当前位置:文档之家› 直流永磁电机的气隙与计算极弧系数的选取

直流永磁电机的气隙与计算极弧系数的选取

直流永磁电机的气隙与计算极弧系数的选取
直流永磁电机的气隙与计算极弧系数的选取

直流永磁电机的气隙与计算极弧系数的选取

刘宁(深圳黎明工业有限公司518031)

徐秀英(深圳市金田房地产开发公司)

【摘要】直流永磁电机的磁极形状较多,在设计中常会遇到气隙系数和计算极弧系数的选取。这些系数选取的精确程度直接影响电机设计精度和制造成本。通过对多种不同磁极形状永磁直流电机设计方案的计算分析,得出了这些系数与相关量的关系曲线。

【叙词】直流电动机永磁电机气隙系数计算极弧系数

l引言

在微型直流永磁电机的设计中,常由于不同的用途采用不同的磁极形状,因此不可避免地存在着气隙系数和计算极弧系数的选取。这些系数选取的精确程度不仅影响设计精度和电机的性能,而且直接影响电机的制造成本。

本文通过对无极靴的同心瓦片形磁极、有极靴的同心瓦片形磁极和等外径拼块式的瓦片形磁极电机设计方案的计算分析,给出了气隙系数和计算极弧系数与其相关量之间的关系曲线。这些曲线不仅反映了气

隙系数和计算极弧系数与其相关量之间的定量关系,更重要的是反映出了这些参数随不同选取值时的变化趋势。

2气隙系数和计算极弧系数的物理意义

2.1气隙系数Kδ

气隙系数Kδ是考虑到电机开槽因槽口对气隙磁场的影响而引入的系数。在一般微型直流屯机的设计中常采用半闭口槽,开槽对气隙磁场的影响如图1所示。

根据图1所示的意义,气隙系数的计算可用下式进行,

从式(1)式可见,气隙系数的物理意义是将有槽电机当作无槽电机计算,但其气隙被放大了K8倍。2.2永磁电机的气隙系数计算

永磁电机的气隙系数一般按凸极电机计算,但其计算公式为:

从式(2)、(3)可见,永磁电机的气隙系数取决于气隙长度、永磁体的厚度和槽口的宽度等因素。在设计计算中需要综合考虑。

2.3计算极弧系数αP

计算极弧系数αP是为确定每极最大磁通密度而引入的系数,其物理意义如图2所示,数学表达式见式(4)。

从图2和式(4)可见,计算极弧系数的物理意义是假想每极气隙磁通集中在计算极弧长度Bp范围内,并认为在这个范围内气隙磁场均匀分布,其磁密等于最大值。计算极弧系数即为极弧计算长度与极距之比:

由于磁极形状和磁路结杓的不同,影响电机气隙磁场的波形和计算极弧系数的因素也各不相同。对于永磁电机,其计算极弧系数主要取决于计算极弧、气隙长度与极距的比值。

3计算与分析结果

3.1气隙系数的计算与分析结果

3.1.1气隙系数Kδ与气隙长度δ的关系

不同磁极形状的气隙系数Kδ与气隙长度δ的关系,经计算得到的曲线见图3、图4和图5。

从图3、图4和图5可见,尽管不同磁极形怵的气隙系数Kα=f(a)曲线对应同一气隙长度的数值不同,但它们的变化规律是一致的。这说明在仅考虑气隙长度影响时,气隙系数的变化规律与磁极的形状无关。

3.1.2气隙系数Kα与永磁体的厚度hm的关系

不同磁极形状的气隙系数Kα与永磁体厚度hm的关系,经计算得到的曲线如图6、图7和图8所示。

在无极靴的永磁电机中,气隙系数是随永磁体的厚度增加而相对减少的,这是由于永磁体越厚其磁动势越大,气隙最大磁密与平均磁密的差距越小(如图6、图7所示)。对于有极靴的永磁电机,气隙系数是随永磁体与极靴的相对厚度增加而略有增加,这是由于极靴随着磁极厚度的增加而渐有饱和程度的增加所至。从图中的数值可见,这种变化值的范围是很小的,说明永磁体的厚度对气隙系数的影响并不十分显著。3.1.3气隙系数Kδ与槽口宽度bp的关系

不同磁极形状的气隙系数Kα与沿电枢表面槽口宽度bp的关系,经计算得到的曲线如图9、图10和图11所示。

3.2计算极弧系数α

的计算与分析结果

P

与气隙长度和极距之比α/τ的关系

3.2.1计算极弧系数α

P

不同磁极形状计算极弧系数αP在极弧系数P取不同值时,与气隙长度和极距之比α/τ的关系,经计算得到的曲线如图12,图13和图14所示。

从图9、图10和图11可见,不同磁极形状的气隙系数曲线对应槽口宽度的变化规律是一致的。从数值结果看,槽口对气隙系数的变化影响是比较显著的。

图12、图13属于同心式磁极,其气隙磁场分布接近于矩形,宽度由极弧长度和极距之比确定。图13是有极靴的情况,考虑到极靴两侧的磁场边缘效应,极间区域的气隙磁场分布和比值α/τ及极靴角有关,所

也随α/τ的增加而变,但变化缓慢。这以其变化的速率较大。图14为等外径拼块式磁极,由图可见,α

P

是由于其极弧系数a

与同心式结构取等值计算,而其拼块式结构又不像同心式的那样规则所至。

P

3.2.2计算极弧系数αP和极对数P的关系

不同磁极形状计算极弧系数αP(在极弧系数αP取不同值时)与极对数P的关系如图15、图16和图17所示。

与电激磁直流电机相比,永磁电机的计算极弧系数总要相对小些。这是由于永磁体的内磁阻较大,当边缘气隙磁通和部分极间漏磁通从永磁体两侧流过时,靠近外侧的磁极内磁位差增大,与气隙交界的磁极表面不再是等位面了,极面的磁位差中间高两头低,从而使极间的气隙磁通减少。

从计算与分析结果可见,永磁直流微电机的气隙在相詈大的范围内变化时,其气隙磁场的计算极弧系数几乎不变。

当然,气隙磁场的计算极弧系数与永磁体的充磁能量及充磁磁头的几何尺寸有关。一般,总是让充磁能量足够大,即尽可能让计算极弧系数的值达到极限。

4结语

直流永磁电机与普通直流电机在设计上有许多特殊点,尤其是气隙系数和计算极弧系数的选取对设计精度、电机性能以及制造成本均有较大的影响。本文通过大量的直流永磁电机设计方案的计算与分析,得出了设计参数与相关量之间的函数曲线。这些曲线不仅给出了定量关系,更重要的是可以清楚地看到这些参数与相关量之间的定性关系以及变化趋势。

电机计算公式

序号 名称 公式/代号 单 位 备 注 1 负载电流 H H H H U P I ?ηcos ??= A 2 转子绕组线规 2 `2 d d mm ` 2 d 绝缘导线外径,2d 铜线直径 3 转子绕组截面 S 2= 2m m 4 转子绕组电密 2 22S I = ? 2mm A 2?间歇工作取10~14 5 转子线负荷 A= A/cm A=100~160(P88) 6 转子总导线数 I A D N 22π= 7 转子每槽线数 z N N S = 8 转子槽满率 ()()()2 12 2 `257.12222110?-+?--?? ?????-+?= -R h h R b d N f i S s Δ=槽绝缘厚度+间隙(cm) 一层槽绝缘的间隙为0.005cm s f 不大于0.76,自动绕线机不 大于0.65 9 转子绕组平均 22D K L l e += cm e K =0.95 当2D 小于4cm 时;e K =1当2D 小于4cm 时 10 转子绕组电阻 52 2 21035.5-?= S Nl r Ω 11 损耗比例系数 H H H P I r I a ηη-???? ? ?++=1034.04.23.222 仅用于初算内功率 12 内功率 ()[]H H H i a P P ηη--= 11 W 13 旋转电势 I P E i = V 14 电机常数 i H P Ln D C 22= 15 极距 2 2 D πτ= cm 16 极弧系数 a=极弧长度/极距 a=0.6~0.7 17 计算极距 ττa =0 cm 18 实槽节距 ε-=2Z y s Z 为单数时ε=0.5 Z 为偶数时ε=1 19 短矩系数 ?? ? ???=?180sin z y K s P 20 磁通 N n K E H p d 260= φ Wb 21 虚槽节距 ε?-= z K K y 21 Z 为单数时ε=0.5 Z 为偶数时ε=1 22 前节距 112-=y y

永磁同步电机地全参数辨识

永磁同步电机的参数辨识 本文主要是在逋用变频器上实现永磁同步电机的矢星控制,对于通用变频器而言,变频器所带的电机是未知的,不冋的电机有不同的电机参数.由图N3可知,要想使得永磁同步电机矢量挖制系统有较好的稳応运行特性及动态响应特性,就需蔭电机参数耕确可知.电机帯负我时的转动惯宣与转谏调节器的PI参敌幣定密切相关.而电流调书器P【塞数的确运需要电机的电松电阻、交宜轴也感、永碰休磁链尊参数*圉外学者很¥就开始研究永磁同步电机参数辨识的方法*片且生杀统”始运彳亍之挤系统可以白动通过特定的算法対永陋冋步电机慕数进fj辨识,然后对驰动器的各控制参数址行自整定,从而不需要丁程人页铲对不冋的电机而对衆动讎村黃参敎进厅手胡贷協大大増運『驱动器的適用性…本章节主突介绍永破同步电机电枢电阻Rs. dq轴电感、风碣休厳链(即反电势系数)的离线辨识(Off-lineAutoTiming)方法* 4.1电机参数的辨识原理 4.1.1电枢巾阻的辨识原理 定义电枢电阻尬为定子每爬的电阴*采用貞滾测试对电枢电阻进行参数辫识。从水磁同步电杠的基木结构可以看出,当通过逆变器旬电机施加?个方向固定、幅值不变的电压矢量时*电机的三相电流精会恨快达刊-个免定值且电机前止。由于输入的是豆流电流.定子绕组的电抗值为零,定子绩组用当于个纯电粗。下图为电枢电阳辨识实验的等盘图. 债设电流表读数为4电压表读数為U”则心?厶?厶=人=-0.5乙,子是得到琨阻的计谆表达式如下1 (4 1)4J.2交直轴电感的辨识原理 在进行电枇电駅辨讲时,当定子电液达到稳定俏后,永確同步电机的转子N极将

会转到与施加的定子电压矢量相同的位託?这时所施加空间电压矢量的位遥即为d 轴位 置。这时根振水磁冋步电机在两和旋转坐标系下的数学模型,当电机转速为零时,式 (110)可化简得到下式: di, %=RJd+Ld 才 (4.2) 对于电压阶跃输入时的电流响宜为: (43) 其中ZU/R,为稳态时的屯流值,心为屯机的电枢电阴,—为待辨识的d 轴电 感。通过记录◎的匕升过稈可计尊出肖.轴电憋。由第2章的介绍可知,对于表贴式永磁 同步电机而言,交直轴电感基本是相等的,所以只需辨识其中一个即可。 4.13反电势系数的辨识原理 单位转速下的空較反电势的电压值定义为电机的反电势系数,笊位V/Krpm ?梵计 舁公式为: K v = E/n (4.4) 其中,E 为空载反电势,单位V : ”为对应的转速,单位Krpm 。 反电势系数其实就是转子永磁逆链,只是单位不同,永磁磁链卩/的单位是Wb, 其计算公式为屮广Eb, E 空我反电势,玳位V ; 3为转子?碇转机械角速度,单位是 rad/so 永磁磁链与反电势系数间的换算关系如下: 由反电势系数的定义就能很容易想到一种反电势系数的耕识方法,即使用另外一台 电机拖着待辨识的永磁同步电机以某一恒定转速(假设是n (单位:Krpm )的转速)旋 转,然后测得电机的UV 端的输出电压(假设是E (单位:V )),根据式4.4就能计算 出反电势系数。用这种方法确实能够比较粘确的辨识出永磁同步电机的反电势糸数,但 同时也能发现这种方法需耍增加的外囤设备太参(需要另外一台速度可辅确控制的电 机,以及电压测虽装置等),通用性较差,所以不太适合辨识反电势系数。 这里给出一个工程上计算PMSM 的反电势系数的经验公式,此公式是根据安川 A1000的变频器经过多台永磁同步电机的实验结果幷总结规律所得。 (4.6) JC 中,耳为电机额定功率(单JT 5?10叫 (4.5)

驱动轮直流电机选择计算

驱动轮电机用于驱动 AGV 的运行,包括AGV 的直行及差速转弯。在选择电机时,我们通常需要计算出电机的额定功率、额定转矩、额定转速等[28]。而在驱动电机的参数计算之前首先需要明确 AGV 的各项设计要求,如表3-1 所示。 3.1.1 电动机的选择 1. 驱动力与转矩关系 AGV 在地面行驶时,轮子与地面接触,AGV 克服摩擦力向前行驶,电机输出转矩Tq 为小车提供驱动力。而Tq 经减速机减速后得到输出转矩Tt 输出至驱动轮,输出转矩Tt 为: q t g T i T η= 式中 g i ——减速机减速比; q T ——电机输出转矩; t T ——输出转矩; η——电机轴经减速机到驱动轮的效率。 驱动轮在电机驱动下在地面转动,此时相对于地将形成一个圆周力,而地面对驱动轮也将产生一个等值、反向的力t F ,该力即为驱动轮的驱动力[29] 。驱动力为: q q q t g t R T i R T F η= = 式中 q R ——驱动轮的驱动半径。 由于驱动轮一般刚性较好,视其自由半径、静力半径、滚动半径三者相同,均为q R 。 2. 驱动力与阻力计算 小车在行驶过程中要克服各种阻碍力,这些力包括:滚动阻力f F 、空气阻力w F 、

坡度阻力r F 、加速度阻力j F 。这些阻力均由驱动力t F 来克服,因此: j r w f t F F F F F +++= (1) 滚动阻力f F 滚动阻力在 AGV 行驶过程中,主要由车轮轴承阻力以及车轮与道路的滚动摩擦阻力所组成,f F 大小为: fg fz f F F F += 式中 fz F ——车轮与轴承间阻力; fg F ——车轮与道路的滚动摩擦阻力。 其中,车轮轴承阻力fz F 为: N 6.3200 48 015.010002 /2 /fz =?? ===D d P D d P F μμ 式中 P ——车轮与地面间的压力,AGV 设计中,小车自重m 为100kg ,最大载 重量m ax M 为200kg ,因此最大整车重量为300kg ,一般情况下,AGV 前行过程中,有三轮同时着地,满足三点决定一平面的规则,各轮的压力为P =1000N [30]; d ——车轮轴直径,驱动轮在本次设计中选择8寸的工业车轮,即d=48mm ; D ——车轮直径,查文献[40]可知,驱动轮在本次设计中选择8 寸的工业车轮,即D =200mm ; μ——车轮轴承摩擦因数,良好的沥青或混凝土路面摩擦阻力系数为0.010—0.018,μ =0.015。 车轮与道路的滚动摩擦阻力fg F 为: N 15015.01000fg =?==Qf F 式中 Q ——车轮承受载荷,Q =1000N ; f ——路面摩擦阻力系数,f =0.015。 则: N 6.18fg fz f =+=F F F (2) 空气阻力w F : 空气阻力是 AGV 行驶过程当中, 车身与空气间形成了相对运动而产生于车身上的阻力,该阻力主要由法向力以及侧向力两部分组成。空气阻力与AGV 沿行驶方向的投影面积以及车身与空气的相对运动速度有关, 但由于AGV 工作于

永磁同步电机参数测量试验方法

一、实验目的 1. 测量永磁同步电机定子电阻、交轴电感、直轴电感、转子磁链以及转动惯量。 二、实验内容 1. 掌握永磁同步电机dq 坐标系下的电气数学模型以及机械模型。 2. 了解三相永磁同步电机内部结构。 3. 确定永磁同步电机定子电阻、交轴电感、直轴电感、反电势系数以及转动惯量。 三、拟需实验器件 1. 待测永磁同步电机1台; 2. 示波器1台; 3. 西门子变频器一台; 4. 测功机一台及导线若干; 5. 电压表、电流表各一件; 四、实验原理 1. 定子电阻的测量 采用直流实验的方法检测定子电阻。通过逆变器向电机通入一个任意的空间电压矢量U i (例如U 1)和零矢量U 0,同时记录电机的定子相电流,缓慢增加电压矢量U i 的幅值,直到定子电流达到额定值。如图1所示为实验的等效图,A 、B 、C 为三相定子绕组,U d 为经过斩波后的等效低压直流电压。I d 为母线电流采样结果。当通入直流时,电机状态稳定以后,电机转子定位,记录此时的稳态相电流。因此,定子电阻值的计算公式为: 1 ,2a d b c d I I I I I ===- (1) 23d s d U R I = (2)

图1 电路等效模型 2. 直轴电感的测量 在做直流实验测量定子电阻时,定子相电流达到稳态后,永磁转子将旋转到和定子电压矢量重合的位置,也即此时的d 轴位置。测定定子电阻后,关断功率开关管,永磁同步电机处于自由状态。向永磁同步电机施加一个恒定幅值,矢量角度与直流实验相同的脉冲电压矢量(例如 U 1),此时电机轴不会旋转(ω=0),d 轴定子电流将建立起来,则d 轴电压方程可以简化为: d d d q q d di u Ri L i L dt ω=-+d d d d di u Ri L dt =+ (3) 对于d 轴电压输入时的电流响应为: ()(1)d R t L U i t e R -=- (4) 利用式(4)以及测量得到的定子电阻值和观测的电流响应曲线可以计算得到直轴电感值。 其中U /R 为稳态时的电流反应,R 为测得的电机定子电阻。由上式可知电流上升至稳态值的倍时,1d R t L - =-,电感与电阻的关系式可以写成: 0.632d L t R =? (5) 其中为电流上升至稳态值倍时所需的时间. 3. 交轴电感的测量 测出L d 之后,在q 轴方向(d 轴加90°)施加一脉冲电压矢量。电压矢量的作用时间一般选取的很短 ,小于电机的机械时间常数,保证电机轴在电压矢量作用期间不会转动。则q 轴电压方

永磁同步电机无传感器控制技术

哈尔滨工业大学,电气工程系 Department of Electrical Engineering Harbin Institute of Technology 电力电子与电力传动专题课 报告 报告题目:永磁同步电机无传感器控制技术 哈尔滨工业大学 电气工程系 姓名:沈召源 学号:14S006040 2016年1月

目录 1.1 研究背景 (1) 1.2 国内外研究现状 (1) 1.3 系统模型 (2) 1.4 控制方法设计 (4) 1.5 系统仿真 (7) 1.6 结论 (8) 参考文献 (8)

1.1 研究背景 永磁同步电机具有体积小、惯量小、重量轻等优点,在各领域的应用越来越广泛。目前在永磁同步电机的各种控制算法中,使用最多的是矢量控制和直接转矩控制,而这两种控制方式都需要转子位置,但转子位置传感器的采用限制了系统使用范围。永磁同步电机控制系统大多采用测速发电机或光电码盘等传感器检测速度和位置的反馈量,这不但提高了驱动装置的造价,而且增加了电机与控制系统之间的连接线路和接口电路,使系统易于受环境干扰、可靠性降低。由于永磁同步电机无传感器控制系统具有控制精度高、安装、维护方便、可靠性强等一系列优点,成为近年来研究的一个热点。 1.2 国内外研究现状 无传感器永磁同步电机是在电机转子和机座不安装电磁或光电传感器的情况下,利用电机绕组中的有关电信号,通过直接计算、参数辨识、状态估计、间接测量等手段,从定子边较易测量的量如定子电压、定子电流中提取出与速度、位置有关的量,利用这些检测到的量和电机的数学模型推测出电机转子的位置和转速,取代机械传感器,实现电机闭环控制。 最早出现的无机械传感器控制方法可统称为波形检测法。由于同步电机是一个多变量、强耦合的非线性系统,所要解决的问题是采用何种方法获取转速和转角。目前适合永磁同步电机的最主要的无速度传感器的控制策略主要有以下几种 (1)利用定子端电压和电流直接计算出θ和ω。该方法的基本思想是基于场旋转理论,即在电机稳态运行时,定子磁链和转子磁链同步旋转,且两磁链之间的夹角相差一个功角δ,该方法适用于凸极式和表面式永磁同步电机。该方法计算方法简单,动态响应快,但对电机参数的准确性要求比较高,应用这种方法时需要结合电机参数的在线辨识。 (2)模型参考自适应(MRAS)方法。该方法的主要思想是先假设转子所在位置,利用电机模型计算出该假设位置电机的电压和电流值,并通过与实测的电压、电流比较得出两者的差值,该差值正比于假设位置与实际位置之间的角度差。当该值减小为零时,则可认为此时假设位置为真实位置。采用这种方法,位置精度与模型的选取有关。该方法应用于PMSM时有一些新的需要解决的问题。 (3)观测器基础上的估计方法。观测器的实质是状态重构,其原理是重新构造一个系统,利用原系统中可直接测量的变量,如输出矢量和输入矢量作为它的输入信号,并使输出信号在一定条件下等价于原系统的状态。目前主要存在的观测器:全阶状态观测器、降阶状态观测器、推广卡尔曼滤波和滑模观测器。其中滑模观测器有很好的鲁棒性,但其在本质上是不连续的开关控制,因此会引起系统发生抖动,这对于矢量控制在低速下运行是有害的,将会引起较大的转矩脉动。扩展卡尔曼滤波器提供了一种迭代形式的非线性估计方法,避免了对测量的微分

直流电机参数术语一览(精)

1、 Assigned power rating 。标称功率。或额定功率。只该电机系统设计设计 时的理想功率也是在推荐工作情况下的最大功率。 POWER RATING 为功率。 2、Nominal voltage 。额定电压 (或工作电压,推荐电压。由于一般电机可以工作在不同电压下, 但电压直接和转速有关, 其他参数也相应变化, 所以该电压只是一种建议电压。其他参数也是在这种推荐的电压下给出的。 NOMINAL 名义上的。 3、 No load speed。空转速,或空载转速。单位是 RPM 。 revolutions per minute 此处的 R 不是 RATE 速度的意思,是 REVOLUTION 旋转的意思。空载转速由于没有反向力矩,所以输出功率和堵转情况不一样,该参数只是提供一个电机在规定电压下最大转速的作用。一般外面给出的 6000转啊, 12000转啊,多指这个参数。 4、 Stall torque 堵转转矩。这个是很多要带负载的电机的重要参数。即在电机受反向外力使其停止转动时的力矩。如果电机堵转现象经常出现, 则会损坏电机,或烧坏驱动芯片。所以大家选电机时,这是除转速外要考虑的参数。堵转时间一长,电机温度上升的很快,这个值也会下降的很厉害。 5、 Speed / torque gradient 速度 /转矩斜率。这个参数在一般的电机介绍中很 少出现。如果将转速为 Y 轴,力矩为 X 轴,一般,电机先是有一个和 X 轴平行的线,随后有点像 E 的负指数形式那样下降。即转速和力矩的乘积,随力矩的上升而下降。电机制造商都推荐电机在那条和 X 轴平行的线范围内工作。在这个范围内,电机的电流不至于导致电机过热和烧机。 6、 No load current。空载电流 (或空转电流。前面说过,电流和转矩密切相关。空载电流肯定存在, 其和电压的乘积形成的能量, 主要分为势能和热能消耗。热能就是电机线圈的发热,越好的电机,在空载时,该值越小,而势能指克服摩擦力, 和转子自身惯性的能量还有转子自身的转动势能。而一般转速一定时, 转子的惯性能量增加几乎没有, 而这个势能主要还是克服摩擦力的问题, 而最终以热能形式耗散, 所以空载电流越小, 电机的性能越好, 特别是加上减速箱的电机,空载电流越小,说明减速箱做的越好,当然,减速比越大,同样的设计方式下,阻力越大。

永磁直流电机性能参数

ZYT直流永磁电机 概述 ZYT直流永磁电机采用铁氧体永磁磁铁作为激磁,系封闭自冷式。作为小功 率直流马达可以用在各种驱动装置中做驱动元件。 产品说明 (1)产品特点:直流电动机的调速范围宽广,调速特性平滑;直流电动机 过载能力较强,热动和制动转矩较大;由于存在换向器,其制造复杂,价格较高。 (2)使用条件:海拔w 4000m环境温度:-25 C —+40C ;相对湿度w 90%(+25C时);允许温升,不超过75K。 型号说明 90ZYT08/H1 1.90位置表示机座号。用55、70、90、110和130表示。其相应机座号外径为 55mm 70mm 90mm 110mn和130mm 2. ZYT表示直流永磁马达。 3.08位置表示铁芯长度。其中01-49为短铁芯,51-99为长铁芯和101-149为超长铁芯。 4.H1位置为派生结构。其代号用H1、H2 H3??…。 安装形式 1. A1表示单轴伸底脚安装,AA1表示双轴伸底脚安装。 2. A3表示单轴伸法兰安装,AA3表示双轴伸法兰安装。 3. A5表示单轴伸机壳外圆安装,AA5表示双轴伸机壳外圆安装。 使用条件 1. 海拔不超过4000米。 2. 环境温度:-25度到40度。 3. 相对温度:小于等于95度。 4. 在海拔不超过1000米时,不超过75K. 技术参数 以下数值为参考使用,在实际生产时可以根据客户要求调整。 1. 型号55ZYZT01-55ZYZ10转矩55.7-63.7(毫牛米),速度3000-6000(r/min), 功率20-35(W),电压24-110(V),电流1.5-3.2 (A)和允许逆转速度差

直流电机参数标准计算规范举例

主电机参数整定值 主电机z4-450-42 600kw 500/1000r/min 旧辊¢280/¢260×1200mm,新辊¢300/¢280×1250mm 传动比i1=34/34×42/18=2.3333, i2=49/20×42/18=5.7167 高速档线速度上限值v=360m/min(6m/s),低速档线速度上限值v=144m/min(2.4m/s) 电机转速: 高速档旧辊n=2.3333×360/∏(0.28~0.26)=955~1028r/min 高速档新辊n=2.3333×360/∏(0.30~0.28)=891~955r/min 低速档旧辊n=5.7167×144/∏(0.28~0.26)=936~1008r/min 低速档新辊n=5.7167×144/∏(0.30~0.28)=873~936r/min 线速度给定值10v对应360m/min 转速给定值10v对应1028r/min 设置辊径补偿,将线速度给定值换算成转速给定值 线速度给定值 辊径 转速 转速给定 (m/min) (m) (r/min) (v) 高 360 0.26 1028 10 速 360 0.28 955 9.27 档 360 0.30 891 8.67 低140 0.26 1008 9.81 速140 0.28 936 9.11 档140 0.30 873 8.49 辊径补偿环节同时将转速反馈量换算成形象速度显示信号 辊径 转速 转速反馈 显示值 (m)(r/min) (v) (m/min) 高 0.26 1028 10 360 速 0.28 955 9.29 360 档 0.30 891 8.67 360 低 0.26 1008 9.81 144 速 0.28 936 9.11 144 档 0.30 873 8.49 144 开卷、卷取在低速档时,碎边机工作时,轧机应置于低速档,如置于高速档应禁止运行或速度上限不允许超过144m/min。 轧制力矩计算 对应500/1000r/min的电机过载倍数为1.6/1.0对应不同转速的电机额定力矩 Me=975×600/500=1.17tm M750=0.878tm M1000=0.585tm额定轧制力矩Mz=(in/1.05)Me(从计算看主要是给动补和空补留有一定的空间) 不同转速的轧制力矩 低速档

永磁同步电机计算

永磁同步电机设计 1电机仿真模型 (a )原型电机(b )新型电机 图1PM-Y2-180-4电机整体有限元仿真模型 图2新型电机转子1/4模型 2静态有限元仿真结果比较 2.1永磁磁场分布 当永磁体单独作用时,两种电机的磁力线分布如图3所示。 (a )原型电机(b )新型电机 图3两种电机永磁磁场分布 2.2永磁气隙磁密波形 当永磁体单独作用时,两种电机一个周期范围(即一对永磁体范围)的永磁气隙磁密波形如图4所示。 (a )原型电机 (b )新型电机 (c )两种电机比较 图4两种电机永磁气隙磁密分布 3空载稳态有限元仿真结果比较 3.1空载永磁磁链、空载永磁反电势波形 空载情况下,两种电机的三相绕组电流均设置为零,电机中磁场由永磁体单独产生。设置电机稳态运行转速为n =3000r/min ,可得到两种电机的空载永磁磁链、空载永磁反电势波形分别如图5、图6所示。由于三相绕组对称,在此仅给出A 相绕组仿真结果。 图5两种电机空载永磁磁链 图6两种电机空载永磁反电势 3.2空载永磁磁链、空载永磁反电势谐波分析 利用Matlab 对图5、图6的波形进行傅里叶分析,可得到两种电机磁链及反电势的各次谐波分量,如图7所示。 (a )空载永磁磁链(b )空载永磁反电势 图7磁链及反电势谐波分量分析 通过对两种电机的空载永磁磁链和空载永磁反电势进行谐波分析,得到以下结论:(1)3次谐波分量是主要谐波分量;(2)偶次谐波分量几乎为零,奇次谐波分量相对较大;(3)采用新型电机结构可在一定程度上削弱3次谐波分量,但同时会引起5、7次谐波分量增加,总体削弱谐波效果并不明显。 4负载稳态有限元仿真结果比较 4.1电枢绕组通入三相对称电压 两种电机具有相同的参数如下:电阻R =0.0410947?,电感L =5.87143?10?5H ,额定转速n =3000r/min 。给电枢绕组通入三相对称电压: A B C 310.269sin(20035.3581/180) 310.269sin(20035.3581/1802/3)310.269sin(20035.3581/1802/3) u t u t u t ππππππππ=+=+-=++(1) 并进行有限元仿真,得到两种电机的绕组电流及转矩波形,分别如图8、图9所示。 (a )原型电机 (b )新型电机 图8两种电机绕组电流波形

驱动轮直流电机选择计算

驱动轮直流电机选择计算 The final edition was revised on December 14th, 2020.

驱动轮电机用于驱动 AGV 的运行,包括AGV 的直行及差速转弯。在选择电机时,我们通常需要计算出电机的额定功率、额定转矩、额定转速等[28]。而在驱动电机的参数计算之前首先需要明确 AGV 的各项设计要求,如表3-1 所示。 3.1.1 电动机的选择 1. 驱动力与转矩关系 AGV 在地面行驶时,轮子与地面接触,AGV 克服摩擦力向前行驶,电机输出转矩Tq 为小车提供驱动力。而Tq 经减速机减速后得到输出转矩Tt 输出至驱动轮,输出转矩Tt 为: 式中 g i ——减速机减速比; q T ——电机输出转矩; t T ——输出转矩; ——电机轴经减速机到驱动轮的效率。 驱动轮在电机驱动下在地面转动,此时相对于地将形成一个圆周力,而地面对驱动轮也将产生一个等值、反向的力t F ,该力即为驱动轮的驱动力[29] 。驱动力为: 式中 q R ——驱动轮的驱动半径。 由于驱动轮一般刚性较好,视其自由半径、静力半径、滚动半径三者相同,均为q R 。 2. 驱动力与阻力计算 小车在行驶过程中要克服各种阻碍力,这些力包括:滚动阻力f F 、空气阻力w F 、坡度阻力r F 、加速度阻力j F 。这些阻力均由驱动力t F 来克服,因此: (1) 滚动阻力f F 滚动阻力在 AGV 行驶过程中,主要由车轮轴承阻力以及车轮与道路的滚动摩擦阻力所组成,f F 大小为:

式中 F——车轮与轴承间阻力; fz F——车轮与道路的滚动摩擦阻力。 fg 其中,车轮轴承阻力 F为: fz 式中P——车轮与地面间的压力,AGV设计中,小车自重m为100kg,最大载重量 M为200kg,因此最大整车重量为300kg,一般情况下,AGV前行过程中,有三轮m ax 同时着地,满足三点决定一平面的规则,各轮的压力为P=1000N[30]; d——车轮轴直径,驱动轮在本次设计中选择8寸的工业车轮,即d=48mm; D——车轮直径,查文献[40]可知,驱动轮在本次设计中选择8 寸的工业车轮,即D=200mm; μ——车轮轴承摩擦因数,良好的沥青或混凝土路面摩擦阻力系数为—,μ =。 F为: 车轮与道路的滚动摩擦阻力 fg 式中Q——车轮承受载荷,Q=1000N; f——路面摩擦阻力系数,f=。 则: F: (2)空气阻力 w 空气阻力是 AGV 行驶过程当中,车身与空气间形成了相对运动而产生于车身上的阻力,该阻力主要由法向力以及侧向力两部分组成。空气阻力与AGV 沿行驶方向的投影面积以及车身与空气的相对运动速度有关,但由于AGV工作于室内,基本工作环境中无风,且速度不快,同时 AGV 前后方的投影面积均不大,因此认为空气阻力F[31]。 ≈ w F: (3)坡度阻力 r AGV 所实际行驶的路面并非理想化绝对平整,而是存在一定的坡度[32],当 AGV行驶到该坡度处时,重力将产生一个沿着坡度方向的阻力,这个阻力就被称之为坡度阻F,表达式为: 力 r 式中G——AGV 满载总重量; α——最大坡度。 在 GB/T 20721-2006“自动导引小车国标”中表示:路面坡度(H/L)定义为在100mm 以上的长度范围内,路线水平高度差与长度的最大比值,路面坡度的最大比值需要小于(含),对于 AGV 精确定位的停车点,路面坡度需要小于(含)[33]。取坡度: 因此: F: (4)加速度阻力 j

自动控制原理课设——直流电机PI控制参数设计

目录 1.设计要求 (2) 2.设计原理 (2) 3.系统设计分析与计算 (3) 3.1 v a 为输入的直流电机控制系统微分方程计算 (3) 3.2计算W到Y的传递函数 (4) 3.3 k P 和k i 的值 (4) 3.4 PI控制环节对系统性能方面的议案相分析 (5) 3.5单位阶跃参考输入作用下系统的跟踪性能 (5) 3.6单位斜坡参考输入作用下系统的跟踪性能 (6) 4.数学仿真与验证 (7) 4.1MATLAB中连续系统模型表示方法 (7) 4.2系统在单位阶跃信号作用下输出响应仿真 (7) 4.3系统在单位阶跃信号作用下误差跟踪仿真 (9) 4.4系统在单位斜坡信号作用下输出响应仿真 (10) 4.5系统在单位斜坡信号作用下跟踪误差仿真 (10) 小结与体会.................................................... 错误!未定义书签。参考文献 (12)

直流电机PI 控制器参数设计 1.设计要求 要求对如下图所示的直流电机控制系统PI 控制环节的相关参数K p 和K I 的设计以达到闭环特征根满足包括60j 60±-的要求;并对直流电机控制系统在单位阶跃信号输入、单位斜坡信号输入以及扰动信号(单位阶跃信号、单位斜坡信号)输入下的动态性能、稳态性能等方面的分析, 并使用在Matlab 仿真软件中对系统的输出响应进行仿真,与理论计算的结果进行比较,修正做设计参数已达到正确结果。 2.设计原理 系统的结构图能较好地反应系统各方面信息,通过对系统结构图的分析,我们可以求出 Y

输入到输出的传递函数;通过系统结构图的变换可以求出扰动到输出的传递函数。通过相应的传递函数我们可以非常清楚的看出系统的型别,零极点大致分布等信息,可以初略估计系统的动态性能和稳态性能。 通过对v a 为输入到Y 输出的传递函数的拉普拉斯反变换可以求出相应的以v a 为输入的直流电机控制系统微分方程。从闭环传递函数中可以马上得到闭环特征方程,利用待定系数法可以求出所要求特定特征根情况下k P 和k I 的值。单位阶跃参考输入、单位斜坡参考输入时系统的跟踪性能都能通过相应传递函数拉普拉斯反变换得到其时域方程;对时域方程进行分析可以得到比较直观的系统动态性能和稳态性能指标。理论结果计算出来后,我们还可以利用Matlab 工具进行仿真计算,Matlab 能仿真出系统的输出响应曲线,能比较形象、直观的表现出系统的各方面性能,然后将通过Matlab 仿真软件对系统响应仿真结果与理论计算结果进行比较、修正。 3.系统设计分析与计算 3.1 v a 为输入的直流电机控制系统微分方程计算 首先应求出从v a 到Y 的传递函数,对传递函数进行拉普拉斯反变换就可得到相应的微分方程。 PI 表达式为:)(0 ?+=t I p a edt k e k v ,其中e=r-y 。可以得出相应的传递函数s K s K s D I P +*= )( W(s)=0,有以R 为输入的直流电机控制系统如上面图3-1所示,有开环传递函数为: ()() 60s s K s K 600)()(I p ++*= s H s G W(s)=0,R 错误!未指定书签。为输入的直流电机控制系统闭环传递函数为: Y

直流电机位置随动系统设计

中北大学信息商务学院课程设计说明书 学生姓名:学号: 学院:中北大学信息商务学院 专业:自动化 题目:直流电机位置随动系统设计 (第六组) 职称: 副教授 2013 年 12 月 9 日

中北大学信息商务学院课程设计任务书 2013-2014 学年第一学期 学院:中北大学信息商务学院 专业:自动化 学生姓名:学号: 课程设计题目:直流电机位置随动系统设计 (第六组) 起迄日期:12月9 日~12月20日课程设计地点:德怀楼七层实验室 指导教师: 下达任务书日期: 2013年 12月 9日

课程设计任务书

课程设计任务书

位置随动系统的概述 一.位置随动系统的概念 位置随动控制系统又名伺服控制系统。其参考输入是变化规律未知的任意时间函数。随动控制系统的任务是使被控量按同样规律变化并与输入信号的误差保持在规定范围内。这种系统在军事上应用最为普遍.如导弹发射架控制系统,雷达天线控制系统等。其特点是输入为未知。伺服驱动系统(Servo System )简称伺服系统,是一种以机械位置或角度作为控制对象的自动控制系统,例如数控机床等。使用在伺服系统中的驱动电机要求具有响应速度快、定位准确、转动惯量较大等特点,这类专用的电机称为伺服电机。当然,其基本工作原理和普通的交直流电机没有什么不同。该类电机的专用驱动单元称为伺服驱动单元,有时简称为伺服,一般其内部包括电流、速度和/或位置闭环。 二.位置随动系统的基本组成 1.电位器式位置随动系统的组成 下面通过一个简单的例子说明位置随动系统的基本组成,其原理图如图1-1所示。这是一个电位器式的小功率位置随动系统,有以下五个部分组成: 图1-1 电位器式位置随动系统原理图 (1)位置传感器 由电位器1RP 和2RP 组成位置传感器。1RP 是给定位置传 感器,其转轴与操纵轮连接,发出转角给定信号*m θ;2RP 是反馈位置传感器,其 转轴通过传动机构与负载的转轴相连,得到转角反馈信号m θ。两个电位器由同一个直流电源s U 供电,使电位器输出电压*U 和U ,直接将位置信号转换成电压

永磁同步电机交直轴电感计算

参数化扫描的有问题,但是趋势应该差不多 《永磁电机》 永磁同步电机分为表面式和内置式。 由于永磁体特别是稀土永磁体的磁导率近似等于真空磁导率,对于表面式,直轴磁阻和交轴磁阻相等,因此交直轴电感相等,即Ld=Lq,表现出隐极性质。对于内置式,直轴磁阻大于交轴磁阻(交轴通过路径的磁导率大于直轴),因此Ld

双闭环直流电机调速系统设计参考案例

《运动控制系统》课程设计指导书 一、课程设计的主要任务 (一)系统各环节选型 1、主回路方案确定。 2、控制回路选择:给定器、调节放大器、触发器、稳压电源、电流截止环 节,调节器锁零电路、电流、电压检测环节、同步变压器接线方式(须对以上环节画出线路图,说明其原理)。 (二)主要电气设备的计算和选择 1、整流变压器计算:变压器原副方电压、电流、容量以及联接组别选择。 2、晶闸管整流元件:电压定额、电流定额计算及定额选择。 3、系统各主要保护环节的设计:快速熔断器计算选择、阻容保护计算选择 计算。 4、平波电抗器选择计算。 (三)系统参数计算 1、电流调节器ACR 中i i R C 、 计算。 2、转速调节器ASR 中n n R C 、 计算。 3、动态性能指标计算。 (四)画出双闭环调速系统电气原理图。 使用A1或A2图纸,并画出动态框图和波德图(在设计说明书中)。 二、基本要求 1、使学生进一步熟悉和掌握单、双闭环直流调速系统工作原理,了解工程设计的基本方法和步骤。 2、熟练掌握主电路结构选择方法,主电路元器件的选型计算方法。 3、熟练掌握过电压、过电流保护方式的配置及其整定计算。 4、掌握触发电路的选型、设计方法。 5、掌握同步电压相位的选择方法。 6、掌握速度调节器、电流调节器的典型设计方法。

7、掌握电气系统线路图绘制方法。 8、掌握撰写课程设计报告的方法。 三、 课程设计原始数据 有以下四个设计课题可供选用: A 组: 直流他励电动机:功率P e =,额定电流I e =,磁极对数P=1,n e =1500r/min,励磁电压220V,电枢绕组电阻R a =Ω,主电路总电阻R =7Ω,L ∑=(电枢电感、平波电感和变压器电感之和),K s =,机电时间常数T m =,滤波时间常数T on =T oi =,过载倍数λ=, 电流给定最大值 10V U im =* ,速度给定最大值 10V U n =* B 组: 直流他励电动机:功率P e =22KW ,额定电压U e =220V ,额定电流I e =116A,磁极对数P=2,n e =1500r/min,励磁电压220V,电枢绕组电阻R a =Ω,主电路总电阻R =Ω,L ∑=(电枢电感、平波电感和变压器电感之和),电磁系数C e = Vmin /r ,K s =22,电磁时间常数T L =,机电时间常数T m =,滤波时间常数T on =T oi =,过载倍数λ=,电流给定最 大值 10V U im =* ,速度给定最大值 10V U n =* C 组: 直流他励电动机:功率Pe =145KW ,额定电压Ue=220V ,额定电流Ie=733A,磁极对数P=2,ne=430r/min,励磁电压220V,电枢绕组电阻Ra=Ω,主电路总电阻R =Ω,Ks=,电磁时间常数TL=,机电时间常数Tm=,滤波时间常数Ton=Toi=,过载倍数λ=,电流给定最大值 8V U im =* ,速度给定最大值 10V U n =* D 组: 直流他励电动机:功率Pe =145KW ,额定电压Ue=220V ,额定电流Ie=,磁极对数P=1,ne=1500r/min,励磁电压220V,电枢绕组电阻Ra=Ω,主电路总电阻R =Ω,Ks=27,电磁时间常数TL=,机电时间常数Tm=,滤波时间常数Toi=,Ton=,过载倍数λ=,电流给定最大值 8V U im =* ,速度给定最大值 10V U n =* ,β=A ,α= Vmin /r 双闭环直流电机调速系统设计参考案例 第一章 绪 论 1.1 直流调速系统的概述

直流永磁电机的气隙与计算极弧系数的选取

直流永磁电机的气隙与计算极弧系数的选取 刘宁(深圳黎明工业有限公司518031) 徐秀英(深圳市金田房地产开发公司) 【摘要】直流永磁电机的磁极形状较多,在设计中常会遇到气隙系数和计算极弧系数的选取。这些系数选取的精确程度直接影响电机设计精度和制造成本。通过对多种不同磁极形状永磁直流电机设计方案的计算分析,得出了这些系数与相关量的关系曲线。 【叙词】直流电动机永磁电机气隙系数计算极弧系数 l引言 在微型直流永磁电机的设计中,常由于不同的用途采用不同的磁极形状,因此不可避免地存在着气隙系数和计算极弧系数的选取。这些系数选取的精确程度不仅影响设计精度和电机的性能,而且直接影响电机的制造成本。 本文通过对无极靴的同心瓦片形磁极、有极靴的同心瓦片形磁极和等外径拼块式的瓦片形磁极电机设计方案的计算分析,给出了气隙系数和计算极弧系数与其相关量之间的关系曲线。这些曲线不仅反映了气

隙系数和计算极弧系数与其相关量之间的定量关系,更重要的是反映出了这些参数随不同选取值时的变化趋势。 2气隙系数和计算极弧系数的物理意义 2.1气隙系数Kδ 气隙系数Kδ是考虑到电机开槽因槽口对气隙磁场的影响而引入的系数。在一般微型直流屯机的设计中常采用半闭口槽,开槽对气隙磁场的影响如图1所示。 根据图1所示的意义,气隙系数的计算可用下式进行,

从式(1)式可见,气隙系数的物理意义是将有槽电机当作无槽电机计算,但其气隙被放大了K8倍。2.2永磁电机的气隙系数计算 永磁电机的气隙系数一般按凸极电机计算,但其计算公式为: 从式(2)、(3)可见,永磁电机的气隙系数取决于气隙长度、永磁体的厚度和槽口的宽度等因素。在设计计算中需要综合考虑。 2.3计算极弧系数αP 计算极弧系数αP是为确定每极最大磁通密度而引入的系数,其物理意义如图2所示,数学表达式见式(4)。

11KW调速永磁同步电动机电磁设计程序2

11KW变频起动永磁同步电动机电磁设计程序 及电磁仿真 1永磁同步电动机电磁设计程序 1.1额定数据和技术要求 除特殊注明外,电磁计算程序中的单位均按目前电机行业电磁计算时习惯使用的单位,尺寸以cm(厘米)、面积以cm2(平方厘米)、电压以V (伏)、电流以A (安八功率和损耗以(瓦)、电阻和电抗以门(欧姆)、磁通以Wb(韦伯)、磁密以T(特斯拉)、磁场强度以A/cm(安培/厘米)、转矩以N (牛顿)为单位。 1额定功率P n =11kW 2相数叶=3 3额定线电压U N1 =380V 额定相电压丫接法U N =U N1 / 3 = 219.39V 4额定频率f =50HZ 5电动机的极对数P=2 6额定效率N =0.87 7额定功率因数cos N =0.78 8失步转矩倍数T;°N =22 9起动转矩倍数T;N =22 10起动电流倍数I;N =2.2 12 额定转速n N =1000r/min 13额定转矩T N二9.55P N 103二 9.55 11 二105.039N.m n N 11额定相电流I N P N X105 0U N N COS N 11 105 3 219.39 0.87 0.78 A-24.62

14绝缘等级:B级 15绕组形式:双层叠绕Y接法 1.2主要尺寸 16铁心材料DW540-50硅钢片 17转子磁路结构形式:表贴式 18气隙长度:=0.07cm 19定子外径D1 =26cm 20定子内径D i1 =18cm 21 转子外径D2二D H—2、=(18 -2 0.07)cm =17.86 22转子内径D i2 =6cm 23定,转子铁心长度h日2 =15cm 24铁心计算长度l a J =15cm 铁心有效长度l ef =la 2、=(15 2 0.07)cm = 15.14cm 25定子槽数Q1 = 36 26定子每极每相槽数q =Q1 /2gp =36/2 3 3=2 27极距巨p =蔥D i1/2P =3.14 18/2 9.728cm 28定子槽形:梨形槽定子槽尺寸 h01= 0.08cm b01= 0.38cm bi = 0.78cm r1 二 0.53cm h o2 = 1.72cm 巧“18^ 29定子齿距t1卩 1.5708cm Q136

在线辨识永磁同步电动机参数

永磁同步电机参数在线辨识:模型参考与EKF 的比较 摘要:本文基于模型参考在线辨识的方法,对永磁同步电机进行参数辨识。运用李雅普诺夫第二方法和奇异扰动理论对增广系统的全局稳定性进行了分析。结果表明,该方法应用的解耦控制技术,改善了系统的收敛性和稳定性. 把这种方法与扩展卡尔曼滤波(EKF)的在线识别方法比较,结果表明,尽管基于扩展卡尔曼滤波(EKF)的在线辨识法在实现的复杂性上相对于所提出的方法更简单,但是该方法与所提出的方法相比不能给出更好的结果. 仿真结果以及对隐极式永磁同步电机实验的分析,证实了所提出方法的有效性。 永磁同步机因为他们的高效率和良好的可控性成功的应用于不同的领域。永磁同步机的控制主要是通过高性能的矢量控制实现的。控制变量如(速度,位置,或转矩),主要的困难在于控制转矩,这说明了控制定子电流的必要性。在矢量控制中,如果想实现这一点,定子电流和电压矢量需在d-q 坐标系下进行分析研究。为了控制定子电流,必须先控制其直轴电感(d)和正交电感(q)。永磁同步电机在d-q 坐标下的电气模型是一个两输入-两输出系统,如下: f q d e e ψ==,0 f K =ω Ω是反电动势矢量d-q 分量;q d q d i i v v ,,,是d-q 轴电压和电流,Ω=P ω是转子电角速度,Ω是转子机械角速度,P 是极对数量。系统的输入是q d v v ,,输出是q d i i ,。根据适当的控制律控制这些电流,是定子电压通过电压源逆变器得到应用。逆变器通常根据一个恒定增益v G 来建模。我们可以得到qr v q dr v d v G v v G v ==,,qr dr v v ,是电流调节器的输出。他们用于调节d-q 坐标系的电流。隐极永磁同步电机,d 轴基准电流通常固定为零,电机转矩和转度由q 轴基准电流控制。d q s f L L R ,,,ψ是参考模型的参数。电机时间常数是 s q q s d d R L R L /,/==ττ。 事实上,这些参数是不准确的,他们会慢慢的发生变化。这些变化可能是由于一个故障或一个变化的操作点[2]。他们有时对控制系统是致命的并可能损坏驱动器。在这些情况下,一个在线辨识算法是必要的。该算法对电机参数进行辨识,用于控制算法或检测故障中。

相关主题
文本预览
相关文档 最新文档