当前位置:文档之家› PIC单片机浮点数格式与十进制数之间的转换及程序设计

PIC单片机浮点数格式与十进制数之间的转换及程序设计

PIC单片机浮点数格式与十进制数之间的转换及程序设计
PIC单片机浮点数格式与十进制数之间的转换及程序设计

PIC单片机浮点数格式与十进制数之间的转换及程序设计

2012-01-20 10:26:15 来源:21IC

关键字:PIC单片机浮点数格式十进制数

在我们设计的仪表中采用PIC系列单片机,碰到了浮点数的运算问题,查阅其有关资料发现,其浮点数的格式及其与十进制数之间的转换,与我们常用的MCS-51单片机所提供的三字节、四字节浮点数完全不同,本文将说明其浮点数的格式及其与十进制数之间的转换和程序设计步骤。

1 浮点数的格式

Microchip公司单片机所采用的浮点数格式是IEEE-754标准的变异型。32位浮点数格式为:

其中:×表示一位二进制数0或1;eb为指数的偏差;S为浮点数的符号位,S=0为正数,S=1为负数;小数点“·”在符号位S的右边;BY0BY1BY2为尾数的小数部分。

应特别注意:

⑴浮点数隐含其整数部分为1。

⑵十进制数0的浮点数表示为00H,00H,00H,00H。

2 浮点数与十进制数之间的相互转换

2.1 十进制数转换成浮点数

设:十进数为A,则2Z=A,Z=lnA/ln2,指数P=int(z);尾数部分X:X=A/2P,其整数部分隐含为1(零除外),将其小数部分按原码格式化为二进制数,即为尾数的小数部分BY0BY1BY2。而指数偏差eb=P+7FH(其中的7FH为指数的偏移量)。符号位S,视十进制数的正负而确定。

例如十进制数50.265化为32位规格化浮点数:A=50.265,则Z=ln50.265/ln2,P=int(Z),故P=5;X=A/2P=50.265/25=1.57078125,将0.57078125化为23位二进制小数,即是BY0BY1BY2,在最高位添上十进制数的符号位S(因十进制数为正数,故S=0);而eb=P+7FH,所以,十进制数50.265的32位规格化浮点数即为84H,49H,0FH,5CH。

2.2 浮点数转换为十进制数

设浮点数为ebS.BY0BY1BY2。由于浮点数隐含尾数的整数为1,故尾数X的实际值为:

BY0BY1BY2;指数P=eb-7FH;故:十进制数

A=(-1)S×2P×X

例:32位规格化浮点数84H,49H,0FH,5CH转换为十进制数。

符号位S=0;指数P=84H-7FH,故P=5;尾数的小数部分为49H,0FH,5CH左移一位,而尾数的整数部分隐含为1,故尾数X的实际值为:1.57078123;十进制数A=(-1)0×25×1.57078123,即A=50.265。

3 浮点数与十进制数相互转换的程序设计

3.1 浮点数转换为十进制数的程序设计

(1)检测浮点数是否为零;若为零,则十进制数整数部分和小数部分均为零。

(2)保存浮点数的符号位,将浮点数隐含的1置于浮点数的符号位,指数偏差eb加1,小数点移到原浮点数的符号位之前。

(3)判断指数偏差大于7FH否?若小于等于7FH,则该进制数整数部分为零,浮点数尾数部分右移n次(注:n=7FH-指数偏差eb),即求得二进制小数部分。若大于7FH,则将小数点右移n’次(注:n’=指数偏差eb-7FH),即求得二进制整数部分和小数部分。

(4)将二进制整数部分转换为十进制整数;将二进制小数部分转换为十进制小数。至此,完成了浮点数到十进制数的转换。

3.2 十进制数转换为浮点数的程序设计

(1)检测十进制数是否为零,若为零,则浮点数置成00H,00H,00H,00H。

(2)保存十进制数的符号位,将十进制数的整数部分转换为二进制整数,将十进制数的小数部分转换为二进制小数(设二进制整数为三个字节,二进制小数为两个字节)。

(3)将浮点数的指数偏差eb置为7FH+23,检测二进制整数的最高位是否为1,不是,则将二进制整数和二进制小数联合左移,左移一次,指数偏差减1,直至二进制整数的最高位为1;隐含尾数整数的1,将二进制整数的最高位改为数的符号位。至此,指数偏差eb单元及原二进制整数的三个单元中的内容,即构成四字节浮点数。

最后应该指出,本文所述32位浮点数,精度相当于7位十进制数;32位浮点数运算程序在Microchip公司提供的有关资料中均有,但是,在调试其浮点子程序时,发现0减0的结果为00H,80H,00H,00H,而不是00H,00H,00H,00H,编程时应注意。

4 结语

本文中的十进制数与浮点数之间相互转换的程序设计,在智能化仪表的键盘置数及数据显示中,具有实用价值。这里提出了一种设计思路,没有复杂的算法,程序设计亦较简单,工作量较少,可利用Microchip公司提供的现成子程序实现十进制整数与二进制整数的相互转换,

十进制小数与二进制小数的相互转换。

分享到:

(本文转自电子工程世界:https://www.doczj.com/doc/735057775.html,/mcu/2012/0120/article_7249.html)

位单精度浮点数的IEEE表示法

32位单精度浮点数的IEEE表示法 float 共计32位(4字节) 31位是符号位,1表示该数为负,0反之 30~23位,一共8位是指数位(-128~127) 22~ 0位,一共23位是尾数位,尾数的编码一般是原码和补码 IEEE标准从逻辑上用三元组{S,E,M}表示一个数N,如下图所示: n,s,e,m分别为N,S,E,M对应的实际数值,而N,S,E,M仅仅是一串二进制位。其中, S(sign)表示N的符号位。对应值s满足:n>0时,s=0; n<0时,s=1。E(exponent)表示N的指数位,位于S和M之间的若干位。对应值e值也可正可负。 M(mantissa)表示N的尾数位,恰好,它位于N末尾。M也叫有效数字位(sinificand)、系数位(coefficient), 甚至被称作“小数”。

IEEE标准754规定了三种浮点数格式:单精度、双精度、扩展精度。前两者正好对应C语言里头的float、double或者FORTRAN里头的real、double精度类型。限于篇幅,本文仅介绍单精度、双精度浮点格式。★单精度:N共32位,其中S占1位,E占8位,M占23位。 ★双精度:N共64位,其中S占1位,E占11位,M占52位。 值得注意的是,M虽然是23位或者52位,但它们只是表示小数点之后的二进制位数,也就是说,假定 M为“010110011...”, 在二进制数值上其实是“.010110011...”。而事实上,标准规定小数点左边还有一个隐含位,这个隐含位通常,哦不,应该说绝大多数情况下是1,那什么情况下是0呢?答案是N 对应的n非常小的时候,比如小于 2^(-126)(32位单精度浮点数)。不要困惑怎么计算出来的,看到后面你就会明白。总之,隐含位算是赚来了一位精度,于是M对应的m最后结果可能是"m=1.010110011...”或者“m=0.010110011...” 计算e、m 首先将提到令初学者头疼的“规格化(normalized)”、“非规格化(denormalized)”。掌握它以后你会发现一切都很优雅,更美妙的是,规格化、 非规格化本身的概念几乎不怎么重要。请牢记这句话:规格化与否全看指数E! 下面分三种情况讨论E,并分别计算e和m: 1、规格化:当E的二进制位不全为0,也不全为1时,N为规格化形式。此时e被解释为表示偏置(biased)形式的整数,e值计算公式如下图所示: 上图中,|E|表示E的二进制序列表示的整数值,例如E为"10000100",则 |E|=132,e=132-127=5 。 k则表示E的位数,对单精度来说,k=8,则bias=127,对双精度来说,k=11,则bias=1023。 此时m的计算公式如下图所示: 标准规定此时小数点左侧的隐含位为1,那么m=|1.M|。如M="101",则 |1.M|=|1.101|=1.625,即 m=1.625 2、非规格化:当E的二进制位全部为0时,N为非规格化形式。此时e,m 的计算都非常简单。

单精度浮点数的转换和解析

1 单精度浮点数的转换和解析 工业现场通信经常遇到浮点数解析的问题,如果需要自己模拟数据而又不懂浮点数解析的话会很麻烦!很久以前根据modbus 报文格式分析得到的,供大家参考。 浮点数保存的字节格式如下: 地址 +0 +1 +2 +3 内容 SEEE EEEE EMMM MMMM MMMM MMMM MMMM MMMM 这里 S 代表符号位,1是负,0是正 E 偏移127的幂,二进制阶码=(EEEEEEEE)-127。 M 24位的尾数保存在23位中,只存储23位,最高位固定为1。此方法用最较少的位数实现了 较高的有效位数,提高了精度。 零是一个特定值,幂是0 尾数也是0。 浮点数-12.5作为一个十六进制数0xC1480000保存在存储区中,这个值如下: 地址 +0 +1 +2 +3 内容0xC1 0x48 0x00 0x00 浮点数和十六进制等效保存值之间的转换相当简单。下面的例子说明上面的值-12.5如何转 换。 浮点保存值不是一个直接的格式,要转换为一个浮点数,位必须按上面的浮点数保存格式表 所列的那样分开,例如: 地址 +0 +1 +2 +3 格式 SEEE EEEE EMMM MMMM MMMM MMMM MMMM MMMM 二进制 11000001 01001000 00000000 00000000 十六进制 C1 48 00 00 从这个例子可以得到下面的信息: 符号位是1 表示一个负数 幂是二进制10000010或十进制130,130减去127是3,就是实际的幂。 尾数是后面的二进制数10010000000000000000000

单精度浮点数与机器精度解析

单精度浮点数与机器精度解析 一、单精度浮点数 先来简单了解一下浮点数在计算机中的存储方式。根据IEEE 754标准,单精度浮点数格式如下(所有位取0): 各部分解释 单精度浮点数有32个二进制位,左侧是高位,右侧是低位。最高位被指定为符号位,0代表正数,1代表负数。指数部分将是2的幂次,其编码值(即上表指数部分对应的八个二进制位)规定为指数的实际值加上偏移值2^7-1=127,这是为了避免负数,将[-127, 128]映射到[0, 255],这样指数部分编码就可以简单地编排为[00000000, 11111111]。例如指数部分为00001000,十进制为8。那么其所代表的实际指数是8-127=-119,即要乘上2-119。最后23位尾数是不包含整数位的实际有效小数位。规约数的整数位是1,非规约数的整数位是0。 规约形式的浮点数与非规约形式的浮点数 指数部分的编码值在[1, 2e-2]内,且尾数部分的整数位是1,这样的浮点数被称为规约形式的浮点数。 指数部分的编码值为0,尾数非零,这样的浮点数被称为非规约形式的浮点数。 规约浮点数的尾数∈[1, 2),而非规约浮点数的尾数∈(0, 1)。需要注意,非规约数指数编码为00000000,但指数实际值是-126,而非-127。非规约浮点数被IEEE 754-1985标准采用是因为它的渐进式下溢出,而规约浮点数将导致突然式下溢出,具体原理不再展开。 实际计算 设符号位为s。sign(s)确定正负:sign(0)=1,sign(1)=-1;指数部分为e;尾数部分为f。用(N)2表示二进制数N。 规约形式:sign(s)*2e-127*(1.f)2 非规约形式:sign(s)*2-126*(0.f)2 特殊值和极值

32位浮点数与十进制转化

1 32位IEE754浮点格式 对于大小为32-bit的浮点数(32-bit为单精度,64-bit浮点数为双精度,80-bit为扩展精度浮点数), 1、其第31 bit为符号位,为0则表示正数,反之为复数,其读数值用s表示; 2、第30~23 bit为幂数,其读数值用e表示; 3、第22~0 bit共23 bit作为系数,视为二进制纯小数,假定该小数的十进制值为x; 十进制转浮点数的计算方法: 则按照规定,十进制的值用浮点数表示为:如果十进制为正,则s = 0,否则s = 1; 将十进制数表示成二进制,然后将小数点向左移动,直到这个数变为1.x的形式即尾数,移动的个数即为指数。为了保证指数为正,将移动的个数都加上127,由于尾数的整数位始终为1,故舍去不做记忆。对3.141592654来说, 1、正数,s = 0; 2、3.141592654的二进制形式为正数部分计算方法是除以二取整,即得11,小数部分的计算方法是乘以二取其整数,得0.0010 0100 0011 1111 0110 1010 1000,那么它的二进制数表示为11.0010 0100 0011 1111 0110 1010 1; 3、将小数点向左移一位,那么它就变为1.1001 0010 0001 1111 1011 0101 01,所以指数为1+127=128,e = 128 = 1000 0000; 4、舍掉尾数的整数部分1,尾数写成0.1001 0010 0001 1111 1011 0101 01,x = 921FB6 5、最后它的浮点是表示为0 1000 0000 1001 0010 0001 1111 1011 0101 = 40490FDA //-------------------------------------------- // 十进制转换为32位IEE754浮点格式 //-------------------------------------------- void ConvertDexToIEE754(float fpointer,ModRegisterTpyedef *SpModRegister) { double integer,decimal; unsigned long bininteger,bindecimal; Uint8 _power,i; decimal = modf(fpointer,&integer); if(decimal || integer) { bindecimal = decimal * 0x800000; //2^23 while((bindecimal & 0xff800000) > 0) bindecimal >>= 1; if(integer > 0) { bininteger = integer; for(i=0;i<32;i++) //计算整数部分的2的幂指数 { if(bininteger&0x1) _power = i; bininteger >>= 0x1; } bininteger = integer; bininteger &= ~(0x1 << _power); //去掉最高位的1 if(_power >= 23) //如果幂指数>23 则舍弃小数位部分 { bininteger >>= (_power-23); bindecimal = 127+_power; bininteger |= bindecimal << 23; } else { bininteger <<= (23 - _power); bindecimal >>= _power; bininteger |= bi ndecimal; bindecimal = 127+_power; bininteger |= bindecimal << 23; } } else if(integer == 0) { bindecimal <<= 9; _power = 0; bininteger = bindecimal; while(bininteger == ((bindecimal<<1)>>1)) { _power++; bindecimal <<= 0x1; bininteger = bindecimal; }

Float精度问题

mysql中float数据类型的问题收藏 总结:对于单精度浮点数Float: 当数据范围在+-131072(65536×2)以内的时候,float数据精度是正确的,但是超出这个范围的数据就不稳定,没有发现有相关的参数设置建议:将float改成double或者decimal,两者的差别是double是浮点计算,decimal是定点计算,会得到更精确的数据。 分析如下: 一、浮点数的概念及误差问题:浮点数是用来表示实数的一种方法,它用 M(尾数) * B( 基数)的E(指数)次方来表示实数,相对于定点数来说,在长度一定的情况下,具有表示数据范围大的特点。但同时也存在误差问题,这就是著名的浮点数精度问题!浮点数有多种实现方法,计算机中浮点数的实现大都遵从 IEEE754 标准,IEEE754 规定了单精度浮点数和双精度浮点数两种规格,单精度浮点数用4字节(32bit)表示浮点数,格式是:1位符号位 8位表示指数 23位表示尾数双精度浮点数8字节(64bit)表示实数,格式是:1位符号位 11位表示指数 52位表示尾数同时,IEEE754标准还对尾数的格式做了规范:d.dddddd...,小数点左面只有1位且不能为零,计算机内部是二进制,因此,尾数小数点左面部分总是1。显然,这个1可以省去,以提高尾数的精度。由上可知,单精度浮点数的尾数是用24bit表示的,双精度浮点数的尾数是用53bit表示的,转换成十进制:2^24 - 1 = 16777215 2^53 - 1 = 9007199254740991 由上可见,IEEE754单精度浮点数的有效数字二进制是24位,按十进制来说,是8位;双精度浮点数的有效数字二进制是53位,按十进制来说,是16 位。显然,如果一个实数的有效数字超过8位,用单精度浮点数来表示的话,就会产生误差!同样,如果一个实数的有效数字超过16位,用双精度浮点数来表示,也会产生误差!对于 1310720000000000000000.66 这个数,有效数字是24位,用单精度或双精度浮点数表示都会产生误差,只是程度不同:单精度浮点数:1310720040000000000000.00 双精度浮点数:1310720000000000000000.00 双精度差了 0.66 ,单精度差了近4万亿!以上说明了因长度限制而造成的误差,但这还不是全部!采用IEEE754标准的计算机浮点数,在内部是用二进制表示的,但在将一个十进制数转换为二进制浮点数时,也会造成误差,原因是不是所有的数都能转换成有限长度的二进制数。对于131072.32 这个数,其有效数字是8位,按理应该能用单精度浮点数准确表示,为什么会出现偏差呢?看一下这个数据二进制尾数就明白了 10000000000000000001010001...... 显然,其尾数超过了24bit,根据舍入规则,尾数只取 100000000000000000010100,结果就造成测试中遇到的“奇怪”现象!131072.68 用单精度浮点数表示变成 131072.69 ,原因与此类似。实际上有效数字小于8位的数,浮点数也不一定能精确表示,7.22这个数的尾数就无法用24bit二进制表示,当然在数据库中测试不会有问题(舍入以后还是7.22),但如果参与一些计算,误差积累后,就可能产生较大的偏差。 二、mysql 和 oracle中的数值类型:问题是不是只有 mysql 存在呢?显然不是,只要是符合IEEE754标准的浮点数实现,都存在相同的问题。 mysql中的数值类型(不包括整型): IEEE754浮点数: float (单精度), double 或 real (双精度)定点数:decimal 或numeric oracle中的数值类型:oracle 浮点数: number (注意不指定精度) IEEE754浮点数: BINARY_FLOAT (单精度), BINARY_DOUBLE (双精度) FLOAT,FLOAT(n) (ansi 要求的数据类型)定点数: number(p,s) 如果在oracle中,用BINARY_FLOAT等来做测试,结果是一样的。因此,在数据库中,对于涉及货币或其他精度敏感的数据,应使用定点数来存储,对mysql来说是 decimal,对oracle来说就是number(p,s)。双精

单精度浮点乘法器的FPGA实现

32位单精度浮点乘法器的FPGA实现 摘要: 采用Verilog HDL语言, 在FPGA上实现了32位单精度浮点乘法器的设计, 通过采用改进型Booth编码,和Wallace 树结构, 提高了乘法器的速度。本文使用Altera Quartus II 4.1仿真软件, 采用的器件是EPF10K100EQ 240 -1, 对乘法器进行了波形仿真, 并采用0.5CMOS工艺进行逻辑综... 摘要: 采用Verilog HDL语言, 在FPGA上实现了32位单精度浮点乘法器的设计, 通过采用改进型Booth编码,和Wallace 树结构, 提高了乘法器的速度。本文使用Altera Quartus II 4.1仿真软件, 采用的器件是EPF10K100EQ 240 -1, 对乘法器进行了波形仿真, 并采用0.5CMOS工艺进行逻辑综合。 关键词: 浮点乘法器; Boo th 算法; W allace 树; 波形仿真 随着计算机和信息技术的快速发展, 人们对微处理器的性能要求越来越高。乘法器完成一次乘法操作的周期基本上决定了微处理器的主频, 因此高性能的乘法器是现代微处理器中的重要部件。本文介绍了32 位浮点阵列乘法器的设计, 采用了改进的Booth 编码, 和Wallace树结构, 在减少部分积的同时, 使系统具有高速度, 低功耗的特点, 并且结构规则, 易于VLSI的实现。 1 乘法计算公式 32 位乘法器的逻辑设计可分为: Booth编码与部分积的产生, 保留进位加法器的逻辑, 乘法阵列的结构。 1.1 Booth编码与部分积的逻辑设计 尾数的乘法部分,本文采用的是基4 Booth编码方式, 如表1。首先规定A m和B m 表示数据A和B的实际尾数,P 表示尾数的乘积, PP n表示尾数的部分积。浮点32 位数, 尾数是带隐含位1 的规格化数, 即: A m=1×a22a21….a0和B m = 1 ×b22b21.…b0, 由于尾数全由原码表示,相当于无符号数相乘, 24 × 24 位尾数乘积P 的公式为:

32位浮点数转换为十进制

流量计计算机通过485端口以MODBUS协议把内部IEEE32位浮点数传送到DCS的数据经过研究试验,其数据格式如下 数据请求依次为:十六进制 从站地址:01;读命令:03;数据起始高位地址:0F;数据起始低位地址:A0;(0FA0=4000即地址44001);数据长度高位:00;数据长度低位:28;(0028=40即40个地址);CRC效验码:46,E2 数据应答格式: 从站地址:01;读命令反馈:03;数据长度:50;第一个地址:69;C0;48;A9;第二个地址:C5;00;48;A2;以下类推,直到最后两位CRC:E8;86 第一个地址:69;C0;48;A9是如何换算为346958的呢? 流量计发送的是IEEE标准的32位浮点数 首先要把69;C0;48;A9进行高低16位交换变成:48;A9;69;C0 变为32位二进制数:01001000 10101001 01101001 11000000 其中最高位为0,代表是正数 接下来的八位:10010001变成十进制是145,根据IEEE规范应减去127得18,这是小数点右移的位数; 剩下的23位是纯二进制小数即:0.0101001 01101001 11000000 加1后得1.0101001 01101001 11000000 小数点右移18位后得10101001 01101001 110.00000 变为十进制得346958 其它地址的32位浮点数计算方法同上 标题:《IEEE754 学习总结》 发信人:Vegeta 时间:2004-11-11,10:32 详细信息: 一:前言 二:预备知识 三:将浮点格式转换成十进制数 四:将十进制数转换成浮点格式(real*4) 附:IEEE754 Converte 1.0介绍 一:前言

单精度浮点乘法器

EDA/SOPC课程设计报告题目:单精度浮点乘法器 姓名:张恺 学号:120260230 同组人:刘龙 指导教师:王晨旭 成绩:

目录 目录................................................................................................................................................... II 第1章课程设计的要求 . (1) 1.1 课程设计的目的 (1) 1.2 课程设计的条件 (1) 1.3 课程设计的要求 (1) 第2章课程设计的内容 (2) 2.1 设计思路 (2) 2.1.1 符合IEEE-754标准的单精度浮点乘法器规格 (2) 2.1.2 操作数类型 (2) 2.1.3 运算规则 (3) 2.1.4 逻辑门级框图 (3) 2.2 软件流程图 (4) 2.3 HDL代码阐述 (6) 2.4 Modelsim验证 (10) 2.4.1 验证代码 (10) 2.4.2 验证波形 (12) 2.5 硬件调试 (12) 2.5.1 基本说明 (12) 2.5.2 具体操作 (13) 2.6 虚拟机下的DC综合 (17) 2.7 虚拟机下的SDF反标仿真 (19) 第3章课程设计的心得 (20)

第1章课程设计的要求 1.1 课程设计的目的 ●通过课堂所讲授的内容以及私下查阅资料,自主完成课程设计的题目,提高编 程能力,培养用计算机解决实际问题的能力,积累调试程序的经验,更好的消化 老师课堂所讲授的内容,对Verilog这种语言也有了更深的了解; ●掌握较大工程的基本开发技能; ●培养综合运用Modelsim,ISE,Debussy工具进行硬件开发的能力; ●培养数字系统设计的基本能力; ●通过课设积累起的编程以及硬件的能力对于今后的考研抑或是找工作都有非常实 际性的效果; 1.2 课程设计的条件 ●设计条件1:gVim编辑器以及Mentor公司开发的FPGA仿真软件Modelsim; ●设计条件2:Xilinx公司开发的硬件设计工具ISE以及Xilinx公司的开发板; ●设计条件3:虚拟机环境下的Linux系统具有的Design Compiler工具; ●设计条件4:虚拟机环境下的Linux系统具有的SDF工具以及Debussy工具; 1.3 课程设计的要求 ●设计要求1:能够在Modelsim工具下正确的完成程序的编译以及成功的实现波 形的仿真; ●设计要求2:能够在ISE工具下正确的完成程序的综合以及合理的绑定管脚并成 功的将程序下载到开发板里,在开发板中实现程序的功能; ●设计要求3:能够在虚拟机的Linux系统下采用Design Compiler完成逻辑综 合,并且评估其时序面积; ●设计要求4:能够在虚拟机的Linux系统下完成SDF反标仿真;

浮点转定点方法总结

浮点转定点方法总结 —孔德琦

目录 定点运算方法................................................ 错误!未定义书签。 数的定标 ............................................... 错误!未定义书签。 C语言:从浮点到定点 ................................. 错误!未定义书签。 加法.................................................... 错误!未定义书签。 乘法..................................................... 错误!未定义书签。 除法..................................................... 错误!未定义书签。 三角函数运算............................................ 错误!未定义书签。 开方运算................................................ 错误!未定义书签。 附录...................................................... 错误!未定义书签。 附录1:定点函数库...................................... 错误!未定义书签。 附录2:正弦和余弦表..................................... 错误!未定义书签。

浮点数范围

任意精度的浮点数的二进制码的构成如下: 符号位|阶码|尾数 任意精度浮点数的二进制码转换成十进制数的计算公式: ()()12-符号值偏移阶码值浮点数=尾数值 其中: 1、符号位只占一位,只有“0”或“1”两个符号值,“0”表示浮点数为非负值,“1” 表 示浮点数为负值,所以有: 1)、当符号值为“0”时: () ()111-=-=符号值0 2)、当符号值为“1”时: ()()1111-=-=-符号值 2、“阶码”的位数随浮点数精度不同而不同,其作用是决定“尾数”小数点的最终位置: 1)、“阶码数字段”的值即为“阶码值”; 2)、2的“阶码位数减1”次方减1即为“阶码偏移量”: ()1-阶码数阶码偏移量=2位-1 3)、“阶码值”减去“阶码偏移量”即为“偏移阶码值”: () 1+阶码数偏移阶码值=阶码值-2位-1 3、“尾数”的位数随浮点数精度不同而不同,其主要作用是表示浮点数的有效数: 1)、“尾数字段”直接表示的“整型值”称为“尾码值”; 2)、机器默认浮点数的“尾数字段”前面带有省略的数符“1”和“.”(注:小数点), 小数字段“1.尾数”的值即为“尾数值”: ()()2尾数位数尾数位数尾数值=尾码值+2 -综上所述,可得: ()()()112??+????-阶码数阶码值尾数位数-2符号值尾数位数浮点数=尾码值+2-1-位

单精度浮点数: 单精度浮点数的二进制码构成如下: 符号位1位|阶码8位|尾数23位 ()()()()()() 71-15012183886082+--?阶码值23-2符号值23符号值阶码值单精度浮点数=尾码值+2单精度浮点数=尾码值+- 1、(十进制:0.0)等效于(十六进制:00000000) 等效于(二进制:00000000000000000000000000000000) 2、(十进制:1.0)等效于(十六进制:3F800000) 等效于(二进制:00111111100000000000000000000000) 3、最大值为(十进制:3.402823E+038)等效于(十六进制:7F7FFFFF) 等效于(二进制:01111111011111111111111111111111) 4、最小值为(十进制:-3.402823E+038)等效于(十六进制:FF7FFFFF 等效于(二进制:11111111011111111111111111111111) 双精度浮点数: 双精度浮点数的二进制码构成如下: 符号位1位|阶码11位|尾数52位 ()()()()()() 101--107512145035996273704962+--?阶码值52-2符号值52符号值阶码值单精度浮点数=尾码值+2单精度浮点数=尾码值+- 1、(十进制:0.0)等效于(十六进制:0000000000000000) 等效于(二进制: 0000000000000000000000000000000000000000000000000000000000000000) 2、(十进制:1.0)等效于(十六进制:3FF0000000000000) 等效于(二进制: 0011111111110000000000000000000000000000000000000000000000000000) 3、最大值为(十进制:1.797693E+308)等效于(十六进制:7FEFFFFFFFFFFFFF) 等效于(二进制: 0111111111101111111111111111111111111111111111111111111111111111) 4、最小值为(十进制:-1.797693E+308)等效于(十六进制:FFEFFFFFFFFFFFFF) 等效于(二进制: 1111111111101111111111111111111111111111111111111111111111111111)

单双精度浮点数的IEEE标准格式

单双精度浮点数的IEEE标准格式 目前大多数高级语言(包括C)都按照IEEE-754标准来规定浮点数的存储格式,IEEE754规定,单精度浮点数用4字节存储,双精度浮点数用 8字节存储,分为三个部分:符号位、阶和尾数。阶即指数,尾数即有效小数位数。单精度格式阶占8位,尾数占24位,符号位1位,双精度则为11为阶,53 位尾数和1位符号位,如下图所示: 31 30 23 22 0 63 62 52 51 0 细心的人会发现,单双精度各部分所占字节数量比实际存储格式都了一位,的确是这样,事实是,尾数部分包括了一位隐藏位,允许只存储23位就可以表示24位尾数,默认的1位是规格化浮点数的第一位,当规格化一个浮点数时,总是调整它使其值大于等于1而小于2,亦即个位总是为1。例如1100B,对其规格化的结果为1.1乘以2的三次方,但个位1并不存储在23位尾数部分内,这个1是默认位。 阶以移码的形式存储。对于单精度浮点数,偏移量为127(7FH),而双精度的偏移量为1023(3FFH)。存储浮点数的阶码之前,偏移量要先加到阶码上。前面例子中,阶为2的三次方,在单精度浮点数中,移码后的结果为127+3即130(82H),双精度为1026(402H)。 浮点数有两个例外。数0.0存储为全零。无限大数的阶码存储为全1,尾数部分全零。符号位指示正无穷或者负无穷。 下面举几个例子:

所有字节在内存中的排列顺序,intel的cpu按little endian顺序,motorola 的cpu按big endian顺序排列。

IEEE754标准的一个规格化 32位浮点数x的真值可表示为 x=(-1)^S*(1.M)*2^(E-127)e=E-127 31 30 23 0 |S | E |M | [例1]若浮点数x的754标准存储格式为(41360000)16,求其浮点数的十进制数值。 解:将16进制展开后,可得二进制数格式为 0 100,0001,0 011,0110,0000,0000,0000,0000 S E M 指数e=100,0001,0-01111111=00000011=(3)10 包含隐藏位1的尾数1.M=1.011,0110,0000,0000,0000,0000 于是有x=(-1)^0*(1.M)*2^(E-127) =+(1.011011)2*2^3 =(11.375)10 [例2]将数(20.59375)10转化为754标准的32位浮点数的二进制存储格式。解:首先分别将整数部分和小数部分转换成二进制 (20.59375)10=+(10100.10011)2 然后移动小数点使其在1,2位之间 10100.10011=1.010010011*2^4 e=4 于是得到:S=0,E=e+127=131,M=010010011 最后得到32位浮点数的二进制存储格式为 0 100,0001,1 010,0100,1100,0000,0000,0000 =(41A4C000)16 从存储结构和算法上来讲,double和float是一样的,不一样的地方仅仅是float是32位的,double是64位的,所以double能存储更高的精度。 任何数据在内存中都是以二进制(0或1)顺序存储的,每一个1或0被称为1位,而在 x86CPU上一个字节是8位。比如一个16位(2字节)的 short int型变量的值是1000,那么它的二进制表达就是:00000011 11101000。由于Intel CPU的架构原因,它是按字节倒序存储的,那么就因该是这样:11101000 00000011,这就是定点数1000在内存中的结构。 目前C/C++编译器标准都遵照IEEE制定的浮点数表示法来进行float,double运算。这种结构是一种科学计数法,用符号、指数和尾数来表示,底数定为2——即把一个浮点数表示为尾数乘以2的指数次方再添上符号。下面是具体的规格: ````````符号位阶码尾数长度 float 1 8 23 32 double 1 11 52 64

十进制数和单精度浮点数的相互转换

将十进制数转换成浮点格式(real*4) [例1]: 十进制26.0转换成二进制 11010.0 规格化二进制数 1.10100*2^4 计算指数 4+127=131 符号位指数部分尾数部分 0 10000011 10100000000000000000000 以单精度(real*4)浮点格式存储该数0100 0001 1101 0000 0000 0000 0000 0000 0x41D0 0000 [例2]: 0.75 十进制0.75转换成二进制 0.11 规格化二进制数 1.1*2^-1 计算指数 -1+127=126 符号位指数部分尾数部分 0 01111110 10000000000000000000000 以单精度(real*4)浮点格式存储该数0011 1111 0100 0000 0000 0000 0000 0000 0x3F40 0000 [例3]: -2.5 十进制-2.5转换成二进制 -10.1 规格化二进制数 -1.01*2^1 计算指数 1+127=128 符号位指数部分尾数部分 1 10000000 01000000000000000000000 以单精度(real*4)浮点格式存储该数1100 0000 0010 0000 0000 0000 0000 0000 0xC020 0000

将浮点格式转换成十进制数 [例1]: 0x00280000(real*4) 转换成二进制 00000000001010000000000000000000 符号位指数部分(8位)尾数部分 0 00000000 01010000000000000000000 符号位=0;因指数部分=0,则:尾数部分M为m: 0.01010000000000000000000=0.3125 该浮点数的十进制为: (-1)^0*2^(-126)*0.3125 =3.6734198463196484624023016788195e-39 [例2]: 0xC04E000000000000(real*8) 转换成二进制1100000001001110000000000000000000000000000000000000000000000000 符号位指数部分(11位)尾数部分 1 10000000100 1110000000000000000000000000000000000000000000000000 符号位=1;指数=1028,因指数部分不为全'0'且不为全'1',则:尾数部分M为1+m:1.1110000000000000000000000000000000000000000000000000=1.875 该浮点数的十进制为: (-1)^1*2^(1028-1023)*1.875 =-60

非标准浮点数和标准的浮点数之间的转换

地址:安徽省、合肥市、肥东县、店埠镇,合肥市福来德电子科技有限公司Microchip 公司单片机所采用的浮点数格式是IEEE-754标准的变异型。 1、变异型32位浮点数格式为::阶码E (8位),符号S (1位),尾数M (23位) 变异型32位浮点数的二进制格式为::E7,E6,E5,E4,E4,E3,E2,E1,E0,S ,M22,M21,M20,M19,M18,M17,M16,M15,M14,M13,M12,M11,M10,M9,M8,M7,M6,M5,M4,M3,M2,M1,M0共计32位值。 存储模式 :大端格式,高字节存放在低地址位置。 2、标准型32位浮点数格式为::符号S (1位),阶码E (8位),尾数M (23位) 标准型32位浮点数的二进制格式为::S ,E7,E6,E5,E4,E4,E3,E2,E1,E0,M22,M21,M20,M19,M18,M17,M16,M15,M14,M13,M12,M11,M10,M9,M8,M7,M6,M5,M4,M3,M2,M1,M0共计32位值。 存储模式 :小端格式,高字节存放在高地址位置。 #include<18f6720.h> //#include //包含头文件string.h #include //包含头文件stdlib.h union { int8 b[4]; int32 d; //b[3]和d 的高8位值相等;b[0]和d 的低8位值相等; float f; }IEEE_FLOAT_DATA; //IEEE 标准型浮点数; union { int8 b[4]; int16 c[2]; int32 d; //b[3]和d 的高8位值相等;b[0]和d 的低8位值相等; float f; }IEEE_aberrance_FLOAT_DATA; //IEEE 变异型浮点数; //函数功能:将x 中的IEEE-754标准的浮点数转换为IEEE-754标准的变异型浮点数 //输入参数IEEE_FLOAT_DATA.d 中是标准型浮点数;IEEE_FLOAT_DATA.d=0xC148000 //输出参数:IEEE_FLOAT_DATA.f 存放为变异型浮点数据;IEEE_FLOAT_DATA.d 为变异型浮点数的16进制数据; void convert_IEEE_FLOAT_DATA_to_IEEE_aberrance_FLOAT_DATA() { //IEEE_FLOAT_DATA.d=x; int1 bit_value; int8 temp; if( bit_test(IEEE_FLOAT_DATA.b[2],7) ) bit_value=1; //获取阶码E0上的值; else bit_value=0; bit_value=shift_left(&IEEE_FLOAT_DATA.b[3],1,bit_value); //左移1位,将E0上的值移入,获取符号值S ; if(bit_value) bit_set(IEEE_FLOAT_DATA.b[2],7); //修改符号值S else bit_clear(IEEE_FLOAT_DATA.b[2],7); //修改符号值S ////////////////////////存储模式 ////////////

浮点数表示方法与运算

在计算机系统的发展过程中,曾经提出过多种方法表达实数,典型的比如定点数。在定点数表达方式中,小数点位置固定,而计算机字长有限,所以定点数无法表达很大和很小的实数。最终,计算机科学发展出了表达范围更大的表达方式——浮点数,浮点数也是对实数的一种近似表达。 1.浮点数表达方式 我们知道任何一个R 进制数N 均可用下面的形式表示:N R =±S ×R ±e 其中,S—尾数,代表N 的有效数字; R—基值,通常取2、8、16;e—阶码,代表N 的小数点的实际位置(相当于数学中的指数)。 比如一个十进制数的浮点表达1.2345×102,其中1.2345为尾数,10为基数,2为阶码。一个二进制数的浮点表达0.001001×25,0.001001为尾数,2为基数,5为阶码;同时0.001001×25也可以表示成0.100100×23,0.100100为尾数,2为基数,3为阶码。浮点数就是利用阶码e 的变化达到浮动小数点的效果,从而灵活地表达更大范围的实数。 2.浮点数的规格化 一个数用浮点表示时,存在两个问题:一是如何尽可能多得保留有效数字;二是如何保证浮点表示的唯一。 对于数0.001001×25,可以表示成0.100100×23、0.00001001×27等等,所以对于同一个数,浮点有多种表示(也就是不能唯一表示)。另外,如果规定尾数的位数为6位,则0.00001001×27会丢掉有效数字,变成0.000010×27。因此在计算机中,浮点数通常采用规格化表示方法。 当浮点数的基数R 为2,即采用二进制数时,规格化尾数的定义为:1/2<=|S|<1。若尾数采用原码(1位符号位+n 位数值)表示,[S]原=S f S 1S 2S 3…S n (S f 为符号位的数符),则满足S 1=1的数称为规格化数。即当尾数的最高有效位S 1=1,[S]原=S f 1S 2S 3…S n ,表示该浮点数为规格化数。对0.001001×25进行规格化后,表示为0.100100×23。 3.浮点数的表示范围 求浮点数的表示范围,实质是求浮点数所能表示的最小负数、最大负数、最小正数和最大正数。

浮点数转换为字符串

串口通讯中传递的数据格式不外两种:ASCII码(即可见字符形式)和二进制数据格式(对应Modbus协议中有ASCII模式和RTU模式)。最初的想法是把浮点数的各位分别提取出来,保存成一个各元素都是ASCII码的数组,然后通过串口发送出去,对方接收到这个数组后再相应地组合成原来的浮点数。这是以前写过的一段代码: //################################################################ // 函数名:void Float2Char(float Value,char *array) // 描述:将浮点数的各个位的数值转换成字符串,通过串口发送至上位机显示 // 参数:float Value为欲转换的正数浮点数值,转换结果保存在字符数组*array里 //################################################################ void Float2Char(float Value,char *array) { Uint16 IntegerPart; float DecimalPart; Uint16 i = 0; Uint16 j = 0; char temp; //分离整数部分与小数部分: //整数部分保存在IntegerPart中 //小数部分保存在DecimalPart中 if (Value>=1) { IntegerPart = (Uint16)Value; DecimalPart = Value-IntegerPart; } else { IntegerPart = 0; DecimalPart = Value-IntegerPart; } //转换整数部分 if (IntegerPart == 0) { array[0] = 0+48; array[1] = '.'; i = 1; } else { while(IntegerPart>0) {

浮点数的二进制表示学习笔记

文章1: 单双精度浮点数的IEEE标准格式 目前大多数高级语言(包括C)都按照IEEE-754标准来规定浮点数的存储格式,IEEE754规定,单精度浮点数用4字节存储,双精度浮点数用8字节存储,分为三个部分:符号位、阶和尾数。阶即指数,尾数即有效小数位数。单精度格式阶占8位,尾数占24位,符号位1位,双精度则为11为阶,53位尾数和1 51 0 细心的人会发现,单双精度各部分所占字节数量比实际存储格式都了一位,的确是这样,事实是,尾数部分包括了一位隐藏位,允许只存储23位就可以表示24位尾数,默认的1位是规格化浮点数的第一位,当规格化一个浮点数时,总是调整它使其值大于等于1而小于2,亦即个位总是为1。例如1100B,对其规格化的结果为1.1乘以2的三次方,但个位1并不存储在23位尾数部分内,这个1是默认位。 阶以移码的形式存储。对于单精度浮点数,偏移量为 127(7FH),而双精度的偏移量为1023(3FFH)。存储浮点数的阶码之前,偏移量要先加到阶码上。前面例子中,阶为2的三次方,在单精度浮点数中,移码后的结果为127+3即130(82H),双精度为 1026(402H)。 浮点数有两个例外。数0.0存储为全零。无限大数的阶码存储为全

1,尾数部分全零。符号位指示正无穷或者负无穷。 motorola 的cpu按big endian顺序排列。 浮点数的二进制表示学习笔记 基础知识: 十进制转十六进制; 十六进制转二进制; IEEE制定的浮点数表示规则; 了解: 目前C/C++编译器标准都遵照IEEE制定的浮点数表示法来进行 float,double运算。这种结构是一种科学计数法,用符号、指数和尾数来表示,底数定为2——即把一个浮点数表示为尾数乘以2的指数次方再添上符号。下面是具体的规格: 符号位阶码尾数长度 float 1 8 23 32 double 1 11 52 64 以下通过几个例子讲解浮点数如何转换为二进制数

相关主题
文本预览
相关文档 最新文档