当前位置:文档之家› 空气清净技术之原理与特性介绍

空气清净技术之原理与特性介绍

空气清净技术之原理与特性介绍
空气清净技术之原理与特性介绍

【特稿】洪劍長撰

空氣清淨技術之原理與特性介紹

一、引言

空氣無所不在,看不見、摸不著,卻帶有許多肉眼看不到的微細物質,隨著呼吸,無時不刻進出我們的身體。最近嚴重急性呼吸道症候群(SARS)疫情蔓延,口罩需求量突增,市場上包括空氣清淨機等健康訴求之產品呈現熱賣景況。國人開始更加重視居住環境之維護,包括個人污染防護、細菌病毒等病原之去除、感染控制等問題受到大家關切,體認到環境清淨與健康之息息相關。

室內空氣品質問題一直是近二十年來國際非常重視的議題,從早期的室外空氣污染和香煙二手煙問題,到近來則更加重視室內微生物如細菌和病毒等對健康的影響。產業界也注意到這樣的一個發展方向,例如空調機無不強調空氣淨化的功能,空氣清淨機的普及率也呈現穩定的增加。

未來,空氣清淨將是家電、空調、汽車產業提升產品附加價值之著力點;相關應用也包括醫療場所、大眾運輸、會議辦公等公共環境之衛生維護;以及半導體、生技、光電等高科技產業製程環境潔淨與品質控管。空氣清淨技術之發展,對於今後產業發展與生活品質提升,有著不可忽視之效益。

二、室內空氣污染

近年來科學研究顯示,高工業化城市的居家和辦公大樓室內空氣比室外空氣遭受更嚴重的污染。室內空氣中通常帶有一些我們不要的污染物,如粉塵、微粒物、化學物質、甚至氡等,這些污染物有時對人體是有害的。現代人生活型態有90﹪的時間待於室內,因此暴露於室內污染的空氣比暴露於污染的外氣有更大的健康危機。醫學研究將各種過敏症、氣喘、支氣管炎、心臟病、癌症等疾病的發生與室內空氣品質關聯在一起。

室內空氣污染物大致可分為三類:微粒物(particles),氣態污染物(gaseous pollutants),以及氡和氡的衍生物。

微粒物是重量極輕,可以懸浮在空氣中的微小固體或液體物質,其大小是以微米(μm)作單位,一微米相當於10-6公尺。粒徑大於10μm 的粒子才可被肉眼所看到(圖1)。

粒徑10μm 以下的粉塵會於氣管及支氣管內沉積,因此0.01 ~ 10μm微粒是造成人體呼吸機能阻礙的主要原因。1~5μm 大小的粒子會殘留在鼻部,2.5~5μm 的粒子沉積於支氣管,2.5μm 以下則沉積於肺泡區中。細小而不可見的微粒,可進入呼吸系統,深入肺臟內部長期停留,引起人體之急慢性反應;較大的微粒如霉、花粉、動物皮屑、灰塵等過敏原,雖然較不會深入人體,但會引起過敏反應。

在室內環境中由於濕氣和灰塵的存在,於某些情況下,可能造成微生物的成長繁殖進而造成室內空氣品質不良。室內微生物經由呼吸道進入人體時,將對健康造成威脅。其所導致的疾病大都屬於呼吸器官方面的疾病。許多研究發現,呼吸系統方面的疾病與空氣中真菌的存在有極大的關聯性,而台灣的溼熱型氣候終年相對溼度大於70﹪,相當適於真菌生長,於室內常可發現其存在的蹤跡。

氣態污染物包括燃燒廢氣與各種有機化學氣體。燃燒廢氣可能來自爐具、抽煙、汽車廢氣等,成份包含一氧化碳、二氧化氮等氣體污染物。有機化學氣體可能來自抽煙、建材、家俱、油漆、接著劑、溶劑、清潔劑、衛生用品、殺蟲劑等。氣態污染物可能刺激人體眼睛、呼吸道,引起過敏,造成呼吸、肝、免疫、心臟血管、生殖、神經等系統之症狀或致癌。

氡和衍生物是放射性污染物,可能來自天然岩石、土壤、地下水、天然氣、建材等,有導致肺癌之潛在可能性。氡本身是氣體,會產生微粒形式衍生物,有些附著於更大粒子。氡衍生物可沉積於肺臟,此是氡所以造成健康危害的主要原因。台灣地區之地質含氡量較少,有關於氡污染造成人體危害的例子很少。

三、控制室內空氣污染的方法

控制室內空氣污染的方法有污染源控制、通風換氣和空氣清淨。

污染控制:是去除污染源或降低污染產生量,此為最有效的方法。例如石棉污染源以密封處理;燃燒器作適當調整以減少廢氣釋放等。然而,並非所有污染物都可以被找出而加以去除或控制。

通風換氣:即引入外氣至室內。開窗、開門,啟動廚房浴室之排氣風機、或使用通風系統等。但藉由通風方式降低空氣污染,有實際上的限制,因為外氣的空調成本可能很高,且外氣本身也可能含有污染物。

空氣清淨:當污染控制與通風換氣未能使污染物濃度達到可接受標準時,使用空氣清淨裝置可使污染物濃度再降低。但我們不可預期全部室內空氣污染物都可以由空氣清淨裝置去除。

工程設計上,不論室內空氣品質是否已達到可接受程度,通風系統多會依照使用場所與合理成本,裝設不同等級空氣清淨裝置,以追求更高品質的健康舒適居住空間。另一方面,通風換氣與污染源控制之效果有一定程度之限制,若要達到更高等級的空氣品質要求,如半導體無塵室、防止空氣過敏原或空氣傳染控制等,仍有賴空氣清淨方法以確保達到空氣品質控制的目標。本文以下特就各種空氣清淨技術之原理與方法作進一步介紹與說明。

四、空氣清淨方法

空氣清淨方法可分為機械式空氣過濾、靜電式空氣清淨與離子產生器三種。空氣清淨機可以是以上三種型式的結合,成為複合機種。另外,有些空氣清淨機具有吸附劑或化學反應劑,可去除空氣中的氣態污染物。

一般的家用空氣清淨機通常做成移動式獨立機台(portable unit) (圖2)。由濾網、風扇、機體與外殼組成。空氣由格柵面板進入機內,通過濾網去除污染,處理過的潔淨空氣由風扇驅動由出風口離開機體,送入室內,對空間循環清淨。

對於不同場合或不同污染物,空氣清淨機效果有差異。纖維濾網、高效率濾網、靜電濾網、負離子、靜電集塵等--用於處理固體微粒;活性碳、光觸媒等--用於除臭;茶濾網、光觸媒、臭氧等---用於殺菌。我們可以針對處理之目標污染物而將濾網組合以增加效果,目前市場上對塵粒的去除技術最為多樣和成熟,一般空氣清淨機均具備這項功能。國產清淨機普遍採用普通濾網、活性碳與負離子之組合。

平板濾網通常由粗玻璃纖維、動物毛髮、植物纖維、或塗佈黏性物質(微粒物的附著劑)的合成纖維以低密度填充,或由作成裂縫的鋁箔組成。平板濾網可以有效捕集大尺寸微粒,但僅能除去少部份可進入呼吸系統的微粒子。摺疊式或延伸表面濾網之構造使過濾面積增大,允許使用較細纖維與增加填充密度而不會降低風量,對於可進入呼吸系統的微粒子,其捕集效率比平板濾網高。當濾網密度越高越厚,則清淨效果越好,但空氣通過之阻力會增加。

4.1高效率濾網

機械式濾網主要功能為清除固體微粒,作用原理是以纖維間之孔隙及表面絨毛阻擋污染粒子通過。根據濾網效率的高低,可將機械式濾網分類為普通濾網、高效率濾網及超效率濾網。檢驗濾網對0.3μm粒子通過率,若被濾除的效率超過99.97﹪才可稱為高效率濾網。常用的組合是初級濾網加上高效率濾網,初級濾網用於過濾較大灰塵,而細小灰塵則由高效率濾網清除。

高效率濾網(High Efficiency Particle Arrest, 簡寫HEPA)發展的緣由為早期針對原子研究時,用以清除空氣中受輻射污染的微粒物,以保護研究人員的安全。它是由非常細小的玻璃纖維交織而成,形成類似濾紙的空氣過濾網,通常有多層的皺摺以擴大表面積增加微粒污染物的捕捉效能(圖3)。

HEPA濾塵原理可細分為粒子撞擊(Impaction)、攔截(Interception)、與熱運動(Brownian Motion,布朗運動)三部分。

HEPA濾網之粒子撞擊集塵作用是因較重之灰塵慣性大,運動路徑不會馬上隨著流線而變化,結果直接撞擊纖維而黏附於其上;粒子攔截集塵作用則是灰塵沿著最靠近纖維之流線運動,結果與纖維表面擦撞,因靜電力或表面的吸引力而黏附其上(圖5)。

粒子撞擊集塵之效率受許多因素影響,粒徑越大、密度越高之粒子其重量越重,越有足夠之慣性可脫離流線而撞擊纖維。濾網越厚則粒子被捕捉之次數增加;濾網面速越大,則粒子動能與慣性越大;纖維間之間距越小或纖維越粗,則撞擊之機率增加,但空氣阻力增加。

就粒子攔截集塵而言,纖維與粒子間之結合力量有二種:一種是分子間的吸引力(凡得瓦而力Van der waals forces),另外一種是氣流經過纖維時使纖維帶靜電,而空氣中之粒子則帶相反電性之電荷,此情況下使得粒子更易被纖維吸引。但另一方面,氣流經過濾網時,產生之氣流拉力會使被捕捉的粒子再次脫離;而外界的振動也會使粒子脫離纖維。

HEPA濾網之粒子熱運動集塵作用是:當灰塵微粒大小接近分子大小時,其運動軌跡由熱運動所支配,運動路徑成不規則狀,當其撞上纖維時則黏附其上(圖6)。此部份造成之集塵效果隨粒徑越小而效果越明顯。

HEPA濾塵效率為以上三部份個別過濾效率累加而得,粒徑越大粒子撞擊效應越強;粒徑越小,熱運動效應越強,將個別效率累加成合效率將發現,效率的最低點落於0.3μm,這就是濾網測試多是針對0.3μm粒子之原因。

4.2靜電集塵

是利用電場捕集帶電粒子。通常是靜電集塵器(electrostatic precipitator)或靜電濾網(Electret filter)。靜電集塵器是以排列之帶電平板捕集微粒物;靜電濾網是帶電介質濾網(charged-media filters)纖維捕集微粒物。使用靜電集塵器與靜電濾網時,大都特意先將空氣微粒物離子化(使帶電荷),以得到更高捕集效率。

靜電集塵器作用原理是利用電荷正負相吸原理,當灰塵通過離子化器(ionizer)時,使灰塵帶電,然後再以相反電性之收集板聚集灰塵(圖7)。靜電集塵器一般設計為使用12kv離子化器使灰塵帶正電,再以6kv之收集板將灰塵收集,收集板之板距及大小,使電壓足以收集灰塵但不產生臭氧。臭氧為一相當不穩定之有毒氣體,離子化器之適當設計及維修可降低臭氧產生。

靜電集塵器一般會搭配前置濾網使用,先過濾大顆粒子且使氣流均勻,避免收集板發生短路及產生電弧,電弧會造成噪音及臭氧。

氣流中較大之粒子其慣性較大,通過收集板電場之時間不夠長,而不能被收集於收集板上,而極小之粒子可能被氣體分子撞擊而形成阻力。氣流通過收集板之速度越慢,則收集完成之機率越高,靜電集塵器須使氣流均勻通過,以獲得最高效率。若提高離子化器與收集板之伏特數,則可能產生過多臭氧,減少伏特數則降低效率。收集板間距越小則灰塵至收集板之距離縮小,收集效率增加。但間距小,將使清潔維修困難,且易有短路發生。

4.3靜電濾網

靜電濾網(Electret filter)是一種纖維狀的空氣過濾材料,通常採用聚丙烯或聚酯類塑膠合成纖維,它的每根纖維均含有靜電電荷。但是就整個材料而言,基本上還是保持中性的,這種纖維就像是一個小電容器,纖維的一邊帶正電,另一邊則是負電(圖8)。由於纖維的導電性很差,因此正負電並不會中和,所以其電荷是可耐久的。

由於纖維在製造過程中就被植入額外的靜電電荷,故可以提高塵粒的去除效率。帶有電荷的粒子,被纖維上相反的電荷所吸引而捕集;中性的粒子也可能因為和帶電纖維的磨擦而感應生電荷,進而被下游的纖維所捕捉。

靜電濾網有較開放的編織,纖維間孔隙較大,因此氣流阻力較低。靜電濾網之粒子捕集深度較厚,有別於高效率濾網粉塵都在集中表面捕集,其捕集效果可以延伸入更深的纖維。此外,由於有電荷作用,對於細小微粒特別有效果。但其除塵效果受到空氣通過濾紙速度影響很大,通常在0.25m/s以下,捕集效率才能高於90%。靜電濾網使用初期效率非常好,但是隨著捕集量(loading)增加,其效率會快速降低,因此必須定期更換濾網。

靜電濾網的應用非常廣泛,除了空氣清淨機之外,呼吸道的保護器具、精密設備的保護、吸塵器和空調機等均常使用。

4.4離子產生器

現在都市的建築物、地毯、電器設備及金屬物皆能使空氣中的負離子消失,產生過多的正離子,在正離子過多的空氣下,人們常患頭痛、失眠、精神衰弱、倦怠、過敏性等疾病。自然環境和家庭內負離子數量的不同,森林地區每立方公分空氣中帶有1500~2500個負離子;空調運轉時之家庭寢室空氣中的負離子為0~70個。負離子除了具有除塵的效果之外,還可增加人體的健康舒適感覺。此外,負離子帶有能量,與細菌結合時,造成細菌結構的改變或能量的轉移,致細菌死亡而不再形成菌種。故空氣中的負離子有殺菌作用。有人更稱負離子為空氣中的維他命。但負離子對人體健康的影響,學者仍各有正反面之論點。

離子產生器是使空氣中的微粒物帶電而被附著在牆壁、地板、桌面、布料、人員等表面上。其除塵原理如圖10所示:負離子產生器有一放電金屬線用以產生負離子,灰塵被電離帶負電,風扇將這些帶電的灰塵吹入室內,帶負電的微粒會被室內會被室內物體的表面吸附,然後沉澱於表面。有些離子清淨機裝置有微粒收集器,將帶電微粒吸回機組內。

離子產生器之電離可加強附聚作用,使小粒子聚集成大粒子增加沉澱率。微生物以灰塵為營養物質並於其上生長繁殖,定期清理不但可去除屋內灰塵亦可清除附著於灰塵上的微生物。

4.5光觸媒濾網

日本及國內清淨業者已將二氧化鈦光觸媒殺菌法(PCO)與清淨系統結合,發展出具有殺菌與脫臭功能的空氣清淨機。

光觸媒清淨原理是利用光線能量作為空氣淨化機制的原動力。光線照射激發二氧化鈦表層的電子(e-)脫離,留下電洞(positive holes h+),電洞吸引水中的氫氧離子OH-,變成極不穩定的氫氧根OH(Hydroxyl Radicals)。為轉變成穩定狀況,氫氧根會與有機化合物反應變成無害之CO2、H2O釋放至空氣中(圖11)。

二氧化鈦(TiO2)為半導體的光觸媒,當使用波長小於385×10-9公尺的光源照射時可使其活性化,參與化學反應。常假設的化學反應為:

氫氧根(Hydroxyl Radicals)和超氧離子(Super-Oxide Ions)具有高活性,氫氧根比氯強206﹪,比過氧化氫強157﹪,故可殺死和分解致病之微生物成基本元素如CO2、H2O,同時可氧化吸附在觸媒表面的揮發性有機物(VOCs)。

應用於殺菌清淨的光觸媒清淨機,通常設計有一殺菌燈提供光源。光觸媒的效果包含有抗菌、抗病毒、防霉、脫臭及分解香煙中尼古丁。光觸媒可殺死並分解空氣中的微生物,且可將揮發性有機物分解成無害的基本化合物,而傳統的技術如HEPA過濾器,只將微生物阻擋於過濾介質上,微生物仍可持續的成長、繁殖,最後當其死亡時,腐敗產生的毒素再次引入室內造成二次污染。

五、空氣清淨機的性能

評量空氣清淨機能力的因素包括清淨機本身效率(即污染物通過清淨機時被去除的百分比)與清淨機處理的風量。這兩項因素的乘積即代表清淨機的"清淨空氣產生量"(CADR, Clean Air Delivery Rate),被用來代表空氣清淨機的能力。影響空氣清淨機性能的因素包括:

1.進入清淨機的微粒物質量。

2.微粒物特性(如粒徑大小)。

3.因污染物負荷累積導致過濾效率的降低。

4.部份空氣可能實際未通過清淨機的過濾機構。

5.清淨機的送風和室內空氣之混合效果。

機械過濾式空氣清淨機之測試通常採用CADR (clean air delivery rate)作為標準,它代表清淨機對室內空氣之整體清淨能力。美國家電協會制訂有家用空氣清淨機的標準測試方法。測試結果標註於製品,以提供消費者選用參考。

家用空氣清淨機的標準測試是在約1100立方英呎的密閉房間進行(如圖12),在室內釋放測試用之香煙、粉塵或花粉,與空氣均勻混合後,啟動清淨機,以粉塵計數器監測室內空氣中微粒物濃度的變化。由測得濃度下降速率可換算清淨機的清淨空氣產生量(CADR),如圖13。

一般而言,家用空氣清淨機的大小、能力各異。桌上型機種效能較低;立式機種尺寸較大、能力較高。靜電集塵器、負離子產生器、摺疊式濾網、或其複合機種,對於香煙粒子清淨能力較平板式濾網為佳。負離子產生器若無外加裝置(如濾網),則對於大粒徑粉塵之過濾性能不佳。

其它,具有吸附劑(如活性碳)的空氣清淨機可用於去除某些種類室內氣態污染物,但沒有任何清淨系統可以預期望去除所有的污染物。此外,吸附劑的使用壽命也有其限制。

光觸媒清淨機之具殺菌/脫臭功能,但需要適當之設計,才可見到明顯而立即之效果。

六、選用空氣清淨機考慮之事項

1.空氣清淨機的使用場合:不同污染特性,須適用不同清淨機。

2.定期維護需求:包括清洗、更換濾網與吸附劑等。

3.購置成本與維護成本:清洗、濾材消耗、用電等。

4.安裝需求:如電源、操作維修之便利性。

5.操作方法:清淨機製造廠商建議事項必須遵守,以確保清淨機應有之性能。如濾網與吸

附劑的定期更換;靜電板與靜電濾網的定期清洗。某些使用情況下,維護次數可能很頻繁。

6.可能發生污染物的二次散播:如離子產生器與靜電式空氣清淨機可能會產生臭氧(具肺

部刺激性);靜電式空氣清淨機可能產生細小微粒;過濾機構可能因附著其上的微粒物

而釋放污染氣體或臭味。清淨機本身的組裝可能釋放化學氣體(如甲醛)。

7.清淨機功能的限制:例如香煙產生的氣態汙染物與臭味,無法以機械過濾式清淨機加以

控制。

8.離子產生器產生之帶電微粒物,更容易沉積於呼吸道,對健康可能有影響。

9.離子產生器的帶電微粒,附著於物體表面,會使室內牆壁或其它表面變髒。

10.噪音:風機在送風量需求下,會產生振動或氣動噪音。即使低轉速下,仍不可避免有一

些低頻干擾聲。

七、結語

現代人居住的大環境仍普遍存在各種空氣污染,為追求更健康舒適的居住空間,仍需藉助空氣清淨技術達到更高等級的空氣品質環境。由本文介紹之空氣清淨原理與方法,可瞭解不同型式

清淨機之特性與效果。期能幫助使用者正確選用空氣清淨機;以及有助於工程人員建立合理的設計觀念。

八、參考資料

1."Residential Air-Cleaning Devices-A Summary of Available Information", EPA

400/1-90-002, February 1990.

2.劉德勇、江旭政 "空氣清淨機之濾塵裝置的原理介紹" 冷凍與空調,2000/6, no.3,

pp.84-90

3.ANSI/AHAM AC-1, 'Method for measuring performance of portable household electric

cord-connected room air cleaners,' Association of Home Appliance Manufacturers, Chicago, USA, 1998

4."NAFA guide to air filtration", National Air Filtration Association, Second

Edition

5.American Lung Association, "Air Cleaning Devices: Types of Air Cleaning

Processes, " http:// www. lungusa. org/ pub/ cleaners/

空气热机实验

空气热机实验 热机是将热能转换为机械能的机器。历史上对热机循环过程及热机效率的研究为热力学第二定律的确立起了奠基性的作用。斯特林1816年发明的空气热机,以空气作为工作介质,是最古老的热机之一。虽然现在已发展了内燃机,燃气轮机等新型热机,但空气热机结构简单,便于帮助理解热机原理与卡诺循环等热力学知识。 【实验目的】 空气热机原理、卡诺循环、卡诺定理 【实验原理】 空气热机的结构及工作原理可用图1说明。热机主机由高温区,低温区,工作活塞及汽缸,位移活塞及汽缸,飞轮,连杆,热源等部分组成。 图1 空气热机工作原理 对于循环过程可逆的理想热机,热功转换效率: η = A/Q1 =(Q1-Q2)/Q1=(T1-T2)/T1 = ΔT/ T1 实际热机:η≦ΔT/ T1 正比于ΔT/n,n为热机转速,η正比于热机每一循环从热源吸收的热量Q 1 及ΔT均可测量,测量不同冷热端温度时的nA/ΔT,观察它n A/ΔT。n,A,T 1 的关系,可验证卡诺定理。 与ΔT/ T 1 当热机带负载时,热机向负载输出的功率可由力矩计测量计算而得,且热机实际输出功率的大小随负载的变化而变化。在这种情况下,可测量计算出不同负载大小时的热机实际效率。 【实验仪器】 ZKY-RJ型空气热机实验仪、示波器

【实验内容】 1.测量不同冷热端温度时的热功转换值(表1),作nA/ΔT 与ΔT/ T 1的关系图, 验证卡诺定理。 2.测量热机输出功率随负载及转速的变化关系(表2),作图分析。 【注意事项】 1.加热端在工作时温度很高,而且在停止加热后1小时内仍然会有很高温度, 请小心操作,否则会被烫伤。 2.热机在没有运转状态下,严禁长时间大功率加热,若热机运转过程中因各种 原因停止转动,必须用手拨动飞轮帮助其重新运转或立即关闭电源,否则会损坏仪器。 3.热机汽缸等部位为玻璃制造,容易损坏,请谨慎操作。 4.记录测量数据前须保证已基本达到热平衡,避免出现较大误差。等待热机稳 定读数的时间一般在10分钟左右。 5.在读力矩的时候,力矩计可能会摇摆。这时可以用手轻托力矩计底部,缓慢 放手后可以稳定力矩计。如还有轻微摇摆,读取中间值。 6.飞轮在运转时,应谨慎操作,避免被飞轮边沿割伤。

热机论文

Air heat engine experiment Name: Student Id: College: Major: Abstract:To do this experiment is in order to make us understand the emission of Air heat engine and receive the component the principle, and through the experiment we should complete the rotarion of Air heat engine and realizes the process of function conversion of the air heat engine. keywords:Air heat engine function conversion 姓名:学号: 学院:专业: 摘要:这个实验能使我们了解空气热机做功原理,通过实验我们应该完成空气热机的转动和理解工作原理,并了解空气热机功能转换的过程。 关键词:空气热机功能转换 空气热机实验报告 热机是将热能转换为机械能的机器。历史上对热机循环过程及热机效率的研究,曾为热力学第2定律的确立起了奠基性的作用。斯特林1816年发明的空气热机,以空气作为工作介质,是最古老的热机之一。虽然现在已发展了内燃机,燃气轮机等新型热机,但空气热机结构简单,便于帮助理解热机原理与卡诺循环等热力学中的重要内容。 一、实验原理 热机主机由高温区,低温区,工作活塞及汽缸,位移活塞及汽缸,飞轮,连杆,热源等部分组成。 热机中部为飞轮与连杆机构,工作活塞与位移活塞通过连杆与飞轮连接。飞轮的下方为工作活塞与工作汽缸,飞轮的右方为位移活塞与位移汽缸,工作汽缸与位移汽缸之间用通气管连接。位移汽缸的右边是高温区,可用电热方式或酒精灯加热,位移汽缸左边有散热片,构成低温区。 工作活塞使汽缸内气体封闭,并在气体的推动下对外做功。位移活塞是非封闭的占位活塞,其作用是在循环过程中使气体在高温区与低温区间不断交换,气体可通过位移活塞与位移汽缸间的间隙流动。工作活塞与位移活塞的运动是不同步的,当某一活塞处于位置极值时,它本身的速度最小,而另一个活塞的速度最

空气热机

实验报告 物理系 08级 姓名:XXX 学号:198200XXXXXXXX 实验题目:空气热机 一、实验原理 热机是将热能转换为机械能的机器,斯特林1816年发明的空气热机,以空气作为工作介质,是最古老的热机之一。虽然现在已发展了内燃机,燃气轮机等新型热机,但空气热机结构简单,便于帮助理解热机原理与卡诺循环等热力学中的重要内容,是很好的实验教学仪器。 1.热机发电原理 空气热机的结构及工作原理可用图1说明。热机主机由汽缸、高温区、低温区、工作活塞、位移活 塞、飞轮、连杆等部分组成。 汽缸的上部有螺旋状的加 热电阻,构成高温区,汽缸下部 为水冷的低温区。汽缸下面的活 塞是工作活塞,它使汽缸内气体 封闭,并在气体的推动下对外做功。工作活塞上面是位移活 塞,它是半封闭活塞,气体可 通过其中间圆柱内充塞的细 铜丝流动,其作用是在循环过 程中使气体在高温区与低温 区间不断交换,并在通过铜丝 时预冷(热)。 工作活塞与位移活塞通 过连杆与飞轮连接,相位相差 90度,当某一活塞处于位置极 值时,它本身的位置变化率最 小,而另一个活塞的位置变化 率最大。在作热机工作时,位 移活塞超前工作活塞90度。当工作活塞处于最顶端时,位移活塞迅速下移,使汽缸内气 体向高温区流动,如图1 a 所 示;进入高温区的气体温度升高,使汽缸内压强增大并推动工作活塞向下运动,如图1 b 所示, 在此过程中热能转换为飞轮转动的机械能;工作活 塞在最底端时,位移活塞迅速 上移,使汽缸内气体向低温区 流动,如图1 c 所示;进入低 温区的气体温度降低,使汽缸 图 3 空气热机实验装置 空气热机 位移传感器 变 压器 图 1 热机结构及原理图 图2 作为热泵和制冷机操作热空气发动机的操作原理: 上图为热泵、下图为冷泵

活性炭室内空气净化的吸附应用原理..

活性炭空气净化的吸附应用原理 1 室内空气品质 随着科学技术的飞速发展,人类在生活居室环境方面获得了巨大的改善。空调的广泛使用给人们创造了一个以温湿度为主的舒适性环境,但同时也带来了室内空气品质问题,尤其是无新风系统的空调房间,导致了“病态建筑综合症”、“建筑相关病”和多种化学物过敏症。“ 病态建筑综合症”的常见症状主要有头痛、神经疲劳、皮肤干燥、鼻塞、流鼻涕、流泪、眼痒等等。“建筑相关病”是指由空气中的某种成分直接引起的病症,比较严重的有“军团病”、“超敏性肺炎”等,有时甚至能带来生命危险。 所谓室内空气品质,一般是指在某个具体的环境内,空气中的某些要素对人群工作、生活的适宜程度,是反映了人们的具体要求而形成的一种概念。这种概念是建立在“以人为本”的基础上的。显然,人们不仅要求适宜的室内温湿度,而且人们还要求室内空气是新鲜的,无污染的,从而引发了对室内空气品质的广泛研究。 室内空气基本污染物与污染源如下表一室内主要污染物及其来源:悬浮微粒、燃烧、抽烟、人体、烟草烟雾、人的吸烟行为、石棉、保温材料、氡及其蜕变物、墙体和地基、建筑材料、家具、挥发性有机物(vocs)油漆、清洁剂、建筑材料、一氧化碳、燃烧、吸烟、二氧化碳、燃烧、呼吸、微生物、家畜、人体、过敏物、动物、毛发、昆虫、花粉、臭氧

室内空气有害物的种类繁多,但一般都是以低浓度的形式存在,有时还远远低于人的嗅觉阈值,但这并不意味着人体无害,恰恰相反,人一生中有五分之四的时间在室内度过,长期受低浓度污染物的直接毒害,其后果还是相当严重的。 为了清除室内空气中的有害物质,通风是一种非常有效的办法,但是它也有缺点:在室外大气污染日趋严重的今天,燃料的燃烧、工业生产及机动车辆排放的废气使得室外空气的质量也很差,而且室外空气与室内空气的交换会带来巨大的能耗。 局部通风有时也因为污染源较分散或根本就不知道气态污染物从何而来而无法实现。目前通用的过滤器只是过滤灰尘,还不具备清除有害气体和细菌的功能。成功分离低浓度的气态污染物质和细菌对改善室内陆空气品质至为重要。 活性炭吸附材料对室内气态污染物具有优秀的吸附性能,使活性炭过滤器逐渐应用于民用建筑空调系统中。在通风量不变的条件下,它能使室内空气得到更全面的净化。 2 活性炭的发展历史及分类 使用活性炭作为一种吸附材料已具有悠久的历史。早在古埃及时代,人类就会利用木炭来消除伤口散发的气味;1773年,谢勒首次科学地证明了木炭对气体具有吸附力;1808年,木炭被用到蔗糖业;第一次世界大战期间,为了消除化学武器的威胁,活性炭防毒面具问世,这是活性炭第一次应用于空气净化领域;上个世纪六十年代,具有独特化学结构、物理结构且吸附性能优异的新型纤维状活性炭材料研制成功。目前对吸附材料的

空气热机实验报告范文

2020 空气热机实验报告范文Contract Template

空气热机实验报告范文 前言语料:温馨提醒,报告一般是指适用于下级向上级机关汇报工作,反映情况,答复上级机关的询问。按性质的不同,报告可划分为:综合报告和专题报告;按行文的直接目的不同,可将报告划分为:呈报性报告和呈转性报告。体会指的是接触一件事、一篇文章、或者其他什么东西之后,对你接触的事物产生的一些内心的想法和自己的理解 本文内容如下:【下载该文档后使用Word打开】 篇一:空气热机实验论文报告 摘要:热机是将热能转换为机械能的装置,空气热机结构简单、便于操作。空气热机实验通过对空气热机探测仪、计算机等操作来理解空气热机原理及循环过程。通过电加热器改变热端温度测量热功转换值,作出nA/ΔT与ΔT/T1的关系图,验证卡诺定理。逐步改变力矩大小来改变热机输出功率及转速,计算、比较热机实际转化效率。试验表明:在一定误差范围内,随热端温度升高nA/ΔT与ΔT/T1的关系呈现性变化,验证卡诺定理。热端温度一定时输出功率随负载增大而变大,转速而减小。 关键词:卡诺定理;空气热机;卡诺循环 热机是将热能转换为机械能的机器。历史上对热机循环过程及热机效率的研究为热力学第二定律的确立起了奠基性的作用。斯特林1816年发明的空气热机,以空气作为工作介质,是最古老的热机之一。虽然现在已发展了内燃机,燃气轮机等新型热机,

但空气热机结构简单,便于帮助理解热机原理与卡诺循环等热力学知识。空气热机的结构如图一所示,热机主机主要有高温区、低温区、工作活塞和位移活塞、气缸、飞轮、连杆,热源等组成。 由电热方式加热位移活塞,其作用是在循环过程中使气体在高温区与低温区间不断交换,气体可通过位移活塞与位移气缸间的间隙流动,提高高温与低温间的温度差可以提高热机效率。位移活塞与工作活塞通过连杆与飞轮连接,他们的运动是不同步的,其中一个处于极值时,速度最小,另一个活塞速度最大。 图一空气热机工作原理示意图 当工作活塞向下移时,位移活塞迅速左移,使汽缸内气体向高温区流动,如图1a所示;进入高温区的气体温度升高,使汽缸内压强增大并推动工作活塞向上运动,如图1b所示,在此过程中热能转换为飞轮转动的机械能;工作活塞向顶端移动时,位移活塞迅速右移,使位移汽缸内气体向低温区流动,如图1c所示;进入低温区的气体温度降低,使汽缸内压强减小,同时工作活塞在飞轮惯性力的作用下向下运动,完成循环,如图1d所示。在一次循环过程中气体对外所作净功等于P-V图所围的面积。 根据卡诺对热机效率的研究而得出的卡诺定理,对于可逆循环的理想热机,热功转换效率为: A/Q1Q1Q2/Q1(T1T2)/T1T/T1 式中A为每一个循环中热机做的功,Q1为热机每一循环从热源吸收的热量,Q2为热机每一个循环向冷源放出的热量,T1为热源的绝对温度,T2为冷源的绝对温度。

空气洁净技术考点整理

1.什么是空气洁净度?什么是空气洁净技术? 空气洁净度是洁净环境中空气含尘(微粒)量多少的程度。空气洁净技术即洁净室(空间)污染控制技术。是空调工程中一种,它不仅对室内空气的温度、湿度、风速有一定的要求,而且对空气中的含尘粒数、细菌浓度等都有较高的要求。 2.洁净室空气洁净度级别状态有哪三种? 空态、静态、动态 3.洁净空调与一般空调的区别。 1)主要参数控制侧重控制室内空气的含尘量、风速和换气次数,生物洁净室还要控制含菌量。 2)空气过滤手段要求有粗、中、高效或粗、中、亚高效三级过滤,在有些洁净室中,还需设排风过滤或排风净化处理。 3)室内压力要求对不同洁净室(区)的压差有不同的要求。 4)避免外界污染 5)对系统气密性的要求 6)对土建及其他工种的要求 4.洁净建筑的特点 洁净厂房建筑设计要综合考虑产品生产工艺要求、生产设备特点、净化空调系统、室内气流流型及各类管线系统安排等。通常包括:洁净区、准洁净区和辅助区在满足工艺要求的情况下,洁净室净高应尽量降低建筑尽量具有大开间、无隔断、可以灵活改动的特点在工艺无特殊要求的情况下,洁净室应争取做成有窗建筑要特别考虑与洁净室安全有关的问题在不影响工作的情况下,尽量把洁净度要求相同的洁净室安排在一起工艺布置要使零件、半成品的运送距离最短,便于净化空调系统的合理布置洁净室之间如有物件传送的需要,则一定要通过传递窗洁净度要求高的工序应布置在上风侧,产生污染多的布置在靠近回、排风口处 5.按微粒形成方式可以分为哪两大类?按微粒来源可以分为哪几大类? 按微粒大小可以分为哪几大类?微粒的通用分类方法分为哪几大类?按微粒的形成方式分类:分散性微粒和凝集性微粒按微粒来源方式分类:无机微粒有机微粒有生命微粒按微粒大小方式分类:可见微粒显微微粒超显微微粒按微粒的通用分类:灰尘烟雾烟雾 6.相对频率和累计频率描述了什么?有什么不同? 相对频率描述粒子集合体的粒径分布状况常用各粒子的数量百分数。表达式累计频率 7.室外和室内的主要污染源各有哪些? 室外污染源:(1)大气尘(2)大气中的微生物 室内污染源:(1)大气中的含尘、含菌、洁净空调系统中新风带入的尘粒和微生物。(2)作业人员发尘(3)设备及产品生产过程的产尘。(4)建筑围护结构、设施的产尘。

空气热机实验报告范文.doc

空气热机实验报告范文 篇一:空气热机实验论文报告 摘要:热机是将热能转换为机械能的装置,空气热机结构简单、便于操作。空气热机实验通过对空气热机探测仪、计算机等操作来理解空气热机原理及循环过程。通过电加热器改变热端温度测量热功转换值,作出nA/ΔT与ΔT/ T1的关系图,验证卡诺定理。逐步改变力矩大小来改变热机输出功率及转速,计算、比较热机实际转化效率。试验表明:在一定误差范围内,随热端温度升高nA/ΔT与ΔT/ T1的关系呈现性变化,验证卡诺定理。热端温度一定时输出功率随负载增大而变大,转速而减小。 关键词:卡诺定理;空气热机;卡诺循环 热机是将热能转换为机械能的机器。历史上对热机循环过程及热机效率的研究为热力学第二定律的确立起了奠基性的作用。斯特林1816年发明的空气热机,以空气作为工作介质,是最古老的热机之一。虽然现在已发展了内燃机,燃气轮机等新型热机,但空气热机结构简单,便于帮助理解热机原理与卡诺循环等热力学知识。空气热机的结构如图一所示,热机主机主要有高温区、低温区、工作活塞和位移活塞、气缸、飞轮、连杆,热源等组成。 由电热方式加热位移活塞,其作用是在循环过程中使气体在高温区与低温区间不断交换,气体可通过位移活塞与位移气缸间的间隙流动,提高高温与低温间的温度差可以提高热机效率。位移活塞与工作活塞通过连杆与飞轮连接,他们的运动是不同步的,其中一个处于极值时,速度最小,

另一个活塞速度最大。 图一空气热机工作原理示意图 当工作活塞向下移时,位移活塞迅速左移,使汽缸内气体向高温区流动,如图1 a所示;进入高温区的气体温度升高,使汽缸内压强增大并推动工作活塞向上运动,如图1 b 所示,在此过程中热能转换为飞轮转动的机械能;工作活塞向顶端移动时,位移活塞迅速右移,使位移汽缸内气体向低温区流动,如图1 c所示;进入低温区的气体温度降低,使汽缸内压强减小,同时工作活塞在飞轮惯性力的作用下向下运动,完成循环,如图1 d 所示。在一次循环过程中气体对外所作净功等于P-V图所围的面积。 根据卡诺对热机效率的研究而得出的卡诺定理,对于可逆循环的理想热机,热功转换效率为: A/Q1Q1Q2/Q1(T1T2)/T1T/T1 式中A为每一个循环中热机做的功,Q1为热机每一循环从热源吸收的热量,Q2为热机每一个循环向冷源放出的热量,T1为热源的绝对温度,T2为冷源的绝对温度。 由于热量损失,实际的热机都不可能是理想热机,循环过程也不是可逆的,所以热机转化效率: T/T1,只要使循环过程接近可逆循环,就是尽量提高冷源与热源的温度差。 热机循环过程从热源吸收的热量正比于nA/T,n为热机转速,所以:正比于nA/T。测量不同热 端温度时的nA/T,观察与T/T1的关系,可验证卡诺定理。同一功

热机试验

热机实验 热机是将热能转换为机械能的机器。历史上对热机循环过程及热机效率的研究,曾为热力学第二定律奠基了基础。斯特林1816年发明的空气热机,以空气作为工作介质,是最古老的热机之一。 【实验目的】 1.理解热机原理及循环过程 2.测量不同冷热端温度时的热功转换值,验证卡诺定理 3.测量热机输出功率随负载及转速的变化关系,计算热机实际效率 【实验仪器】 空气热机实验仪,空气热机测试仪,电加热器及电源,计算机 【实验原理】 热机主机由高温区,低温区,工作活塞及汽缸,位移活塞及汽缸,飞轮,连杆,热源等部分组成。 热机中部为飞轮与连杆机构,工作活塞与位移活塞通过连杆与飞轮连接。飞轮的下方为工作活塞与工作汽缸,飞轮的右方为位移活塞与位移汽缸,工作汽缸与位移汽缸之间用通气管连接。位移汽缸的右边是高温区,可用电热方式或酒精灯加热,位移汽缸左边有散热片,构成低温区。 工作活塞使汽缸内气体封闭,并在气体的推动下对外做功。位移活塞是非封闭的占位活塞,其作用是在循环过程中使气体在高温区与低温区间不断交换,气体可通过位移活塞与位移汽缸间的间隙流动。工作活塞与位移活塞的运动是不同步的,当某一活塞处于位置极值时,它本身的速度最小,而另一个活塞的速度最大。 图1 空气热机工作原理 当工作活塞处于最底端时,位移活塞迅速左移,使汽缸内气体向高温区流动,如图1 a所示;进入高温区的气体温度升高,使汽缸内压强增大并推动工作活塞向上运动,如图1 b 所示,在此过程中热能转换为飞轮转动的机械能;工作活塞在最顶端时,位移活塞迅速右移,使汽缸内气体向低温区流动,如图1 c 所示;进入低温区的气体温度降低,使汽缸内压强减小,同时工作活塞在飞轮惯性力的作用下向下运动,完成循环,如图1 d 所示。在一次循环过程中气体对外所作净功等于P-V图所围的面积。 根据卡诺对热机效率的研究而得出的卡诺定理,对于循环过程可逆的理想热机,热功转换效率: η = A/Q1 =(Q1-Q2)/Q1=(T1-T2)/T1 = ΔT/ T1 式中A为每一循环中热机做的功,Q 1为热机每一循环从热源吸收的热量,Q 2 为热机每一循环向冷源放出的热量,T 1为热源的绝对温度,T 2 为冷源的绝对温度。 实际的热机都不可能是理想热机,由热力学第2定律可以证明,循环过程不可逆的实际热机,其效率不可能高于理想热机,此时热机效率:

空气热机实验仪软件操作说明书

ZKY-RJ 空气热机实验仪 软件操作说明书 成都世纪中科仪器有限公司

第一章概述 1 1.1软件的功能 1 1.2本系统的运行环境。 1 1.2.1 硬件运行环境 1 1.2.1 软件运行环境 1 1.2.3本系统的安装方法。 2 第二章操作方法 2 2.1具体操作说明 2 2.1.1 系统初始条件 2 2.1.2 系统启动 2 2.1.3 各功能操作说明 3 第一章概述 1.1软件的功能 本软件能够将空气热机实验装置的气缸容积及压力随转动的信号盘的转角(即汽缸中的飞轮盘运动的角度)以实时地显示出来。同时能够自动得到气缸运动一周的容积-压力变化曲线图,并自动计算出该容积-压力变化曲线图所围成的面积。与此同时,能够得到热机实验仪上显示的所有数据,如T1和T2和ΔT、热机转速。 1.2本系统的运行环境 1.2.1 硬件运行环境 CPU:PⅣ 400MHz 以上; 内存:256MB以上; 显卡:支持800Χ600以上; RS232串行口。

1.2.1 软件运行环境 操作系统: WindowsNT4.0或WindowsXP以上; 1.2.3本系统的安装方法 本系统的安装程序为一张光盘。安装本系统时,需运行Setup.exe,然后根据安装向导的提示完成安装即可。 第二章操作方法 2.1具体操作说明 2.1.1 系统初始条件 初始条件:在空气热机实验仪已经开启,空气热机实验装置正常运转 2.1.2 系统启动 在空气热机实验仪已经开启,空气热机实验装置正常运转后,用键 盘或鼠标激活“开始 → 程序 → 中科教仪-空气热机 →空气热机实验”(具体操作方法请查阅有关WINDOWS95、WINDOWS98或WINNT的相关章

四川大学空气热机实验报告

综合设计与创新物理实验空气热机实验报告 学院: XX学院 学生姓名: XX 学号: XX 二零XX年X月X日

空气热机实验报告 摘要:空气热机是利用空气不同温度的空气导致不同气压的原理,使空气产生流动从而将热能转换为机械能的机器。本实验测量了不同的冷热端温度时的热功转换值及热机输出功率随负载及转速的变化关系,验证了卡诺定理,探讨出热机效率的影响因素。 关键词:空气热机卡诺定理热工转换输出功率 1 实验过程 1.1 实验原理 空气热机主机由高温区,低温区,工作活塞及气缸,位移活塞及气缸,飞轮,连杆,热源等部分组成。工作活塞使气缸内气体封闭,并在气体的推动下向外做功。当工作活塞处于最低端时,位移活塞迅速左移,使气缸内气体向高温区流动;进入高温区的气体温度升高,使气缸内压强增大并推动工作活塞向上运动,在此过程中热能转换为飞轮转动的机械能;工作活塞处于最顶端时,位移活塞迅速右移,使气缸内气体向低温区流动,进入低温区的气体温度降低,使气缸内压强减小,同时工作活塞在飞轮惯性力的作用下向下移动,完成循环。 卡诺根据对热机效率的研究而得出了卡诺定理。对于循环过程可逆的理想热机,热机转换效率: η=A/Q1=(Q1-Q2)/Q1=(T1-T2)T1=△T/T1 实际的热机都不可能是理想热机,由力学第2定律可以证明,循环过程不可逆的实际热机,其效率不可能高于理想热机,此时热机效率: η≤△T/T1 卡诺定理指出了提高热机效率的途径,就过程而言,应当使实际的不可逆机尽量接近可逆机。就温度而言,应尽量的提高冷热源的温度差。 当热机带负载时,热机向负载输出的功率可由力矩计测量而得,且热机实际输出功率的大小随负载的变化而变化。 1.2 实验设备 1)空气热机实验仪(电加热型热机实验仪) 2)电加热器电源 3)双跟踪示波器 1.3 实验方法 1)测量不同冷热温度时的热功转换值 根据说明将各部分仪器连接起来,取下力矩计。打开电源,取下力矩计,将加热电压加到第11档(36伏左右),等待约6-10分钟,待加热电阻丝已发红后,用手顺时针拨动飞轮,使热机运转起来(热机测试仪显示的温差△T在100度以上时易于启动)。 减小加热电压至第一档(24伏左右),调节示波器,观察压力和容积信号,以及压力和容积信号之间的相位关系等,并把P-V图调节到最适合观察的位置。等待约10分钟,温度

空气热机实验原理介绍

空气热机实验实验原理介原理介原理介绍绍 热机是机是将将热能转换为转换为机械能的机器。机械能的机器。机械能的机器。历历史上史上对热对热对热机循机循机循环过环过环过程及程及程及热热机效率的机效率的研研究,曾究,曾为热为热为热力力学第2定律的定律的确确立 起了奠基性的作用。斯特林1816年发明的空明的空气气热机,以空机,以空气气作为工作介工作介质质,是最古老的,是最古老的热热机之一。机之一。虽虽然现在已 发展了展了内内燃机,燃燃机,燃气气轮机等新型机等新型热热机,但空机,但空气气热机结构简单简单,便于,便于,便于帮帮助理解助理解热热机原理机原理与与卡诺循环等热力学中的重要重要内内容,是很好的容,是很好的热热学实验实验教教学仪器。 【实验实验目的】目的】 1.理解理解热热机原理及机原理及热热循环过环过程程 2.测量不同量不同输输入功率(冷入功率(冷热热端温差改差改变变)下)下热热功转换转换效率,效率,效率,验证验证验证卡卡诺定理 3.测量热机输出功率出功率随随负载负载的的变化关系,系,计计算热机实际实际效率效率 【实验仪实验仪器】器】 空气热机,机,热热源(可源(可选择电选择电选择电加加热或酒精或酒精灯灯加热),),热热机实验仪实验仪,,计算机(或示波器),力矩算机(或示波器),力矩计计 【实验实验原理】原理】 空气热机的机的结结构及工作原理可用及工作原理可用图图1说明。明。热热机主机由高机主机由高温区温区温区,低,低,低温区温区温区,工作活塞及汽缸,位移活塞及汽,工作活塞及汽缸,位移活塞及汽缸,缸,飞轮飞轮飞轮,,连杆,杆,热热源等部分源等部分组组成。 热机中部机中部为飞轮为飞轮为飞轮与与连杆机杆机构构,工作活塞,工作活塞与与位移活塞通位移活塞通过连过连过连杆杆与飞轮连飞轮连接。接。接。飞轮飞轮飞轮的下方的下方的下方为为工作活塞工作活塞与与工作汽缸,缸,飞轮飞轮飞轮的右方的右方的右方为为位移活塞位移活塞与与位移汽缸,工作汽缸位移汽缸,工作汽缸与与位移汽缸之位移汽缸之间间用通用通气气管连接。位移汽缸的右接。位移汽缸的右边边是高是高温区温区温区,,可用可用电热电热电热方式或酒精方式或酒精方式或酒精灯灯加热,位移汽缸左,位移汽缸左边边有散有散热热片,片,构构成低成低温区温区温区。。 工作活塞使汽缸工作活塞使汽缸内内气体封体封闭闭,并在气体的推体的推动动下对外做功。位移活塞是非封外做功。位移活塞是非封闭闭的占位活塞,其作用是在循环过环过程中使程中使程中使气气体在高体在高温区温区温区与与低温区温区间间不断交换,气体可通体可通过过位移活塞位移活塞与与位移汽缸位移汽缸间间的间隙流隙流动动。工作活塞。工作活塞与与位移活塞的移活塞的运动运动运动是不同是不同是不同步步的,的,当当某一活塞某一活塞处处于位置于位置极值极值极值时时,它本身的速度最小,而本身的速度最小,而另另一个活塞的速度最大。 图1空气热机工作原理 当工作活塞工作活塞处处于最底端于最底端时时,位移活塞迅速左移,使汽缸,位移活塞迅速左移,使汽缸内内气体向高体向高温区温区温区流流动,如,如图图1 a 所示;所示;进进入高入高温区温区温区的的气体温度升高,使汽缸度升高,使汽缸内内压强增大增大并并推动工作活塞向上工作活塞向上运动运动运动,如,如,如图图1 b 所示,在此在此过过程中程中热热能转换为飞轮转动的机械能;工作活塞在最的机械能;工作活塞在最顶顶端时,位移活塞迅速右移,使汽缸,位移活塞迅速右移,使汽缸内内气体向低体向低温区温区温区流流动,如,如图图1 c 所示;所示;进进入低入低温温 区的气体温度降低,使汽缸度降低,使汽缸内内压强减小,同小,同时时工作活塞在工作活塞在飞轮惯飞轮惯飞轮惯性力的作用下向下性力的作用下向下性力的作用下向下运动运动运动,完成循,完成循,完成循环环,如,如图图1 d 所示。在一次循所示。在一次循环过环过环过程中程中程中气气体对外所作外所作净 净功等于P-V 图所围的面的面积积。根据根据卡卡诺对热诺对热机效率的机效率的机效率的研研究而得出的究而得出的卡卡诺定理,热机的机的热热功转换转换效率:效率: η ∝(T 1-T 2)/T 1 = ΔT/ T 1 式中式中T T 2为冷源的冷源的绝对绝对绝对温温度,度,T T 1为热为热源的源的源的绝对绝对绝对温温度,度,热热机冷机冷热热源的源的温温度比度比值值越小,越小,热热机的机的热热功效率越高。本实验实验中,中,中,电热电热电热功率可以功率可以功率可以计计算,由算,由热热能转换转换的机械功率由的机械功率由P-V 图面积与热机每秒转速相乘而得,速相乘而得,测测量并计算不同冷算不同冷热热端温度时热时热功功转换转换效率,可效率,可效率,可验证验证验证卡卡诺定理。 当热机带负载时带负载时,,热机向机向负载输负载输负载输出的功率可由力矩出的功率可由力矩出的功率可由力矩计测计测计测量量计算而得,且算而得,且热热机实际输实际输出功率的大小出功率的大小出功率的大小随随负载负载的的变化而化而变变化。在化。在这这种情况下,可同下,可同时测时测时测量量计算出不同算出不同负载负载负载大小大小大小时时的热功转换转换效率和效率和效率和热热机实际实际效率。效率。 【仪器介器介绍绍】 1. 实验实验装装置介置介绍绍 整套实验实验装装置以置以电电加热器为例进行介绍,如,如图图2所示。

2空气净化治理机工艺流程及原理

纳米水离子净化器工艺流程及工作原理 河北立铂科技有限公司 品牌纳米水离子空气净化器,是中国唯一一家使用专利空气净化纳米剂的高品质空气净化产品。是一款全面治理室内空气污染的空气治理机,注重物理、化学、微生物全方位治理。本机按净化原理属于复合型。其纳米活性防护系统弥补了活性碳、静电吸附、分子筛等吸附技术的不足,极大地提高了化学污染的治理效率和效果,是一项国内领先、国际先进的室内空气治理技术。 一、工艺流程图 二、工作原理 净化器通过机器本身风机吸取室内空气,经过:

1、前置网状纤维预过滤层,过滤大颗粒悬浮物,毛发,皮屑、衣物纤维等。 2、3M高效HEPA过滤层,过滤PM2.5、花粉、烟雾、粉尘等,控制过敏源。 3、专利高效活性炭过滤层,采用椰壳活性炭,其微孔径数量是木质、烟煤活性炭的 3倍。吸附能力和使用寿命是一般碳粒的3到5倍。每秒释放负氧离子800-1000万个,吸附甲醛、苯系物、TVOC等有害物质。 4、升级版冷触媒过滤层,采用高科技纳米材料,直接把甲醛、苯等有机污染气体, 分解成水和二氧化碳,提离甲醛净化能力。 5、过滤网过滤后的空气,再通过纳米水散发装置发散至空气中。静音气泵经气源管 路鼓动纳米水槽中的纳米水剂,发泡裂解,由于纳米水槽内部密封,使裂解的纳米水雾或微滴,通过导管散发离子基团融入空气达到净化空气的目的。 三、纳米水离子的应用 纳米水离子比水蒸气(6000nm)小1000倍,直径约5-20nm,因此可以渗入空气微尘及微生物内部结构,作用深度更深,空气负离子在医学上被临床证明对人体的生理功能有积极的促进作用,如果负离子在空气中达到一定的量,的确会对身体有保健作用,调节机能、消除疲劳、改善睡眠等。 颐云室内空气净化治理器每小时将适用面积的空气过滤3-5次的基础上,再释放出含有亲水基团的纳米复合离子,似如在空气中注入了维生素,使我们的室内环境更贴近大自然和原生态。纳米活性防护系统(nano active defense system)一种以纳米羟晶技术复合的活性亲水基团与化学污染物直接作用后强化了对小分子(甲醛、苯系物)物质的清除,弥补了活性碳、静电吸附、分子筛等吸附技术的不足,极大地提高了化学污染的治理效率和效果。 纳米活性防护系统的极化可破坏微生物的信息系统,阻止其繁殖再生,从而起到抗菌防霉除螨虫的功效,也杜绝了空气治理器本身成为二次污染源的可能性。

空气热机实验报告

利用空气热机验证卡诺定理 田群王静菊 (中国海洋大学海洋环境学院海洋气象系,山东青岛,266100) 摘要:本文介绍了利用空气热机验证卡诺定理的原理和方法。得到实验结果与卡诺定理的理论值基本一致,并对产生误差的原因做了讨论。 关键词:卡诺定理;空气热机;热效率 卡诺定理(Carnot Theorem)是法国物理学家尼古拉·卡诺(Nicolas Carnot)在前人工作的基础上于1924年提出的。此定理说明热机的最大热功率只与高温热源与低温热源之间的温度差有关,即: T C 为低温热源的绝对温度,T H 为高温热源的绝对温度[1]。空气热机是以空气为工作物质的热机,在1816年由伦敦牧师罗伯特·斯特林(Robert Stirling)发明,因此又称为“斯特林发动机”,是最古老的热机之一[2]。本文将利用空气热机验证卡诺定理,并对空气热机的效率低于卡诺热机效率的原因做一些分析。 1空气热机的工作原理 空气热机的工作部分结构如图1,工作活塞使汽缸内气体封闭,并在气体的推动下对外做功。位移活塞是非封闭的占位活塞,其作用是在循环过程中使气体在高温区与低温区间不断交换,气体可通过位移活塞与位移汽缸间的间隙流动。工作活塞与位移活塞的运动是不同步的,当某一活塞处于位置极值时,它本身的速度最小,而另一个活塞的速度最大。当工作活塞处于最底端时,位移活塞迅速左移,使汽缸内气体向高温区流动,如图1a所示;进入高温区的气体温度升高,使汽缸内压强增大并推动工作活塞向上运动,如图1b 所示,在此过程中热能转换为飞轮转动的机械能;工作活塞在最顶端时,位移活塞迅速右移,使汽缸内气体向低温区流动,如图1c 所示;进入低温区的气体温度降低,使汽缸内压强减小,同时工作活塞在飞轮惯性力的作用下向下运动,完成循环如图1d所示。

空气热机实验论文报告

空气热机试验 摘要:热机是将热能转换为机械能的装置,空气热机结构简单、便于操作。空气热机实验通过对空气热机探测仪、计算机等操作来理解空气热机原理及循环过程。通过电加热器改变热端温度测量热功转换值,作出nA/ΔT 与ΔT/ T1的关系图,验证卡诺定理。逐步改变力矩大小来改变热机输出功率及转速,计算、比较热机实际转化效率。试验表明:在一定误差范围内,随热端温度升高nA/ΔT 与ΔT/ T1的关系呈现性变化,验证卡诺定理。热端温度一定时输出功率随负载增大而变大,转速而减小。 关键词:卡诺定理;空气热机;卡诺循环 引言: 热机是将热能转换为机械能的机器。历史上对热机循环过程及热机效率的研究为热力学第二定律的确立起了奠基性的作用。斯特林1816年发明的空气热机,以空气作为工作介质,是最古老的热机之一。虽然现在已发展了内燃机,燃气轮机等新型热机,但空气热机结构简单,便于帮助理解热机原理与卡诺循环等热力学知识。 空气热机的结构如图一所示,热机主机主要有高温区、低温区、工作活塞和位移活塞、气缸、飞轮、连杆,热源等组成。 由电热方式加热位移活塞,其作用是在循环过程中使气体在高温区与低温区间不断交换,气体可通过位移活塞与位移气缸间的间隙流动,提高高温与低温间的温度差可以提高热机效率。位移活塞与工作活塞通过连杆与飞轮连接,他们的运动是不同步的,其中一个处于极值时,速度最小,另一个活塞速度最大。 图一 空气热机工作原理示意图 当工作活塞向下移时,位移活塞迅速左移,使汽缸内气体向高温区流动,如图1 a 所示;进入高温区的气体温度升高,使汽缸内压强增大并推动工作活塞向上运动,如图1 b 所示,在此过程中热能转换为飞轮转动的机械能;工作活塞向顶端移动时,位移活塞迅速右移,使位移汽缸内气体向低温区流动,如图1 c 所示;进入低温区的气体温度降低,使汽缸内压强减小,同时工作活塞在飞轮惯性力的作用下向下运动,完成循环,如图1 d 所示。在一次循环过程中气体对外所作净功等于P-V 图所围的面积。 根据卡诺对热机效率的研究而得出的卡诺定理,对于可逆循环的理想热机,热功转换效率为: ()11211211//)(//A T T T T T Q Q Q Q ?=-=-==η 式中A 为每一个循环中热机做的功,1Q 为热机每一循环从热源吸收的热量,2Q 为热机每一个循环向冷源放出的热量,1T 为热源的绝对温度,2T 为冷源的绝对温度。 由于热量损失,实际的热机都不可能是理想热机,循环过程也不是可逆的,所以热机转化效率:

空气净化器原理空气净化器工作原理图解

空气净化器原理空气净化器工作原理图解 空气净化器的出现,让身处在工业污染下的我们看到一丝希望,空气净化器能够对空气中的粉尘、异味等污染进行消除,是目前一款很不错的产品。那么空气净化器的工作原理究竟是怎样的呢? 虽然市场上的空气净化器种类、名称、功能等不尽相同,但是要从它的原理上来说的话也没有那么多的种类。空气净化器从原理上来说主要可以分为两种,一种是被动吸附过滤式的空气净化原理。而另一种则是主动式的空气净化原理。下面我们就详细来看看这两种原理究竟是怎样的。 空气净化器原理1 家用电器大全!品牌、品质、品味! 被动吸附过滤式空气净化器原理 被动式的空气净化器,主要是用风机将空气抽入机器,然后通过内置的滤网过滤空气,能够起到过滤粉尘、异味、消毒等作用。滤网式空气净化器多是采用HEPA滤网+活性炭滤网+光触媒(冷触媒、多远触媒)+紫外线杀菌消毒+静电吸附滤网等方法来处理空气。而HEPA滤网有过滤粉尘颗粒物的作用,活性炭等物质主要是吸附异味等有毒有害物质。 空气净化器原理5 主动式的空气净化器原理 主动式的空气净化原理区别于被动式空气净化原理就在于,主动式的空气净化器摆脱了风机与滤网的限制,不用被动的等到空气被抽送进来再进行过滤完之后再通过风机排出,而是有效、主动的向空气中释放净化灭菌的因子,通过在空气中弥漫、扩散的特点,到达室内的各个角落对空气进行无死角净化的效果。 空气净化器原理3 两种净化器原理的比较 从空气净化效率作比较。被动式吸附净化器采用风机+滤网的模式进行空气净化,单是利用空气的流动的原理就难免会存在死角,因此被动式的空气净化器大多只能在空气净化器放置一小块空间产生一定的净化效果,只有通过很长是时间之后才能将室内空气全部过滤一遍。 而主动式的空气净化器利用空气弥漫性的特点,将净化因子扩散到各个角落来进行空气净化,从而使空气能够弥漫到的地方均可以得到净化效果。拿负离子空气净化器进行比较发现,对空气中释放负离子后,负离子能够主动出击、寻找空气中的污染颗粒物,并与其凝聚成团,主动将其沉降。仅从这一点来说,主动式的空气净化就有着比较明显的优越性。 通过对比,我们可以总结出,主动式的空气净化器要比被动式的空气净化器效果好很多,并且能够有效的做到净化空气的目的,所以大家在选购的时候可以从这些方面去思考观察!选择对的产品,给家人放心的家居空间!

空气净化器原理

编辑本段空气净化器构成 空气净化器主要构成有:机箱外壳、过滤段、风道设计、电机、电源、液晶显示屏等。决定寿命的是电? ? 机,决定净化效能的是过滤段,决定是否安静的是风道设计、机箱外壳、过滤段、电机。2008北京奥运会、2010上海世博会的空气净化器供应商--上海安居乐生物科技有限公司指出,空气净化器构成的重要部分是技术核心部分,即采用什么原理,哪种方式进行净化。 编辑本段空气净化器选购与保养 选购空气净化器时需要考虑四大点: 第一,是否具有绝对的安全性。 选购空气净化器,无非都是想用其来换取健康清新的空气。把以一台空气净化器是否安全,是决定其是否可取的基本前提条件。空气净化器的外壳、机芯与净化技术,将会直接影响着空气净化器的安全性。净化技术,应选择与自然界中的正负离子一样,并有国外13家机构认证其安全性的离子净化技术。[1]? 第二,是否具有科学的净化原理,达到高效的空气净化器效果。 国际通行的空气净化原理有五种,物理式、静电式、化学式、负离子式和复合式。一般来说,同时使用多种净化方式的空气净化器,其净化效果会更佳。例如灰尘、异味、花粉等大颗粒物质,可以通过物理净化方式来过滤;而过敏物质、病毒、甲醛等有害物质,则需要化学净化方式来净化。 按净化方式从能动的方向来分,净化方式从能动的方向来分,又有主动净化方式(空中净化)和被动净化方式(定点净化)和主被动复合净化三种。被动净化方式只对吸入的空气有净化效果;主动的净化方式对整个空间都会有净化效果。主被动复合净化是两者的相结合,效果也更加好。

第三,是否满足具体的净化需求。 就空气净化器而言,净化功能是最为关注的功能。如果您对室内空气净化器的要求只是基于提高室内空气质量的话,可以选择单纯净化空气,性价比高的类型。 而随着人们对生活质量需要的日益提高,对空气净化器的需求不再是单纯的净化室内空气。如,那些在密闭的空调房内工作的人群,因为空调的抽湿作用使房间里的空气变得十分干燥,皮肤也变得干燥,所以在选择空气净化器时,会选购具有美肤功能的加湿空气净化器。 而长期处于人多、室内污染较大的人群,需要近距离呼吸到清新无细菌的空气,在选购空气净化器时,会偏向于小型的适合放在桌面的k空气净化器。 而拥有自己的轿车的人群,则应该选择汽车车载空气净化器,净化各种汽车异味,甚至缓解开车疲劳。 第四,结合市场销售量和第三方权威认证进行选购。 一台高品质的家用空气净化器,必须具有除菌、除异味的净化能力。选购空气净化器时,尤为注意其除菌力和除异味能力是否浪得虚名。一般来讲,销量是一个关键的市场检验指标。 另外,像家具桌子下、沙发床垫等污浊空气集中的地方滋生着白色葡萄球菌、大肠杆菌、流感病毒等常见浮游菌;新装修的房子里布满了甲醛、苯和TVOC等有害气体。空气净化器对这些有害物质的净化效果,如果得到第三方权威机构的验证,会更具其说服力。 至于空气净化器的保养与维护,需要视不同品牌、不同类型空气净化器来定,不过,一般情况下,保养与维护都比较简单。一般地,(1)前置滤网(一般为机箱后盖)使用的时间长了,会聚集一些灰尘,从而影响进风,影响空气净化的效果。所以,需要用吸尘机把灰尘新走,或者用抹布清理,甚至水洗。(2)过滤网,部分过滤网是需要定期拿到太阳底下去晒一晒,净化效率才能较好地保持,如活性炭滤网。(3)除臭滤网,少数品牌的空气净化器的除臭滤网,以达到可水洗的技术层面,可以通过水洗,即保持净化效率,缩短换滤网的周期。(4)离子发生器,一般是内置的,不需要清洁,较好的离子发生器工作效率都较高。 编辑本段空气净化器的分类 按照应用领域可以分为:家用空气净化器、车载空气净化器(又称车用空气净化器)、医用空气净化器、工业用空气净化器和工程类空气净化器等。 按照净化方式来分,又可分为以下几种:

四川大学 创新型物理实验 空气热机实验

空气热机实验 1143092146 付美梅 (轻纺与食品学院轻化工程) 摘要:本实验利用空气热机测量不同冷热端温度时的热功转换值,验证卡诺定理;后又测量热机输出功率随负载及转速的变化关系,计算热机实际效率。最后,由此实验得到的一些创新想法。 关键词:空气热机;卡诺定理;热机效率;余热再用;火法冶金;鼓风;转鼓;风扇 热机[2]是将热能转换为机械能的机器。斯特林1816年发明的空气热机,以空气作为工作介质,是最古老的热机之一。其结构简单,便于帮助理解热机原理与卡诺循环等热力学中的重要内容,是很好的热学实验教学仪器。 卡诺定理[3]是卡诺1824年提出来的,其表述如下: (1)在相同的高温热源和相同的低温热源之间工作的一切可逆热机,其效率都相等,与工作物质无关,与可逆循环的种类也无关。 (2)在相同的高温热源和相同的低温热源之间工作的一切不可逆热机,其效率都小于可逆热机的效率。 1 实验原理[1] 空气热机的结构及工作原理可用图1说明。热机主机由高温区,低温区,工作活塞及汽缸,位移活塞及汽缸,飞轮,连杆,热源等部分组成。 空气在高温区和低温区间不断交换,使汽缸内压强不断变化,从而推动位移活塞和工作活塞的循环移动。 图1 空气热机工作原理 (1)对于循环过程可逆的理想热机,热功转换效率:η = A/Q1 =(Q1-Q2)/Q1=(T1-T2)/T1= ΔT/ T1而实际热机:η ≦ΔT/ T1 热机每一循环从热源吸收的热量Q1正比于ΔT/n,n为热机转速,η正比于nA/ΔT。而n,A,T1及ΔT 均可测量,测量不同冷热端温度时的nA/ΔT,观察它与ΔT/ T1的关系,即可验证卡诺定理。 (2)当热机带负载时,热机向负载输出的功率可由力矩计测量计算而得,且热机实际输出功率的大小随负载的变化而变化。在这种情况下,可测量计算出不同负载大小时的热机实际效率。 2 实验装置及实验方法 本实验中使用的设备和装置有:空气热机实验仪,空气热机测试仪,电加热器及电源,计算机(或双踪示波器)。 实验方法如下: (1)测量不同冷热端温度时的热功转换值: 正确连接仪器,将力矩计尽可能的调松,打开电源,将加热电压加到第11档。等待加热电阻丝发红,当ΔT接近100K时,顺时针拨动飞轮令热机运转。 减小加热电压至第1档,调节示波器,观察压力和容积信号,以及压力和容积信号之间的相位关系等,并把P-V图调节到最适合观察的位置。等待约10分钟,温度和转速平衡后,记录当前加热电压,并从热机测试仪上读取温度和转速,从双踪示波器显示的P-V图估算P-V图面积,记入表1中。 逐步加大加热功率,等待约10分钟,温度和转速平衡后,重复以上测量4次以上,将数据记入表1。 以ΔT/ T1为横坐标,nA/ΔT为纵坐标,在坐标纸上作nA/ΔT与ΔT/ T1的关系图,验证卡诺定理。 (2)测量热机输出功率随负载及转速的变化关系: 在最大加热功率下,用手轻触飞轮让热机停止运转。然后将力矩计调紧,拨动飞轮,让热机继续运转。调节力矩计的摩擦力(不要停机),待输出力矩,转速,温度稳定后,读取并记录各项参数于表2中。

相关主题
文本预览
相关文档 最新文档