统。 1、对高压电机的绕组在停机和运行情况下,对地施加间断或连续DC1500V电压,测量其 绝缘状况。 2、电机停机或作为备用情况下,监控仪始终监控其绝缘,发现问题及时闭锁电机启动回 路,不得投入运行。 3、将冷备用的高压电机作为热备用处理,免去启动电机前用兆欧表对电机进行绝缘测量, 随时在确保良好绝缘情况下启动高压电机。 4、监控仪在电机停机时测量绕组的对地绝缘电阻,电机启动投入运行后,10KV高压施 加到监控仪上,监控仪是在10KV在线情况下,继续产生DC1500V电压对系统(电机投入运行后,测到的绝缘是系统绝缘)进行绝缘测量,监控仪增加测量泄漏电流支路,根据系统的绝缘变化、绕组缺相及支路或设备的泄漏电流情况,立即判断出在线运行中绝缘下降的具体支路和设备。 5、监控仪对在线运行的设备进行绝缘测量时,其显示值包括电机绕组对地、电缆线导线、架空线对地、变压器绕组对地的总的对地绝缘值。可作为高压电力系统接地保护。其特征为:能观察、测量到绝缘变化过程。对事故的发生做到早发现、早预防、早处理。避免、杜绝事故的发生。 二、主要设计指标 1、绝缘电阻测量性能指标 名称技术指标 测量范围有效测量阻值范围:0-1999MΩ,超出1999 MΩ可持续显示直至溢 出,溢出时,数码管显示9999。 分辨力1MΩ 基本误差±(3%读数+2个字) 测量电压输出DC1500V(开路电压) 显示4位LED显示

电机检测标准

电机的检测标准 一、外观要求: 1.定位孔位置正确,外壳和轴的结构尺寸符合图纸要求。 2.引出线长120±5mm,引线规格为18AWG1015塑胶线,有UL认证,引线颜色为红蓝白三色,红线为主线,蓝线为副线,白线为公共端,引线出线方向正确,线头剥线15mm。 3.电机引线长短、颜色符合要求,标志完好,裸线不应有氧化。 4.整机装配完整,螺丝紧固,外壳电镀有良好的光泽,无锈蚀,铁心表面无明显锈蚀; 5.振动:小于2.5mm/S。 6.轴向窜动:小于0.25mm。 7.电机标志清晰,包装完整。铭牌标志包括以下内容: 1)、制造商名或标记; 2)、产品型号; 3)、额定电压和频率; 4)、产品批号和日期。 二、主要电气参数: 1.在自制测试架上,接好电机引线,将开关打到对应挡,用数字转速表测其空载转速,120V/60Hz电机转速为1720±3%转每分钟,230V/50Hz电机转速为1470±3%转每分钟。 2.额定电压: 120V(120V型) 230V(230V型) 额定频率: 60Hz(120V型) 50Hz(230V型) 空载功率: 40W (120V型) 45W (230V型) 空载电流: 0.55A(120V型) 0.35A(230V型) 额定电流: 0.75A(120V型) 0.45A(230V型) 额定输入功率:90W (120V型) 100W (230V型) 3.耐压试验:在1800V AC/0.5mA/1S下无击穿拉弧现象。 4.噪音:在安静的检测室内,用分贝检测仪在距离电机500mm处测其空载噪音,应小于47dB (与背景噪音差要大于10 dB)。 5.泄漏电流:小于0.5mA。 6.绝缘强度:大于2MΩ/500VDC。 7.低压启动电压值:48V(120V型),132V(230V)。 8.旋转方向:轴伸方向单向逆时针转动。 9.热保护器:SF152℃可恢复温控器,动作温度157±5%℃。 10. 在温度为40±2℃,相对湿度为90∽95%的恒温恒湿箱中试

电动机温升的基本测量方法

电动机温升的基本测量方法 电力作业人员都知道,电力设备在运行做工的过程中不可避免的要产生热能,进而产生无功功率等,电动机的运行也不例外,其中电动机的温升是判断电动机是否正常运行的一个重要的参考指标,那么电动机的温升具体是怎么测量的呢? 一,电动机温度热量的产生。 一台电机中的温度分布和热量流通情况十分复杂。各种损耗形成不同的热风损耗转化为热量后,将流过不同的材料,由电机外表面散发至外面。 主要的热源来自电机内部,即来自电流流过导体时产生的铜损耗,以及在铁芯内当磁通变化时所产生的铁损耗。轴承摩擦所产生的热,仅为局部的热源,对绕组和铁芯的温升影响不大。在电机内部,各点的温度是不均匀的。在发热量大而散热不易之处,例如在电枢的槽的底部温度为最高。 当电机开始运转后,由于热量不断产生,各部分温度将继续增加,直到热量的产生和散发达到乎衡为止。 二,电动机散热的基本方式。 1,电机的热量向外发散时主要依靠对流作用,其次为幅射作用。 因为电机的底座和电机所接触的空气都为不良导热体,由传导作用传热主要在电机内部进行。辐射作用的有效表面仅为电机各部分的

外表面。 2,对流作用又可区分为自然对流和强制对流两种。 自然对流作用:是由于和散热面相接触的热空气的上升,且其所逸出的空间由周围的空气的填补; 强制对流作用:是由待备的通风器,例如附装在机轴上的风扇,在冷却表面上形成气流。 旋转着的电枢本身也起着带动气流的作用。限制温升的有效方法是增强散热作用。 三,电动机温升的基本测量方法。 由于电机各部分的发热和散热过程比较复杂,影响的因素很多,所以对温升的计算通常只作近似的估算,在设计电机时,常以经验数据为依据。 测定电机各部分温度的方法,主要有下列四种方法: 1、温度计测量法。 此法用温度计直接测定温度,最为简便。但用温度计仅能接触到电机各部分的表面,所测得的仅为表面温度。用温度计无法测出电机内部的最高温度。 2、电阻测量法。 此法只能用以测定绕组的平均温度。原理: 在电机运转以前,我们先测得绕组的冷态电阻r1,即当绕组温度等于冷却介质温度t1时的电阻。设电机运转以后绕组的湿度升高至t2,绕组的电阻便增加至r2。加温度用摄氏来量度,则对铜线绕组

高压电机绝缘监测装置及其应用分析

高压电机绝缘监测装置及其应用分析 高压电机涉及诸多行业,在很多领域都有较普遍的应用。它是能源生产和使用中起到关键作用的装置,如果发生事故,将造成不可估量的损失。由于高压电机本身存在很多问题,诸如电机的定子绕组绝老化、绝缘的电气强度较低等,这样就会使电机的绝缘性能发生变化,导致故障或者事故。因此,需要发明一种高压电机绝缘监测装置,通过该装置,监测和分析高压电机的绝缘性能变化,使电机能保持正常工作状态,发生故障时可及时修理维护,减少不必要的经济损失。 标签:高压电机;绝缘性;监测;应用 1 前言 高压电机在很多行业领域得到了普遍的应用,其中包括电力、石油化工、煤炭、冶金等行业。它会受老化因子的影响而发生故障,随时监测并分析高压电机的绝缘状态是必要的也是比较重要的工作,对电机进行老化或者绝缘性能的鉴定,可以反映电机的工作状态。对于电机的绝缘性能状态,一方面我们要采取行之有效的措施防止高压电机的老化和绝缘性能的下降,另一方面,我们需要采集高压电机老化和绝缘性能的数据。文章先分析电机绝缘下降的原因,再对现在的绝缘监测技术手段进行简要的描述,然后提出一个高压电机绝缘监测装置的方案,最后简要说明其应用。 2 高压电机绝缘监测装置的提出 2.1 高压电机绝缘老化原因 高压电机的绝缘老化主要有四个原因,第一个原因是由于工作电压引起的电力设备绝缘的老化,如果工作电压过大或是在过电压情况下,绝缘材料会受到部分损坏,如此反复,损害过大,可能会导致击穿;第二个原因是由于工作环境或是散热不好而导致的绝缘老化,在高温作用时,绝缘性能会明显下降,电机材料弹性丧失,在热胀冷缩的作用下,绝缘材料发生破裂;第三个原因是由于高压电机的工作环境可能存在酸、氮氧化合物、水等化学物质,在这些物质的作用下,失去绝缘材料的绝缘性能或者是加速老化,比如酸性物质,可能使老化加快;第四个原因是由于机械力造成的老化,比如振动、撞击、重力等都可能会使绝缘材料老化,这是属于物理原因,比如高压电机在工作时会产生很剧烈的振动,绝缘材料在振动的作用下,温度升高,弹性度下降,老化加速,绝缘性能自然也会随之下降。 2.2 高压电机绝缘性能监测现有技术 高压电机工作环境比较恶劣,噪声大而且嘈杂,温度高,给监测技术带来很大的不便。现有的高压电机绝缘眼监测技术有很多种,本文只简单的说明几种。其中是通过专用的设备进行检测,这必须要由专人来负责进行测试,而且这种设

电机修理标准

电机修理标准 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

一、交流电动机小修质量要求 1、条件允许的情况下,分解前运转、检查、记录电动机震动、异响、运行电流等;检查风帽、风叶、接线盒、端盖、电机底角、联轴节(皮带轮)、散热片、连接法兰等有无损坏。不良修理或更换。 2、拆线时,线端做好清晰、长久标记,避免恢复接线时接错。电源端各线分别做好绝缘处理。 3、拆装底角螺栓时、注意底角垫片做好标记、各角垫片不得混放、遗失。更换螺栓时选用同规格、材质、强度的螺栓。定位销不得遗失、损坏、电机固定后回装到位。 4、拆、装前后检查、记录绕组绝缘(含线绕转子、制动器线圈),转子轴伸端径向跳动量及轴头、键槽、键有无异常情况,必要时修复。 5、分解测量轴承室、轴承台、轴承、联轴器、轴等各装配尺寸。尺寸超标刷镀、镶套或换新。 6、检查电机引出线,将破损处包扎处理。检查接线柱有无损坏。检查绕组有无烧焦、过热现象。定、转子有无扫膛现象。 7、绕线型转子检查滑环、连接片等接触情况,要保证良好接触。鼠笼型转子外观检查有无明显断条现象。 8、带制动器电机,检查摩擦板、摩擦片有无变形、龟裂、磨痕、铆接或粘接部分有无松动,弹簧弹性,齿轮有无磨损、刹车间隙、刹车手动打开情况,。 7、清洗电机内部、及各零部件、烘干、绕组喷耐弧磁漆。 8、检查轴承,必要时换新。轴承适量添加甘油,有轴向窜量要求的电机安装轴承弹性垫圈,轴伸端密封圈不良的更换密封圈。 9、个别螺栓孔绞丝、更换部分固紧螺栓、螺帽,各紧固件无松动,电机外壳涂漆一度(不除去原有油漆)。 10、车间组装(有密封要求的做密封处理)后,转子要转动灵活、无卡点。空载运行无异响及震动,记录空载电流。确认制动器吸合、维持情况。 11、电机回装,按要求校中轴线(弹性连接检查弹性胶块),恢复电机接线(要压接线鼻)、接地线、定位销、护罩、保证接线盒密封。 12、实船运行试验,检查震动、异响等,记录温升、运行电流。(车间组装到实船运行时间间隔较长或高湿度情况下,运行前测量绝缘情况。 13、带制动器电机调整刹车间隙,进行吊重试验。 二、交流电动机中修、大修质量要求 1、本文中修指电机在未更换绕圈条件下,清洗、烘干、浸绝缘漆一度。大修指更换部分或全部绕组后,烘干、浸绝缘漆。 2、中修及大修电动机除满足小修质量要求外,对铁质件要除锈,涂防锈漆一遍。电机外壳除锈,涂防锈漆两遍。

直流电机温度测量方法

正常运行时会发热,使直流电动机温度升高,但不应超出允许的限度。如果直流电动机负载过大,使用环境温度过高, 通风不畅或运行中发生故障,就会使其温度超出允许限度,导致绕组过热烧毁,因此直流电动机温度的高低是反映直流电动机运行的主要标志,在运行中经常检查。判断直流电动机是否过热,可以用以下方法: (1)凭手的感觉:如果以手接触外壳,没有烫手的感觉,说明直流电动机温度正常;如果手放上去烫得马上缩回来,说明直流电动机已经过热。 (2)在直流电动机外壳上滴2-3滴水,如果只冒热气没有声音,则说明直流电动机没有过热,如果水滴急剧汽化同时伴有"咝咝"声,说明直流电动机已经过热。 (3)判别直流电动机是否过热的准确方法还是用温度计测量。 发现直流电动机过热应该立即停车检查,等查明原因,排除故障后再行使用。 3.3.2 监视直流电动机的电流 一般容量较大的直流电动机应装设电流表,随时对其电流进行监视。若电流大小或三相电流不平衡超过了允许值。应立即停车检查。容量较小的直流电动机一般不装电流表,但也经常用钳形表测量。 3.3.3 监视直流电动机的电压 直流电动机的电源上最好装设一只电压表和转换开关,以便对其三相电源、压进行监视。直流电动机的电源电压过高、过低或三相电压不平衡,特别是三相电源缺相,都会带来不良后果。如发现这种情况应立即停车,待查明原因,排除故障后再使用。 3.3.4 注意直流电动机的振动、响声和气味 直流电动机正常运行时,应平稳、轻快、无异常气味和响声。若发生剧烈振动,噪音和焦臭气味,应停车进行检查修理。 3.3.5 注意传动装置的检查 直流电动机运行时要随时注意查看皮带轮或联轴器有无松动,传动皮带是否有过紧、过松的现象等,如果有,应停车上紧或进行调整。 3.3.6 注意轴承的工作情况 直流电动机运行中应注意轴承声响和发热情况。若轴承声音不正常或过热,应检查润滑情况是否良好和有无磨损。 3.3.7 注意交流直流电动机的滑环或直流直流电动机的换向器火花 直流电动机运行中,电刷与换向器或滑环之间难免出现火花。如果所发生的火花大于某一规定限度,尤其是出现放电性的红色电弧火花时,将产生破坏作用,必须及时加以纠正

电机温升测试

电机温升试验 电机中绝缘材料的寿命与运行温度有密切的关系,为保证电机安全、合理的使用,需要监视与测量电机绕组、铁心等其他部分的温度。按国家标准规定,不通绝缘等级的电机绕组有不同的允许温升,如下表所示 若超过规定值,如对B级绝缘的电机,温升每增加10度,电机的寿命将降低一半。因此电机的温升试验,准确的测取个部件的温度,对改进电机的设计和制造工艺,提高电机的质量是非常重要的对电机绕组和其他各部分的温度测量,目前虽已采用不少先进技术,仍可归纳为电阻法、温度计法、埋置检温计法三种基本方法。 一、电阻法 在一定的温度范围内,电机绕组的电阻值将随着温度的上升而相应的增加,而且其阻值与温度之间存在着一定的函数关系。根据这一原理,可以通过测定电机绕组的电阻来确定其温度,故称电阻测量法。 当绕组温度在-50~150度范围时,其温升有下式确定

Δθ=(R f-R0)(k+θ0)/R0+θ0-θf 式中R0、θ0分别为绕组的实际冷态电阻和环境温度;R f、θf分别为绕组热态式电阻和环境温度;k为常数,对铜绕组为235,对铝绕组225 如果不能采用带电测量装置,可采用较先进的快捷、准确、数字显示的各种毫欧表或微欧计等直流电阻测量仪。其基本工作原理是采用高准确度、高稳定度的恒流电源所产生的直流电流通到被测电阻上,则电阻两端的电压降将严格的按照电阻值变化 二、温度计法 对电机中不能采用电阻法测量的部位,如定子铁心,轴承及冷却介质等,可采用温度计法来测量。 温度计法是用温度计贴附在可接触的表面来测量温度,所测得的温度是被测点的表面温度。为了减小误差,从被测点到温度计的热传导尽可能的良好,将温度计球面部分用绝热材料覆盖,以免周围冷却介质的影响。温度计除包括水银、酒精等膨胀式温度计外,也包括半导体温度计及非埋置的热电耦或电阻温度计。在电机中存在交变磁场的部分,不可采用水银温度计,因为交变磁场在水银中产生涡流会发热,以致影响测量的准确性。 三、埋置检温计法 埋置检温计法是讲电阻检温计、热电耦或半导体热敏元件埋植于电机内部不能触及的部位,如定子绕组的槽部和铁心内等,经连接导线引到电机外的二次仪表,从而测定温度值。在测量时应控制测量

高压电机绝缘测量标准

测量定子绕组绝缘电阻和吸收比应符合下列规定 测量定子绕组绝缘电阻和吸收比应符合下列规定: 1 各相绝缘电阻的不平衡系数不应大于 2; 2 吸收比:对沥青浸胶及烘卷云母绝缘不应小于1.3;对环氧粉云母绝缘不应小于1.6。对于容量200MW及以上机组应测量极化指数,极化指数不应小于2.0。 注:1进行交流耐压试验前,电机绕组的绝缘应满足本条的要求; 2 测量水内冷发电机定子绕组绝缘电阻,应在消除剩水影响的情况下进行; 3 对于汇水管死接地的电机应在无水情况下进行;对汇水管非死接地的电机,应分别测量绕组及汇水管绝缘电阻,绕组绝缘电阻测量时应采用屏蔽法消除水的影响。测量结果应符合制造厂的规定; 4 交流耐压试验合格的电机,当其绝缘电阻折算至运行温度后(环氧粉云母绝缘的电机在常温下)不低于其额定电压1MΩ/KV 时,可不经干燥投入运行。但在投运前不应再拆开端盖进行内部作业。 1.0.3 测量定子绕组的直流电阻,应符合下列规定: 1 直流电阻应在冷状态下测量,测量时绕组表面温度与周围空气温度之差应在±3℃的范围内; 2 各相或各分支绕组的直流电阻,在校正了由于引线长度不同而引起的误差后,相互间差别不应超过其最小值的2%;与产品出厂时测得的数值换算至同温度下的数值比较,其相对变化也不应大于2%。 1.0.4定子绕组直流耐压试验和泄漏电流测量,应符合下列规定: 1 试验电压为电机额定电压的3 倍; 2 试验电压按每级 0.5 倍额定电压分阶段升高,每阶段停留1min,并记录泄漏电流;在规定的试验电压下,泄漏电流应符合下列规定: 1)各相泄漏电流的差别不应大于最小值的100%,当最大泄漏电流在 20μA 以下,根据绝缘电阻值和交流耐压试验结果综合判断为良好时,各相间差值可不考虑; 2)泄漏电流不应随时间延长而增大; 当不符合上述规定之一时,应找出原因,并将其消除。 3)泄漏电流随电压不成比例地显著增长时,应及时分析。 3 氢冷电机必须在充氢前或排氢后且含氢量在 3% 以下时进行试验,严禁在置换氢过程中进行试验; 4 水内冷电机试验时,宜采用低压屏蔽法;对于汇水管死接地的电机,现场可不进行该项试验。 1.0.5 定子绕组交流耐压试验所采用的电压,应符合表1.0.1 的规定。现场组装的水轮发电机定子绕组工艺过程中的绝缘交流耐压试验,应按现行国家标准《水轮发电机组安装技术规范》GB/T 8564的有关规定进行。水内冷电机在通水情况下进行试验,水质应合格;氢冷电机必须在充氢前或排氢后且含氢量在 3% 以下时进行试验,严禁在置换氢过程中进行。大容量发电机交流耐压试验,当工频交流耐压试验设备不能满足要求时,可采用谐振耐压代替。表1.0.1定子绕组交流耐压试验电压 容量(kW) 额定电压(V) 试验电压(V) 10000以下 36 以上(1000+2Un)×0.8

电机检验标准

1.0 目的规范电机检验作业,确保电机各项性能以质量达到标准要求, 杜绝不合格产品进仓、出厂。 1.1 总装好的电动机要进行试验,主要验证电动机性能是否符合有关标准和 技术条件的要求;设计和制造上是否存在影响运行的各种缺陷;另外, 通过对试验结果的分析,从中找出改进设计和工艺、提高产品质量的途 径。 2.0 范围适用于公司的电机检验作业。 3.0 定义/参考 3.1 《过程和产品的测量和控制程序》 3.2 《不合格品控制程序》 4.0 作业流程 生产车间(产品送检)品管课(检验)

检测结果评审 检验结果填报《检验报告单》 PQC加强监督控制判定 合格入库 返工处理品管课(异常反馈单)不合格 5.0 检验项目生产部门按生产工单号进行生产,生产完工的产品置于 ‘待检’区,并通知品管课检验员进行检测。 5.1 检验实施品管课检验员接到通知后按照生产工单号,即前往‘待检’区, 核对产品的品名、型号规格、数量、批号等。了解任务期限,准备好记录表格和检测工具,随后进行检验。 5.2 检验方式检验员对所有组装的电机全检。 5.3 检验程序、方法与要求 5.3.1 检验员根据生产部门的生产工单单号进行检验工作。 5.3.2 产品检验程序和方法、要求见《电机检测基准》。 5.4 检验的工具、性能要点及故障处理 5.4.1 检测的工具万用表、电桥、耐压仪、游标、电机检测台等。 5.4.2 对外观符合要求的电机:其引出线端子、接线应紧固,不可有松脱现 象。

5.4.3 三相电机应测量三相直流电阻,三相电阻应平衡;单相电机应测量主、 副绕组的直流电阻。 5.4.4 所有电机都应做耐压试验,考验绕组对机壳或相间的绝缘强度。 5.4.5 所有电机都应做空载、堵转试验。其三相电流应平衡,其空载、堵转损耗应符 合标准。 5.4.6 检测时出现以下情况停止做下一步试验,应排除故障:接线端子、 接线螺帽未紧,三相直流电阻不平衡超过平均值±5%,耐压试验时击 穿、闪络,三相空载、堵转电流过大、过小、不平衡值超过10%、损 耗过大,电机异常发热,异味,振动大,异响等。并做好相关记录。 5.5 检验判定检验结果依据电机检测基准进行判定。 5.6 不合格品依据《不合格控制程序》规定处理。 5.7 检验记录: 5.7.1 检测结果记录于《电机检验报告单》,经检验员签字盖章,由品管课 录入ERP系统进行产品核销并保留存档。 5.7.2 检测判定不合格时,检验员应及时对不合格电机做出标识,并及时通 知生产部门,生产部门负责返修措施。如发现批量异常时,检验员应 签发《质量异常反馈单》给生产部门及品管主管,并责令停止生产。 品管课主管应会同生产部门追查原因并采取纠正措施,记录于《质量 异常反馈单》。 5.7.3 返工后的产品须重新提交品管检验员复检,只有经最终检验判定合格 的产品方可入库。 5.7.4 周品质分析品管课应于每周一统计上一周全部检测的品质状况, 并就最终检测中发现的品质异常进行分析,形成书面报告。 6.0 应用表单 6.1 《电机检验报告单》 6.2 《质量异常反馈单》

直流电机试验方法

直流电机试验方法 GB1311-77 一、适用范围 1.本标准适用于一般用途的直流电机。对有特殊要求的直流电机,凡有本标准未规定的试验方法,应在该类型电机技术条件中作补充规定。 2.形式试验或检查试验应当进行的基础上按GB 755-65《电机基本技术要求》及该类型电机技术条件的规定。 二、试验前的准备 3.测量仪器的选择 (1)试验时应当采用不低于0.5级精度的电气测量仪器(兆欧表除外),其他测量仪器应相当于1级精度。 (2)仪器的选择尽可能使所测数值在20~95%仪器测量范围以内。 4.测量电枢回路电压时,电压表应直接接在绕组出线端上。 5.一般检查 试验前应检查电机的装配质量和轴承运行情况。在不影响电气性能试验质量后,方可进行本标准中的各项试验。 6.中性线的测定 中性线可按下列方法之一测定: (1)感应法 a.电枢静止,励磁他激,将毫伏表接在相邻的两组电刷上,并交替地接通和断开电机的励磁电流(图1)。逐步移动电刷架的位置,在每一个不同位置上测量电枢绕组的感应电势。当感应电势最接近零时,电刷所在的位置即可认为是中性线。

毫伏表的计数建议以厉磁电流断开时的读数为准。 图1 国家标准计量局发布 1977年12月1日实施 中华人民共和国第一机械工业部提出上海电器科学家研究所等起草 b.电枢静止,励磁他激,将毫伏表引线沿换向器圆周移动,交替地接通和断开电机的励磁电流。当每极换向片数是整数或不是整数时,均应在相互间距离等于或最接近于一极距的两片换向片上测量感应电势。 正负感应电势各量取几点读数,然后如图2所示的作图法求出中性线。 换向片数 图2 (2)正反转发电机法

高压的10KV交流电动机试验项目

交流电动机试验项目: (1)绕组的绝缘电阻和吸收比测量; (2)绕组的直流电阻测量; (3)定子绕组直流耐压试验和泄漏电流测量; (4)定子绕组的交流耐压试验; (5)绕组式电动机转子绕组的交流耐压试验; (6)同步电动机转子绕组的交流耐压试验; (7)可变电阻器或起动电阻器的直流电阻测量; (8)可变电阻器与同步电动机灭磁电阻的交流耐压试验;

1.高压电动机 1.1 定子绕组的绝缘电阻和吸收比 1.1.1 此项目在小修时和大修时进行。 1.1.2 拆开定子三相出线与电缆引线连接螺栓及定子中性点短接排(中性点未引出的除外)。小修时定子绕组可与其所连接的电缆一起测量。 1.1.3 采用2500V兆欧表,分别测量每相对其它相及外壳的绝缘电阻(中性点未引出的只测量绕组对外壳的绝缘电阻),绝缘电阻不应低于10MΩ。500kW及以上的应测量吸收比,吸收比不小于1.3。 1.1.4 测量完毕,应充分放电。

1.2 定子绕组的直流电阻测量 1.2.1 此项目在大修时或必要时进行。 1.2.2 保持定子三相出线与电缆引线成拆开状,转子未抽出的,应保持转子静止不动。 1.2.3 在定子铁芯上放置温度计,测量试验时温度。 1.2.4 采用双臂电桥或直阻电阻测试仪,测量每相直流电阻,中性点未引出的测量线间直流电阻。 1.2.5 双臂电桥四根引线应等长,并牢靠地连在被测相出线上。 1.2.6 双臂电桥揿下B键充电后,应等待一定的时间,待充电完毕后,方可进行细致的测量。 1.2.7 各相测量完毕后,进行计算比较,各相绕组直阻值的相互差别不应超过最小值的2%,中性点未引出者,可测线间电阻,其相互差别不应超过1%。 1.2.8 记录下电动机定子绕组的温度,并对直阻值进行温度换算,与历次试验结果相比较应无明显的变化。 1.3 定子绕组泄漏电流和直流耐压试验 1.3.1 此项目对于500kW以上的高压电动机在大修时或更换绕组后进行。试验前应清理干净定子端子及铁芯。 1.3.2 有中性点引出者,应拆开中性点接线,无中性点引出者,三相绕组出线应短接加压。 1.3.3 电动机外壳应可靠接地。 1.3.4 其它检修人员停止作业,撤离现场,被试电动机周围应设置安全围栏,并派专业人员监护。 1.3.5 可采用直流高压发生器进行直流加压。 1.3.6 将加压屏蔽线悬空,空试试验设备的泄漏电流,加压至直流25kV,读空试泄漏值。 1.3.7 降压至零,并放电,将加压屏蔽线接于被试电动机定子绕组出线上。 1.3.8 合上直流发生器电源,开始缓慢升压,并随时注意泄漏电流的变化,将直流电压加至25kV时,开始计时,1分钟时读取泄漏电流值,然后降压至零。 1.3.9 断开试验电源,并用放电棒充分放电。 1.3.10 所读取的泄漏电流值减去空试泄漏值,即为定子绕组泄漏值,其值相间差别一般不大于最小值的100%(泄漏电流小于20 uA以下不作要求)。中性点未引出者与以前测量值相比应无明显变化。 1.4 定子绕组的交流耐压试验 1.4.1 此项目在大修时或更换绕组后进行,试验前定子绕组端部,槽口及铁芯皆应清理干净。 1.4.2 试验前测量定子绕组每相对地的绝缘电阻应合格。 1.4.3 按图1-6进行接线。 SB—试验变压 器 T—自耦调 压器 V1—高 压测压表 图1-6 电动 机交流耐压试 验原理接线图 1.4.4 试验现

电机检验标准

电机检验标准 1、外观要求: 1.1、整机装配完整,螺丝紧固,并有可靠的防腐措施,无污损、碰撞、裂痕等缺陷。 1.2、外壳电镀有良好的光泽,无锈蚀,铁心表面无明显锈蚀; 1.3、电机涂层应均匀,不应有刷痕、收缩、起泡、桔皮、起皱、流卦、针孔、浮色和渗色等缺陷。 1.4、电机铭牌标明项目齐全、正确;电机上有安全警告标志牌,安全标志牌正确可靠;电机上应有明显的红色旋转方向标志;上述标志粘贴牢固、字迹清楚不易磨灭。 铭牌标志包括以下内容: 1.4.1、制造商名或标记; 1.4.2、产品型号; 1.4.3、额定电压和频率; 1.4.4、产品批号和日期。 1.5、定位孔位置正确,外壳和轴的结构尺寸符合图纸要求。 1.6、引线规格为18AWG1015塑胶线,引线颜色为红蓝白三色,红线为主线,蓝线为副线,白线为公共端,引线出线方向正确,线头剥线15mm。电机引线长短、颜色符合要求,标志完好,裸线不应有氧化。 1.7、接地标志检查:电机应有可靠的接地装置和接地线 2、电机运行状态检查: 2.1、电机应转动平稳、自如、无卡阻停滞等现象。 2.2、电机在额定频率、额定电压的空载电流和空载损耗应控制在某一数值范围内,该数值范围应能保证制造的电机性能符合相应的产品标准。 2.3、振动:通电30S感觉不麻手,振动值小于10.0mm/S。 2、电气参数:

2.1、主要电气参数在自制测试架上,接好电机引线,将开关打到对应挡,用数字转速表测其空载转速, 额定电压: 110V(110V型) 220V(220V型) 380V(380V型) 额定频率: 60Hz(110V型) 50Hz(220V型) 50Hz(380V型) 空载功率: 750W (110V型)(220V型)(380V型) 额定转速: 1380rpm±15%rpm 2.2、噪音:在安静的检测室内,用分贝检测仪在距离电机500mm处测其空载噪音,应小于70dB 2.3、绝缘强度:大于50MΩ/500VDC。 2.4、常温常压下,实际工作状态可连续运行3000小时以上。 2.5、空载温升:在额定电压和频率下,电机装机后空载运行四十分钟后,电机绕组温升小于70K。 2.6、负载温升:在额定电压和频率下,电机装机后负载运行三十分钟后,电机绕组温升小于75K。 3、检验规则 进厂检验按AQL抽样方案,质量水平0.65,检查水平Ⅱ,进行抽样检查。 电机的噪音与扭矩要求全检。

相关主题
文本预览
相关文档 最新文档