当前位置:文档之家› linux启动过程详解

linux启动过程详解

linux启动过程详解
linux启动过程详解

A、简要说明

当用户打开PC 的电源,BIOS开机自检,按BIOS中设置的启动设备(通常是硬盘)启动,接着启动设备上安装的引导程序lilo或grub开始引导Linux,Linux首先进行内核的引导,接下来执行init程序,init程序调用了rc.sysinit和rc等程序,rc.sysinit和rc当完成系统初始化和运行服务的任务后,返回init;init启动了mingetty后,打开了终端供用户登录系统,

用户登录成功后进入了Shell,这样就完成了从开机到登录的整个启动过程。

Linux 系统启动过程大致按照如下步骤进行(这是一个简述):

第一阶段:BIOS启动引导阶段

在该过程中实现硬件的初始化以及查找启动介质;

从MBR(Master Boot Record)中装载启动引导管理器(LILO或GRUB)并运行该启动引导管理

第二阶段:GRUB为例启动引导阶段

装载stage1

装载stage1.5

装载stage2

读取/boot/grub.conf 文件并显示启动菜单;

装载所选的kernel和initrd 文件到内存中

第三阶段:内核阶段

运行内核启动参数;

解压initrd 文件并挂载initd 文件系统,装载必须的驱动;

挂载根文件系统

第四阶段:Sys V init 初始化阶段

启动/sbin/init 程序;

运行rc.sysinit脚本,设置系统环境,启动swap 分区,检查和挂载文件系统;

读取/etc/inittab文件,运行在/et/rc.d/rc<#>.d中定义的不同运行级别的服务初始化脚本;打开字符终端1-6号控制台/打开图形显示管理的7号控制台

B、详细说明

第一阶段:

系统上电开机后,主板BIOS(Basic Input / Output System)运行POST(Power on self test)代码,检测系统外围关键设备(如:CPU、内存、显卡、I/O、键盘鼠标等)。硬件配置信息及一些用户配置参数存储在主板的CMOS( Complementary Metal Oxide Semiconductor)上(一般64字节),实际上就是主板上一块可读写的RAM芯片,由主板上的电池供电,系统掉电后,信息不会丢失。

执行POST代码对系统外围关键设备检测通过后,系统启动自举程序,根据我们在BIOS 中设置的启动顺序搜索启动驱动器(比如的硬盘、光驱、网络服务器等)。选择合适的启动器,比如通常情况下的硬盘设备,BIOS会读取硬盘设备的第一个扇区(MBR,512字节),并执行其中的代码。实际上这里BIOS并不关心启动设备第一个扇区中是什么内容,它只是负责读取该扇区内容、并执行,BIOS的任务就完成了。此后将系统启动的控制权移交到MBR部分的代码。

注:在我们的现行系统中,大多关键设备都是连在主板上的。因此主板BIOS提供了一个操作系统(软件)和系统外围关键设备(硬件)最底级别的接口,在这个阶段,检测系统外围关键设备是否“准备好”,以供操作系统使用。

第二阶段:

BIOS通过下面两种方法之一来传递引导记录:

第一,将控制权传递给initial program loader(IPL),该程序安装在磁盘主引导记录(MBR)中

第二,将控制权传递给initial program loader(IPL),该程序安装在磁盘分区的启动引导扇区中

无论上面的哪种情况中,IPL都是MBR的一部分并应该存储于一个不大于446字节的磁盘空间中,因为MBR是一个不大于512字节的空间。

因此IPL仅仅是GRUB的第一个部分(stage1),他的作用就是定位和装载GRUB的第二个部分(stage2);stage2对启动系统起关键作用,该部分提供了GRUB启动菜单和交互式的GRUB 的shell。启动菜单在启动时候通过/boot/grub/grub.conf文件所定义的内容生成。在启动菜单中选择了kernel之后,GRUB会负责解压和装载kernel image并且将initrd装载到内存中。最后GRUB初始化kernel启动代码。完成之后后续的引导权被移交给kernel。

假设Boot Loader为grub (grub-0.97),其引导系统的过程如下:

grub分为stage1(stage1_5)和stage2两个阶段。stage1可以看成是initial program loaderI(IPL),而stage2则实现了grub 的主要功能,包括对特定文件系统的支持(如ext2,ext3,reiserfs等),grub自己的shell,以及内部程序(如:kernrl,initrd,root)等。

stage 1:MBR(512字节,0头0道1扇区),前446字节存放的是stage1,后面存放硬盘分区表信息,BIOS将stag1载入内存中0x7c00处并跳转执行。

stage1(/stage1/start.S)的任务非常单纯,仅仅是将硬盘0头0道2扇区读入内存。0头0道2扇区内容是源代码中的/stage2/start.S,编译后512字节,它是stage2或者stage1_5的入口。

注:此时stage1是没有能力识别文件系统的,其定位硬盘0头0道2扇区过程如下:BIOS 将stage1载入内存0x7c00处并执行,然后调用BIOS INIT13中断,将硬盘0头0道2扇区内容载入内存0x7000处,然后调用copy_buffer将其转移到内存0x8000处。定位0头0道2扇区有两种寻址方式:LBA、CHS。

start.S的主要功能是将stage2或stage1_5从硬盘载入内存,如果是stage2,则载入0x820处;如果是 stage1_5,则载入0x2200处。

注:这里的stage2或者stage1_5不是/boot分区/boot/grub目录下的文件,这个时候grub 还没有能力识别任何文件系统。分以下两种情况:

(1)假如start.S读取的是stage1_5,它存放在硬盘0头0道3扇区向后的位置,stage1_5作为stage1和stage2中间的桥梁,stage1_5有识别文件系统的能力,此后grub才有能力去访问/boot分区/boot/grub 目录下的 stage2文件,将stage2载入内存并执行。

(2)假如start.S读取的是stage2,同样,这个stage2也不是/boot分区/boot/grub目录下的stage2,这个时候start.S读取的是存放在/boot分区Boot Sector的stage2。这种情况下就有一个限制:因为start.S通过BIOS中断方式直接对硬盘寻址(而非通过访问具体的文件系统),其寻址范围有限,限制在8GB以内。因此这种情况需要将/boot分区分在硬盘8GB 寻址空间之前。

假如是情形(2),我们将/boot/grub目录下的内容清空,依然能成功启动grub;假如是情形(1),将/boot/grub目录下stage2删除后,则系统启动过程中grub 会启动失败。

这个地方经常要进行的操作:

是关于grub 常用的几个指令对应的函数:

grub>root (hd0,0) --root指令为grub 指定了一个根分区

grub>kernel /xen.gz-2.6.18-37.el5 --kernel指令将操作系统内核载入内存

grub>module /vmlinuz-2.6.18-37.el5xen ro root=/dev/sda2 --module指令加载指定的模块

grub>module /initrd-2.6.18-37.el5xen.img --指定initrd文件

grub>boot --boot 指令调用相应的启动函数启动OS内核

第三阶段:

如阶段2所述,grub>boot指令后,系统启动的控制权移交给kernel。Kernel会立即初始化系统中各设备并做相关配置工作,其中包括CPU、I/O、存储设备等。

关于设备驱动加载,有两部分:一部分设备驱动编入Linux Kernel中,Kernel会调用这部分驱动初始化相关设备,同时将日志输出到kernel message buffer,系统启动后dmesg 可以查看到这部分输出信息。另外有一部分设备驱动并没有编入Kernel,而是作为模块形式放在initrd(ramdisk)中。

在2.6内核中,支持两种格式的initrd,一种是2.4内核的文件系统镜像image-initrd,一种是cpio格式。以cpio格式为例,内核判断initrd为cpio的文件格式后,会将initrd中的内容释放到rootfs中。

initrd 是一种基于内存的文件系统,启动过程中,系统在访问真正的根文件系统时,会先访问initrd文件系统。将initrd 中的内容打开来看,会发现有bin、devetc、lib、procsys、sysroot、init等文件(包含目录)。其中包含了一些设备的驱动模块,比如scsi ata等设备驱动模块,同时还有几个基本的可执行程序insmod,modprobe,lvm,nash。主要目的是加载一些存储介质的驱动模块,如上面所说的scsi ideusb等设备驱动模块,初始化LVM,把根文件系统以只读方式挂载。

initrd 中的内容释放到rootfs中后,Kernel会执行其中的init文件,这里的init是一个脚本,由nash解释器执行。这个时候内核的控制权移交给init文件处理,我们查看init 文件的内容,主要也是加载各种存储介质相关的设备驱动。

驱动加载后,会创建一个根设备,然后将根文件系统以只读的方式挂载。这步结束后释放未使用内存并执行switchroot,转换到真正的根上面去,同时运行/sbin/init程序,开启系统的1号进程,此后系统启动的控制权移交给init进程。关于switchroot是在nash

中定义的程序。

Linux Kernel需要适应多种不同的硬件架构,但是将所有的硬件驱动编入Kernel又是不实际的,而且Kernel也不可能每新出一种硬件结构,就将该硬件的设备驱动写入内核。实际上Linux Kernel仅是包含了基本的硬件驱动,在系统安装过程中会检测系统硬件信息,根据安装信息和系统硬件信息将一部分设备驱动写入initrd。这样在以后启动系统时,一

部分设备驱动就放在initrd中来加载。

第四阶段:

init进程起来后,系统启动的控制权移交给init进程。

/sbin/init进程是所有进程的父进程,当init起来之后,它首先会读取配置文件

/etc/inittab,进行以下工作:

1)执行系统初始化脚本(/etc/rc.d/rc.sysinit),对系统进行基本的配置,以读写方式挂载根文件系统及其它文件系统,到此系统基本算运行起来了,后面需要进行运行级别的确定及相应服务的启动;

2)确定启动后进入的运行级别;

3) 执行/etc/rc.d/rc,该文件定义了服务启动的顺序是先K后S,而具体的每个运行级别

的服务状态是放在/etc/rc.d/rcn.d(n=0~6)目录下,所有的文件均链接至/etc/init.d 下的相应文件。

4)/etc/rc.d/rc $RUNLEVEL # $RUNLEVEL为缺省的运行模式

5) /etc/rc.d/rc.local

6)启动虚拟终端/sbin/mingetty

7)在运行级别5上运行X

这时呈现给用户的就是最终的登录界面。

至此,系统启动过程完毕。

说明:

系统启动运行级别的概念以及服务的定制方法;

当initrd 可以正常检测和装载之后,最后的工作就基本上由操作系统来进行了。当系统的init 进程起来之后系统启动的控制权移交给init进程。

/sbin/init 进程是所有进程的父进程,当init 起来之后,它首先会读取配置文件

/etc/inittab,进行以下工作:

1)执行系统初始化脚本(/etc/rc.d/rc.sysinit),对系统进行基本的配置,以读写方式挂载根文件系统及其它文件系统,后面需要进行运行级别的确定及相应服务的启动,(从这个角度可以看出如果要定义系统的init 动作,需要修改/etc/rc.d/rc.sysinit脚本)。它的主要工作有:配置selinux,系统时钟,内核参数(/etc/sysctl.conf),hostname,启用wap分区,根文件系统的检查和二次挂载(读写),激活RAID和LVM设备,启用磁盘quota 检查并挂载其它文件系统。

2)通过对/etc/inittab文件的读取确定启动后进入的运行级别;

3) 在相应的运行级别中执行/etc/rc.d/rcx.d目录下的脚本名称,该文件定义了服务启动的顺序是先K 后S,而具体的每个运行级别的服务状态是放在/etc/rc.d/rcn.d(n=0~6)目录下,但这些文件均是到/etc/init.d下的相应文件的链接。

系统会按照在该目录下的文件名称和优先级执行对应运行级别目录下的脚本:在某个运行级别的对应目录下,K开头的服务被关闭,S 开头的服务被开启,K 在S 开始之前执行,在执行过程中按照数字来定义优先级,数字越低优先级越高。

4)按照/etc/rc.d/rcX.d目录中的定义,系统会于后台启动相应的服务,如果要对某个运行级别中的服务进行更具体的定制,通过chkconfig 命令来操作,或者通过

setup/ntsys/system-config-services 来进行定制。

5)在/etc/inittab 文件中存在有关key sequence,UPS 的脚本定义,启动虚拟终端

/sbin/mingetty 的设置,这时呈现给用户的就是最终的登录界面。也就是说后台启动的服务完毕之后,如果系统默认进入字符界面,则运行mgetty进入1-6号终端控制台,如果系统默认进入图形界面,则开启gdm 服务进入7号虚拟图形控制台。至此,系统启动过程完毕。

linux内核启动 Android系统启动过程详解

linux内核启动+Android系统启动过程详解 第一部分:汇编部分 Linux启动之 linux-rk3288-tchip/kernel/arch/arm/boot/compressed/ head.S分析这段代码是linux boot后执行的第一个程序,完成的主要工作是解压内核,然后跳转到相关执行地址。这部分代码在做驱动开发时不需要改动,但分析其执行流程对是理解android的第一步 开头有一段宏定义这是gnu arm汇编的宏定义。关于GUN 的汇编和其他编译器,在指令语法上有很大差别,具体可查询相关GUN汇编语法了解 另外此段代码必须不能包括重定位部分。因为这时一开始必须要立即运行的。所谓重定位,比如当编译时某个文件用到外部符号是用动态链接库的方式,那么该文件生成的目标文件将包含重定位信息,在加载时需要重定位该符号,否则执行时将因找不到地址而出错 #ifdef DEBUG//开始是调试用,主要是一些打印输出函数,不用关心 #if defined(CONFIG_DEBUG_ICEDCC)

……具体代码略 #endif 宏定义结束之后定义了一个段, .section ".start", #alloc, #execinstr 这个段的段名是 .start,#alloc表示Section contains allocated data, #execinstr表示Section contains executable instructions. 生成最终映像时,这段代码会放在最开头 .align start: .type start,#function /*.type指定start这个符号是函数类型*/ .rept 8 mov r0, r0 //将此命令重复8次,相当于nop,这里是为中断向量保存空间 .endr b 1f .word 0x016f2818 @ Magic numbers to help the loader

linux启动过程

Linux系统启动过程分析 by 王斌斌 binbinwang118@https://www.doczj.com/doc/725338395.html, Linux系统启动过程分析 操作系统的启动过程,实际上是控制权移交的过程。Linux 系统启动包含四个主要的阶段:BIOS initialization, boot loader, kernel initialization, and init startup.见下图: 阶段一、BIOS initialization,主要功能如下: 1.Peripherals detected 2.Boot device selected 3.First sector of boot device read and executed 系统上电开机后,主板BIOS(Basic Input / Output System)运行POST(Power on self test)代码,检测系统外围关键设备(如:CPU、内存、显卡、I/O、键盘鼠标等)。硬件配置信息及一些用户配置参数存储在主板的CMOS( Complementary Metal Oxide Semiconductor)上(一般64字节),实际上就是主板上一块可读写的RAM芯片,由主板上的电池供电,系统掉电后,信息不会丢失。 执行POST代码对系统外围关键设备检测通过后,系统启动自举程序,根据我们在BIOS中设置的启动顺序搜索启动驱动器(比如的硬盘、光驱、网络服务器等)。选择合适的启动器,比如通常情况下的硬盘设备,BIOS会读取硬盘设备的第一个扇区(MBR,512字节),并执行其中的代码。实际上这里BIOS并不关心启动设备第一个扇区中是什么内容,它只是负责读取该扇区内容、并执行,BIOS的任务就完成了。此后将系统启动的控制权移交到MBR部分的代码。 注:在我们的现行系统中,大多关键设备都是连在主板上的。因此主板BIOS提供了一个操作系统(软件)和系统外围关键设备(硬件)最底级别的接口,在这个阶段,检测系统外围关键设备是否准备好,以供操作系 “” 统使用。 阶段二、Boot Loader 关于Boot Loader,简单的说就是启动操作系统的程序,如grub,lilo,也可以将boot loader本身看成一个小系统。 The BIOS invokes the boot loader in one of two ways: 1.It pass control to an initial program loader (IPL) installed within a driver's Master Boot Record (MBR) 2.It passes control to another boot loader, which passes control to an IPL installed within a partition's boot sector. In either case, the IPL must exist within a very small space, no larger than 446 bytes. Therefore, the IPL for GRUB is merely a first stage, whose sole task is to locate and load a second stage boot loader, which does most of the work to boot the system. There are two possible ways to configure boot loaders: Primary boot loader: Install the first stage of your Linux boot loader into the MBR. The boot loader must be configure to pass control to any other desired operating systems. Secondary boot loader: Install the first stage of your Linux boot loader into the boot sector of some partition. Another boot loader must be installed into the MBR, and configured to pass control to your Linux boot loader. 假设Boot Loader 为grub (grub-0.97),其引导系统的过程如下: grub 分为stage1 (stage1_5) stage2两个阶段。stage1 可以看成是initial program loaderI(IPL),而stage2则实现了grub 的主要功能,包括对特定文件系统的支持(如ext2,ext3,reiserfs等),grub自己的shell,以及内部程序(如:kernrl,initrd,root )等。

linux启动顺序讲解

一、简单介绍RHEL开机时的先后顺序 BIOS —> MBR —> Kernel —> init 1、当电脑一打开电源时电脑就会进入BIOS(BIOS的工作主要是检测一些硬件设备); 2、检测完后会进入MBR也就是boot loader(MBR位于硬盘的第一个扇区总共512bytes,其中前446bytes里面的编码是在选择引导分区也就是决定要由哪个分区来引导); 3、载入系统的Kernel(核心),在Kernel里主要是载入电脑设备的驱动程序,以便可以控制电脑上的设备,并且以只读方式来挂载根目录,也就是一开始只能读取到根目录所对应的那个分区,所以/etc、/bin、/sbin、/dev、/lib这五个目录必须同根目录在一个分区中; 4、最后启动init这个程序,所以init这个程序的进程编号为1,是Linux中第一个执行的程序; init这个程序会根据Run level来执行以下这些程序: ·/etc/rc.d/rc.sysinit; ·/etc/rc.d/rc 和etc/rc.d/rc?.d/ ·/etc/rc.d/rc.local ·如果有适当的图形界面管理程序 二、BIOS初始化时主要的三个任务 BIOS(B asic I nput/O utput S ystem) 1、电脑周边设备的检测,加电自检POST (Power on self test); 2、BIOS会选择要由哪一个设备来开机,例如:软盘启动、光盘启动、网络启动、最常见的从硬盘启动; 3、选择好由哪个设备开机后,就开始读取这个设备的MBR 引导扇区; 三、介绍Boot Loader中的主要工作 1、Boot Loader可以安装在两个地方: ·安装在硬盘的MBR中; ·当有时候MBR中被其他开机管理程序占用就可以将Boot Loader 安装在硬盘中的其中一个分区的引导扇区上,; 2、Boot Loader的程序码分为两个阶段: (1)Boot Loader第一阶段的程序码非常小,只有446bytes,可以存入在MBR或是某一个分区的引导扇区里, (2)Boot Loader第一阶段的程序码是从boot 分区来载入的,就是说Boot Loader 第二阶段程序码存放在/boot 这个分区中; 3、下面来看三个Boot Loader 的开机流程范例,如在一块硬盘中安装了两个系统分别为:windows 2003 和Red hat linux 当电脑开机后,会先载入MBR通过第一阶段程序码来载入第二阶段程序码,进入GRUB开机菜单这里选择哪个系统就会载入相应的核心;

怎样执行在Linux上运行应用程序

如何执行在Linux上运行的应用程序 关键字:Linux 先决条件 要充分理解本文,必须具备Windows 环境下桌面应用程序的工作经验,我认为读者对如何使用Linux 桌面有一个基本的了解。使用一个运行的Linux 计算来机探讨本文的概念和示例是很有帮助的。 概述 有时候第一次在Linux 上运行一个应用程序需要一点额外工作。有些应用程序,比如服务器服务,可能无法安装为服务,因此您需要从命令行启动这些应用程序。对于启动这些应用程序的用户帐户而言,需要在应用程序文件中设置执行许可标志(x)。 运行用户空间应用程序 Linux 在内核空间或用户空间运行进程。用户空间是操作系统的区域,应用程序通常在此运行。简单地说,每个用户帐户有其自己的用户空间,应用程序在这个领域内运行。 默认情况下,只有root 用户有权访问内核空间。root 用户是Linux 中的超级用户,相当于Windows 中的管理员帐户。在root 用户帐户下运行应用程序可能会引起安全风险,是不可取的。 很多服务器服务需要root 权限启动服务。然而,服务启动后,root 帐户通常会将其移至服务帐户。严格地说,Linux 中的服务帐户才是标准的用户帐户。主要区别是服务帐户仅用于运行一个服务,而不是为任何实际登录的用户准备的。 设置权限 您可以使用chmod 命令在一个文件中设置执行权限。在Linux 中,umask 设置通常用来防止下载的文件被执行,也有充分的理由相信,因为它有助于维护Linux 计算机的安全性。 大多数Linux 发行版具有一个值为022 的umask 设置,这意味着,默认情况下一个新文件权限设置为644.权限的数字表示形式采用读(4)、写(2)、执行(1) 的格式。因此,默认权限为644 的应用程序下载意味着文件所有者有读写权限,而组用户和其他用户只有读权限。 例如,为每个人赋予一个文件的执行权限,使用chmod a+x 命令。a 表示所有人,加号(+) 表示添加,而x 表示执行。同样地,如果应用程序是一个服务器服务,您应该确保只有授权帐户才有权执行此服务。 如果一个应用程序能够在标准用户帐户权限下运行,但只有特定组中的用户才需要使用它,您可以将该组所有者权限设置为可执行,然后将这些用户添加到该组中。 更具体地说,您可以在一个可执行文件中设置访问控制列表(ACL) 权限,赋予特定用户或组权限来运行该应用程序。使用setfacl 实用工具设置ACL 权限。 对于这些需要以root 用户启动进程的应用程序,比如服务器服务,您有几个选择。总结了允许用户执行需要root 权限的服务器服务的各种选项。 选项描述 作为root 用户不推荐用于服务器服务。当用户已经知道root 密码而且应用程序泄露不是首要关注问题时,可用于应用程序。 SetUID 由于安全问题,不推荐使用。SetUID 允许标准用户以另一个用户方式,比如root 用户,执行一个文件。 sudo 很常用,并且被认为是一个很好的实践。sudo 授予一个用户或组成员权限以执行可能额外需要root 权限的文件。该用户不需要知道root 密码。 带有文件权限的标准用户帐户在一个文件上为用户所有者、组所有者或其他人(所有人)

Linux2 进程的启动方式

Linux2 进程的启动方式 程序或者命令的执行实际上是通过进程实现的。通常情况下,程序或者命令是保存在硬盘上的,当在命令行中输入一个可执行程序的文件名或者命令并按下Enter 键后,系统内核就将该程序或者命令的相关代码加载到内存中开始执行。系统会为该程序或者命令创建一个或者多个相关的进程,通过进程完成特定的任务。启动进程的方式有两种,分别为前台启动方式和后台启动方式。 1.以前台方式启动进程 在终端窗口的命令行上输入一个Linux命令并按Enter键,就是以前台方式启动了一个进程。例如,在终端窗口上执行“find /-name myfile.txt”命令,就以前台方式启动了一个进程,在该进程还未执行完时,可按下Ctrl+z组合键将该进程暂时挂起,然后使用ps命令查看该进程的有关信息,如图5-1所示。 图5-1 以前台方式启动进程 2.以后台方式启动进程 要在命令行上以后台方式启动进程,需要在执行的命令后添加一个“&”。例如,在终端窗口的命令行上输入命令“find / -name myfile2.txt &”并按下Enter键后将从后台启动一个进程。启动后,系统会显示如下所示的信息: 这里的数字2表示该进程是运行于后台的第2个进程,数字3516是该进程的PID(即进程标识码,用于惟一地标识一个进程)。 然后,出现了shell提示符,这表示已返回到前台。这时,执行ps命令将能够看到现在在系统中有两个由find命令引起的进程,它们的标识号是不同的,因而是两个不同的进程,其中,PID为3385的进程就是刚才被挂起的进程。 如果执行jobs命令可以查看当前控制台中的后台进程,如图5-2所示,可以看到当前在后台有两个进程,其中一个处于运行(Running)状态,另一个,即被挂起的进程处于停止(Stopped)状态。等过一段时间后再使用ps命令进行查看,会发现PID为3516的进程已经结束了,而PID为3385的进程还存在。

linux grub 引导启动过程详解

linux grub 引导启动过程详解 2008-01-08 17:18 这几天看了很多文档,算是对linux的启动过程有了比较细致的了解. 网上有很多文章谈到这方面的内容,但总觉得没有一篇完全的解析linux启动的 细节,下面是我小弟在学习的过程中总结出来的一些东东.这个是完整的linux启动过程, 不涉及内核,但是我觉得比较详细哦. (由于本人比较懒,这一段是从网上抄的) 机器加电启动后,BIOS开始检测系统参数,如内存的大小,日期和时间,磁盘 设备以及这些磁盘设备用来引导的顺序,通常情况下,BIOS都是被配置成首先检查 软驱或者光驱(或两者都检查),然后再尝试从硬盘引导。如果在这些可移动的设 备中,没有找到可引导的介质,那么BIOS通常是转向第一块硬盘最初的几个扇区, 寻找用于装载操作系统的指令。装载操作系统的这个程序就是boot loader. linux里面的boot loader通常是lilo或者grub,从Red Hat Linux 7.2起,GRUB( GRand Unified Bootloader)取代LILO成为了默认的启动装载程序。那么启动的时候grub是如何被载入的呢 grub有几个重要的文件,stage1,stage2,有的时候需要stage1.5.这些文件一般都 在/boot/grub文件夹下面.grub被载入通常包括以下几个步骤: 1. 装载基本的引导装载程序(stage1),stage1很小,网上说是512字节,但是在我的系统上用du -b /boot/grub/stage1 显示的是1024个字节,不知道是不是grub版本不同的缘故还是我理解有误.stage1通常位于主引导扇区里面,对于硬盘就是MBR了,stage1的主要功能就是装载第二引导程序(stage2).这主要是归结于在主引导扇区中没有足够的空间用于其他东西了,我用的是grub 0.93,stage2文件的大小是107520 bit. 2. 装载第二引导装载程序(stage2),这第二引导装载程序实际上是引出更高级的功能, 以允许用户装载入一个特定的操作系统。在GRUB中,这步是让用户显示一个菜单或是输入命令。由于stage2很大,所以它一般位于文件系统之中(通常是boot所在的根 分区). 上面还提到了stage1.5这个文件,它的作用是什么呢你到/boot/grub目录下看看, fat_stage_1.5 e2fs_stage_1.5 xfs_stage_1.5等等,很容易猜想stage1.5和文件系统 有关系.有时候基本引导装载程序(stage1)不能识别stage2所在的文件系统分区,那么这 时候就需要stage1.5来连接stage1和stage2了.因此对于不同的文件系统就会有不同的stage1.5.但是对于grub 0.93好像stage1.5并不是很重要,因为我试过了,在没有stage1.5 的情况下, 我把stage1安装在软盘的引导扇区内,然后把stage2放在格式化成ext2或者fat格式的软盘内,启动的时候照常引导,并不需要e2fs_stage_1.5或者fat_stage_1.5. 下面是我的试验: #mkfs.ext2 /dev/fd0 #mount -t ext2 /dev/fd0 /mnt/floppy #cd /mnt/floppy #mkdir boot #cd boot #mkdir grub (以上三步可用mkdir -p boot/grub命令完成) #cd grub #cp /boot/grub/{stage1,stage2,grub.conf} ./ #cd; umount /mnt/floppy

Linux启动过程详解

深入浅出:Linux的启动流程刨析 Linux的启动过程,是一个Linuxer必须要熟练掌握的。通过系统的启动过程,可以更深入的理解Linux,假如Linux系统出问题的话,可以通过启动过程来分析原因,解决问题。而且,在掌握了Linux的启动流程后,还可以借助宿主机来打造自己的Linux。 下面是我画的一张简单的Linux启动流程图 在了解启动流程之前,我们应该先知道系统的几个重要脚本和配置文件,他们对应的路径为: 1、/sbin/init 2、/etc/inittab 3、/etc/rc.d/rc.sysinit 4、/etc/rc.d/rcN.d //这是几个文件夹N代表数字1,2,3,4.. 5、/etc/fstab 1、关于/sbin/init与/etc/inittab 关于/sbin/init ,它是一个二进制可执行文件,为系统的初始化程序,而/etc/inittab是它的配置文件,我们可以通过/etc/inittab来一睹它的功能,里面的内容是一种固定的文本格式,id:runlevels:action:process 我们来通过它的内容来学习它之前,先了解写运行级别的分类(0-6): 0:关机half

1:单用户模式singel user 2:多用户模式multi user ,不提供nfs服务without nfs 3:完全多用户字符模式full multiuser text mod 4:系统预留officially undefined 5:图形登录界面graphical login 6:重启reboot id:3:initdefault: //这里定义linux的启动时的运行级别,可以看到我的主机的启动级别是3 # System initialization. si::sysinit:/etc/rc.d/rc.sysinit //紧接着,运行系统第一个脚本/etc/rc.d/rc/sysinit //它的action:sysyinit指的是定义系统初始化过程 l0:0:wait:/etc/rc.d/rc 0 l1:1:wait:/etc/rc.d/rc 1 l2:2:wait:/etc/rc.d/rc 2 //然后就是加载服务了,他们被定义在/etc/rc.d/rcN.d l3:3:wait:/etc/rc.d/rc 3 //action:waite 这个进程在在对应级别启动一次,知道它结束为止,我的系统启动级别为3,所有执行rc 3对应的服务 l4:4:wait:/etc/rc.d/rc 4 l5:5:wait:/etc/rc.d/rc 5 l6:6:wait:/etc/rc.d/rc 6 ca::ctrlaltdel:/sbin/shutdown -t3 -r now //这里定义了一个组合快捷键,熟悉吧,没错就是重启,你可以把它注释掉不用 pf::powerfail:/sbin/shutdown -f -h +2 "Power Failure; System Shutting Down"//这里定义了ups电源,powerfail 指的是如果突然断电,它对应的process命令是,提示用户系统电源失效,将要关机,提醒用户把数据都存储好 pr:12345:powerokwait:/sbin/shutdown -c "Power Restored; Shutdown Cancelled"//这里的action,powerokwaite,指的是系统恢复供电,关机取消...

 1:2345:respawn:/sbin/mingetty tty1 //开启终端,在系统准备工作做好后,就会启动出6个终端,tty1~6 mingetyy就是终端的执行命令 2:2345:respawn:/sbin/mingetty tty2 //可以看到他们对应的级别是2345,你也可以注释

Linux启动全过程-由bootloader到fs

Linux启动过程 许多人对Linux的启动过程感到很神秘,因为所有的启动信息都在屏幕上一闪而过。其实Linux的启动过程并不象启动信息所显示的那样复杂,它主要分成两个阶段: 1.启动内核。在这个阶段,内核装入内存并在初始化每个设备驱动器时打印信息。 2.执行程序init。装入内核并初始化设备后,运行init程序。init程序处理所有程序的启动, 包括重要系统精灵程序和其它指定在启动时装入的软件。 下面以Red Hat为例简单介绍一下Linux的启动过程。 一、启动内核 首先介绍启动内核部分。电脑启动时,BIOS装载MBR,然后从当前活动分区启动,LILO获得引导过程的控制权后,会显示LILO提示符。此时如果用户不进行任何操作,LILO将在等待制定时间后自动引导默认的操作系统,而如果在此期间按下TAB键,则可以看到一个可引导的操作系统列表,选择相应的操作系统名称就能进入相应的操作系统。当用户选择启动LINUX操作系统时,LILO就会根据事先设置好的信息从ROOT文件系统所在的分区读取LINUX映象,然后装入内核映象并将控制权交给LINUX内核。LINUX内核获得控制权后,以如下步骤继续引导系统: 1. LINUX内核一般是压缩保存的,因此,它首先要进行自身的解压缩。内核映象前面的一些代码完成解压缩。 2. 如果系统中安装有可支持特殊文本模式的、且LINUX可识别的SVGA卡,LINUX会提示用户选择适当的文本显示模式。但如果在内核的编译过程中预先设置了文本模式,则不会提示选择显示模式。该显示模式可通过LILO或RDEV工具程序设置。 3. 内核接下来检测其他的硬件设备,例如硬盘、软盘和网卡等,并对相应的设备驱动程序进行配置。这时,显示器上出现内核运行输出的一些硬件信息。 4. 接下来,内核装载ROOT文件系统。ROOT文件系统的位置可在编译内核时指定,也可通过LILO 或RDEV指定。文件系统的类型可自动检测。如果由于某些原因装载失败,则内核启动失败,最终会终止系统。 二、执行init程序 其次介绍init程序,利用init程序可以方便地定制启动其间装入哪些程序。init的任务是启动新进程和退出时重新启动其它进程。例如,在大多数Linux系统中,启动时最初装入六个虚拟的控制台进程,退出控制台窗口时,进程死亡,然后init启动新的虚拟登录控制台,因而总是提供六个虚拟登陆控控制台进程。控制init程序操作的规则存放在文件/etc/inittab中。Red Hat Linux缺省的inittab文件如下:# #inittab This file describes how the INIT process should set up the system in a certain #run-level. # # #Default runlevel.The runlevels used by RHS are: #0-halt(Do NOT set initdefault to this) #1-Single user mode #2-Multiuser,without NFS(the same as 3,if you do not have networking) #3-Full multiuser mode #4-unused #5-X11 #6-reboot(Do NOT set initdefault to this)

linux开机启动脚本的顺序

linux开机启动脚本的顺序 如果服务器重启之后需要手工开启许多服务、工作及以后的维护相对比较繁琐、特地总结了下linux下开机自动启动脚本所涉及的知识和方法、如下: 1、相关基础知识点 1)redhat的启动方式和执行次序是: 加载内核 执行init程序 /etc/rc.d/rc.sysinit # 由init执行的第一个脚本 /etc/rc.d/rc $RUNLEVEL # $RUNLEVEL为缺省的运行模式 /etc/rc.d/rc.local #相应级别服务启动之后、在执行该文件(其实也可以把需要执行的命令写到该文件中) /sbin/mingetty # 等待用户登录 在Redhat中,/etc/rc.d/rc.sysinit主要做在各个运行模式中相同的初始化工作,包括: 调入keymap以及系统字体 启动swapping 设置主机名 设置NIS域名 检查(fsck)并mount文件系统 打开quota 装载声卡模块 设置系统时钟 等等。 /etc/rc.d/rc则根据其参数指定的运行模式(运行级别,你在inittab文件中可以设置)来执行相应目录下的脚本。凡是以Kxx开头的 ,都以stop为参数来调用;凡是以Sxx开头的,都以start为参数来调用。调用的顺序按xx 从小到大来执行。(其中xx是数字、表示的是启动顺序)例如,假设缺省的运行模式是3,/etc/rc.d/rc就会按上述方式调用 /etc/rc.d/rc3.d/下的脚本。 值得一提的是,Redhat中的运行模式2、3、5都把/etc/rc.d/rc.local做为初始化脚本中 的最后一个,所以用户可以自己在这个文件中添加一些需要在其他初始化工作之后,登录之前执行的命令。 init在等待/etc/rc.d/rc执行完毕之后(因为在/etc/inittab中/etc/rc.d/rc的 action是wait),将在指定的各个虚拟终端上运行/sbin/mingetty,等待用户的登录。 至此,LINUX的启动结束。 2)init运行级别及指令 一、什么是INIT: init是Linux系统操作中不可缺少的程序之一。

嵌入式linux系统地启动过程

一、分析嵌入式系统的启动过程 嵌入式系统的启动过程: 上电------->u-boot------->加载Linux内核------->挂载rootfs ---->执行应用程序 二、分析u-boot 1.什么是u-boot(是一个通用的bootloader) U-Boot,全称Universal Boot Loader,是遵循GPL条款的开放源码项目。 Universal ----------->通用的 Boot ----------------->启动,引导 Loader ----------------->加载 通用------->支持多种架构的CPU,除了支持ARM系列的处理器外,还能支持MIPS、x86、Power PC、NIOS等诸多常用系列的处理器 ------->支持多种厂家的开发板,如cortex-A8,cortex-A9,cortex-A53等不同厂 家的开发板 ------->支持多种嵌入式操作系统,U-Boot不仅仅支持嵌入式Linux系统的引导,它还支持Net BSD, Vx Works, QNX, RTEMS, ARTOS, Lynx OS, android 嵌入式操作系统。 Boot -------->完成硬件的初始化,启动硬件平台。 Loader ------->当初始化硬件结束后,加载操作系统。 2.u-boot的作用 大多数BootLoader都分为stage1和stage2两大部分,U-boot也不例外。依赖于cpu体系结构的代码(如设备初始化代码等)通常都放在stage1且可以用汇编语言来实现,而stage2则通常用C语言来实现,这样可以实现复杂的功能,而且有更好的可读性和移植性。 (1)Stage1:CPU(S5P6818-->Cortex-A53)的初始化,使用汇编语言编写。 如:初始化Cache、MMU、clock、中断、看门狗、DDR3、eMMC、... (2)Stage2:板级初始化,使用C语言编写。 如:uart、网卡、usb、LCD、.... (3)提供了一些工具,如进入uboot的命令行模式,使用u-boot命令 (4)加载操作系统 3.U-boot的工作模式 U-Boot的工作模式有启动加载模式和下载模式。

linux系统引导过程

linux系统引导过程简介 首先,主板的BIOS会读取硬盘的主引导记录(MBR),MBR中存放的是一段很小的程序,他的功能是从硬盘读取操作系统核心文件并运行,因为这个小程序太小了,因此通常这个小程序不具备直接引导系统内核的能力,他先去引导另一个稍微大一点的小程序,再由这个大一点的小程序去引导系统内核.在linux系统中这样的小程序有LILO和GRUB.在这个项目中,我决定用LILO来做系统引导程序.在软盘上启动linux系统的过程和在硬盘上启动的过程相似. Linux系统内核被引导程序装入内核并运行后,linux内核会检测系统中的各种硬件.并做好各种硬件的初始化工作,使他们在系统正式运行后能正常工作.之后内核做的最后一个工作是运行 /sbin下的init程序,init是英文单词initialization(初始化)的简称,init程序的工作是读取/etc/inittab 文件中描述的指令,对系统的各种软硬件环境做最初化设定.最后运行mingetty等待用户输入用户名登录系统.所有的工作就这么简单,虽然linux启动的时候有很多内容,看上去十分高深,但是都不过是对这个过程的扩充.明白了这个道理,你可以写一些脚本程序让他在系统启动的特定时间运行完成任务.事实上系统内核并不关心/sbin下的init是不是真的init,只要是放在/sbin下名叫init 的可执行程序他都可以执行. Red Hat Enterprise Linux在电脑的启动阶段,一共经历以下两个阶段: 1.启动内核。在这个阶段,内核装入内存并在初始化每个设备驱动器时打印信息。 2.执行程序init.(系统初始化).装入内核并初始化设备后,运行init程序。init程序处理所有程序的启动,包括重要系统精灵程序和其它指定在启动时装入的软件。 开机---BIOS自检---载入启动程序---加载内核---启动init服务---加载/etc/inittab---Run level---rc.sysinit---rc--- mingetty---rc.local 一.BIOS自检 当电脑开机的时候,电脑会进入BIOS,在PC机中引导LINUX是从BIOS中的地址0xFFFF0处开始的.BIOS的第一个步骤是加电自检,即所谓的POST(Power On Self Test),BIOS的第二个步骤是进行本地设备的枚举和初始化,侦测电脑周边配套设备是否工作正常,如cpu的类型,速度,缓存等;主板类型,内存的速度,容量,硬盘的大小,类型和工作模式,风扇速度等,主要是为了检查这些设备在开机的时候是否能通过检测,说明电脑可以正常的工作.BIOS由两部分组成:POST代码和运行时的服务.当POST完成之后,它被从内存中清理了出来,但是,BOIS 运行时服务依然保留在内存中,目标操作系统可以使用这些服务 二.载入启动程序

在linux下设置开机自动启动程序的方法

下面用自启动apache为例; 自启动脚本: /usr/local/apache2/bin; ./apachectl start 文件位于/etc/rc.d/init.d下,名为apached, 注意要可执行. #chmod +x /etc/rc.d/init.d/apached //设置文件的属性为可执行 #ln -s /etc/rc.d/init.d/apached /etc/rc3.d/S90apache //建立软连接,快捷方式 #ln -s /etc/rc.d/init.d/apached /etc/rc0.d/K20apache 在Red Hat Linux中自动运行程序 1.开机启动时自动运行程序 Linux加载后, 它将初始化硬件和设备驱动, 然后运行第一个进程init。init根据配置文件继续引导过程,启动其它进程。通常情况下,修改放置在 /etc/rc或 /etc/rc.d 或/etc/rc?.d 目录下的脚本文件,可以使init自动启动其它程序。例如:编辑/etc/rc.d/rc.local 文件,在文件最末加上一行"xinit"或"startx",可以在开机启动后直接进入X-Window。 2.登录时自动运行程序 用户登录时,bash首先自动执行系统管理员建立的全局登录script :/etc/profile。然后bash在用户起始目录下按顺序查找三个特殊文件中的一个:/.bash_profile、/.bash_login、/.profile,但只执行最先找到的一个。 因此,只需根据实际需要在上述文件中加入命令就可以实现用户登录时自动运行某些程序(类似于DOS下的Autoexec.bat)。 3.退出登录时自动运行程序 退出登录时,bash自动执行个人的退出登录脚本/.bash_logout。例如,在/.bash_logout 中加入命令"tar -cvzf c.source.tgz *.c",则在每次退出登录时自动执行 "tar" 命令备份*.c 文件。 4.定期自动运行程序 Linux有一个称为crond的守护程序,主要功能是周期性地检查 /var/spool/cron目录下的一组命令文件的内容,并在设定的时间执行这些文件中的命令。用户可以通过crontab 命令来建立、修改、删除这些命令文件。 例如,建立文件crondFile,内容为"00 9 23 Jan * HappyBirthday",运行"crontab cronFile"命令后,每当元月23日上午9:00系统自动执行"HappyBirthday"的程序("*"表示不管当天是星期几)。 5.定时自动运行程序一次 定时执行命令at 与crond 类似(但它只执行一次):命令在给定的时间执行,但不自动重复。at命令的一般格式为:at [ -f file ] time ,在指定的时间执行file文件中所给出的所有命令。也可直接从键盘输入命令: $ at 12:00 at>mailto Roger -s ″Have a lunch″ < plan.txt

Linux 启动过程详解

Linux 启动过程详解 下面来详细了解一下Linux 的启动过程。Linux 的启动 过程包含了Linux 工作原理的精髓, 而且在嵌入式的开发过程也非常需要这方面知识的积累。 用户开机启动Linux 过程总体上是这样的: 首先当用户打开PC 的电源时,CPU 将自动进入实模式,并从地址0xFFFF0 开始自 动执行程序代码,这个地址通常是ROM-BIOS 中的地址。这时BIOS 进行开机自检,并 按BIOS 中设置的启动设备(通常是硬盘)进行启动,接着启动设备上安装的引导程序 lilo 或grub 开始引导Linux(也就是启动设备的第一个扇区) ,这时,Linux 才获得了启 动权。 接下来的第二阶段,Linux 首先进行内核的引导,主要完成磁盘引导、读取机器系统数 据、实模式和保护模式的切换、加载数据段寄存器以及重置中断描述符表等。 第三阶段执行init 程序(也就是系统初始化工作) init 程序调用了rc.sysinit 和rc 等程序, 而rc.sysinit 和rc 在完成系统初始化和运行服务的任务后,返回init。 之后的第四阶段,init 启动mingetty,打开终端供用户登录系统,用户登录成功后进入了Shell,这样就完成了从开机到登录的整个启动过程。 Linux 启动总体流程图如图所示, 其中的4 个阶段分别由同步棒隔开。由于第一阶段 不涉及Linux 自身的启动过程,因此,下面分别对第二和第三阶段进行详细讲解。 内核引导阶段 2.2.2 在grub 或lilo 等引导程序成功完成引导Linux 系统的任务后,Linux 就从它们手中接管 了CPU 的控制权。用户可以从https://www.doczj.com/doc/725338395.html, 上下载最新版本的源码进行阅读,其目录为: linux-2.6.*.*archi386boot。在这过程中主要用到该目录下的这几个文件:bootsect.S、setup.S 以及compressed 目录下的head.S 等。 首先要介绍一下,Linux 的内核通常是压缩过后的,包括如上述提到的那几个重要的汇 编程序,它们都是在压缩内核vmlinuz 中的。因为Linux 中提供的内核包含了众多驱动和功能,因而比较大,所以在采用压缩内核可以节省大量的空间。

LINUX启动流程详解

2008-11-27 11:04:06 收藏 | 打印 | 投票(7) | 评论(1) | 阅读(30264) ◇字体:[大中小]linux系统引导过程简介 首先,主板的BIOS会读取硬盘的主引导记录(MBR),MBR中存放的是一段很小的程序,他的功能是从硬盘读取操作系统核心文件并运行,因为这个小程序太小了,因此通常这个小程序不具备直接引导系统内核的能力,他先去引导另一个稍微大一点的小程序,再由这个大一点的小程序去引导系统内核.在linux系统中这样的小程序有LILO和GRUB.在这个项目中,我决定用LILO来做系统引导程序.在软盘上启动linux系统的过程和在硬盘上启动的过程相似. Linux系统内核被引导程序装入内核并运行后,linux内核会检测系统中的各种硬件.并做好各种硬件的初始化工作,使他们在系统正式运行后能正常工作.之后内核做的最后一个工作是运行 /sbin下的init程序,init是英文单词initialization(初始化)的简称,init程序的工作是读取/etc/inittab文件中描述的指令,对系统的各种软硬件环境做最初化设定.最后运行mingetty等待用户输入用户名登录系统.所有的工作就这么简单,虽然linux启动的时候有很多内容,看上去十分高深,但是都不过是对这个过程的扩充.明白了这个道理,你可以写一些脚本程序让他在系统启动的特定时间运行完成任务.事实上系统内核并不关心/sbin下的init是不是真的init,只要是放 在/sbin下名叫init的可执行程序他都可以执行. Red Hat Enterprise Linux在电脑的启动阶段,一共经历以下两个阶段: 1.启动内核。在这个阶段,内核装入内存并在初始化每个设备驱动器时打印信息。 2.执行程序init.(系统初始化).装入内核并初始化设备后,运行init程序。init程序处理所有程序的启动,包括重要系统精灵程序和其它指定在启动时装入的软件。 开机---BIOS自检---载入启动程序---加载内核---启动init服务---加载/etc/inittab---Run level---rc.sysinit---rc--- mingetty---rc.local 一.BIOS自检 当电脑开机的时候,电脑会进入BIOS,在PC机中引导LINUX是从BIOS中的地址0xFFFF0处开始的.BIOS的第一个步骤是加电自检,即所谓的POST(Power On Self Test),BIOS的第二个步骤是进行本地设备的枚举和初始化,侦测电脑周边配套设备是否工作正常,如cpu的类型,速度,缓存等;主板类型,内存的速度,容量,硬盘的大小,类型和工作模式,风扇速度等,主要是为了检查这些设备在开机的时候是否能通过检测,说明电脑可以正常的工作.BIOS由两部分组成:POST代码和运行时的服务.当POST完成之后,它被从内存中清理了出来,但是,BOIS运行时服务依然保留在内存中,目标操作系统可以使用这些服务 二.载入启动程序 BIOS自检完成后,BIOS会根据用户设置的启动顺序来由哪个设备启动电脑的操作系统,设备需是处于活动状态并且可以引导的,(引导设备可以是软盘,CD-ROM,硬盘上的某个分区,网络上的某个设备,甚至是USB闪存),对于linux这个设备一般是硬盘.也就是进入硬盘的MBR区域,(master boot record,位于磁盘上的第一个扇区中,0道0柱面1扇区),这个区域中有512个字节的大小,其中前446个字节中保存的就是启动程 序,(446个字节包含可执行代码和错误消息文本,接下来的64个字节是分区表,其中4个分区的记录,每个记录的大小是16个字节,MBR以两个特殊数字的字节0xAA55结束,这个数字用来进行MBR的有效性检查,当MBR被加载到RAM中之后,BIOS就会将控制权交给MBR),然后由这个小程序来加载存储在其他位置的操作系统,也就是启动grub程序.(grub不像lilo一样使用裸扇区,而是可以从ext2或ext3文件系统中加 载LINUX内核). 要看MBR的内容,请使用下面的命令 #从/dev/sda上读取前512个字节的内容,并将其写入mbr.bin文件中 [root@localhost ~]# dd if=/dev/sda of=mbr.bin bs=512 count=1 #以十六进制和ASCII码格式打印这个二进制文件的内容 [root@localhost pam.d]# od -xa mbr.bin grub程序的这个配置文件是保存在:/boot/grub/grub.conf这个文件中,如果修改这个文件后,设置会立刻生效.

相关主题
文本预览
相关文档 最新文档