当前位置:文档之家› 药代动力学单室模型计算题

药代动力学单室模型计算题

药代动力学单室模型计算题
药代动力学单室模型计算题

1.计算题:一个病人用一种新药,以2mg/h的速度滴注,6小时即终止滴注,问终止后2小时体内血药浓度是多少?(已知k=0.01h-1,V=10L)

2.计算题:已知某单室模型药物,单次口服剂量0.25g,F=1,K=0.07h-1,AUC=700μg/ml·h,求表观分布容积、清除率、生物半衰期(假定以一级过程消除)。

3.某药静注剂量0.5g,4小时测得血药浓度为

4.532μg/ml,12小时测得血药浓度为2.266μg/ml,求表观分布容积Vd为多少?

4.某人静注某药,静注2h、6h血药浓度分别为1.2μg/ml和0.3μg/ml(一级动力学),求该药消除速度常数?如果该药最小有效剂量为0.2μg/ml,问第二次静注时间最好不迟于第一次给药后几小时?

5.病人静注复方银花注射剂2m/ml后,立即测定血药浓度为1.2μg/ml,3h为0.3μg/ml,该药在体内呈单室一级速度模型,试求t1/2。

6.某病人一次用四环素100mg,血药初浓度为10μg/ml,4h后为

7.5μg/ml,试求t1/2。

7.静脉快速注射某药100mg,其血药浓度-时间曲线方程为:C=7.14e-0.173t,其中浓度C的单位是mg/L,时间t的单位是h。请计算:(1)分布容积;(2)消除半衰期;(3)AUC。

8.计算题:某药物具有单室模型特征,体内药物按一级速度过程清除。其生物半衰期为2h,表观分布容积为20L。现以静脉注射给药,每4小时一次,每次剂量为500mg。

求:该药的

蓄积因子

第2次静脉注射后第3小时时的血药浓度

稳态最大血药浓度

稳态最小血药浓度

9.给病人一次快速静注四环素100mg,立即测得血清药物浓度为10μg/ml,4小时后血清浓度为7.5μg/ml。求四环素的表观分布体积以及这个病人的四环素半衰期(假定以一级速度过程消除)。

10.计算题:病人体重60kg,静脉注射某抗菌素剂量600mg,血药浓度-时间曲

线方程为:C=61.82e-0.5262t,其中的浓度单位是μg/ml,t的单位是h,试求病人体内的初始血药浓度、表观分布容积、生物半衰期和血药浓度-时间曲线下面积。

11.计算题:已知某药物具有单室模型特征,体内药物按一级速度方程清除,其t1/2=3h,V=40L,若每6h静脉注射1次,每次剂量为200mg,达稳态血药浓度。求:该药的(1)ss

C

max

(2)ss

C

min

(3)ss

C

(4)第2次给药后第1小时的血药浓度

12.计算题:某药静脉注射300mg后的血药浓度-时间关系式为:C=78e-0.46t,式中C的单位是μg/m l,t为小时。求t1/2 、V、4小时的血药浓度。

13.计算题:某人静脉注射某药300mg后,其血药浓度(μg/ml)与时间(小时)的关系为C=60e-0.693t,试求:

(1)该药的生物半衰期;

(2)表观分布容积;

(3)4小时后的血药浓度。

14.计算题:某药口服后符合单室模型特征,已知:

F=0.85,K=0.1h-1,Ka=1.0h-1,V=10L,口服剂量为250mg,求:t max、C max、AUC。15.计算题:给某患者静脉注射某药20mg,同时以20mg/h速度静脉滴注给药,问经过4h后体内血药浓度是多少?(已知:V=60L,t1/2=50h)

16.氨苄西林的半衰期为1.2小时,给药后有50%的剂量以原形从尿中排泄,如病人的肾功能降低一半,则氨苄西林的半衰期是多少?

17.某药的半衰期为1.2h,给药后有50%的剂量以原形从尿中排泄,如病人的肾功能降低50%,则该药的半衰期是多少?

18.某人用消炎药,静注后2小时及5小时测定血药浓度分别为1.2μg/ml及0.3μg/ml,试求出其半衰期(假设该药在体内按表观一级动力学消除)

19.口服某药100mg的溶液剂后,测出各时间的血药浓度数据如下表所示:

时间(h)0.2 0.4 0.6 0.8 1.0 1.5 2.5 4.0 5.0

血药浓度 1.65 2.33 2.55 2.51 2.40 2.00 1.27 0.66 0.39

(μg/ml )

假定该药在体内的表观分布容积为30L ,试求该药的k ,k a 值。

20. 某单室模型药物作快速静脉注射,剂量为500mg ,并立即测知其血药浓度为32μg/ml ,已知该药的t 1/2=8h ,试求出V 值及静注后12h 的血药浓度,并计算出何时血药浓度达到8μg/ml ?

21. 某药物在体内呈单室一级动力学消除,静注后1小时、3小时的血药浓度分别为8ug/ml 和4ug/ml 。

问:(1) 求K 、t 1/2

(2)在6个半衰期时,体内残余药量在(血药浓度对时间作图)C —t 曲线下,约有多大面积?(提示:e -∞=0)

(3)要维持最低有效浓度2ug/ml ,首次给药后几小时需第二次给药? (提示:e -xln2 = 1/2x )

22. 某药物生物半衰期为3.0小时,表观分布容积为10L ,今以每小时30mg 速度给某患者静脉滴注,8小时即停止滴注,问停药后2小时体内血药浓度是多少?

22. 某单室模型的药物溶液,以500mg 的剂量口服,测出t 1、t 2、t 3……,各时

间的血药浓度为C 1、C 2、C 3……,以血药浓度对时间在半对数坐标中绘图如下。求该药的K 值、Ka 值及F 值?(已知V =10升)

???? ??==-=???? ??=-=???

? ??=???? ??=-==

∑∑∑∑∑∑∑n 1i t b n 1

i Y n 1a n 1i t n 1n 1i t n 1i Y n 1i t n 1n 1i Y t b i i 2i 2i i i i i

某单室模型药物口服后的“血药浓度-时间”的半对数图

药动学单室模型计算例题

药动学单室模型部分计算题练习 例1(书上的例题)某患者静脉注射一单室模型药物,剂量1050mg,测得不同时刻血药浓度数据如下: 求该药的动力学参数k、t1/2、V值。 解:用常规线性回归法来解答:先根据已知血药浓度和时间数据,来计算出logC,结果我 然后将logC和t做线性回归,得到曲线:logC=-0.1358t+2.1782,R2=1,因此,我们可以得到:-k/2.303=-0.1358,logC0=2.1782,即:k=0.313,t1/2=0.693/k=2.22h,C0=150.7μg/ml,再根据已知数据:X0=1050 mg,V=X0/C0=1050000/150.7=6967.5 ml=6.9675 L。 例2:某人静脉注射某药300mg后,呈单室模型一级动力学分布,其血药浓度(μg/ml)与时间(小时)的关系为C=60e-0.693t,试求: (1)该药的生物半衰期,表观分布容积; (2)4小时后的血药浓度及血药浓度下降至2μg/ml的时间。 解答: (1)血药浓度(μg/ml)与时间(小时)的关系为C=60e-0.693t,根据单室静脉注射模型血药浓度时间关系:C=C0e-kt,所以,C0=60μg/ml,k=0.693,生物半衰期t1/2=1 h。V=M0/C0=300/60=5 L。 (2)C=60 e-0.693×4=3.75μg/ml,2μg/ml=60e-0.693t,t=4.9 h

例3:(书上176页例2)某单室模型药物100mg给患者静注后,定时收集尿液,测得尿排泄 1/2 Δ 我们决定将它舍弃,因为如果将其积分入曲线的话,误差会比较大,直线的线性回归系数为:r=0.9667,而舍弃这个点,得到的线性回归系数为:r=1,方程式为:LgΔxu/Δt=-0.1555t -0.3559,r=1。对照速度法公式:lgdxu /dt=-kt/2.303+lgke.x0,,因此,k=0.1555×2.303=0.3581,t1/2=0.693/k=1.94 h,lgke.x0=-0.3559,x0=100 mg,因此ke=10-0.3559/100=0.0044065。说明尿中药物代谢是非常少和慢的。 例4:某药生物半衰期为3.0h,表观分布容积为10L,今以每小时30mg速度给某患者静脉滴注4h ,间隔8h后,又滴注4h,问再过2h后体内药物浓度是多少? 解答:根据已知条件:t1/2=3.0h,t1/2=0.693/k=3.0h,k=0.231h-1,V=10 L,k0=30 mg/h,静脉滴注的血药浓度与时间的关系式为:C=k0/kV(1-e-kt),因此,滴定稳态前停滴的血药浓度与时间的关系式为:C=k0/kV(1-e-kT) e-kt,其中T为滴定时间,t为滴定停止后开始算的时间,因此,第一次滴定4 h停止后,血药浓度与时间的关系为:C1=30*1000(ug/h)/0.231*10 1000(ml/h)(1-e-0.231*4)e-0.231*(8+4+2)=12.987*0.397*e-3.234=0.203 ug/ml,第二次滴定4 h后停止后,血药浓度与时间的关系式为:C2=30*1000(ug/h)/0.231*10*1000(ml/h) 0.397*e-0.231*2=12.987*e-0.462=3.248 ug/ml,再过2h后体内血药浓度C=C1+C2=0.203+3.248 =3.451 ug/ml,(自然对数e=2.718)。 例5:给某患者静脉注射某药20mg,同时以20mg/h速度静脉滴注给药,问经过4h后体内血药浓度是多少?(已知:V=60L,t1/2=50h)(跟书上略有不一样,即书上v=50L, t1/2=30h)解答:C=C0e-kt,t1/2=50h=0.693/k,k=0.693/50=0.01386 h-1,C0=X0/V=20*1000 ug/60*1000 ml=1/3 ug/ml,因此,对静脉注射来讲,4 h后体内血药浓度C1=1/3 ug/ml*e-0.01386*4=0.3153 ug/ml,对静脉滴注血药浓度C的公式:C2=k0(1-e-kt)/kV=20*1000 ug(1-e-0.01386*4)/0.01386*60×1000=1.297 ug/ml,e-0.01386*4=0.94607, 因此,总的血药浓度C=C1+C2=0.3153+1.297 ug/ml=1.612 ug/ml

药代动力学代表计算题

计算题(Calculation questions ) 1.某患者单次静脉注射某单室模型药物2g ,测得不同时间的血药浓度结果如下: 时间(h) 1.0 2.0 3.0 4.0 5.0 6.0 8.0 10.0 血药浓度(mg/ml) 0.28 0.24 0.21 0.18 0.16 0.14 0.1 0.08 求k ,Cl ,T 1/2,C 0,V ,AUC 和14h 的血药浓度。 【解】对于单室模型药物静脉注射 k t 0e C C -=,t 303 .2k C log C log 0 -= log C 对t 作直线回归(注:以下各题直线回归均使用计算器或计算机处理),得: a = 0.4954, b = -0.0610,|r | = 0.999(说明相关性很好) 将a 、b 代入公式0C log 303 .2kt C log +-= 得回归方程: 4954.0t 061.0C log --= ① 1h 1405.0)061.0(303.2b 303.2k -=-?-=?-= ② h 9323.41405 .0693.0k 693.0T 2/1== = ③ mg/ml 3196.0)4954.0(log C 1 0=-=- ④ 6.258L ml)(62583196 .02000C X V 0 0=== = ⑤ L/h 8792.0258.61405.0kV Cl =?== ⑥ )(mg/ml h 2747.21405 .03196.0k C AUC 00 ?== = ∞ ⑦ 3495.14954.014061.0C log -=-?-= g/ml 44.7mg/ml)(0477.0C μ== 即14h 的血药浓度为g/ml 44.7μ。 2.某患者单次静脉注射某药1000mg ,定期测得尿药量如下: 时间(h) 1 2 3 6 12 24 36 48 60 72 每次尿药量 (mg) 4.02 3.75 3.49 9.15 13.47 14.75 6.42 2.79 1.22 0.52 设此药属一室模型,表观分布容积30L ,用速度法求k ,T 1/2,k e ,Cl r ,并求出80h 的累积药量。 【解】单室模型静脉注射尿药数据符合方程0e c u X k log 303 .2kt t X log +- =??, t X log u ??对c t 作图应为一直线。根据所给数据列表如下: t (h) 1 2 3 6 12 t ? 1 1 1 3 6

生物药剂学和药物动力学计算题

第八章 单室模型 例1 给某患者静脉注射一单室模型药物,剂量 1050 mg ,测得不同时刻血药浓度数据如下: 试求该药的 k ,t1/2,V ,CL ,AUC 以及 12 h 的血药浓度。 解:(1)作图法 根据 ,以 lg C 对 t 作图,得一条直线 (2)线性回归法 采用最小二乘法将有关数据列表计算如下: 计算得回归方程: 其他参数求算与作图法相同 0lg 303 .2lg C t k C +-=176.21355.0lg +-=t C

例2 某单室模型药物静注 20 mg ,其消除半衰期为 3.5 h ,表观分布容积为 50 L ,问消除该药物注射剂量的 95% 需要多少时间?10 h 时的血药浓度为多少? 例3 静注某单室模型药物 200 mg ,测得血药初浓度为 20 mg/ml ,6 h 后再次测定血药浓度为 12 mg/ml ,试求该药的消除半衰期? 解: 例4 某单室模型药物100mg 给患者静脉注射后,定时收集尿液,测得累积尿药排泄量X u 如下,试 例6 某一单室模型药物,生物半衰期为 5 h ,静脉滴注达稳态血药浓度的 95%,需要多少时间? 解: 例5 某药物静脉注射 1000 mg 后,定时收集尿液,已知平均尿药排泄速度与中点时间的关系 为 ,已知该药属单室模型,分布容积 30 L ,求该药的t 1/2,k e ,CL r 以及 80 h 的累积尿药量。 解: 6211.00299.0lg c u +-=??t t X

例7 某患者体重 50 kg ,以每分钟 20 mg 的速度静脉滴注普鲁卡因,问稳态血药浓度是多少?滴注 经历 10 h 的血药浓度是多少?(已知 t 1/2 = 3.5 h ,V = 2 L/kg ) 解题思路及步骤: ① 分析都给了哪些参数? ② 求哪些参数,对应哪些公式? , ③ 哪些参数没有直接给出,需要求算,对应哪些公式? 例8 对某患者静脉滴注利多卡因,已知 t 1/2 = 1.9 h ,V = 100 L ,若要使稳态血药浓度达到 3 mg/ml , 应取 k 0 值为多少? 解题思路及步骤: ① 分析都给了哪些参数? ② 求哪些参数,对应哪些公式? ③ 哪些参数没有直接给出,需要求算,对应哪些公式? 例9 某药物生物半衰期为 3.0 h ,表观分布容积为 10 L ,今以每小时 30 mg 速度给某患者静脉滴注, 8 h 即停止滴注,问停药后 2 h 体内血药浓度是多少? 解题思路及步骤: ① 分析都给了哪些参数? ② 求哪些参数,对应哪些公式? C=C 0 + e -kt ③ 哪些参数没有直接给出,需要求算,对应哪些公式? 例10 给患者静脉注射某药 20 mg ,同时以 20 mg/h 速度静脉滴注该药,问经过 4 h 体内血 药浓度多少?(已知V = 50 L ,t 1/2 = 40 h ) 解: kV k C ss 0=)1(0 kt e kV k C --=1/2 00.693 L 100250h /mg 12006020t k V k = =?==?=)()(kV k C ss 0 =kV C k ss 0=1/20.693 t k = 1/2 0.693t k =) 1(0kt e kV k C --=

产品生命周期曲线预测模型及其在营销决策中的应用

图 1 产品生命周期曲线图 龚柏兹曲线,是美国统计学家和数学家龚柏兹(Gom鄄pertz)首先提出用作控制人口增长率的一种模型,可以利用它来进行产品生命周期预测。其预测模型为: 式中:——预测值;K——限值或饱和点;参数a决定曲线的位置;参数b决定曲线中间部分的斜率;参数t——时间权数,时间单位为年、季、月、旬、周、日,可通过事先进行市场调查研究后选定。 对求一、二阶导数,有 并令=0,可求得曲线拐点P的位置为(t,)→( ,),00,00。此时,为增函数,即随t的增大而增大。且在点P出现转折,的增长率由逐渐增大变为逐渐减小。拐点P1

是投入期与成长期的转折点P1点下左曲线为投入期,P1点上右方向曲线为成长期,当到达K点(这是因为根据经济学四舍五入原理)则达到成熟期顶点。整个成熟期可分为成熟前期和成熟后期,它是以=K 点所对应的t点值±σi(i=1,2,3),σi的取值应视整个产品生命周期的时间长短而选定。若生命周期短,在1年以下(如几个月),则选σi =1;若周期为中(1年至5年)则应选σi =2;若周期>5年属于长周期,则应选σi =3。当t=0时,=Ka即为P0点,此点为投入期的原点。当t→-∞时,由于b t→∞,→0,有→0;当t→+∞时,由于b t→0,→1,有→K故=0和=K都是它的渐近线。它的图形是一条对称的S形曲线。 为了确定模型中的参数,通常把该预测模型改写为对数形式: 若令=log ,K=logK,a=loga,则上式变为: =K+abt 此式为一修正指数曲线预测模型,仿此模型求常数的方法,如用三段对数总和法:设r为原始数据观察值n的1/3,若n不能被3整除,则去掉远期的首项和第二项数据即可。 、、分别为观察值总数据三等分后的各部份对数值之和。可得b,loga,logK的计算公式: 对于loga、logK求反对数可得a、K之值。 应当指出,龚柏兹曲线只能预测到成熟期,而对衰退期则无能为力。那么,怎样才能预测衰退期呢?根据经济学原理,产品进入衰退期是产品的销售量或销售额从饱和点K逐渐下降,从=K点向横轴 Ot作垂线KT,以KT为中心轴线将其左边象限的正S型曲线翻转180°到中心轴线KT右方象限中的反向S型曲线就是衰退期曲线了,衰退期曲线与投入期和成长期曲线之值正好大小相等且方向相反,就可以直接读出与之对应的衰退期各个时点的预测值了。 三、案例分析 某地市场某耐用消费品,通过市场调查获得2000年~2005年的实际销售量观察值数据资料如表1所

药物动力学模型 数学建模

药物动力学模型 一般说来,一种药物要发挥其治疗疾病得作用,必须进入血液,随着血流到达作用部位。药物从给药部位进入血液循环得过程称为药物得吸收,而借助于血液循环往体内各脏器组织转运得过程称为药物得分布。 药物进入体内以后,有得以厡型发挥作用,并以厡型经肾脏排出体外;有得则发生化学结构得改变--称为药物得代谢。代谢产物可能具有药理活性,可能没有药理活性。不论就是厡型药物或其代谢产物,最终都就是经过一定得途径(如肾脏、胆道、呼吸器官、唾液腺、汗腺等)离开机体,这一过程称为药物得排泄。有时,把代谢与排泄统称为消除。 药物动力学(Pharmacokinetics)就就是研究药物、毒物及其代谢物在体内得吸收、分布、代谢及排除过程得定量规律得科学。它就是介于数学与药理学之间得一门新兴得边缘学科。自从20世纪30年代Teorell为药物动力学奠定基础以来,由于药物分析技术得进步与电子计算机得使用,药物动力学在理论与应用两方面都获得迅速得发展。至今,药物动力学仍在不断地向深度与广度发展。药物动力学得研究方法一般有房室分析;矩分析;非线性药物动力学模型;生理药物动力学模型;药物药效学模型。下面我们仅就房室分析作一简单介绍。 为了揭示药物在体内吸收、分布、代谢及排泄过程得定量规律,通常从给药后得一系列时间(t) 采取血样,测定血(常为血浆,有时为血清或全血)中得药物浓度( C );然后对血药浓度——时间数据数据(C ——t数据)进行分析。

一一室模型 最简单得房室模型就是一室模型。采用一室模型,意味着可以近似地把机体瞧成一个动力学单元,它适用于给药后,药物瞬间分布到血液、其它体液及各器官、组织中,并达成动态平衡得情况。下面得图(一)表示几种常见得给药途径下得一室模型,其中C代表在给药后时间t 得血药浓度,V代表房室得容积,常称为药物得表观分布容积,K代表药物得一级消除速率常数,故消除速率与体内药量成正比,D代表所给刘剂量。 图(a)表示快速静脉注射一个剂量D,由于就是快速,且药物直接从静脉输入,故吸收过程可略而不计;图(b)表示以恒定得速率K,静脉滴注一个剂量D;若滴注所需时间为丅,则K=D/丅。图(c)表示口服或肌肉注射一个剂量D,由于存在吸收过程,故图中分别用F与 K代表吸收分 数与一级吸收速率常数。 1、快速静脉注射 在图(a)中所示一室模型得情况下,设在时间t,体内药物量为x,则按一级消除得假设,体内药量减少速率与当时得药量成正比,故有下列方程: dx Kt dt(5、1) 快速静脉注射恒速静脉滴注口服或肌肉注射 K F 0K

(完整版)药物非临床药代动力学研究技术指导原则

附件5 药物非临床药代动力学研究技术指导原则 一、概述 非临床药代动力学研究是通过体外和动物体内的研究方法,揭示药物在体内的动态变化规律,获得药物的基本药代动力学参数,阐明药物的吸收、分布、代谢和排泄(Absorption, Distribution, Metabolism, Excretion, 简称ADME)的过程和特征。 非临床药代动力学研究在新药研究开发的评价过程中起着重要 作用。在药物制剂学研究中,非临床药代动力学研究结果是评价药物制剂特性和质量的重要依据。在药效学和毒理学评价中,药代动力学特征可进一步深入阐明药物作用机制,同时也是药效和毒理研究动物选择的依据之一;药物或活性代谢产物浓度数据及其相关药代动力学参数是产生、决定或阐明药效或毒性大小的基础,可提供药物对靶器官效应(药效或毒性)的依据。在临床试验中,非临床药代动力学研究结果能为设计和优化临床试验给药方案提供有关参考信息。 本指导原则是供中药、天然药物和化学药物新药的非临床药代动力学研究的参考。研究者可根据不同药物的特点,参考本指导原则,科学合理地进行试验设计,并对试验结果进行综合评价。 本指导原则的主要内容包括进行药物非临床药代动力学研究的 基本原则、试验设计的总体要求、生物样品的测定方法、研究项目(血

药浓度-时间曲线、吸收、分布、排泄、血浆蛋白结合、生物转化、对药物代谢酶活性及转运体的影响)、数据处理与分析、结果与评价等,并对研究中其他一些需要关注的问题进行了分析。附录中描述了生物样品分析和放射性同位素标记技术的相关方法和要求,供研究者参考。 二、基本原则 进行非临床药代动力学研究,要遵循以下基本原则: (一)试验目的明确; (二)试验设计合理; (三)分析方法可靠; (四)所得参数全面,满足评价要求; (五)对试验结果进行综合分析与评价; (六)具体问题具体分析。 三、试验设计 (一)总体要求 1. 受试物 中药、天然药物:受试物应采用能充分代表临床试验拟用样品和/或上市样品质量和安全性的样品。应采用工艺路线及关键工艺参数确定后的工艺制备,一般应为中试或中试以上规模的样品,否则应有充分的理由。应注明受试物的名称、来源、批号、含量(或规格)、保存条件、有效期及配制方法等,并提供质量检验报告。由于中药的特殊性,建议现用现配,否则应提供数据支持配制后受试物的质量稳定性及均匀性。当给药时间较

生物药剂学与药代动力学

生物药剂学与药物动力学习题 一、单项选择题 1.以下关于生物药剂学的描述,正确的是 A.剂型因素是指片剂、胶囊剂、丸剂和溶液剂等药物的不同剂型 B.药物产品所产生的疗效主要与药物本身的化学结构有关C.药物效应包括药物的疗效、副作用和毒性 D.改善难溶性药物的溶出速率主要是药剂学的研究内容 2. K+、单糖、氨基酸等生命必需物质通过生物膜的转运方式是A.被动扩散 B.膜xx转运 C.主动转运D.促进扩散 E.膜动转运 3.以下哪条不是主动转运的特点 A.逆浓度梯度转运 B.无结构特异性和部住特异性 C.消耗能量D.需要载体参与 E.饱和现象 4.胞饮作用的特点是 A.有部位特异性 B.需要载体 C.不需要消耗机体能量D.逆浓度梯度转运

E.以上都是 5.药物的主要吸收部位是 A.胃B.小肠 C.大肠D.直肠 E.均是 6.药物的表观分布容积是指 A.人体总体积B.人体的体液总体积 C.游离药物量与血药浓度之比D.体内药量与血药浓度之比E.体内药物分布的实际容积 7.当药物与蛋白结合率较大时,则 A.血浆中游离药物浓度也高 B.药物难以透过血管壁向组织分布 C.可以通过肾小球滤过 D.可以经肝脏代谢 E.药物跨血脑屏障分布较多 8.药物在体内以原形不可逆消失的过程,该过程是 A.吸收 B.分布 C.代谢 D.排泄 E.转运

9.药物除了肾排泄以外的最主要排泄途径是 A.胆汁 B.汗腺C.唾液腺 D.泪腺E。呼吸系统 10.可以用来测定肾小球滤过率的药物是 A.青霉素 B.链霉素C.菊粉 D.葡萄糖 E.乙醇 11.肠肝循环发生在哪一排泄中 A.肾排泄B.胆汁排泄C.乳汁排泄 D.肺部排泄 E.汗腺排泄 12.最常用的药物动力学模型是 A.隔室模型 B.药动一药效结合模型 C.非线性药物动力学模型 D.统计矩模型 E.生理药物动力学模型 13.药物动力学是研究药物在体内的哪一种变化规律 A.药物排泄随时间的变化

群体药代动力学解读

发布日期2007-11-01 栏目化药药物评价>>综合评价 标题群体药代动力学(译文) 作者康彩练 部门 正文内容 审评四部七室康彩练审校 I.前言 本指南是对药品开发过程中群体药代动力学的应用制定建议,目的是帮助确定在人群亚组中药品安全性和疗 效的差异。它概述了应当用群体药代动力学解决的科学问题和管理问题。本指南讨论了什么时候要进行群体 药代动力学研究和/或分析;讨论了如何设计和实施群体药代动力学研究;讨论了如何处理和分析群体药代动 力学数据;讨论了可以使用什么样的模型验证方法;讨论了针对计划申报给FDA的群体药代动力学报告,怎 样提供恰当的文件。虽然本行业指南中的内容是针对群体药代动力学,但是其中讨论的原则也同样适用于群 体药效学研究和群体毒代动力学研究2。 由于对药品在人群亚组中的安全性和疗效的分析是药品开发和管理中一个发展迅速的领域,所以在整个药品 开发过程中,鼓励主办者和FDA审评人员经常沟通。 制药行业科学家和FDA长期以来一直对群体药代动力学/药效学在人群亚组中药品安全性和疗效分析方面的 应用感兴趣[1]。在FDA的其他指南文件(包括“进行药品临床评价时一般要考虑的问题”(General Considerations for the Clinical Evaluation of Drugs) (FDA 77-3040))中和在国际协调会议(ICH)指南(包 括“E4支持药品注册的剂量-效应资料”(E4 Dose-Response Information to Support Drug Registration)和“E7 支持特殊人群的研究:老年医学”(E7 St udies in Support of Special Populations: Geriatrics))中,对这个主 题制定了参考标准3。这些指南文件支持使用特殊的数据收集方法和分析方法,例如群体药代动力学方法(群 体PK方法),作为药品开发中药代动力学评价的一部分。 1本指南由药品评审和研究中心(CDER)医药政策协调委员会临床药理学部群体药代动力学工作组与食品 药品监督管理局生物制品评审和研究中心(CBER)合作编写。本指南文件反映了当前FDA对药品评价中的 群体药代动力学的考虑。它不给任何人也不代表任何人创造或赋予任何权力,也不约束FDA或公众。如果其 他措施满足适用法令、法规或两者的要求,那么也可采用其他措施。

药物动力学计算题

1.计算题:一个病人用一种新药,以2mg/h的速度滴注,6小时即终止滴注,问终止后2小时体血药浓度是多少?(已知k=0.01h-1,V=10L) 2.计算题:已知某单室模型药物,单次口服剂量0.25g,F=1,K=0.07h-1,AUC=700μg/ml·h,求表观分布容积、清除率、生物半衰期(假定以一级过程消除)。 3.某药静注剂量0.5g,4小时测得血药浓度为 4.532μg/ml,12小时测得血药浓度为2.266μg/ml,求表观分布容积Vd为多少? 4.某人静注某药,静注2h、6h血药浓度分别为1.2μg/ml和0.3μg/ml(一级动力学),求该药消除速度常数?如果该药最小有效剂量为0.2μg/ml,问第二次静注时间最好不迟于第一次给药后几小时? 5.病人静注复方银花注射剂2m/ml后,立即测定血药浓度为1.2μg/ml,3h为0.3μg/ml,该药在体呈单室一级速度模型,试求t1/2。 6.某病人一次用四环素100mg,血药初浓度为10μg/ml,4h后为 7.5μg/ml,试求t1/2。 7.静脉快速注射某药100mg,其血药浓度-时间曲线方程为:C=7.14e-0.173t,其中浓度C的单位是mg/L,时间t的单位是h。请计算:(1)分布容积;(2)消除半衰期;(3)AUC。

8.计算题:某药物具有单室模型特征,体药物按一级速度过程清除。其生物半衰期为2h,表观分布容积为20L。现以静脉注射给药,每4小时一次,每次剂量为500mg。 求:该药的蓄积因子 第2次静脉注射后第3小时时的血药浓度 稳态最大血药浓度 稳态最小血药浓度 9.给病人一次快速静注四环素100mg,立即测得血清药物浓度为10μg/ml,4小时后血清浓度为7.5μg/ml。求四环素的表观分布体积以及这个病人的四环素半衰期(假定以一级速度过程消除)。 10.计算题:病人体重60kg,静脉注射某抗菌素剂量600mg,血药浓度-时间曲线方程为:C=61.82e-0.5262t,其中的浓度单位是μg/ml,t的单位是h,试求病人体的初始血药浓度、表观分布容积、生物半衰期和血药浓度-时间曲线下面积。 11.计算题:已知某药物具有单室模型特征,体药物按一级速度方程清除,其t1/2=3h,V=40L,若每6h静脉注射1次,每次剂量为200mg,达稳态血药浓度。求:该药的(1)ss C max (2)ss C m in (3)ss C (4)第2次给药后第1小时的血药浓度

药代动力学12 第九章 药代动力学与药效学动力学结合模型

药代动力学12 第九章药代动力学与药效学动力学结 合模型 第九章药代动力学与药效动力学结合模型第一节概述 药代动力学(Pharmacokinetics, PK)和药效动力学(Pharmacodynamics,PD) 是按时间同步进行着的两个密切相关的动力学过程,前者着重阐明机体对药物的 作用,即药物在体内的吸收、分布、代谢和排泄及其经时过程;后者描述药物对 机体的作用,即效应随着时间和浓度而变化的动力学过程,后者更具有临床实际 意义。传统的药效动力学主要在离体的水平进行,此时药物的浓度和效应呈现出 一一对应的关系,根据药物的量效关系可以求得其相应的药效动力学参数,如亲 和力和内在活性等。但药物的作用在体内受到诸多因素的影响,因而其在体内的 动力学过程较为复杂。以往对于药动学和药效学的研究是分别进行的,但实际上 药动学和药效学是两个密切相关的动力学过程,两者之间存在着必然的内在联 系。 早期的临床药动学研究通过对治疗药物的血药浓度的监测(Therapeutic

Drug Monitoring, TDM)来监测药物效应变化情况,其理论基础是药物的浓度和 效应呈现出一一对应的关系,这一关系是建立在体外研究的基础之上的,这里所 说的浓度实际上是作用部位的浓度,但在临床研究中我们不可能直接测得作用部 位的药物浓度,因而常常用血药浓度来代替作用部位的浓度。随着药代动力学和 药效动力学研究的不断深入人们逐渐发现药物在体内的效应动力学过程极为复 杂,其血药浓度和效应之间并非简单的一一对应关系,出现了许多按传统理论无 法解释的现象,如效应的峰值明显滞后于血药浓度峰值,药物效应的持续时间明 显长于其在血浆中的滞留时间,有时血药浓度和效应的曲线并非像在体外药效动 力学研究中观察到的 S形曲线,而是呈现出一个逆时针滞后环。进一步研究发现 血药浓度的变化并不一定平行于作用部位药物浓度的变化,因而出现了上述的一 些现象,所以在体内不能用血药浓度简单地代替作用部位的浓度来反映药物效应 的变化情况。针对上述问题 Sheiner 等人于 1979年首次提出了药动学和药效学结 合模型,并成功地运用这一模型解释了上述的现象。药动学和药效力学结合

药物代谢动力学吐血整理(中药药理专业)(20201101084327)

药物代谢动力学完整版 第二章药物体内转运 一、药物跨膜转运的方式及特点 1. 被动扩散 特点:①顺浓度梯度转运②无选择性③无饱和现象④无竞争性抑制作用⑤不需要能量 2. 孔道转运 特点:①主要为水和电解质的转运②转运速率与所处组织的血流速率及膜的性质有关 3. 特殊转运 包括:主动转运、载体转运、受体介导的转运 特点:①逆浓度梯度转运②有选择性③有饱和现象④有竞争性抑制作用⑤常需要能量 4. 其他转运方式 包括:①易化扩散类似于主动转运,但不需要能量②胞饮主要转运大分子化合物 二、胃肠道中影响药物吸收的因素有哪些①药物和剂型②胃肠排空作用③肠上皮的外排机制④首过效应⑤疾病⑥药物相互作用 三、研究药物吸收的方法有哪些,各有何特点? 1. 整体动物实验法能够很好地反映给药后药物的吸收过程,是目前最常用的研究药物吸收的实验方法。缺点: ①不能从细胞或分子水平上研究药物的吸收机制; ②生物样本中的药物分析方法干扰较多,较难建立; ③由于试验个体间的差异,导致试验结果差异较大; ④整体动物或人体研究所需药量较大,周期较长。 2. 在体肠灌流法:本法能避免胃内容物和消化道固有生理活动对结果的影响。 3. 离体肠外翻法:该法可根据需要研究不同肠段的药物吸收或分泌特性及其影响因素。 4. Caco-2 细胞模型法 Caco-2 细胞来源于人体结肠上皮癌细胞。 优点:① 作为研究体外药物吸收的快速筛选模型;② 在细胞水平上研究药物在小肠黏膜中 的吸收、转运和代谢;③ 研究药物对肠黏膜的毒性;④ 由于Caco-2细胞来源于人,不存在种属的差异性。 缺点: ①酶和转运蛋白的表达不完整;②来源、培养代数、培养时间对结果有影响; 四、药物血浆蛋白结合率常用测定方法的原理及注意事项。 1. 平衡透析法原理:利用与血浆蛋白结合的药物不透过半透膜的特性进行测定的。 2. 超过滤法 原理:与平衡透析法不同的是在血浆蛋白室一侧加压力或离心力,使游离药物快速通过滤膜 进入另一隔室。 脑微血管的特性:①低水溶性物质的扩散通透性;②低导水性;③高反射系数;④高电阻性; ⑤酶屏障

临床药代动力学试验的常见设计类型与统计分析

发布日期 20140327 化药药物评价 >> 临床安全性和有效性评价 临床药代动力学试验的常见设计类型与统计分析 张学辉,卓宏,王骏 化药临床二部 一、临床药代动力学试验的统计分析问题现状 临床药代动力学试验在新药上市注册申请中占有重要地位。 与大样本量的 临床试验相比,这类试验样本数少、 观测指标少,其统计分析问题要简单很多, 未引起申请人或研究者的重视,一般较少邀请统计专业人员参与。甚至一些人 认为这类试验是描述性试验,不需要进行专业的统计分析。其实正是因为这类 试验的样本数少,才要更加重视其试验设计和统计分析的规范性,才能得出相 对可靠的专业结论。从目前申报资料看,存在较多问题: 1 )研究设计时未充 分考虑三要素”(受试者、试验因素、观察指标),无法满足研究目标的专业 需要;2)研究设计不符合 四原则”(随机、对照、重复和均衡),不采用常见 的设计类型,设计出一些不同寻常的异型试验; 3)资料整理和统计分析方法 选用不当,与研究设计类型不匹配,尤其是滥用 t 检验和单因素多水平设计资 料的方差分析方法。 临床药代动力学试验的一般要求参见技术指导原则 ⑴。本文拟介绍这类试 验的常见研栏目 标题 作者 部门 正文内容

究设计类型与统计分析方法,供大家参考。 二、创新药物临床药代动力学试验 这里的创新药物是指新化学实体。这类药物通常在健康受试者中进行多项 的临床药代动力学试验,包括单次给药、多次给药、食物影响、药代动力学相互作用等药代动力学试验。后续还要进行目标适应症患者和特殊人群的药代动力学试验。 2.1创新药物单次给药药代动力学试验 创新药物的健康受试者单次给药药代动力学试验通常在I期耐受性试验结 束后进行。受试者例数一般要求每个剂量组8?12例,男女各半。药物剂量, 一般选用低、中、高三种剂量,有时会选用更多剂量。剂量的确定主要根据I 期临床耐受性试验的结果,并参考动物药效学、药代动力学及毒理学试验的结果,以及经讨论后确定的拟在∏期临床试验时采用的治疗剂量推算。高剂量组剂量必须接近或等于人最大耐受的剂量。 由于该类药物初上人体试验,出于安全性和伦理的考虑,每位受试者只给药一次,最常采用多剂量组平行设计。一般设计为在健康受试者(男女各半)中、随机、开放、多剂量组平行、单次给药的药代动力学试验。整理这类试验的药代动力学参数时,可以归类为两因素(剂量、性别)析因设计。各剂量组内性别间差异无统计学意义或者不考虑性别因素时,可以将该试验简化为单因素(剂量)的平行组设计。 安全性好的药物,在伦理允许情况下,也可采用多剂量组、多周期的交叉设计。交叉设计的优点是节省样本量、自身对照、减少个体间变异,缺点是多周期时间长、重复测量次数多、受试者依从性差易脱落、统计分析方法复杂。 当选用低、中、高三个剂量组时,通常采用随机、开放、单次给药、三剂量组

药代动力学建模部分

第四章药代动力学建模——使用WinNonlin 库模型 假设一个研究者已经获得一个研究对象口服化合物后的浓度数据,现在要拟合一个药代动力学模型。 数据探究 数据加载:打幵Win No nlin Examples子目录的STUD Y1.P W文件,此文件包含具备单位的时间- 浓度数据。 数据绘图: 1.数据文件打开后,单击工具栏按钮Chart Wizard (图表向导)或从WinNonlin 菜单选择Tools>Chart Wizard 。 2.选择XY Scatter (散点图),然后点击下一步。 3.拖动Time 到X 变量框中。 4.拖动Cone到Y变量框中。 5.点击Next 。 6.点击Finish 。图表在一个新的图表窗口中生成。 图4-1 study1.pwo 的时间-浓度曲线 转换为半对数坐标图: 1.从菜单选择Chart>Axis Options ,出现轴选项对话框。 2.将Y轴框的Logarithmic复选框打勾。 3.点击确定。该对话框关闭,窗口的图表转换为半对数图,图表如下所示。 图4-2 study1.pwo 的半对数坐标图

设置模型 图表表明,该系统可能适用一级吸收,一室模型进行拟合。该模型在WinNonlin 编译的药动模型库中是排列为模型3。 开始建模: 1.点击PK/PD/NCA Analysis Wizard 工具栏按钮,或选择菜单中的Tools> PK/PD/NCA Analysis Wizard 。 2 .确保STUDY1.PWO现在数据设置区域。 3.选择Pharmacokinetic 单选按钮,和Compiled 模式。 4.点击Next 。出现WinNonlin 编译模式对话框。 5.选择模式3。 6 .点击Next按钮。遴选摘要对话框出现。 7.点击Finish 。向导关闭,出现模型窗口。 指定X和丫变量: 1.从菜单选择Model>Data Variables 。 2.拖动Time 到X 变量框中。 3.拖动Cone到Y变量框中。 4.点击OK。 输入给药数据: 注意:输入给药数据的单位,以便之后在模型参数中可以查看(和调整)单位。 模型3单剂量模式需具备三个常量。这个例子中,2ug的单剂量在时间为0时给药,则剂量常量应该为: 剂量数= 1 剂量# 1 = 2 ug 给药时间# 1 = 0 1.从WinNonlin 菜单选择Modei>Dosing Regimen,打开Model Properties (模型属性)对话框的Dosing Regimen (给药方案)选项卡。 2.分别在数据网格的对应格子中输入值 1,2,0,如下图所示。 3.在Curre nt Un its 区域输入ug单位。 4.单击Apply 进行更改,保持模型属性对话框打开状态。输入初始参数估值: 所有模型的估算程序均可受益于参数初始估值。虽然WinNonlin可以采用曲线剥离法估测初始参数,但这个例子仍为用户提供了初始参数估值。 1 .打开Model Properties (模型属性)对话框的Model Parameters (模型参数)选项卡。 2.在参数计算组框(下面)选择User Supplied Initial Parameter Values (用户 提供初始参数值),网格延伸出初始值填写栏。 3.输入初始值: V_F = 0.25 K01 = 1.81

山东大学期末考试药物代谢动力学模拟卷1.2.3答案

药物代谢动力学模拟卷1 一、名词解释 1. 生物等效性:生物等效性评价是指同一种药物的不同制剂在相同实验条件下,给予相同的剂量,判断其吸收速度和程度有无显著差异的过程。 2. 生物半衰期:简称血浆半衰期,系指药物自体内消除半量所需的时间,以符号以符号T1/2表示。 3. 达坪分数:是指n 次给药后的血药浓度Cn 于坪浓度Css 相比,相当于坪浓度Css 的分数,以fss 表示fss=Cn/Css 4. 单室模型:各种药动学公式都是将机体视为一个整体空间,假设药物在其中转运迅速,瞬时达到分布平衡的条件下推导而得的。 5. 临床最佳给药方案:掌握影响抗生素疗效的各种因素。如果剂量太小,给药时间间隔过长,疗程太短,给药途径不当,均可造成抗生素治疗的失败。为了确保抗生素的疗效,不仅应该给予足够的药物总量,而且要掌握适 当地给药时间间隔和选用适当的给药途径。 二、解释下列公式的药物动力学意义 1.)1(1010100t t c e k e k k V k C βαβ ααβαβ--------= 二室模型静脉滴注给药,滴注开始后血药浓度与时间t 的关系。

2.∞∞+-=-u u u X t k X X lg 303 .2)lg( 单室模型静脉注射给药,以尚待排泄的原形药物量(即亏量)的对数与时间t 的关系。 3. kt k ss e e V X C --?-=) 1(0τ 多剂量给药时,按一定剂量、一定给药时间间隔、多剂量重复给药,当n 充分大时,稳态血药浓度(或坪浓度)与时间t 的关系。 4.)2(00V X k V V X AUC m m += 药物以非线性过程消除,且在体内呈单室模型特征时,静脉注射后,其血药浓度曲线下面积与剂量X0的关系。 5. 00) 1)(1(1x e e x a k k ?--=--*ττ 单室模型血管外给药负荷剂量与给药周期的关系。 三、回答下列问题 1. 缓控释制剂释放度测定至少需几个时间点?各时间点测定有何基本要求?有何意义? 参考答案: 答:缓控释制剂释放度测定至少需3个时间点,第一个取样点一般在1~2小时,释放量在15~40%之间,用于考察制剂有无突释现象;第二个取样点反映制剂的释放特性,时间为4~6小时,释放量根据不同药物有不同要求;第三个取样点用于证明药物基本完全释放,要求释放量在70%以上,给药间隔为12小时的制剂取样时间可为6~10小时,24小时给药一次的制剂,其取样时间可适当延长。 2. 什么是表观分布容积?表观分布容积的大小表明药物的什么性质? 参考答案: 答:表观分布容积是指给药剂量或体内药量与血药浓度相互关系的比例常数。 即药物在生物体内达到转运间动

临床药代动力学基础

临床药代动力学基础总结 一、被动转运 1、简单扩散:属于脂溶性扩散。 一、(1)特点:1、从浓度高的一侧转运向浓度低的一侧顺着浓度梯度差通过生物膜。 2、转运过程不消耗能量,不需要载体,各药物之间没有竞争抑制现象,没有饱和性。 3、当生物膜两侧药物浓度达到平衡状态时,转运即停止。 一、影响简单扩散的因素 1、膜两侧的浓度差2药物的脂溶性3药物的解离度:取决于解离常数(Ka)和环境的PH 值 (2)影响简单扩散的因素-Handersoh-hasselbalch公式:-弱酸性药物: 结论:1、酸性药物在酸性环境中,解离少容易跨膜转运达到平衡时,主要分布在碱侧。2、碱性药物在碱性环境中解离少,容易跨膜转运,达到扩散平衡,主要分布在酸侧。 2、膜孔扩散1、滤过或水溶性扩散2、分子量小,分子直径膜孔的水溶性极性或非极性物 质(水、乙醇、尿素、乳酸)借助膜两侧的液体和渗透压差,被水带到低压一侧的过程。 影响因素:膜两侧浓度差。 3、易化扩散分类1经载体的易化扩散2经通道的易化扩散 4、特殊转运 药物体内吸收过程 1吸收:药物从用药部位向血液循环中转运的过程。多数药物的吸收属于被动转运。 影响药物最主要的因素:1、给药途径:经肠给药口服:舌下、直肠、 2、非经肠给药:肌肉注射、皮下注射、静脉注射 吸入、皮肤 一、消化道给药 1、口服给药吸收途径:肠道内吸收-通过毛细血管-肝门静脉-体循环 2、影响因素首关效应:首过效应、第一关卡效应药物在肠粘膜上皮细胞内,肝脏内通过时, 被某些酶灭火代谢,进入体内循环的药物量减少,这一过程成为首关效应或首过消除。 3、药物方面:药物性质、剂型、溶出度在消化道稳定性。 胃肠功能:胃肠道蠕动速度、血流量。 其他:胃内容物、胃肠内PH值,肠道细菌对药物的代谢。 2舌下药:舌下含服,直接吸入体循环,不经过肝门静脉因此无首过消除效应。 3吸入给药:吸入途径:肺泡-肺部毛细血管-体循环 4皮肤给药 二、分布 药物随血液循环进入器官,组织甚至细胞内的过程。 影响因素1药物与血浆蛋白的结合2器官血流量与组织亲和力3体内屏障4体液PH值和药物溶解度 结合性药物分子量变大不易通过生物膜。 药物与血浆蛋白的结合特点:1可逆性2饱和性3竞争性4常用血浆蛋白结婚率来表现 一、体内屏障1血脑屏障分类:1血液-脑脊液2血液-脑组织3脑脊液-脑组织 特点:致密、通透性差2胎盘屏障 药物转化(代谢)过程 三催化转化的酶种类1专一性酶特点:具有专一性(选择性)如乙酰胆碱酯酶-单胺氧化酶2非专一性酶:即肝脏微粒体混合功能酶系统。 存在于肝脏的微粒内,参与多种化合物的转化,与药物的代谢密切相关,因此又称为肝药酶,

药物代谢动力学实验讲义

实验一药酶诱导剂及抑制剂对 戊巴比妥钠催眠作用的影响 【目的】 以戊巴比妥钠催眠时间作为肝药酶体内活性指标,观察苯巴比妥及氯霉素对戊巴比妥钠催眠作用的影响,从而了解它们对肝药酶的诱导及抑制作用。 【原理】 苯巴比妥为肝药酶诱导剂,可诱导肝药酶活性,使戊巴比妥钠在肝微粒体的氧化代谢加速,药物浓度降低,表现为戊巴比妥钠药理作用减弱,即催眠潜伏期延长,睡眠持续时间缩短。而氯霉素则为肝药酶抑制剂,能抑制肝药酶活性,导致戊巴比妥钠药理作用增强,即催眠潜伏期缩短,睡眠持续时间延长。 【动物】 小白鼠8只,18~22g 【药品】 生理盐水、0.75%苯巴比妥钠溶液、0.5%氯霉素溶液、0.5%戊巴比妥钠溶液 【器材】 天平、鼠笼、秒表、注射器1 ml×4、5号针头×4 【方法与步骤】 一、药酶诱导剂对药物作用的影响 1、取小鼠4只,随机分为甲、乙两组。甲组小鼠腹腔注射0.75%苯巴比妥钠溶液0.1 ml/10g,乙组小鼠腹腔注射生理盐水0.1 ml/10g,每天1次,共2天。 2、于第三天,给各小鼠腹腔注射0.5%戊巴比妥钠溶液0.1 ml/10g,观察给药后小鼠的反应。记录给药时间、翻正反射消失和恢复的时间,计算戊巴比妥钠催眠潜伏期及睡眠持续时间。 二、药酶抑制剂对药物作用的影响 1、取小鼠4只,随机分为甲、乙两组。甲组小鼠腹腔注射0.5%氯霉素溶液0.1 ml/10g;乙组小鼠腹腔注射生理盐水0.1 ml/10g。 2、30分钟后,给各小鼠腹腔注射0.5%戊巴比妥钠溶液0.1 ml/10g,观察给药后小鼠的反应。记录给药时间、翻正反射消失和恢复的时间,计算戊巴比妥钠催眠潜伏期及睡眠持续时间。 【统计与处理】 以全班结果(睡眠持续时间,分)作分组t检验,检验用药组与对照组有无显著性差异。(参见“数理统计在药理学实验中的应用”)

一期临床试验及药代动力学测试的主要内容

一期临床试验及药代动力学测试的主要内容 Ⅰ期临床试验就是新药人体试验的起始阶段。 Ⅰ期临床试验目的: 1.在健康志愿者中,对通过临床前安全有效性评价的新药,从绝对安全的初始剂量开始,考察人体对该药的耐受性; 2.对人体能够耐受的剂量进行药代动力学研究,为研究Ⅱ期临床试验提出合理的给药方案。 Ⅰ期临床试验工作程序 1、接到药政管理当局(SDA)下达的批件; 2、签订合同; 3、阅读有关资料及文献,选择、组织试验研究小组; 4、计算并确定耐受性试验最小初始剂量与最大剂量; 5、制定、讨论、确定Ⅰ期临床试验方案; 6、试验方案呈报伦理委员会审批; 7、Ⅰ期临床试验前准备工作: 1)筛选志愿受试者; 2)准备知情同意书; 3)准备记录表格与试验流程图; 4)血药浓度监测考核; 5)Ⅰ期病房准备; 8、Ⅰ期临床试验方案伦理委员会批准后,制定试验进度计划; 9、试验前受试者签署知情同意书; 10、受试者随机分组; 11、试验前24小时内完成每例受试者病例登记:体格检查、心电图检查、脑电图检查、 眼科检查、血液学检查、血生化检查、尿液学分析等各项指标检查; 12、准备每例受试者试验流程图; 13、按照试验方案与进度计划进行Ⅰ期临床试验; 14、数据处理、统计分析;

15、总结报告。 Ⅰ期临床试验方案程序 1)单次给药耐受性试验(随机分组,逐组进行,有主观或其它因素影响时设安慰剂对照); 2)单次给药药代动力学研究(设高、中、低三个剂组,三向交叉拉丁方设计,确定临床有效量与给药量,每组均有三个剂量,每次均有三个剂量,以排除仪器、个体差异); 3)连续给药耐受性与药代动力学研究,要求达稳态后再继续二天,一般连续七至十天)。 Ⅰ期临床试验方案模式 1、首页:项目名称、研究者姓名、单位,申办者负责人姓名、单位 2、简介:试验药物中文名、国际非专利药名、结构式、化学名、分子式、分子量、理化性 质、药理作用、作用机制、临床前药理、毒理研究结果摘要(如已在国外进入临床试验,介绍初步试验结果); 3、研究目的:在健康志愿受试者中,观察单次给药耐受性,单次给药药代动力学参数,连续给药药代动力学与耐受性; 4、试验样品:样品名称、代号、制剂与规格,制剂制备单位、制备日期、批号、有效期、药 检部门检验人用合格报告、给药途径、贮存条件、数量(剂量总数、制剂总数); 5、受试者选择:志愿受试者来源,入选标准,淘汰标准(根据各类具体药物制定)。入选人数、姓名、年龄、性别、体重、身高、籍贯、民族。 6、受试者签署知情同意书; 7、伦理委员会报批:三个试验方案需分别报送医学伦理委员会审批; 8、试验设计与方法; 9、观察指标:体检检查、心电图、脑电图、神经科检查、眼科检查、血液学、血生化及尿 液分析等各项指标均需写明; 10、数据处理统计分析:事先规定数据处理方法,确定正常值与异常值确定标准,统计分析方法及单位等; 11、总结报告:规定试验周期、总结报告完成日期; 12、末页:试验地点、研究者与申办者签名。 健康志愿者耐受性试验步骤与方法

相关主题
文本预览
相关文档 最新文档