当前位置:文档之家› Hiwin最新直线电机力矩电机选型手册技术样本1107版

Hiwin最新直线电机力矩电机选型手册技术样本1107版

Hiwin最新直线电机力矩电机选型手册技术样本1107版
Hiwin最新直线电机力矩电机选型手册技术样本1107版

直线电机运用

直线电机主要应用于三个方面: 一是应用于自动控制系统,这类应用场合比较多; 二是作为长期连续运行的驱动电机; 三是应用在需要短时间、短距离内提供巨大的直线运动能的装置中。 在实际工业应用中的稳定增长,证明直线电机可以放心的使用。 本期讨论直线电机的运用 Linear motor: 直线伺服电机应用 昆山佳德锐自动化系统销售中心 交流论坛: www.hilife.me 工业之美

什么是直线电机特点 1.什么是直线电机 直线电动机(或称线性马达)(Linear motor)是电动机的一种,其原理与传统的电动机不同,直线电机是直接把输入电力转化为线性动能,与传统的扭力及旋转动能不同。直线电机又分为低加速及高加速两大类,当中低加速直线电机适用于磁悬浮列车及 其他地面交通工具,而高加速直线电机能把物件在短时间内加至极高速度,适用于粒子 加速器、制造武器等。2.直线电机是如何工作的 下面简单介绍直线电机类型 和他们与旋转电机的不同,最 常用的直线电机类型是平板式, U型槽式和管式。线圈的典型组 成是三相,有霍尔元件实现无刷 换相,直线电机用HALL换相的 相序和相电流。 直线电机经常简单描述为旋转电机被展平,而工作原理相同。动子(forcer,rotor) 是用环氧材料把线圈压缩在一起制成的,而且磁轨是把磁铁(通常是高能量的稀土磁铁)固 定在钢上.电机的动子包括线圈绕组,霍尔元件电路板,电热调节器(温度传感器监控温度) 和电子接口。在旋转电机中,动子和定子需要旋转轴承支撑动子以保证相对运动部分的气隙 (airgap)。同样的,直线电机需要直线导轨来保持动子在磁轨产生的磁场中的位置。和旋 转伺服电机的编码器安装在轴上反馈位置一样,直线电机需要反馈直线位置的反馈装置--直 线编码器,它可以直接测量负载的位置从而提高负载的位置精度。 3.直线电机分类 管状直线电机 圆柱形动磁体直线电机的磁路与动磁执行器相似。区别在于线圈可以复制以 增加行程。典型的线圈绕组是三相组成的,使用霍尔装置实现无刷换相。推力 线圈是圆柱形的,沿磁棒上下运动。 U型直线电机 U型槽式直线电机有两个介于金属板之间且都对着线圈动子的平行磁轨。动子由导轨系统 支撑在两磁轨中间。动子是非钢的,意味着无吸力且在磁轨和推力线圈之间无干扰力产生。 非钢线圈装配具有惯量小,允许非常高的加速度。线圈一般是三相的,无刷换相。可以用空 气冷却法冷却电机来获得性能的增强。也有采用水冷方式的。这种设计可以较好地减少磁通 泄露因为磁体面对面安装在U形导槽里。这种设计也最小化了强大的磁力吸引带来的伤害 平板直线电机 有三种类型的平板式直线电机(均为无刷):无槽无铁芯,无槽有铁芯和有槽有铁芯。选 择时需要根据对应用要求的理解。无槽无铁芯平板电机是一系列coils安装在一个铝板上。由 于FOCER没有铁芯,电机没有吸力和接头效应(与U形槽电机同)。该设计在一定某些应用中有 助于延长轴承寿命。动子可以从上面或侧面安装以适合大多数应用。这种电机对要求控制速度 平稳的应用是理想的。如扫描应用,但是平板磁轨设计产生的推力输出最低。通常,平板磁轨 具有高的磁通泄露。 无槽有铁芯:无槽有铁芯平板电机结构上和无槽无铁芯电机相似。除了铁芯安装在钢叠片 结构然后再安装到铝背板上,铁叠片结构用在指引磁场和增加推力。磁轨和动子之间产生的吸 力和电机产生的推力成正比,迭片结构导致接头力产生。 无槽有铁芯:这种类型的直线电机,铁心线圈被放进一个钢结构里以产生铁芯线圈单元。 铁芯有效增强电机的推力输出通过聚焦线圈产生的磁场。铁芯电枢和磁轨之间强大的吸引力可 以被预先用作气浮轴承系统的预加载荷。这些力会增加轴承的磨损,磁铁的相位差可减少接头力。 加工产品对比

西门子伺服电机选型手册

西门子伺服电机选择手册,SINAMICS S120是一种集V/F、矢量控制和伺服控制于一体的新型驱动控制系统。普通异步电动机不能控制转矩,也不能控制三相异步电动机。 S120系列驱动与伺服电机选型手册第1部分:典型结构的多轴驱动控制单元电机模块与通用直流母线电源模块。带起动机(或scout)和SIMATIC manager软件或s7-300400的书本式柜式PC典型配置图,SIMOTION O/D/P 24 V DL说明:1:主控制模块cu320 2:电源模块SIM 或ALM+24 V电源3:单轴电机模块4:两轴电机模块234电源线终端模块驱动Cliq编码器反馈信号线选项板电抗器功率滤波器传感器模块无编码器电机运动控制,带drivc Cliq接口西门子(中国)自动化传动集团有限公司生产机械SINAMICS S120系列,选自《S120驱动与伺服电机选型手册》第1章多轴传动概述。Sinamics120是一种集V/F、矢量控制和伺服控制于一体的新型驱动控制系统。它不仅可以控制普通的三相异步电动机,还可以控制步进电动机、转矩电动机和直线电动机。其强大的定位功能将实现进给轴的绝对和相对定位。2007年6月发布的DCC(drive control chart)功能将实现逻辑、计算和简单处理功能。SINAMICS S120产品包括:用于普通直流母线的DCAC逆变器和用于单轴的ACAC逆变器。具有公共直流母

线的DC/AC逆变器也称为多轴驱动。它的结构是电源模块和机器模块分开。电源模块将三个交流电整流成540V或600DC,并将电机模块(一个或多个)连接到直流母线。特别适用于多轴控制,特别适用于造纸、包装、纺织、印刷、钢铁等行业。优点是电机轴间能量共享,接线方便简单●单轴控制交流变频器,俗称单轴交流传动,其结构是功率模块和电机模块的组合,特别适合单轴速度和定位控制。本书第一部分包括第1至4章,主要介绍多轴交流传动。第二部分包括第五章至第八章,主要介绍单轴交流传动。第三部分包括第九章,主要介绍电机电缆和信号电缆。第四部分包括第10章,介绍了同步和异步伺服电机的指令数据。第五部分,包括第11章,简要介绍了运动控制系统的指令数据。这本书中的技术资料基本上是英文的。详情请参阅英文原文。西门子(中国)有限公司自动化与传动集团运动控制部生产的机械系列S120系列,源自《S120驱动与伺服电机选型手册》第二章。功率模块是我们通常所说的整流器或整流器/反馈单元。它将三相交流电整流成直流电,并为每个抑制模块(通常称为逆变器)供电。具有反馈功能的模块还可以向电网提供直流电。根据是否有反馈功能和反馈方式,将功率模块分为以下三类:基本线路模块:整流单元,但无反馈功能。智

直线电机工艺的研究

直线电机装配工艺的研究与应用

摘要:为了提高企业制造技术,加快新技术的开发,促进企业技术进步,随着高速切削、超精密加工等先进制造技术的发展,要求要有很高的驱动推力、快速进给速度和极高的快速定位精度。机床进给系统形成了直线电机直接驱动为主的发展方向。本文阐述了直线电机的工作原理及其功能,并以CKS6125数控车床所采用的直线电机为例,阐述直线电机的装配工艺的关键技术,且对直线电机的主要装配工序进行分析与研究。此次直线电机试装的成功,为我厂机床更新换代,经济的发展起到了积极的推动作用。 1.引言 近年来,就如何提高企业制造技术,加快新技术的开发,以被越来越多企业所重视。随着高速切削、超精密加工等先进制造技术的发展,对机床各项性能指标提出了越来越高要求。同时也对机床进给系统的伺服性能提出了更高的要求:要有很高的驱动推力、快速进给速度和极高的快速定位精度。高速度、高加速度和高精度是现代伺服的要求及发展趋势。直线电动机高速进给单元的应用使进给传动链及其结构发生深刻的变化,机床进给系统形成了直线电机直接驱动为主的发展方向。直线电机的机械结构虽然简单,但制造工艺要求却非常严格,为加快我国高速加工技术的发展与应用,加速我厂数控机床的更新换代,组织力量对直线电机装配工艺过程进行攻关是必要的。 2.直线电机简介 直线电机是将直线位移机构的传动元件和执行元件相结合。按能量转换定理,进给机构的直线电机可分为同步电动机和异步电动机。直线电机结构紧凑、功率损耗小、快移速度高、加速度高、运动噪声低等优点,直线电机

驱动方式与旋转电机驱动方式的最大区别是,取消了从电动机到工作台之间的一切机械中间传动环节,实现了“零传动”,避免了丝杠传动中的反向间隙、惯性、摩擦力和刚性不足等缺点,使机床的性能大大提高。这项新技术国际上只有几家较大的机床公司把它应用到机床行业,而我国直线电机的设计制造技术刚刚起步,尚末形成批量生产规模,直线电机各项性能指标和国外尚有较大差距。 我厂在数控车床上应用直线电机在国内是第一家,所以说直线电机在CKS6125数控车床X轴上的应用,是我们对这项新技术的尝试,这项新技术研制的成功,为以后的机床开发和应用打下了基础。由于该项技术为我厂首次试制,直线电机的装配应处在探索中。 CKS6125数控车床X轴直线电机采用的是西门子1FN3永磁同步直线电机,是将初级部构芯(线圈)安装在滑板上,次级部构芯(磁铁)安装在床鞍上而成的一个完整内装式电机。其结构如图1: 图1 1FN3永磁同步直线电机主要有初级部分、次级部分、初级部构芯型材、精密冷却部分组成,其结构如图2:

直线电机资料20110302

直线电机基础 编辑本段直线电机也称线性电机,线性马达,直线马达 在实际工业应用中的稳定增长,证明直线电机可以放心的使用。下面简单介绍直线电机类型和他们与旋转电机的不同. 最常用的直线电机类型是平板式和U 型槽式,和管式。线圈的典型组成是三相,有霍尔元件实现无刷换相.图示直线电机用HALL换相的相序和相电流. 该图直线电机明确显示动子(forcer, rotor)的内部绕组.磁鉄和磁轨.动子是用环氧材料把线圈压成的。而且,磁轨是把磁铁固定在钢上。 直线电机在过去的10年,经实践上引人注目的增长和工业应用的显著受益才真正成熟。 直线电机经常简单描述为旋转电机被展平,而工作原理相同。动子(forcer, rotor) 是用环氧材料把线圈压缩在一起制成的.而且,磁轨是把磁铁(通常是高能量的稀土磁铁)固定在钢上.电机的动子包括线圈绕组,霍尔元件电路板,电热调节器(温度传感器监控温度)和电子接口。在旋转电机中,动子和定子需要旋转轴承支撑动子以保证相对运动部分的气隙(air gap)。同样的,直线电机需要直线导轨来保持动子在磁轨产生的磁场中的位置。和旋转伺服电机的编码器安装在轴上反馈位置一样,直线电机需要反馈直线位置的反馈装置--直线编码器,它可以直接测量负载的位置从而提高负载的位置精度。 直线电机的控制和旋转电机一样。象无刷旋转电机,动子和定子无机械连接(无刷),不象旋转电机的方面,动子旋转和定子位置保持固定,直线电机系统可以是磁轨动或推力线圈动(大部分定位系统应用是磁轨固定,推力线圈动)。用推力线圈运动的电机,推力线圈的重量和负载比很小。然而,需要高柔性线缆及其管理系统。用磁轨运动的电机,不仅要承受负载,还要承受磁轨质量,但无需线缆管理系统。 相似的机电原理用在直线和旋转电机上。相同的电磁力在旋转电机上产生力矩在直线电机产生直线推力作用。因此,直线电机使用和旋转电机相同的控制和可编程配置。直线电机的形状可以是平板式和U 型槽式,和管式.哪种构造最适合要看实际应用的规格要求和工作环境。 编辑本段圆柱形动磁体直线电机 圆柱形动磁体直线电机动子是圆柱形结构。沿固定着磁场的圆柱体运动。这种电机是最初发现的商业应用但是不能使用于要求节省空间的平板式和U 型槽式直线电机的场合。圆柱形动磁体直线电机的磁路与动磁执行器相似。区别在于线圈可以复制以增加行程。典型的线圈绕组是三相组成

直线电机工艺分析

直线电机简介 直线电机是将直线位移机构的传动元件和执行元件相结合。按能量转换定理,进给机构的直线电机可分为同步电动机和异步电动机。直线电机结构紧凑、功率损耗小、快移速度高、加速度高、运动噪声低等优点,直线电机驱动方式与旋转电机驱动方式的最大区别是,取消了从电动机到工作台之间的一切机械中间传动环节,实现了“零传动”,避免了丝杠传动中的反向间隙、惯性、摩擦力和刚性不足等缺点,使机床的性能大大提高。这项新技术国际上只有几家较大的机床公司把它应用到机床行业,而我国直线电机的设计制造技术刚刚起步,尚末形成批量生产规模,直线电机各项性能指标和国外尚有较大差距。 图1 永磁同步直线电机主要有初级部分、次级部分、初级部构芯型材、精密冷却部分组成,其结构如图2:

图2 图3: 图3 1.直线电机装配工艺的关键技术及工艺方案 1.1 直线电机装配工艺的关键技术 根据直线电机的结构特点,直线电机零件加工和装配的主要关键: a) 初、次级部构芯安全装配。 b) 安装直线电机所需工装选择。 c) 安装直线电机螺钉紧固扭矩选择。 端子盒 可选件:精确冷却器 (对环境温度影响< 4 K) 次级部分 初级部分 可选件:连续防护件 (保护次级部分) 动力冷却器 可选件:尾端件 (固定机盖,水流入流出) 可选件:冷却部分 (对环境温度影响< 4 K)

d)直线电机初、次级部芯装配。 e)直线电机装配后检查与运车。 1.2直线电机装配工艺方案确定 直线电机机械结构较为简单,但其装配工艺却非常严格。由于直线电机次级构芯的永磁体有一个强大的静态磁场和相当高铁铁磁极力,这对于人的健康和安全有直接的影响,因此装配过程中既要考虑如何保证直线电机的装配精度,也要重视人身安全。按照上述要求制定直线电机装配工序流程为: 装配前准备→将床鞍安装在床身、安装床鞍导轨→预装滑板调整机床精度→将次级部构芯冷却安装在床鞍上并试漏→安装次级部构芯→安装次级部构芯磁性盖板→将初级部构芯冷却器安装在滑板上→安装初级部构芯→安装滑板→检验直线电机安装情况(手动)→连接各冷却和液压管路→完善各部 1.3直线电机装配过程的分析 由于直线电机装配后,拆装非常困难,因此必须做好装配前准备工作。装配前应按目录清点零件,收集所需工装,清洗零件,按图纸对零件进行检测。按照直线电机装配工艺流程进行装配。 一、如何实现直线电机安全装配 由于直线电机次级构芯的永磁体有一个强大的静态磁场和相当高铁磁极力,因此装配过程中要求做到: a.磁性材料距次级部构芯距离必须保证>100mm。 b.手表、磁性材料(磁卡、软盘等)要远离。 c.安装、维修、维护设备时要带工作手套。 d.带心脏起搏器的人员不得在此设备上工作。

如何进行直线电机选型

如何进行直线电机选型

————————————————————————————————作者:————————————————————————————————日期:

直线电机选型 ——最大推力和持续推力计算

目录 直线电机选型 (3) ——最大推力和持续推力计算 (3) 概述 (5) 三角模式 (5) 梯形模式 (5) 持续推力 (6) 计算公式 (6) 例子 (7)

概述 直线电机的选型包括最大推力和持续推力需求的计算。 最大推力由移动负载质量和最大加速度大小决定。 推力= 总质量x 加速度+ 摩擦力+ 外界应力 例子:当移动负载是2.5千克(包含动子),所需加速度为30m/s2时,那么,电机将产生75N 的力(假设,摩擦力和外界应力忽略不计)。 通常,我们不知道实际加速度需求,但是,我们有电机运行实际要求。给定的运行行程距离和所需要的行程时间,由此可以计算出所需要的加速度。一般来说,对于短行程,推荐使用三角形速度模式,即无匀速运动,长行程的话,梯形速度模式更有效率。在三角形速度模式中,电机的运动是没有匀速段的。 三角模式 加速度为Acceleration = 4 x Distance / Travel_Time2 梯形模式 需要提前设置匀速的速度值,由此可以推算出加速度。 加速度= 匀速/ (运动时间–位移/ 匀速)

同理,减速度的计算与加速度的计算是类似的,特殊情况是存在一个不平衡的力(例如重力)作用在电机上。 通常情况下,为了维持匀速过程和停滞阶段,摩擦力和外界应力也要考虑进来,为了维持匀速,电机会对抗摩擦力和外界应力,电机停止时则会对抗外界应力。 持续推力 计算公式 持续推力的计算公式如下: RMSForce = 持续推力 Fa = 加速度力 Fc = 匀速段力 Fd = 减速度力 Fw = 停滞力 Ta = 加速时间 Tc = 匀速时间 Td = 减速时间 Tw = 停滞时间 又最大推力和持续推力进行电机的选择。一般情况下,应该将安全系数设置为20~30%,从而抵消外界应力和摩擦力。

XZ 轴直线电机型号

原机XZ轴直线电机型号分别为: X轴:E43H4Q-05-193 厂家海顿科技 Z轴:43F4J-05-072 厂家海顿科技 规格: X轴:外部驱动式电机43000系列 1.8°固定轴式双极性(4 线) 每步移动0.00096英寸 5 VDC 出轴长度:290mm(256mm)。配丝母。 Z轴:43000系列 1.8°贯通轴式双极性(4 线) 每步移动0.00048英寸 5 VDC 出轴长度:88mm。带轴台。 电机安装孔位:31.04*31.04mm M3 台阶轴为Φ22 混合式直线步进电机编号规则 E 前缀 (只有用到时) E = 外部驱动式电机 P = 加近零传感器 S = 加原点位置 T = 高温电机 43 指定的系列数字 21 = 21000 28 = 28000 35 = 35000 43 = 43000 57 = 57000 87 = 87000 H 步距角代码 F = 1.8°贯通轴式 H = 1.8°固定轴式 H = 1.8°固定轴式(用"E" 表示"外部驱动式") J = 0.9°贯通轴式 K = 0.9°固定轴式 K = 0.9°固定轴式(用"E" 表示"外部驱动式") L = 1.8°双叠厚,贯通轴式 M = 1.8°双叠厚,固定轴式 M = 1.8°双叠厚(用"E" 表示"外部驱动式") 4 极性 4 = 双极性(4 线) 6 = 极性(6 线) N 步长编码 例如: N = 每步移动0.00012英寸 Q = 每步移动0.00096英寸 J = 每步移动0.00048英寸 05 电压例如: 05 = 5 VDC 12 = 12 VDC 客户可定制电压

电机的技术手册资料讲解

目录 直流电机 1、直流电机的分类及基本结构 2、直流电机的基本工作原理 3、他励直流电机的启动和反转 4、他励直流电机的调速 交流电机 1、交流电机的分类 2、三相异步电机的工作原理 3、三相异步电机的启动 4、三相异步电机的调速 5、三相异步电机的制动 6、同步电机的基本类型和结构 7、同步电机的励磁方式 8、同步电机的启动 控制电机 1、伺服电机 (1)直流伺服电机 (2)交流伺服电机 2、步进电机 (1)三相反应式步进电机的结构 (2)三相反应式步进电机的工作原理

直流电机的分类 直流电动机按结构及工作原理可划分:(1)无刷直流电动机和(2)有刷直流电动机。 无刷直流电动机:无刷直流电动机是将普通直流电动机的定子与转子进行 了互换。其转子为永久磁铁产生气隙磁通:定子为电枢,由多相绕组组成。在结构上,它与永磁同步电动机类似。无刷直流电动机定子的结构与普通的同步电动机或感应电动机相同.在铁芯中嵌入多相绕组(三相、四相、五相不等).绕组可接成星形或三角形,并分别与逆变器的各功率管相连,以便进行合理换相。转子多采用钐钴或钕铁硼等高矫顽力、高剩磁密度的稀土料,由于磁极中磁性材料所放位置的不同.可以分为表面式磁极、嵌入式磁极和环形磁极。由于电动机本体为永磁电机,所以习惯上把无刷直流电动机也叫做永磁无刷直流电动机。 有刷直流电动机可划分:永磁直流电动机和电磁直流电动机。 永磁直流电动机划分:稀土永磁直流电动机、铁氧体永磁直流电动机和铝镍钴永磁直流电动机。 电磁直流电动机划分:串励直流电动机、并励直流电动机、他励直流电动机和复励直流电动机。 直流电机的基本结构 直流电机由定子和转子两部分组成,其间有一定的气隙。其构造的主要特点是具有一个带换向器的电枢。直流电机的定子由机座、主磁极、换向磁极、前后端盖和刷架等部件组成。其中主磁极是产生直流电机气隙磁场的主要部件,由永磁体或带有直流励磁绕组的叠片铁心构成。直流电机的转子则由电枢、换向器(又称整流子)和转轴等部件构成。其中电枢由电枢铁心和电枢绕组两部分组成。电枢铁心由硅钢片叠成,在其外圆处均匀分布着齿槽,电枢绕组则嵌置于这些槽中。换向器是一种机械整流部件。由换向片叠成圆筒形后,以金属夹件或塑料成型为一个整体。各换向片间互相绝缘。换向器质量对运行可靠性有很大影响。

高性能无铁芯直线电机线圈

1.高性能无铁芯直线电机线圈 电阻小于10Ω,电感小于10mH,电气时间常数小于2ms,工作电压大于直流300V,峰值电流小于30A,连续电流小于10A,峰值推力大于700N,连续推力大于150N,线圈重量小于3kg。 2.高性能无铁芯直线电机磁轨 磁轨高度小于100mm,厚度小于55mm,有效行程大于200mm。 3.五轴超精密运动控制器 运行RT Linux实时操作系统,64位系统架构,支持标准C语言,支持32个独立坐标系,伺服更新频率大于20kHz,配有双千兆网口、光电隔离IO卡、模拟量和数字量反馈接口、手轮通道,5轴模拟量控制通道,220V独立电源供电。 4.线性放大器 要求真正的AB类放大器,零交越失真,支持串口通讯、正余弦电机换相,输出电压大于+\-50V,接收+/- 10V控制指令,峰值电流大于15A,连续电流大于5A,长度小于40cm,宽度小于25cm,高度小于15cm,重量小于10kg。 5.电器控制柜 防护等级:IP56,证书:CE、ROHS、IP56,材质:优质冷轧钢板,安装板为镀锌板,门板厚度2.0mm,安装板厚度2.5mm,柜体厚度为1.5mm,表面处理:酸洗磷化,外部粉末涂层,颜色:RAL7035/RAL7032织纹或平光,标准配置:前门、后门、背板、顶板、底板、安装板1块、密封条、门锁(平板锁)、铰链。包含电气控制柜设计、装配、电缆制作及布线、控制器与放大器调试。 6.四轴超精密运动控制器 运行RT Linux实时操作系统,64位系统架构,支持标准C语言,支持32个独立坐标系,伺服更新频率大于20kHz,配有双千兆网口、光电隔离IO卡、模拟量和数字量反馈接口、手轮通道,4轴模拟量控制通道,220V独立电源供电。 7.角度编码器 不锈钢材质,分辨率大于8000 Lines/Rev,系统精度优于+/- 5 arc sec,最大允许转速大于3000 rpm。磁性材质,分辨率大于20000 cts/Rev,最大允许转速大于10000rpm。 8.光栅尺及读数头 膨胀系数0.6 μm/m/°C,信号周期20um,精度+/- 1um,1Vpp模拟量信号输出,有效量程大于200mm。 9.五轴控制手轮 五轴控制通道,三档分辨率可调,RS422信号输出,含急停按钮。 10.密闭放松插头 不锈钢外壳,M23规格,螺纹连接,IP67防护等级,内部屏蔽位于外壳上,同轴360度连接,皇冠型电缆尾夹。 11.主轴无框力矩电机 力矩常数0.41 Nm/Arms,反电动势24.77 Vrms/krpm,电感2.145mH,电阻0.757Ω,堵转力矩3.52Nm,

交叉带分拣系统产品手册(1)

1、交叉带分拣系统 系列 专注于自动化科技装备的全球化制造商 启动物流开创幸福 2、交叉带分拣系统 快速高效,超乎你的想象 满足所有应用需要的智慧分拣系统 交叉带分拣是一款高效的物流分拣系统,由带式输送机、小车、上包机、行走轨道、读码器,分拣托盘小车、落格系统等构成。除了分拣速度快、效率高,它还可以处理各种规格和尺寸的物品,包括易碎品和高摩擦系数的物品。可左右两侧同时分拣,单区分拣效率一般达8000-12000件/时,高效、灵活和场地利用率高等诸多优点,是一种实现最大经济效益与极高可靠性的分拣解决方案。 3、产品优势 低能耗直线电机,非接触式驱动,高效节能。 可分拣各种规格和尺寸的物品,即使易碎品、高摩擦系数物品,也能实现高效分拣。 实时动态跟踪技术、系统监控、诊断与安全保护功能。 模块化设计,便于维护,稳定性高。 4、技术参数

注:以上为公司现有标准设备参数,支持非标定制设计 5、直线型交叉带 直线交叉带系列是种高性能、高精度、低能耗的分拣系统。垂直结合循环式布局,结构紧凑、极度节省空间。标准模块化设计,可根据需求定制格口数量,具有极高的柔性与稳定性,产品更具性价比,场地依赖性更低,交期更短。直线交叉带分拣机分A型和B型两种,可根据客户需求定制。 6、产品优势 模块化结构,易装配,易维护。 分拣快速、准确,对物品无冲击,在软包输送上有突出优势。 适用性强,通过调整小车的数量,可实现较大长度货物的分拣。 可实现物品左、右两侧分拣。 占地面积小,空间布置更灵活,可自由增减出口,方便客户灵活应用。

单条分拣线分拣能力9000-11000件/时。 8、更丰富多样的分拣设备 满足您所有分拣设备的需求 高速滑块分拣系统 适用于电商、快递、服装、超市、医药、轮胎等行业。 各式摆轮分拣 适用于各种物流配送中心、分拣箱包、托盘、包裹、书籍、易碎产品等。 推块式分拣 适用于货物体积较大、重量较重、流量较轻的物流系统。 如需更多产品讯息,请向销售人员洽询 9、应用案例 10、终身信赖”服务体系 客户为尊超越期望 客户为尊,我们打造了一支“专业,服务”的卓越用务保障团队,向它提供超越职望的高品质产品和专业技术服务。我们传注长远发展,全球培身服务,一诺干金。 11、荣誉客户

直线电机参数计算详解

直线电机参数计算 直线电机业专家------内最齐全的产品线-------上舜直线电机模组。 1.直线电机的选型包括最大推力和持续推力需求的计算以及加速度的相关计算。 2.最大推力由移动负载质量和最大加速度大小决定。 推力=总质量*加速度+摩擦力+外界应力 例子:(假定摩擦力和外界应力忽略不计)当移动负载是2.5千克(包括动子),所需加速度为30m/s2时,那么电机将产生75N的力。 3.通常,我们不知道实际加速度需求。但是,我们有直线电机运行时间要求。给定运动行程距离和所需行程时间,便可以此计算出所需的加速度。一般,对于短行程来说,我们推荐使用三角型速度模式(无匀速),长行程的话,梯形速度模式会更有效率。在三角型速度模式中,电机的运动无匀速段。 4.三角模式,加速度为A = 4 * S/ T2 5.梯形模式,预设匀速度可以帮助决定加速度。 加速度=匀速/(运动时间--位移/匀速) 6.相类似的,计算减速度大小与计算加速度相类似。除非存在一个不平衡的力(重力)作用在直线电机上。 7.通常为了要维持匀速过程 (cruising)和停滞阶段 (dwelling),摩擦力和外界应力的施力也需要计算。注:为了维持匀速,直线电机会对抗摩擦力和外界应力。直线电机上伺服停滞时则会对抗外界应力。 8.计算持续推力公式如下:

RMSForce=持续推力 Fa = 加速度力 Fc = 匀速段力 Fd = 减速度力 Fw =停滞力 Ta = 加速时间 Tc = 匀速时间 Td = 减速时间 Tw = 停滞时间 9.根据最大推力和持续推力选择一个电机。客户应该将安全系数设为20-30%以便将摩擦力和外界应力抵消为0,即总值正常应*1.3来保证安全性。 10.举个例子,一个应用中,直线电机需要在三角模式下让电机在0.2秒内,让4KG的负载移动0.3米。直线电机在同行程中返程前停滞时间为0.15秒。假设摩擦力和其他不平衡力不存在。 加速度=减速度=4*0.3、(0.2)^2=30m/s2 最大推力=加速度力=减速度力=负载*加速度=4*30=120N 持续推力= 假如安全缓冲系数设为30%,通过选型,合适的直线电机电机就可以选出来了 11.电机选型软件自动计算处理过程。

机械手电气设计说明书

(一)、基本情况介绍 机械手结构、动作与控制要求 机械手在专用机床及自动生产线上应用十分广泛,主要用于搬动或装卸零件的重复动作,以实现生产自动化。本设计中的机械手采用关节式结构。各动作由液压驱动,并右电磁阀控制。动作顺序及各动作时间的间隔采用按时间原则控制的电气控制系统。 机械手的结构如图8-13所示,主要由手指1、手腕2、小臂3、和大臂5等几部分组成。料架6为旋转式,由料盘和棘轮机构组成。每转动一定角度(由工件数决定)以保证待加工零件4对准机械手。 机械手各动作与相应电磁阀动作关系如表8-4所示。 以镗孔专用机床加工零件的上料、下料为例,机械手的动作顺序是:由原始位置将以加工好的工件卸下,放回料架,等料架转过一定角后,再将未加工零件拿起,送到加工位置,等待镗孔加工结束,再将加工完毕工件放回料架,如此重复循环。 图8-13 机械手的外形及其与料架的配置 1-手部 2-手腕 3-小臂 4-工件 5-大臂 6料架 (二)、拖动情况介绍 具体动作顺序是: 原始位置(装好工件等待加工位置,其状态是大手臂竖立,小手臂伸出并处于水平位置,手腕很横移向右,手指松开)——手指夹紧(抓住卡盘上的工件)——松卡盘——手腕左移(从卡盘上卸下已加工好的工件)——小手臂上摆——大手臂下摆——手指松开(工件放回料架)——小手臂收缩——料架转位——小手臂伸出——手指夹紧(抓住未加工零件)——大手臂上摆(取送零件)——小手臂下摆——手腕右移(将工件装到机床的主轴卡盘中)——卡盘收紧——手指松开,等待加工。

(三)、设计要求 1)加工中上料、下料各动作采用自动循环。 2)各动作之间应有一定的延(由时间继电器调定)。 3)机械手各部分应能单独动作,以便于调整及维修。 4)油泵电机(采用)及各电磁阀运行状态应有指示。 5)应有必要的电气保护与联锁环节。 二、设计过程 (一)、总体方案选择说明 机械手的分类 工业机械手的种类很多,关于分类的问题,目前在国内尚无统一的分类标准,在此暂按使用范围、驱动方式和控制系统等进行分类。 1按用途分 机械手可分为专用机械手和通用机械手两种: 专用机械手 它是附属于主机的、具有固定程序而无独立控制系统的机械装置。专用机械手具有动作少、工作对象单一、结构简单、使用可靠和造价低等特点,适用于大附属,如自动机床、自动线的上、下料机械手和‘加工中心”批量的自动化生产的自动换刀机械手。 通用机械手 它是一种具有独立控制系统的、程序可变的、动作灵活多样的机械手。通过调整可在不同场合使用,驱动系统和格性能范围内,其动作程序是可变的,控制系统是独立的。通用机械手的工作范围大、定位精度高、通用性强,适用于不断变换生产品种的中小批量自动化的生产。 通用机械手按其控制定位的方式不同可分为简易型和伺服型两种:简易型以“开一关”式控制定位,只能是点位控制:伺服型具有伺服系统定位控制系统,可以点位控制,也可以实现连续轨迹控制,一般的伺服型通用机械手属于数控类型。 2按驱动方式分 液压传动机械手 是以液压的压力来驱动执行机构运动的机械手。其主要特点是:抓重可达几百公斤以上、传动平稳、结构紧凑、动作灵敏。但对密封装置要求严格,不然油的泄漏对机械手的工作性能有很大的影响,且不宜在高温、低温下工作。若机械手采用电液伺服驱动系统,可实现连续轨迹控制,使机械手的通用性扩大,但是电液伺服阀的制造精度高,油液过滤要求严格,成本高。 气压传动机械手是以压缩空气的压力来驱动执行机构运动的机械手。其主要特点是:介质来源极为方便,输出力小,气动动作迅速,结构简单,成本低。但是,由于空气具有可压缩的特性,工作速度的稳定性较差,冲击大,而且气源压力较低,抓重一般在30公斤以下,在同样抓重条件下它比液压机械手的结构大,所以适用于高速、轻载、高温和粉尘大的环境中进行工作。

机械手电气设计说明书

设计的任务 (一)、基本情况介绍 机械手结构、动作与控制要求 机械手在专用机床及自动生产线上应用十分广泛,主要用于搬动或装卸零件的重复动作,以实现生产自动化。本设计中的机械手采用关节式结构。各动作由液压驱动,并右电磁阀控制。动作顺序及各动作时间的间隔采用按时间原则控制的电气控制系统。 机械手的结构如图8-13所示,主要由手指1、手腕2、小臂3、和大臂5等几部分组成。料架6为旋转式,由料盘和棘轮机构组成。每转动一定角度(由工件数决定)以保证待加工零件4对准机械手。 机械手各动作与相应电磁阀动作关系如表8-4所示。 以镗孔专用机床加工零件的上料、下料为例,机械手的动作顺序是:由原始位置将以加工好的工件卸下,放回料架,等料架转过一定角后,再将未加工零件拿起,送到加工位置,等待镗孔加工结束,再将加工完毕工件放回料架,如此重复循环。 图8-13 机械手的外形及其与料架的配置 1-手部2-手腕3-小臂4-工件5-大臂6料架 (二)、拖动情况介绍 具体动作顺序是: 原始位置(装好工件等待加工位置,其状态是大手臂竖立,小手臂伸出并处于水平位置,手腕很横移向右,手指松开)——手指夹紧(抓住卡盘上的工件)——松卡盘——手腕左移(从卡盘上卸下已加工好的工件)——小手臂上摆——大手臂下摆——手指松开(工件放回料架)——小手臂收缩——料架转位——小手臂伸出——手指夹紧(抓住未加工零件)——大手臂上摆(取送零件)——小手臂下摆——手腕右移(将工件装到机床的主轴卡盘中)——卡盘收紧——手指松开,等待加工。

表8-4 电磁阀状态表 (三)、设计要求 1)加工中上料、下料各动作采用自动循环。 2)各动作之间应有一定的延(由时间继电器调定)。 3)机械手各部分应能单独动作,以便于调整及维修。 4)油泵电机(采用)及各电磁阀运行状态应有指示。 5)应有必要的电气保护与联锁环节。 二、设计过程 (一)、总体方案选择说明 机械手的分类 工业机械手的种类很多,关于分类的问题,目前在国内尚无统一的分类标准,在此暂按使用范围、驱动方式和控制系统等进行分类。 1按用途分 机械手可分为专用机械手和通用机械手两种: 专用机械手 它是附属于主机的、具有固定程序而无独立控制系统的机械装置。专用机械手具有动作少、工作对象单一、结构简单、使用可靠和造价低等特点,适用于大附属,如自动机床、自动线的上、下料机械手和‘加工中心”批量的自动化生产的自动换刀机械手。 通用机械手 它是一种具有独立控制系统的、程序可变的、动作灵活多样的机械手。通过调整可在不同场合使用,驱动系统和格性能范围内,其动作程序是可变的,控制系统是独立的。通

直线电机安装

直线电机的安装目录: 一、直线电机的安装设计 1.1直线电机结构设计,强度与刚度 1.2 直线电机走线 1.3 Z 轴(垂直轴)刹车 1.4 防撞设计 1.5 直线电机防护设 二、安装工艺 2.1 直线电机安装尺寸和公差 2.2 直线电机装配方法 2.3 装配其它注意事项 2.4 光栅尺安装位置及安装座要求 2.5 光栅尺安装精度要求 2.6 光栅尺的防护 2.7 冷却系统

一、直线电机的安装设计 1.1直线电机结构设计,强度与刚度 直线电机、磁板的安装位置,应当尽量设计靠近运动结构的重心位置,以平衡运动时的推力。 直线电机与磁板之间持续存在较大的磁吸力,工作台、鞍座等设计时,必须考虑有足够的强度和刚度。同时,为避免移动部件过于笨重,应尽量考虑采用高强度的材质,以及多筋板结构。其它结构上提高刚度的办法有: 1上拱结构 2导轨等支撑点尽量靠近直线电机线圈 3机床的固定部分刚性尽可能高、移动部分的重量尽可能轻,因为直线电机对刚性和移动部分重量比旋转电机更敏感 1.2 直线电机走线 直线电机相对于旋转伺服电机的系统而言,由于其推进动力在移动部件上,所以走线较旋转伺服电机复杂,许多线缆都需要通过拖链来连接。 主要需要通过拖链的线缆有:线圈的动力线、线圈的冷却管路、光栅尺读数头的数据线(如果读数头设计在移动部件上)、导轨润滑油管路。这些走线均需要通过拖链连接,请务必在设计时详尽考虑。 1.3 Z 轴(垂直轴)刹车 直线电机应用在 Z轴(垂直轴)上时,由于重力的作用,在未通电时,或直线电机无力矩输出时,会发生掉落事故。必须设计 Z轴的刹车装置。为增加安全性,建议设计Z轴平衡装置(如机械配重、氮气平衡缸等)。 1.4 防撞设计

直线电机车辆技术选型分析

技术装备 18 MODERN U RBAN TRANSIT 3/2006现代城市轨道交通 目前,世界上只有加拿大和日本拥有直线电机车辆的核心技术和相关运营经验。整体上看,加拿大车辆注重技术的先进性和良好的景观效应,而日本车辆性能指标一般,更板进行分析。 1.1直线电机车辆的主要技术特点 目前,加拿大庞巴迪共推出过MKⅠ和MKⅡ两种车型的直线电 机车辆。MKⅡ车型在1998年在吉隆坡PUTRA的首次应用以来,各项技术不断完善,已成为庞巴迪直线电机车辆的主流产品。日本各公司曾先后开发过12m、16m和 20m三种车型,但仅有16m车型投入商业运营。表1为国内外9种直线电机车辆的主要技术参数。 从表1可知如下几个特点。(1)车辆容量不断增大。最初 李志远 文龙贤王 毅 摘 要:通过对比的方式,对国外的直线电机车辆技术特点进行分析, 结合国内广州地铁4号、5号线的应用,提出一些关于我国直线电机车辆技术选型的建议。 关键词:轨道交通;直线电机车辆;直线电机;反应板 李志远:北京交通大学电气学院,硕士研究生,北京100044 表1 直线电机车辆的主要技术参数 追求经济实用。国内广州地铁4、5号线是加拿大和日本2种车辆技术的组合。 1国内外车辆 的技术分析 转向架、直线电机和反应板是直线电机轨道交通的3项核心技术。加之VVVF、制动和列车控制等主要设备,构成了一套完整的直线电机车辆系统。下面对车辆的主要技术特点、直线牵引电机和反应 直线电机车辆技术选型分析

技术装备 19 现代城市轨道交通3/2006 MODERN U RBAN TRANSIT 表24种直线牵引电机的主要技术参数 图2 MKⅡ车辆使用的直线牵引电机 直线电机车辆技术选型分析李志远等 图1国外车辆重量比较 庞巴迪车辆 日本车辆 大阪7号线 东京12号线 神户海岸线 福冈3号线 温哥华MKI吉隆坡MKII 温哥华MKII 肯尼迪机场MKII 人均车重/t.人-1 0.30.250.2 0.150.10.050 直线电机车辆被定位在中小运量的等级,一般每辆车120~150人。MKⅡ车型载客量提高到每辆车170~220人。广州4号、5号线的每辆车载客量可达242人,已经达到大中型客运量。 (2)全动车配置。传统城轨的每辆动车可同时配备4台旋转电机,每台电机容量可达200~300kW;而每辆直线电机车辆最多只能安装2台直线电机,每台电机容量为100~200kW,单车的牵引容量明显低于传统城轨车辆。因而为了满足大坡道时所需的牵引力,目前的直线电机车辆均采用全动车配置。 (3)车辆的供电方式不同。庞巴迪最初生产的车辆采用双轨道供电方式,供电系统复杂,后来逐渐采用传统DC750V第三轨供电。日本车辆则一直延续着DC1500V上部柔性接触供电的特点。第三轨供电可以减小隧道截面,降低工程造价,并具有良好的景观效应等优点;DC1500V电压等级则可以减少牵引变电所的数量,降低工程成本。综合考虑二者优点,广州4号、5号线车辆在国际上首次采用DC1500V钢铝复合第三轨供电(车辆段采用上部受电弓受电)。 (4)车辆相对重量减轻。 从数据上看,车辆的自重是增加的,但车辆载客量也是增加的。因此引入人均车重,人均车重=车辆自重/ 定员数。 由图1可知,日本直线电机车辆的人均车重保持在0.25t/人左右;庞巴迪车辆的人均车重0.1~0.15t/人,而且MKⅡ车型在控制车重方面优势明显。 1.2直线牵引电机 直线牵引电机(LIM)的技术选型应满足机械、电气、热力学和环境 等多方面的要求。表2列出了3种车辆上使用的直线牵引电机的主要技术参数。严格地说,图3 日本车辆使用的直线牵引电机 这里所指的直线牵引电机只是直线感应电动机的初级。 正常工况时强迫冷却和自然冷却均能满足温控要求;超载条件下,采用自然冷却的电机达到温度上限的时间较长,电机过载余量较大,因而采用自然冷却优势较大。但自然冷却方式的应用受到直线电机重量和 功率的限制。国外厂商研究认为,自然冷却的电机达到小时制150kW已经到限,如要再增加功率必须采用强迫风冷,否则其重量将急剧上升。 从庞巴迪和日本的直线电机实 际运行情况来看,采用强迫冷却的 表2中,庞巴 迪和日本所生产的直线电机最大的不同在于冷却方式,前者采用强迫冷却,后者采用自然冷却。图4 给出了这两种冷却方式下电机的温升特点。 相同电机功率下,

直线电机参数教程文件

直线电机参数

介绍直线电机参数和选型 1.最大电压( max. voltage ph-ph) ———最大供电线电压,主要与电机绝缘能力有关;《版权声明:本文由整理提供,部分内容来源于网络,如有侵犯到你的权利请与我们联系更正。》 2.最大推力(Peak Force) ———电机的峰值推力,短时,秒级,取决于电机电磁结构的安全极限能力;《版权声明:本文由整理提供,部分内容来源于网络,如有侵犯到你的权利请与我们联系更正。》 3.最大电流(Peak Current) ———最大工作电流,与最大推力想对应,低于电机的退磁电流; 4.最大连续消耗功率(Max. Continuous Power Loss) ———确定温升条件和散热条件下,电机可连续运行的上限发热损耗,反映电机的热设计水准; 5.最大速度(Maximum speed) ———在确定供电线电压下的最高运行速度,取决于电机的反电势线数,反映电机电磁设计的结果; 6.马达力常数(Motor Force Constant) ———电机的推力电流比,单位N/A或 KN/A,反映电机电磁设计的结果,在某种意义上也可以反映电磁设计水平; 7.反向电动势(Back EMF) ———电机反电势(系数),单位Vs/m,反映电机电磁设计的结果,影响电机在确定供电电压下的最高运行速度; 8.马达常数(Motor Constant) ———电机推力与功耗的平方根的比值,单位N/√W,是电机电磁设计和热设计水平的综合体现;

9.磁极节距NN(Magnet Pitch) ————电机次级永磁体的磁极间隔距离,基本不反映电机设计水平,驱动器需据此由反馈系统分辨率解算矢量控制所需的电机电角度; 10.绕组电阻/每相(Resistance per phase)———电机的相电阻,下给出的往往是线电阻,即Ph-Ph,与电机发热关系较大,在意义下可以反映电磁设计水平;11.绕组电感/每相(Induction per phase) ———电机的相电感,下给出的往往是线电感,即Ph-Ph,与电机反电势有关系,在意义下可以反映电磁设计水平; 12.电气时间常数(Electrical time constant) ———电机电感与电阻的比值,L/R; 13.热阻抗(Thermal Resistance) ———与电机的散热能力有关,反映电机的散热设计水平; 14.马达引力(Motor Attraction Force) ———平板式有铁心结构直线电机,尤其是永磁式电机,次极永磁体对初级铁心的法向吸引力,高于电机额定推力一个数量级,直接决定采用直线电机的直线运动轴的支撑导轨的承载能力和选型。《版权声明:本文由整理提供,部分内容来源于网络,如有侵犯到你的权利请与我们联系更正。》 直线电机的选型首选推力速度,然后看连续消耗功率、热阻和散热方式和条件等,再次看供电电压和电流,对快速性有要求还要看电气时间常数。个人意见,最最反映直线电机性能水平的是推力平稳性、电机常数和热阻,不过推力平稳性指标多数厂家未必会直接给出。《版权声明:本文由整理提供,部分内容来源于网络,如有侵犯到你的权利请与我们联系更正。》

相关主题
文本预览
相关文档 最新文档