当前位置:文档之家› 菱形 例题精讲与同步训练(含答案)-

菱形 例题精讲与同步训练(含答案)-

菱形 例题精讲与同步训练(含答案)-
菱形 例题精讲与同步训练(含答案)-

菱形、菱形的性质定理 菱形的判定定理

【重点、难点】 1.菱形的概念。

有一组邻边相等的平行四边形叫作菱形。 2.菱形的性质:

①菱形的四条边相等;

②菱形的对角线互相垂直平分,每一条对角线平分菱形的一组对角; ③菱形的面积等于它的两条对角线乘积的一半。 3.菱形的判定定理:

①四条边相等的四边形是菱形;

②对角线互相垂直的平行四边形是菱形。

难点:运用菱形的性质定理和判定定理解相关问题。 【讲一讲】

例1:已知:在菱形ABCD 中,E 、F 分别为BC 、CD 的中点,求证:AE=AF 。

分析:由菱形的性质可以知道AB=AD=BC=CD ,又E 、F 分别为中点,则BE=DF 。另有∠B=∠D ,这样通过全等三角形可以求证AE=AF

证明:∵ABCD 为菱形, ∴AB=AD BC=CD ∠B=∠D

∵E 、F 分别为BC 、CD 的中点 ∴BE=DF

∵在△ABE 与△ADF 中

??

?

??=∠=∠=DF BE D B AD AB ∴△ABE ≌△ADF ∴AE=AF

例2:已知:矩形ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别交于E 、F 。 求证:四边形AFCE 是菱形。 分析:由EF 为AC 的垂直平分线有AE=EC ,AF=FC ,若证AFCE 为菱形,只须证AE=FC ,通过已知ABCD 为矩形,利用矩形的性质可以证明△AOE 与△COF 全等。从而得到AE=CF 。

证明:∵ABCD 为矩形, ∴AD ∥BC ∴∠1=∠2。

∵EF 为AC 的垂直平分线 ∴AO=CO

在△AOE 与△COF 中

??

?

??∠=∠=∠=∠4321CO AO

∴△AOE≌△COF

∴AE=FC

∵ABCD为矩形,

∴AD∥BC

即AE∥FC

∴四边形AFCE为平行四边形

∵EF是AC的垂直平分线

∴EF⊥AC

∴AFCE为菱形。

例3:已知:如图在Rt△ABC中,∠BAC=90°,∠ABC的角平分线交AC于D,AH ⊥BC于H,交BD于E,DF⊥BC于F。

求证:AEFD为菱形。

分析:利用角平分线的性质可以证明AD=DF。

由角平分线可得∠ADB=∠BEH,

从而得到∠1=∠ADE,即AE=AD,

又可证明AE∥DF,所以由“有一组邻边相等的平行四边形是菱形”可以证明结论。

证明:∵在Rt△ABC中,∠BAC=90°,

∴∠ADB+∠ABD=90°

∵AH⊥BC于H

∴∠2+∠DBF=90°

∵∠1=∠2

∴∠1+∠DBF=90°

∵BD平分∠ABC

∴∠ABD=∠DBF,

∠ADB=∠1

∴AE=AD

∵BD平分∠ABC,

∠BAC=90°

DF⊥BC于F

∴AD=FD

AE=FD

∵AH⊥BC于H,

DF⊥BC于F

∴AH∥DF,即AE∥FD

∴AEFD为平行四边形

∴AE=AD

∴AEFD为菱形

练习

1.已知:平行四边形ABCD中,AC和BD交于O,EF过O点交AD于E,交BC于F,HG过O点交AB于H,交CD于G。如果EF平分∠AOD,HG平分∠AOB,求证:EHFG 为菱形.

2.已知菱形ABCD的对角线AC长为16,BD长为12,求它的面积。边长AB及高。

3.已知菱形对角线BD=4,∠BAD:∠ADC=1:2,求:菱形面积及对角线AC的长。

4.如图,已知O是矩形ABCD的对角线的交点,DE∥AC,CE∥DB。DE与CE相交于E.求证:四边形OCED为菱形。

5.求证:菱形四边中点连线组成的图形为矩形.

6.求证:矩形四边中点连线组成的图形为菱形。

参考答案

1.∵OE 平分∠AOD ∴AOD AOE ∠=

∠2

1

∵OH 平分∠AOB ∴AOB AOH ∠=∠2

1

∵∠AOD+∠AOB=180° ∴?=??=

∠+∠901802

1

AOH AOE 即HG ⊥EF 。 ∵ABCD 为平行四边形 ∴OA=OC BO=OD AD ∥BC AB ∥CD

∴∠DAO=∠BCO ∠ABO=∠ODC ∴△AOE ≌△OCF ,△BHO ≌△ODG ∴OE=OF OH=OG ∴HFGE 为菱形。

2.∵ABCD 为菱形,∴AC ⊥BD OA=OC OD=OB

又∵AC=16 BD=12 ∴OD=6 AO=8

∴10643622=+=+=AO OD AD ∴AB=10

9612162

1

21=??=??=

BD AC S ABCD ∵h AB S ABCD ?= ∴6.910

96

===

AB S h ABCD 3.∵ABCD 为菱形 ∴AB ∥CD

∴∠BAD+∠ADC=180°∵∠BAD :∠ADC=1:2 ∴∠BAD=60° ∠ADC=120°

∵AC ⊥BD OA=OC OB=OD BD=4 ∴OB=2,又∠BAO=∠DAO=30°

∴32=OA AB=4 ∴342==OA AC ∴384342

1

21=??=?=

BD AC S ABCD 4.∵DE ∥AC ∴DE ∥OC

同理CE ∥OD ∴OCED 为平行四边形 ∵ABCD 为矩形 AC 、BD 相交于O ∴OA=OC OD=OB 且AC=BD ∴OD=OC

∴OCED 为菱形。

5.

证明:连结AC 、BD 相交于O

∴AC EH 2

1

//

AC FG 21//

∴FG EH // EF ∥BD 又∵ABCD 为菱形

∴AC ⊥BD ∴EF ⊥GF

∴EFGH 为矩形。 6.

证明:连结AC 、BD

∵ABCD 为矩形,∴AC=BD

∵E 、F 、G 、H 分别为AD 、AB 、BC 、CD 中点, ∴BD EF

2

1//

BD GH 2

1

//

AC 2

1//FG

AC EH 2

1

//

∴EF=FG=GH=EH ∴EFGH 为菱形。

计数原理与排列组合经典题型

计数原理与排列组合题型解题方法总结 计数原理 一、知识精讲 1、分类计数原理: 2、分步计数原理: 特别注意:两个原理的共同点:把一个原始事件分解成若干个分事件来完成。 不同点:如果完成一件事情共有n类办法,这n类办法彼此之间相互独立的,无论哪一类办法中的哪一种方法都能单独完成这件事情,求完成这件事情的方法种数,就用分类计数原理。分类时应不重不漏(即任一种方法必须属于某一类且只属于这一类) 如果完成一件事情需要分成n个步骤,各个步骤都是不可缺少的,需要依次完成所有的步骤,才能完成这件事,而完成每一个步骤各有若干种不同的方法,求完成这件事情的方法种数就用分步计数原理。各步骤有先后,相互依存,缺一不可。 3、排列 (1)排列定义,排列数 (2)排列数公式: (3)全排列列: 4.组合 (1)组合的定义,排列与组合的区别; (2)组合数公式: (3)组合数的性质 二、.典例解析 题型1:计数原理 例1.完成下列选择题与填空题 (1)有三个不同的信箱,今有四封不同的信欲投其中,则不同的投法有种。 A.81 B.64 C.24 D.4 (2)四名学生争夺三项冠军,获得冠军的可能的种数是( ) A.81 B.64 C.24 D.4 (3)有四位学生参加三项不同的竞赛, ①每位学生必须参加一项竞赛,则有不同的参赛方法有; ②每项竞赛只许有一位学生参加,则有不同的参赛方法有;

③每位学生最多参加一项竞赛,每项竞赛只许有一位学生参加,则不同的参赛方法有 。 例2(1)如图为一电路图,从A 到B 共有 条不同的线路可通电。 例3: 把一个圆分成3块扇形,现在用5种不同的颜色给3块扇形涂色,要求相邻扇形的颜色互不相同,问有多少钟不同的涂法?若分割成4块扇形呢? 例4、某城在中心广场造一个花圃,花圃分为6个部分(如图).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有 ________ 种.(以数字作答) 例5、 四面体的顶点和各棱的中点共10个,在其中取4个不共面的点,问共有多少种不同的取法? 例6、(1)电视台在”欢乐今宵”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封.现有主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果? (2)三边均为整数,且最大边长为11的三角形的个数是 D C B A

排列组合典型例题(带详细答案)

例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数? 例2三个女生和五个男生排成一排 (1)如果女生必须全排在一起,可有多少种不同的排法? (2)如果女生必须全分开,可有多少种不同的排法? (3)如果两端都不能排女生,可有多少种不同的排法? (4)如果两端不能都排女生,可有多少种不同的排法? 例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。 (1)任何两个舞蹈节目不相邻的排法有多少种? (2)歌唱节目与舞蹈节目间隔排列的方法有多少种? 例4某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法. 例5现有3辆公交车、3位司机和3位售票员,每辆车上需配1位司机和1位售票员.问车辆、司机、售票员搭配方案一共有多少种? 例6下是表是高考第一批录取的一份志愿表.如果有4所重点院校,每所院校有3个专业是你较为满意的选择.若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法? 例77名同学排队照相. (1)若分成两排照,前排3人,后排4人,有多少种不同的排法?

(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法? (3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法? (4)若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不面的排法? 例8计算下列各题: (1) 215 A ; (2) 66 A ; (3) 1 1 11------?n n m n m n m n A A A ; 例9 f e d c b a ,,,,,六人排一列纵队,限定a 要排在b 的前面(a 与b 可以相邻,也可以不相邻),求共有几种排法. 例10 八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法? 例11 计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且不彩画不放在两端,那么不同陈列方式有 例12 由数字5,4,3,2,1,0组成没有重复数字的六位数,其中个位数字小于十位数的个数共有( ). 例13 用5,4,3,2,1,这五个数字,组成没有重复数字的三位数,其中偶数共有( ). 例14 用543210、、、、、共六个数字,组成无重复数字的自然数,(1)可以组成多少个无重 复数字的3位偶数?(2)可以组成多少个无重复数字且被3整除的三位数?

《菱形的性质与判定 》 教学设计

《菱形的性质与判定》 《菱形的性质与判定》一课是继八年级下册“第三章图形的平移与旋转”和“第六章平行四边形”之后的一个学习内容。九年级的学生在学习菱形之前,已经掌握了简单图形平移旋转和平行四边形的性质和判定,学生完全能够借助图形的旋转平移和轴对称直观的理解菱形的定义和性质。教科书基于学生在平行四边形相关知识的基础上,提出了本课的具体学习任务:①掌握菱形的定义;②探索并掌握菱形是轴对称图形;③探索并证明菱形“四条边相等”、“对角线互相垂直”等性质,并能应用这些性质计算线段的长度。 在教学过程中,要利用学生对图形的直观感知、已掌握的平行四边形的相关知识和已有的逻辑推理能力为基础,探索菱形的定义和性质,又要尝试利用它们解题。所以在本节课的教学中,要帮助学生学会运用观察,分析,比较,归纳,概括等方法,得出解决问题的方法,使传授知识与培养能力融为一体,使学生不仅学到科学的探究方法,而且体验到探究的乐趣,体会到成功的喜悦。 【知识与能力目标】 1、掌握菱形的的定义,理解菱形与平行四边形的关系。 2、理解并掌握菱形的性质定理;在证明性质和运用性质解决问题的过程中进一步发展学生的逻辑推理能力。 【过程与方法目标】 1、经历探索菱形的概念和性质的过程,发展学生合情推理的意识; 2、通过灵活运用菱形的性质解决有关问题,掌握几何思维方法。 【情感态度价值观目标】 1、在观察、操作、猜想、归纳、推理的过程中,体验数学活动充满探索性和创造性,感受证明的必要性,培养严谨的推理能力,体会逻辑推理的思维价值。 2、通过小组合作展示活动,培养学生的合作精神和学习自信心。 【教学重点】

菱形的性质定理证明及运用。 【教学难点】 菱形的性质定理证明、运用,生活数学与理论数学的相互转化。 课前布置学生复习平行四边形的性质,并每人准备好草稿纸、铅笔、直尺、菱形纸片; 教师准备课件,搜集好菱形的相关图片,三角板等。 一、情景导入 1.复习回顾:什么样的四边形叫平行四边形?它有哪些性质? 2.观察发现:观察下列图中的这些平行四边形,你能发现它们有什么样的共同特征? 3.与一般的平行四边形相比较,这种平行四边形特殊在哪里?你能给菱形下定义吗?通过平行四边形演变为菱形的动态演示过程,引出本课题及矩形定义。 菱形:有一组邻边相等的平行四边形叫做菱形。 菱形是特殊的平行四边形,它具有平行四边形的所有性质。但平行四边形不一定是菱形。 二、合作探究 1.既然菱形是平行四边形,那么它具有平行四边形的哪些性质? 在同学回答的基础上进行归纳:

排列组合问题经典题型解析含答案

排列组合问题经典题型与通用方法 1. 相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列 例1. A,B,C,D,E 五人并排站成一排,如果 A,B 必须相邻且B 在A 的右边,则不同的排法有( ) A 、60 种 B 、48 种 C 、36 种 D 、24 种 2. 相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几 个元素全排列,再把规定的相离的 几个元素插入上述几个元素的空位和两端 ? 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( ) A 、1440 种 B 、3600 种 C 、4820 种 D 、4800 种 3. 定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法 例3.A,B,C,D,E 五人并排站成一排,如果 B 必须站在A 的右边(A, B 可以不相邻)那么不同的排法有 ( ) 4. 标号排位问题分步法:把元素排到指定位置上, 可 先把某个元素按规定排入, 第二步再排另一个元素, 如 此继续下去,依次即可完成 ? 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所 填数字均不相同的填法有( ) A 、6 种 B 、9 种 C 、11 种 D 、23 种 5. 有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法 例5.( 1 )有甲乙丙三项任务,甲需 2人承担,乙丙各需一人承担,从 10人中选出4人承担这三项任务, 不同的选法种数是( ) A 、1260 种 B 、2025 种 C 、2520 种 D 、5040 种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口 6. 全员分配问题分组法: 例6.( 1)4名优秀学生全部保送到 3所学校去,每所学校至少去一名,则不同的保送方案有多少种? A 、24 种 B 、60 种 C 、90 种 D 、 120 种 4人,则不同的分配方案有( 4 4 4 C 12C 8C 4 种 4 4 3C 12C 8C C 、 C 12C 8 A 3 种

排列组合知识点汇总及典型例题(全)

排列组合知识点汇总及典型例题(全)

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!!!! 10 =n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④ 111 12111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意:分类不重复不遗漏。即:每两类的交集为空集, 所有各类的并集为全集。 (3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。在处理排列组合问题时,常常既要分 类,又要分步。其原则是先分类,后分步。 (43.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元素优先考虑、特殊位置优先考虑; (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空法.即先安排好没有限制条件的元素,然后再将不相 邻接元素在已排好的元素之间及两端的空隙之间插入。 (5)、顺序一定,除法处理。先排后除或先定后插 解法一:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。即先全排,再除以定序元素的全排列。 解法二:在总位置中选出定序元素的位置不参加排列,先对其他元素进行排列,剩余的几个位置放定序的元素,若定序元素要求从左到右或从右到左排列,则只有1种排法;若不要求,则有2种排法; (6)“小团体”排列问题——采用先整体后局部策略 对于某些排列问题中的某些元素要求组成“小团体”时,可先将“小团体”看作一个元素与其余元素排列,最后再进行“小团体”内部的排列。 (7)分排问题用“直排法”把元素排成几排的问题,可归纳为一排考虑,再分段处理。 (8).数字问题(组成无重复数字的整数) ① 能被2整除的数的特征:末位数是偶数;不能被2整除的数的特征:末位数是奇数。②能被3整除的数的特征:各位数字之和是3的倍数; ③能被9整除的数的特征:各位数字之和是9的倍数④能被4整除的数的特征:末两位是4的倍数。 ⑤能被5整除的数的特征:末位数是0或5。 ⑥能被25整除的数的特征:末两位数是25,50,75。 ⑦能被6整除的数的特征:各位数字之和是3的倍数的偶数。 4.组合应用题:(1).“至少”“至多”问题用间接排除法或分类法: (2). “含”与“不含” 用间接排除法或分类法: 3.分组问题: 均匀分组:分步取,得组合数相乘,再除以组数的阶乘。即除法处理。 非均匀分组:分步取,得组合数相乘。即组合处理。 混合分组:分步取,得组合数相乘,再除以均匀分组的组数的阶乘。 4.分配问题: 定额分配:(指定到具体位置)即固定位置固定人数,分步取,得组合数相乘。

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

排列组合知识点总结+典型例题及答案解析

排列组合知识点总结+典型例题及答案解析 一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -=+---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10 =n C 规定: 组合数性质: .2 n n n n n m n m n m n m n n m n C C C C C C C C 21011 =+++=+=+--…… ,, ①;②;③;④ 111 12111212211 r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-++++ +=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。

菱形的性质学案

菱形的性质学案 学习目标:1、掌握菱形的概念和性质 2、发展合情推理能力和主动探索习惯 学习过程: 一、自主学习,初步感知 1、菱形的定义: 2、菱形的性质: 边: 角: 对角线: 对称性: 二、合作交流,探究新知(看课本) 相比于一般的平行四边形,菱形所特有的性质: 性质1: 性质2: 1、验证猜想 ⑴已知四边形ABCD是菱形。 求证:AB=BC=CD=DA ⑵已知AC、BD是菱形ABCD的两条对角线,AC、BD相交于点O。 求证:①AC⊥BD。 ②AC平分∠BAD和∠BCD。 A B C D O A B C D O A B C D

2、例题.如图,菱形花坛ABCD 的边长为20m , ∠ABC =60o ,沿着菱形的对角线修建了两条小 路AC 和BD ,求两条小路的长和花坛的面积(分别精确到0.01m 和0. 1m 2 ) 3、学以致用 (1)如图,四边形ABCD 是菱形。点O 是两条对角线 的交点,AB=5cm ,AO=3cm ,求AC 与BD 的长。 (2)在菱形ABCD 中,对角线AC=6,BD=8,则菱形的面积是多少?周长是多少? 例3如图,AC 是菱形ABCD 的对角线,点E 、F 分别在边AB 、AD 上,且AE=AF 。 求证:△AC E ≌△ACF 三、精讲总结,反思提炼。 菱形的定义:菱形的性质:菱形的面积公式: 四、达标检测,收获成功。 1.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为 . 2.已知菱形ABCD 的周长为20cm ,且相邻两内角之比是1∶2,求菱形的对角线的长和面积. 3.已知:如图,菱形ABCD 中,E 、F 分别是CB 、CD 上的点,且BE=DF .求证:∠AEF=∠AFE . A B C D O A D F E B C

高考排列组合典型例题

高考排列组合典型例题 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

排列组合典型例题 例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数 分析:这一问题的限制条件是:①没有重复数字;②数字“0”不能排在千位数上;③个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下: 如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是 2、4、6、8的四位偶数(这是因为零不能放在千位数上).由此解法一与二. 如果从千位数入手.四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三. 如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四. 解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有39A 个; 当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有281814A A A ??(个). ∴ 没有重复数字的四位偶数有 2296179250428181439 =+=??+A A A A 个. 解法2:当个位数上排“0”时,同解一有39A 个;当个位数上排2、4、6、8中之一时,千位,百位,十位上可从余下9个数字中任选3个的排列数中减去千 位数是“0”排列数得:)(283914 A A A -?个 ∴ 没有重复数字的四位偶数有 22961792504)(28391439 =+=-?+A A A A 个.

排列组合典型例题

排列组合典型例题

典型例题一 例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数? 分析:这一问题的限制条件是:①没有重复数字;②数字“0”不能排在千位数上;③个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下: 如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是 2、4、6、8的四位偶数(这是因为零不能放在千位数上).由此解法一与二. 如果从千位数入手.四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三. 如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四. 解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有3 A个; 9 当个位上在“2、4、6、8”中任选一个来排,

则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有2 8181 4 A A A ??(个). ∴ 没有重复数字的四位偶数有 2296 179250428181439=+=??+A A A A 个. 解法2:当个位数上排“0”时,同解一有3 9 A 个;当个位数上排2、4、6、8中之一时,千位,百位,十位上可从余下9个数字中任选3个的排列数中减去千位数是“0”排列数得:) (28391 4 A A A -?个 ∴ 没有重复数字的四位偶数有 2296 1792504)(28391439=+=-?+A A A A 个. 解法3:千位数上从1、3、5、7、9中任选一个,个位数上从0、2、4、6、8中任选一个,百位,十位上从余下的八个数字中任选两个作排列有 2 81 515A A A ??个 干位上从2、4、6、8中任选一个,个位数上从余下的四个偶数中任意选一个(包括0在内),百位,十位从余下的八个数字中任意选两个作排列,有 2 81414A A A ??个 ∴ 没有重复数字的四位偶数有

高中排列组合知识点汇总及典型例题(全)

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; ' (3)111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10=n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ① ;②;③;④ 11112111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 " 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决 排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意: 分类不重复不遗漏。即:每两类的交集为空集,所有各类的并集为全集。 (3数原理解决。在处理排列组合问题时,常常既要分类,又要分步。其原则是先分类,后分步。 (4 3.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元 素优先考虑、特殊位置优先考虑; ) (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空

《菱形的性质》——教学设计

《菱形的性质》——教学设计 刘倩淮安市凌桥中学 一、教材分析 1、在教材中的作用与地位 《菱形》一节是在学生掌握了平行四边形的性质与判定,具备了初步的观察、操作和推理等活动经验的基础上学习的,这一节课既是前面所学知识的继续,又是后面学习正方形等知识的基础,所以在知识的前后联系上起着承前启后的作用。 2、教学目标 (1)经历探索菱形的概念性质及菱形的面积公式的推导的过程,掌握菱形的概念和性质。 (2)能运用菱形的性质定理进行简单的计算与证明; (3)在进行探索、猜想、证明的过程中,进一步发展推理论证的能力,进一步体会证明的必要性. 教学重点:菱形的概念和菱形的性质,菱形的面积公式的推导。 教学难点:菱形的性质灵活运用。 二、设计理念 为进一步深化生命化的课堂,让学生成为学生的主体,把问题贯穿于学生学习的全过程,使思维训练渗透于课前、课中,课后的各环节。而本节课菱形是特殊的平行四边形,后继课要学的正方形具有菱形的一切性质。这节课教学时注重学生的探索过程,让学生操作、观察、猜测、验证,获得知识,培养主动探究的能力,和用多种方法解决问题的能力。 三、教学流程 (一)课前准备 剪一个菱形,.观察并回答: (1)什么是菱形? (2)菱形是不是中心对称图形?对称中心是_______. (3)是不是轴对称图形?对称轴有几条?_______. 【设计意图】通过学生自己操作剪菱形,探索菱形的对称性,不仅增加学生

兴趣,并为新课中归纳菱形性质作铺垫。 (二)探索学习 1、探索菱形的性质。 (1)让学生交流剪菱形的方法,观察菱形,归纳菱形的性质。 (2)让学生画菱形,进一步强化菱形的性质。 【设计意图】剪菱形有多种方法,学生可畅所欲言,这样可引起学生学习兴趣,在实际操作中发现归纳菱形的特殊性质,培养学生用多种方法解决问题的能力,也为下面学习中证明菱形有关定理打下基础。 现将典型方法展示如下: 将一张矩形的纸对折再对折,然后沿着图中的虚线剪下,打开,便得到菱形。 【设计意图】本方法直观得到了菱形的重要性质——菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角.同时为下面证明菱形性质作铺垫。 2、证明菱形性质。 (1)先让学生分析证明思路。 (2)指名让学生板演。 【设计意图】让学生分析思路可培养学生语言表达能力,学生可以利用平行四边形对角线互相平分及等腰三角形三线合一的性质来证明,也可以证明三角形全等。培养了学生用多种方法解题的能力,通过讨论,选择最简单的方法进行板演,这样有助于提高学生的解题能力,并可以规范学生的书写格式。 现将典型方法展示如下:

排列组合专题复习及经典例题详解

排列组合专题复习及经典例题详解 1. 学习目标 掌握排列、组合问题的解题策略 2.重点 (1)特殊元素优先安排的策略: (2)合理分类与准确分步的策略; (3)排列、组合混合问题先选后排的策略; (4)正难则反、等价转化的策略; (5)相邻问题捆绑处理的策略; (6)不相邻问题插空处理的策略. 3.难点 综合运用解题策略解决问题. 4.学习过程: (1)知识梳理 1.分类计数原理(加法原理):完成一件事,有几类办法,在第一类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法……在第n 类型办法中有n m 种不同的方法,那么完成这件事共有n m m m N +++=...21种不同的方法. 2.分步计数原理(乘法原理):完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……,做第n 步有n m 种不同的方法;那么完成这件事共有n m m m N ???=...21种不同的方法. 特别提醒: 分类计数原理与“分类”有关,要注意“类”与“类”之间所具有的独立性和并列性; 分步计数原理与“分步”有关,要注意“步”与“步”之间具有的相依性和连续性,应用这两个原理进行正确地分类、分步,做到不重复、不遗漏. 3.排列:从n 个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,n m <时叫做选排列,n m =时叫做全排列. 4.排列数:从n 个不同元素中,取出m(m≤n)个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号m n P 表示. 5.排列数公式:)、(+∈≤-= +---=N m n n m m n n m n n n n P m n ,)! (!)1)...(2)(1( 排列数具有的性质:11-++=m n m n m n mP P P 特别提醒: 规定0!=1

菱形的性质与判定学案

菱形学案 19.3 菱形 第一课时 1、自主学习 ● 目标导学 1、理解菱形的定义; 2、探究菱形的性质,并能运用性质解决实际问题。 ● 自学生疑 1、叫菱形 2、菱形的性质 1)边 2)角 3)对角线 4)对称性 二、合作学习 ● 合作探究 1、看书了解什么叫菱形? 。 2、通过量一量,折一折,看看菱形的边、角、对角线存在哪些性质?如何证明? 归 纳: 用几何语言叙述: 3、探究菱形的面积计算方法:

练一练: 1、菱形的周长为12 cm,相邻两角之比为5∶1,那么菱形对边间的距离是 () A.6 cm B.1.5 cm C.3 cm D.0.75 cm 2.在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,则∠EAF等于()A.75° B.60° C.45° D.30° 3、菱形的边长是2 cm,一条对角线的长是2 cm,则另一条对角线的长是 () A.4 cm B. cm C.2 cm D.2 cm ● 精讲精练 例1、如图,菱形ABCD的对角线AC、BD交于点O,且AC=16 cm,BD=12 cm,求菱形ABCD的高DH. 变式:菱形ABCD的周长为20 cm,两条对角线的比为3∶4,求菱形的面积. 例2:(09贵阳)如图,在菱形ABCD中,P是AB上的一个动点(不与A、B重合),连接DP交对角线AC于E,连接EB。(1)求证:;(2)若,试问:P点运动到什么位置时,的面积等于菱形ABCD面积的 ?为什么?

例3:如图,在菱形ABCD中,AB=4a,E在BC上,BE=2a,,P点在BD 上,求PE+PC的最小值。 三、用中学习 1.菱形具有而一般平行四边形不具有的性质是() A.对角相等 B.对边相等 C.对角线互相垂直 D.对角线相等 2.菱形ABCD中,AC、BD相交于O点,若∠OBC=∠BAC,则菱形的四个内角的度数为_______. 3、.若菱形的两条对角线的比为3∶4,且周长为20 cm,则它的一组对边的距离等于__________ cm,它的面积等于________ cm2. 4.菱形的周长为100 cm,一条对角线长为14 cm,它的面积是() A.168 cm2 B.336 cm2 C.672 cm2 D.84 cm2 5.菱形的周长为16,两邻角度数的比为1∶2,此菱形的面积为() A.4 B.8 C.10 D.12 6.下列语句中,错误的是() A.菱形是轴对称图形,它有两条对称轴 B.菱形的两组对边可以通过平移而相互得到 C.菱形的两组对边可以通过旋转而相互得到 D.菱形的相邻两边可以通过旋转而相互得到 7.菱形的面积为8平方厘米,两条对角线的比为1∶,那么菱形的边长为_______. 8、如图,将两张长为8,宽为2的矩形纸片交叉,使重叠部分是一个菱形,则菱形周长的最小值是,最大值是。

排列组合基础知识及习题分析

排列组合基础知识及习题分析 在介绍排列组合方法之前我们先来了解一下基本的运算公式! C53=(5×4×3)/(3×2×1) C62=(6×5)/(2×1)通过这2个例子看出 n C m n公式是种子数M开始与自身连续的N个自然数的降序乘积做为分子。 以取值N的阶层作 为分母 p53=5×4×3 p66=6×5×4×3×2×1 通过这2个例子 p m n=从M开始与自身连续N个自然数的降序乘积当N=M时即M的阶层排列、组合的本质是研究“从n个不同的元素中,任取m (m≤n)个元素,有序和无序摆放的各种可能性”.区别排列与组合的标志是“有序”与“无序”. 解答排列、组合问题的思维模式有二: 其一是看问题是有序的还是无序的?有序用“排列”,无序用“组合”;其二是看问题需要分类还是需要分步?分类用“加法”,分步用“乘法”. 分类:“做一件事,完成它可以有n类方法”,这是对完成这件事的所有办法的一个分类.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:①完成这件事的任何一种方法必须属于某一类;②分别属于不同两类的两种方法是不同的方法. 分步:“做一件事,完成它需要分成n个步骤”,这是说完成这件事的任何一种方法,都要分成n个步骤.分步时,首先要根据问题的特点,确定一个可行的分步标准;其次,步骤的设置要满足完成这件事必须并且只需连续完成这n个步骤后,这件事才算最终完成. 两个原理的区别在于一个和分类有关,一个与分步有关.如果完成一件事有n类办法,这n 类办法彼此之间是相互独立的,无论那一类办法中的那一种方法都能单独完成这件事,求完成这件事的方法种数,就用加法原理;如果完成一件事需要分成n个步骤,缺一不可,即需要依次完成所有的步骤,才能完成这件事,而完成每一个步骤各有若干种不同的方法,求完成这件事的方法种类就用乘法原理. 在解决排列与组合的应用题时应注意以下几点: 1.有限制条件的排列问题常见命题形式:“在”与“不在”“邻”与“不邻” 在解决问题时要掌握基本的解题思想和方法: ⑴“相邻”问题在解题时常用“合并元素法”,可把两个以上的元素当做一个元素来看,这是处理相邻最常用的方法. ⑵“不邻”问题在解题时最常用的是“插空排列法”. ⑶“在”与“不在”问题,常常涉及特殊元素或特殊位置,通常是先排列特殊元素或特殊位置. ⑷元素有顺序限制的排列,可以先不考虑顺序限制,等排列完毕后,利用规定顺序的实情求出结果. 2.有限制条件的组合问题,常见的命题形式:“含”与“不含”“至少”与“至多”在解题时常用的方法有“直接法”或“间接法”. 3.在处理排列、组合综合题时,通过分析条件按元素的性质分类,做到不重、不漏,按事件的发生过程分步,正确地交替使用两个原理,这是解决排列、组合问题的最基本的,也是最重要的思想方法。. ***************************************************************************** 提供10道习题供大家练习

菱形的性质与判定教学设计

§1.1 菱形的性质与判定 邵爱平 沈阳市博才中学

菱形的性质与判定第一课时 教学设计 沈阳市博才中学邵爱平 教学目标: 1.理解菱形的概念,了解它与平行四边形之间的关系. 2.探索并证明菱形的性质定理. 3.应用菱形的性质定理解决相关问题. 教学重点:菱形性质的探究与应用. 教学难点:利用菱形的性质解决问题. 教学环境: 一对一数字化教室,包括学生人手一个终端及教师一体机. 教学过程: 一、课前展示 小组同学合作选题和全体同学共同复习平行四边形性质的相关习题 . 1.平行四边形的性质有哪些?(利用终端全体答题) 对称性:平行四边形是 ______ 对称图形 边:平行四边形的______ 相等 角:平行四边形的______ 相等 对角线:平行四边形的对角线______ 2.已知平行四边形ABCD的周长为40m,△ABC的周长为25cm,则对角线AC的长为______cm.(利用终端全体抢答) 3.在平行四边形ABCD中,AC、BD相交于O,AC=10,BD=8,则AD的长度的取值范围是().(全体答题统测) A.AD>1 B.19 设计意图:通过利用终端作答,能一目了然的了解学生对平行四边形相关知识的掌握情况,同时为本节课做铺垫.(利用一对一数字化评测系统进行测试.) 二、激情引趣

1.教师引导学生想一想:你在什么地方见过菱形?学生寻找身边的实例,并将在课前下载到终点的照片资源与同学们分享,同学分享后教师也利用用课件展示生活中的菱形图案,学生在欣赏的同时初步感知菱形的魅力,通过身边的事物引入,使学生感受到菱形为我们的衣食住行增添了色彩. 2.在平行四边形的基础上进行动画演示,使之变成一个菱形,得菱形的定义:一组邻边相等的平行四边形是菱形. 小结:由定义可知,菱形是强化了“边”的特殊性的平行四边形,那么菱形具有什么样的特殊性质呢?让我们带着这个问题进入菱形性质的探究之旅. 设计意图:营造一种轻松愉快的学习氛围,拉进学生与数学的距离,学生在观察与实践后得出菱形的定义. 三、合作探究 1.教师介绍菱形性质的研究方向与平行四边形相同为:边、角、对角线、对称性. 做一做:将菱形纸片折一折,回答下列问题: (1)菱形是轴对称图形吗?如果是有几条对称轴?对称轴之间有什么关系? (2)菱形中有哪些相等线段? 通过折叠并引导学生类比平行四边形性质的探究方法来探究菱形的性质. 小组交流进行探究,得菱形的特殊性:(1)菱形是轴对称图形,有两条对称轴,分别是两对角线所在的直线;菱形是中心对称图形,对角线的交点是对称中心..(2)四条边都相等.(3)菱形的对角线互相垂直,并且每条对角线平分一组对角. 2.验证猜想:以上菱形的特殊性是通过观察、实验操作、猜想得到的,还需要进一步从数学的角度加以验证. 概括出两条性质之后,引导学生把两条性质作为命题加以演绎证明. 菱形的性质1:菱形的四条边相等. 已知:四边形ABCD 是菱形,AB=BC. 求证:AB=BC=CD=AD. 菱形的性质2:菱形的两条对角线互相垂直,每一条对角线平分一组对角. 已知:四边形ABCD 是菱形对角线相交于O 点 求证:(1)AC ⊥BD. B C D

排列组合习题_[含详细答案解析]

圆梦教育中心 排列组合专项训练 1.题1 (方法对比,二星) 题面:(1)有5个插班生要分配给3所学校,每校至少分到一个,有多少种不同的分配方法? (2)有5个数学竞赛名额要分配给3所学校,每校至少分到一个名额,有多少种不同的名额分配方法? 解析:“名额无差别”——相同元素问题 (法1)每所学校各分一个名额后,还有2个名额待分配, 可将名额分给2所学校、1所学校,共两类: 213 3 C C +(种) (法2——挡板法) 相邻名额间共4个空隙,插入2个挡板,共: 246C =(种) 注意:“挡板法”可用于解决待分配的元素无差别,且 每个位置至少分配一个元素的问题.(位置有差别,元素无差别) 同类题一 题面: 有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案? 答案:6 9C 详解: 因为10个名额没有差别,把它们排成一排。相邻名额之间形成9个空隙。在9个空档中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有6 9C 种分法。 同类题二 题面: 求方程X+Y+Z=10的正整数解的个数。 答案:36. 详解: 将10个球排成一排,球与球之间形成9个空隙,将两个隔板插入这些空隙中(每空至多插一块隔板),规定 由隔板分成的左、中、右三部分的球数分别为x 、y 、z 之值, 故解的个数为C 92=36(个)。 2.题2 (插空法,三星) 题面:某展室有9个展台,现有3件展品需要展出,要求每件展品独自占用1个展台,并且3件展品所选用的展台既不在两端又不相邻,则不同的展出方法有______种;如果进一步要求3件展品所选用的展台之间间隔不超过两个展位,则不同的展出方法有____种. 答案:60,48 同类题一 题面: 6男4女站成一排,任何2名女生都不相邻有多少种排法? 答案:A 66·A 4 7种. 详解: 任何2名女生都不相邻,则把女生插空,所以先排男生再让女生插到男生的空中,共有A 66·A 4 7种不 同排法. 同类题二 题面: 有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有( ) A .36种 B .48种 C .72种 D .96种 答案:C. 详解:恰有两个空座位相邻,相当于两个空位与第三个 空位不相邻,先排三个人,然后插空,从而共A 33A 2 4=72种排法,故选C. 3.题3 (插空法,三星) 题面:5个男生到一排12个座位上就座,两个之间至少隔一个空位.

相关主题
文本预览
相关文档 最新文档