当前位置:文档之家› 2017最新函数解析式求法和值域求法总结及练习题

2017最新函数解析式求法和值域求法总结及练习题

2017最新函数解析式求法和值域求法总结及练习题
2017最新函数解析式求法和值域求法总结及练习题

2[()]()()f f x af x b a ax b b a x ab b

=+=++=++

函 数 解 析 式 的 七 种 求 法

一、 待定系数法:在已知函数解析式的构造时,可用待定系数法.

例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f .

解:设b ax x f +=)()0(≠a ,则 ∴???=+=3

42b ab a , ∴??????=-===3212b a b a 或 . 32)(12)(+-=+=∴x x f x x f 或 .

二、 配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式

容易配成()g x 的运算形式时,常用配凑法.但要注意所求函数()f x 的定义域不是原

复合函数的定义域,而是()g x 的值域.

例2 已知221)1(x

x x x f +=+ )0(>x ,求 ()f x 的解析式.

解:2)1()1(2-+=+x x x x f , 21≥+x

x , 2)(2-=∴x x f )2(≥x . 三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式.与配

凑法一样,要注意所换元的定义域的变化.

例3 已知x x x f 2)1(+=+,求)1(+x f .

解:令1+=x t ,则1≥t ,2)1(-=t x .

x x x f 2)1(+=+, ∴,1)1(2)1()(22-=-+-=t t t t f

1)(2-=∴x x f )1(≥x , x x x x f 21)1()1(22+=-+=+∴ )0(≥x .

四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法.

例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式. 解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点.

则 ?????=+'-=+'32

22y y x x ,解得:???-='--='y y x x 64 , 点),(y x M '''在)(x g y =上 , x x y '+'='∴2.

把???-='--='y

y x x 64代入得:)4()4(62--+--=-x x y . 整理得672---=x x y , ∴67)(2---=x x x g .

五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造

方程组,通过解方程组求得函数解析式.

例5 设,)1(2)()(x x f x f x f =-满足求)(x f .

解 x x

f x f =-)1

(2)( ① 显然,0≠x 将x 换成

x 1,得:x

x f x f 1)(2)1(=- ② 解① ②联立的方程组,得:x x x f 323)(--=. 六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”

的变量进行赋值,使问题具体化、简单化,从而求得解析式.

例7 已知:1)0(=f ,对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,

求)(x f .

解对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,

不妨令0x =,则有1)1(1)1()0()(2+-=-+=+--=-y y y y y y f y f .

再令 x y =- 得函数解析式为:1)(2++=x x x f .

七、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过

迭加、迭乘或者迭代等运算求得函数解析式.

例8 设)(x f 是定义在+N 上的函数,满足1)1(=f ,对任意的自然数b a , 都有

ab b a f b f a f -+=+)()()(,求)(x f .

解 +∈-+=+N b a ab b a f b f a f ,)()()(,,

∴不妨令1,==b x a ,得:x x f f x f -+=+)1()1()(,

又1)()1(,1)1(+=-+=x x f x f f 故 ①

令①式中的x =1,2,…,n -1得:(2)(1)2(3)(2)3()(1)f f f f f n f n n -=-=--=,,

将上述各式相加得:n f n f ++=-32)1()(, 2)1(321)(+=+++=∴n n n n f , +∈+=∴N x x x x f ,2

121)(2. 函 数 值 域 求 法 小 结

1.重难点归纳.

(1)求函数的值域.

此类问题主要利用求函数值域的常用方法 配方法、分离变量法、单调性法、图像法、换元法、不等式法等 无论用什么方法求函数的值域,都必须考虑函数的定义域.

(2)函数的综合性题目.

此类问题主要考查函数值域、单调性、奇偶性、反函数等一些基本知识相结合的题目 此类问题要求考生具备较高的数学思维能力和综合分析能力以及较强的运算能力 在今后的命题趋势中综合性题型仍会成为热点和重点,并可以逐渐加强.

(3)运用函数的值域解决实际问题.

此类问题关键是把实际问题转化为函数问题,从而利用所学知识去解决此类题要求考生具有较强的分析能力和数学建模能力.

2.值域的概念和常见函数的值域.

函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域.

常见函数的值域:

一次函数()0y kx b k =+≠的值域为R .

二次函数()2

0y ax bx c a =++≠,当0a >时的值域为24,4ac b a ??-+∞????,

当0a <时的值域为24,4ac b a ??--∞ ??

?. 反比例函数()0k y k x

=≠的值域为{}0y R y ∈≠. 指数函数()01x y a a a =>≠且的值域为{}

0y y >.

对数函数()log 01a y x a a =>≠且的值域为R .

正,余弦函数的值域为[]1,1-,正,余切函数的值域为R .

3.求函数值域(最值)的常用方法.

一、观察法(根据函数图象、性质能较容易得出值域(最值)的简单函数)

1、求242-+-=x y 的值域. 解:由绝对值函数知识及二次函数值域的求法易得:)[)[∞+-∈∞+∈-+-=,2,,024)(2y x x g 所以.

2、求函数

y =的值域.

≥0≥1,然后在求其倒数即得答案.

解:≥0∴≥1,∴0

≤1,∴函数的值域为(0,1]. 二、配方法(当所给函数是二次函数或可化为二次函数的复合函数时,可利用配方法求值域)

1、求函数][)4,0(422∈+--=x x x y 的值域.

解:设)0)((4)(2≥+-=x f x x x f ,配方得:][)4,0(4)2()(2

∈+--=x x x f . 利用二次函数的相关知识得][4,0)(∈x f ,从而得出:][2,2-∈y .

说明:在求解值域(最值)时,遇到分式、根式、对数式等类型时要注意函数本身定义域的限制,本题为:0)(≥x f .

2、若,42=+y x 0,0>>y x ,试求xy 的最大值。

解:本题可看成一象限动点),(y x p 在直线42=+y x 上滑动时函数的最大值.

易得:2(0,4)(0,2),=(42)2(1)2x y xy y y y ∈∈-=--+,而,y =1时,xy 取最大值2.

三、反表示法(分子、分母只含有一次项的函数,也可用于其它易反解出自变量的函数类型)

对于存在反函数且易于求得其反函数的函数,可以利用“原函数的定义域和值域分别为其反函数的值域和定义域”这一性质,先求出其反函数,进而通过求其反函数的定义域的方法求原函数的值域。

1、求函数1

2+=x x y 的值域. 解:因本题中分子、分母均只含有自变量的一次型,易反解出x ,从而便于求出反函数。 12+=x x y 反解得y

y x -=2即x x y -=2. 故函数的值域为:),2()2,(+∞-∞∈ y 。(反函数的定义域即是原函数的值域)

2、求函数2241

x y x +=-的值域. 解答:241y x y +=-,因为20x ≥,所以401

y y +≥-,算出值域为(,4](1,)y ∈-∞-+∞. 四、判别式法(分子、分母中含有二次项的函数类型,此函数经过变形后可以化为

0)()()(2=++y C x y B x y A 的形式,再利用判别式加以判断)

1、求函数3

274222++-+=x x x x y 的值域. 解:由于本题的分子、分母均为关于x 的二次形式,因此可以考虑使用判别式法,将原 函数变形为:7423222-+=++x x y xy y x 整理得:073)2(2)2(2=++-+-y x y x y 当2≠y 时,上式可以看成关于x 的二次方程,该方程的x 范围应该满足

032)(2≠++=x x x f ,即R x ∈此时方程有实根即△0≥,

△[292(2)]4(2)(37)0[,2]2

y y y y =---+≥?∈-. 注意:判别式法解出值域后一定要将端点值(本题是2

9,2-

==y y )代回方程检验. 将29,2-==y y 分别代入检验得2=y 不符合方程,所以)2,29[-∈y . 2、求函数2122

x y x x +=++的值域. 解答:先将此函数化成隐函数的形式得:012)12(2=-+-+y x y yx ,(1)

这是一个关于x 的一元二次方程,原函数有定义,等价于此方程有解,即方程(1)的判

别式0)12(4)12(2≥---=?y y y ,解得:1122

y -≤≤. 五、换元法(通过简单的换元把一个函数变为简单函数,其题型特征是无理函数、三角函数

(用三角代换)等)

1、求函数x x y 41332-+-=的值域. 解:由于题中含有x 413-不便于计算,但如果令:x t 413-=注意0≥t 从而得:

)0(32

1341322≥+--=∴-=t t t y t x 变形得)0(8)1(22≥++-=t t y 即:]4,(-∞∈y . 注意:在使用换元法换元时一定要注意新变量的范围,否则将会发生错误.

六、数形结合法(对于一些能够准确画出函数图像的函数来说,可以先画出其函数图像,然后利用函数图像求其值域)

1、求函数13y x x =-+-的值域。

分析:此题首先是如何去掉绝对值,将其做成一个分段函数.

24,(,1],2,(1,3),24,[3,),x x y x x x -+∈-∞??=∈??-∈+∞?

在对应的区间内,画出此函数的图像,如图1所示,易得出函数的值域为),2[+∞.

七、不等式法(能利用几个重要不等式及推论来求得最值.(如:ab b a ab b a 2,222≥+≥+)

,利用此法求函数的值域,要合理地添项和拆项,添项和拆项的原则是要使最终的乘积结果中不含自变量,同时,利用此法时应注意取""=成立的条件.)

1、求函数1(0)y x x x =+

>的值域.

解答:12y x x =+≥,当且仅当1,1x x x

==时取等号. 注意:

在使用此法时一定要注意a b +≥的前提条件是a >0,b >0,且能取到a =b .

八、部分分式法(分离常数法)(分式且分子、分母中有相似的项,通过该方法可将原函数转化为为)(x f k y ±=(为k 常数)的形式)

1、求函数1

22+--=x x x x y 的值域. 解答:观察分子、分母中均含有x x -2项,可利用部分分式法;则有

4

3)21(11111122222+--=+--+-=+--=x x x x x x x x x y . 不妨令:)0)(()(1)(,43)21()(2≠=+-=x f x f x g x x f 从而)∞+???∈,4

3)(x f . 注意:在本题中应排除0)(=x f ,因为)(x f 作为分母。所以 ?

????∈43,0)(x g 故)1,31???-∈y

2、如对于函数

1

32

x

y

x

-

=

-

,利用恒等变形,得到:

)2

3(3

1

3

1

2

3

3

1

)2

3(

3

1

-

-

=

-

-

-

=

x

x

x

y,

容易观察得出此函数的值域为

11

(,)(,)

33

y∈-∞?+∞.

注意到分时的分子、分母的结构特点,分离出一个常数后,再通过观察或配方等其他方法易得函数值域.

九、单调性法(利用函数在给定的区间上的单调递增或单调递减求值域)

十、利用导数求函数的值域(若函数f在(a、b)内可导,可以利用导数求得f在(a、b)

内的极值,然后再计算f在a,b点的极限值。从而求得f的值域)

十一、最值法(对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a)、f(b)作比较,求出函数的最值,可得到函数y的值域)

十二、构造法(根据函数的结构特征,赋予几何图形,数形结合)

十三、比例法(对于一类含条件的函数的值域的求法,可将条件转化为比例式,代入目标函数,进而求出原函数的值域)

配 套 练 习

求函数的解析式

例1.已知f (x )= 2

2x x -,求f (1x -)的解析式. ( 代入法 / 拼凑法 )

变式1.已知f (x )= 21x -, 求f (2x )的解析式.

变式2.已知f (x +1)=223x x ++,求f (x )的解析式.

例2.若f [ f (x )]=4x +3,求一次函数f (x )的解析式. ( 待定系数法 )

变式1.已知f (x )是二次函数,且()()211244f x f x x x ++-=-+,求f (x ).

例3.已知f (x )-2 f (-x )=x ,求函数f (x )的解析式. ( 消去法/ 方程组法 )

变式1.已知2 f (x )- f (-x )=x +1 ,求函数f (x )的解析式.

变式2.已知2 f (x )-f 1x ??

???

=3x ,求函数f (x )的解析式.

例4.设对任意数x ,y 均有()()222233f x y f y x xy y x y +=++-++, 求f (x )的解析式. ( 赋值法 / 特殊值法)

变式1.已知对一切x ,y ∈R ,()()()21f x y f x x y y -=--+都成立,且f (0)=1, 求f (x )的解析式.

求函数的值域

例6.求下列函数的值域

①31y x =+, x ∈{1,2,3,4,5 }.( 观察法 )

②246y x x =-+,x ∈[)1,5.( 配方法 :形如2y ax bx c =++ )

③2y x =( 换元法

:形如y ax b =+)

④1x y x =

+.( 分离常数法:形如cx d y ax b

+=+ )

⑤221y x x =+. ( 判别式法:形如21112222

a x

b x

c y a x b x c ++=++ )

变式1.求下列函数的值域

①2243y x x =-+.

②y x =

③ y =213x x +-. ④2224723

x x y x x +-=++.

⑤37y x x =-++. ⑥93(0)4y x x x

=+>.

值域经典题型

值域简单练习题 1.求6)(2+-=x x x f 在[]11, -上的值域 2.求函数132)(++= x x x f 的值域 3. 求函数1 33)(2+++=x x x x f 的值域 4.求函数x x x f -+=1)(的值域 5.1321 3)(x x +?-=x f 6.1)(22 +--=x x x x x f 7.x -1x 3131)(-+=x f 8.x x x f +-+=243)( 9.2x 2x -)(2++=x f 10.y =11.2256y x x =-++ 12.2cos 1 3cos 2x y x +=- 13. 求函数()1y x =≥的值域。

值域的求法加强练习题 解答题(共10小题) 1.已知函数的定义域为集合A,函数的值域为集合B,求A∩B和(C R A)∩(C R B). 2.已知函数f(x)=x2﹣bx+3,且f(0)=f(4). (1)求函数y=f(x)的零点,写出满足条件f(x)<0的x的集合; (2)求函数y=f(x)在区间(0,3]上的值域. 3.求函数的值域:. 4.求下列函数的值域: (1)y=3x2﹣x+2;(2);(3); (4);(5)(6); 5.求下列函数的值域 (1); (2); (3)x∈[0,3]且x≠1;

(4). 6.求函数的值域:y=|x﹣1|+|x+4|. 7.求下列函数的值域. (1)y=﹣x2+x+2;(2)y=3﹣2x,x∈[﹣2,9];(3)y=x2﹣2x﹣3,x∈(﹣1,2];(4)y=.8.已知函数f(x)=22x+2x+1+3,求f(x)的值域. 9.已知f(x)的值域为,求y=的值域. 10.设的值域为[﹣1,4],求a、b的值.

求值域经典例题

四、经典例题 例1、求下列函数的值域: (1) (2) (3) (4) (5) (6) 分析:对于形如(1)(2)(3)的函数求值域,基本策略是(ⅰ)化归为的值域;(ⅱ)转化为sinx(或cosx)的二次函数;对于(4)(5)(6)之类含有绝对值的函数求值域,基本策略则是(ⅰ)在适当的条件下考察y2;(ⅱ)转化为分段函数来处理;(ⅲ)运用其周期性、奇偶性或函数图象对称性转化. 解: (1) ∵ ∴, 即所求函数的值域为. (2)由

∴ ∴ 注意到这里x∈R,, ∴ ∴所求函数的值域为[-1,1]. (3)这里 令sinx+cosx=t 则有 且由 于是有 ∵ ∴ 因此,所求函数的值域为. (4)注意到这里y>0,且 ∵

∴ 即所求函数的值域为. (5)注意到所给函数为偶函数, 又当 ∴此时 同理,当亦有. ∴所求函数的值域为. (6)令 则易见f(x)为偶函数,且 ∴是f(x)的一个正周期.① 只需求出f(x)在一个周期上的取值范围. 当x∈[0,]时, 又注意到, ∴x=为f(x)图象的一条对称轴②∴只需求出f(x)在[0,]上的最大值. 而在[0,]上,递增.③ 亦递增④∴由③④得f(x)在[0,]上单调递增.

∴ 即⑤ 于是由①、②、⑤得所求函数的值域为. 点评:解(1)(2)运用的是基本化归方法;解(3)运用的是求解关于sinx+cosx与sinxcosx的函数值域的特定方法;解(4)借助平方转化;解(5)(6)则是利用函数性质化繁为简,化暗为明.这一点在解(6)时表现得淋漓尽致. 例2、求下列函数的周期: (1); (2); (3); (4); (5) 分析:与求值域的情形相似,求三角函数的周期,首选是将所给函数化为+k的形式,而后运用已知公式.对于含有绝对值的三角函数,在不能利用已有认知的情况下,设法转化为分段函数来处理. 解: (1) = = ∴所求最小正周期. (2)

高中函数值域的12种求法

高中函数值域的12种求法 一.观察法 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例1求函数y=3+√(2-3x)的值域。 点拨:根据算术平方根的性质,先求出√(2-3x)的值域。解:由算术平方根的性质,知√(2-3x)≥0, 故3+√(2-3x)≥3。 ∴函数的知域为. 点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。 本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。 练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5}) 二.反函数法 当函数的反函数存在时,则其反函数的定义域就是原函数的值域。 例2求函数y=(x+1)/(x+2)的值域。 点拨:先求出原函数的反函数,再求出其定义域。 解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。

点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。 练习:求函数y=(10x+10-x)/(10x-10-x)的值域。(答案:函数的值域为{y∣y-1或y1}) 三.配方法 当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域 例3:求函数y=√(-x2+x+2)的值域。 点拨:将被开方数配方成完全平方数,利用二次函数的最值求。 解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4] ∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2] 点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一种重要的思想方法。 练习:求函数y=2x-5+√15-4x的值域.(答案:值域为 {y∣y≤3}) 四.判别式法 若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。

函数值域的求法(精选例题)

函数值域的求法 1、(观察法)求下列函数的值域 (1)求函数y1=121 1x +的值域 (]1,0 (2)求函数y1=2-x 的值域。 (]2-,∞ 2、(配方法)求下列函数的值域 (1)求函数225,[1,2]y x x x =-+∈-的值域 ][84, (2)求函数y =的值域: ][20, (3),x y 是关于m 的方程2260m am a -++=的根,则()()2211x y -+-的最小值是( ) C A.-1241 B.18 C.8 D.43

3、(换元法)求下列函数的值域 (1)21y x =+[)∞+,3 (2)4y x =++ ][234,1+ (3)求函数y=32 ++x x 的值域 ??????21,0 (4)求函数y = ][2,1 (5)求函数 y=12243++-x x x x 的值域 ??????41,41-

4、(分离常数法)求下列函数的值域 (1)求值域(1)1 (4)2x y x x -=≥-+ ()??? ???∞+∞,,251- (2)求函数122+--=x x x x y 的值域。 ?????? 131 -, 5、(判别式法)求下列函数的值域 (1)求函数的值域2222 1x x y x x -+=++ ][51, (2)求函数3274222++-+=x x x x y 的值域。 ?????? 229 -, (3)已知函数12)(22 +++=x b ax x f x 的值域是[1,3 ],求实数a , b 的值. a=2或-2,b=2

6、(单调性法)求下列函数的值域 (1)求函数32()2440f x x x x =+-,[3,3]x ∈-的最小值。 (2)-48f = (2)设函数f(x)=ln(2x +3)+x 2.求f(x)在区间???? ??-34,14上的最大值和最小值. max 171()=ln +4216()f f x = min 11(-)=ln 2+24()f f x = 7、(数形结合法)求下列函数的值域 (1)求函数y=4 1362+-x x 4-542++x x 的值域 (]265-, (2)求函数y=4 12++x x 4-1 - 2 +x x 的值域 ()1,1-

2017最新函数解析式求法和值域求法总结及练习题

2[()]()()f f x af x b a ax b b a x ab b =+=++=++ 函 数 解 析 式 的 七 种 求 法 一、 待定系数法:在已知函数解析式的构造时,可用待定系数法. 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f . 解:设b ax x f +=)()0(≠a ,则 ∴???=+=342b ab a , ∴??????=-===3 212b a b a 或 . 32)(12)(+-=+=∴x x f x x f 或 . 二、 配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式 容易配成()g x 的运算形式时,常用配凑法.但要注意所求函数()f x 的定义域不是原 复合函数的定义域,而是()g x 的值域. 例2 已知221)1 (x x x x f +=+ )0(>x ,求 ()f x 的解析式.

解:2)1()1(2-+=+x x x x f Θ, 21≥+x x , 2)(2-=∴x x f )2(≥x . 三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式.与配 凑法一样,要注意所换元的定义域的变化. 例3 已知x x x f 2)1(+=+,求)1(+x f . 解:令1+=x t ,则1≥t ,2)1(-=t x . Q x x x f 2)1(+=+, ∴,1)1(2)1()(22-=-+-=t t t t f 1)(2-=∴x x f )1(≥x , x x x x f 21)1()1(22+=-+=+∴ )0(≥x . 四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法. 例4已知:函数)(2 x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式. 解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点. 则 ?????=+'-=+'32 22y y x x ,解得:???-='--='y y x x 64 , Θ点),(y x M '''在)(x g y =上 , x x y '+'='∴2. 把???-='--='y y x x 64代入得:)4()4(62--+--=-x x y . 整理得672---=x x y , ∴67)(2---=x x x g . 五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造 方程组,通过解方程组求得函数解析式. 例5 设,)1(2)()(x x f x f x f =-满足求)(x f . 解 Θx x f x f =-)1 (2)( ① 显然,0≠x 将x 换成 x 1,得:x x f x f 1)(2)1(=- ② 解① ②联立的方程组,得:x x x f 323)(--=. 六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性” 的变量进行赋值,使问题具体化、简单化,从而求得解析式. 例7 已知:1)0(=f ,对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立, 求)(x f .

函数值域的13种求法

函数值域十三种求法 1. 直接观察法 对于一些比较简单的函数,其值域可通过观察得到。 例1. 求函数 x 1 y =的值域 解:∵0x ≠ ∴0x 1≠ 显然函数的值域是:),0()0,(+∞-∞ 例2. 求函数x 3y -=的值域 解:∵0x ≥ 3x 3,0x ≤-≤-∴ 故函数的值域是:]3,[-∞ 2. 配方法 配方法是求二次函数值域最基本的方法之一。 例3. 求函数 ]2,1[x ,5x 2x y 2-∈+-=的值域 解:将函数配方得: 4)1x (y 2+-= ∵]2,1[x -∈ 由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max = 故函数的值域是:[4,8] 3. 判别式法(只有定义域为整个实数集R 时才可直接用) 例4. 求函数 22 x 1x x 1y +++=的值域 解:原函数化为关于x 的一元二次方程 0x )1y (x )1y (2=-+- (1)当1y ≠时,R x ∈ 0)1y )(1y (4)1(2≥----=? 解得:23y 21≤≤ (2)当y=1时,0x =,而??????∈23,211 故函数的值域为????? ?23,21

例5. 求函数)x 2(x x y -+=的值域 解:两边平方整理得: 0y x )1y (2x 222=++-(1) ∵R x ∈ ∴ 0y 8)1y (42≥-+=? 解得:21y 21+≤≤- 但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤ 由0≥?,仅保证关于x 的方程: 0y x )1y (2x 222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 0≥?求出 的范围可能比y 的实际范围大,故不能确定此函数的值域为????? ?23,21。 可以采取如下方法进一步确定原函数的值域。 ∵2x 0≤≤ 0)x 2(x x y ≥-+=∴ 21y ,0y min +==∴代入方程(1) 解得:] 2,0[22 222x 41∈-+= 即当22222x 41-+=时, 原函数的值域为:]21,0[+ 注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。 4. 反函数法 直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。 例6. 求函数6x 54 x 3++值域 解:由原函数式可得: 3y 5y 64x --= 则其反函数为:3x 5y 64y --=,其定义域为:53x ≠ 故所求函数的值域为:33(,)(,)55 -∞?+∞

函数值域求法十一种

函数值域求法十一种 尚化春 在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。确定函数的值域是研究函数不可缺少的重要一环。对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。本文就函数值域求法归纳如下,供参考。 1. 直接观察法 对于一些比较简单的函数,其值域可通过观察得到。 例1. 求函数 x 1 y = 的值域。 解:∵0x ≠ ∴0 x 1 ≠ 显然函数的值域是:),0()0,(+∞-∞ 例2. 求函数x 3y - =的值域。 解:∵0x ≥ 3x 3,0x ≤- ≤-∴ 故函数的值域是:]3,[-∞ 2. 配方法 配方法是求二次函数值域最基本的方法之一。 例3. 求函数]2,1[x ,5x 2x y 2 -∈+-=的值域。 解:将函数配方得:4)1x (y 2 +-= ∵]2,1[x -∈ 由二次函数的性质可知:当x=1时,4y m i n =,当1x -=时,8y m a x = 故函数的值域是:[4,8] 3. 判别式法 例4. 求函数2 2 x 1x x 1y +++= 的值域。 解:原函数化为关于x 的一元二次方程 0x )1y (x )1y (2 =-+- (1)当1y ≠时,R x ∈ 0)1y )(1y (4)1(2 ≥----=? 解得:23y 2 1 ≤ ≤ (2)当y=1时,0x =,而? ?? ???∈23,211

函数值域求法总结及练习题

函 数 值 域 求 法 1.重难点归纳. (1)求函数的值域. 此类问题主要利用求函数值域的常用方法 配方法、分离变量法、单调性法、图像法、换元法、不等式法等 无论用什么方法求函数的值域,都必须考虑函数的定义域. (2)函数的综合性题目. 此类问题主要考查函数值域、单调性、奇偶性、反函数等一些基本知识相结合的题目 此类问题要求考生具备较高的数学思维能力和综合分析能力以及较强的运算能力 在今后的命题趋势中综合性题型仍会成为热点和重点,并可以逐渐加强. (3)运用函数的值域解决实际问题. 2.值域的概念和常见函数的值域. 函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域. 常见函数的值域: 一次函数()0y kx b k =+≠的值域为R . 二次函数()2 0y ax bx c a =++≠,当0a >时的值域为24,4ac b a ?? -+∞???? , 当0a <时的值域为24,4ac b a ?? --∞ ?? ?. 反比例函数()0k y k x =≠的值域为{}0y R y ∈≠. 指数函数()01x y a a a =>≠且的值域为{}0y y >. 对数函数()log 01a y x a a =>≠且的值域为R . 正,余弦函数的值域为[]1,1-,正,余切函数的值域为R . 3.求函数值域(最值)的常用方法. 一、观察法(根据函数图象、性质能较容易得出值域(最值)的简单函数) 1、求242-+-=x y 的值域. 2、求函数 y =的值域.

二、配方法(当所给函数是二次函数或可化为二次函数的复合函数时,可利用配方法求值域) 1、求函数][)4,0(422∈+--=x x x y 的值域. 2、若,42=+y x 0,0>>y x ,试求xy 的最大值。 三、反表示法(分子、分母只含有一次项的函数,也可用于其它易反解出自变量的函数类型) 对于存在反函数且易于求得其反函数的函数,可以利用“原函数的定义域和值域分别为其反函数的值域和定义域”这一性质,先求出其反函数,进而通过求其反函数的定义域的方法求原函数的值域。 1、求函数1 2+= x x y 的值域. 2、求函数224 1 x y x +=-的值域. 四、判别式法(分子、分母中含有二次项的函数类型,此函数经过变形后可以化为 0)()()(2=++y C x y B x y A 的形式,再利用判别式加以判断) 1、求函数3 27 4222++-+=x x x x y 的值域. 解:由于本题的分子、分母均为关于x 的二次形式,因此可以考虑使用判别式法,将原 函数变形为:7423222-+=++x x y xy y x 整理得:073)2(2)2(2=++-+-y x y x y 当2≠y 时,上式可以看成关于x 的二次方程,该方程的x 范围应该满足 032)(2≠++=x x x f ,即R x ∈此时方程有实根即△0≥, △[2 92(2)]4(2)(37)0[,2]2 y y y y =---+≥?∈-. 注意:判别式法解出值域后一定要将端点值(本题是2 9 ,2- ==y y )代回方程检验. 将29,2-==y y 分别代入检验得2=y 不符合方程,所以)2,2 9 [-∈y .

函数的定义域与值域单调性与奇偶性三角函数典型例题

函数的定义域与值域、单调性与奇偶性 一、知识归纳: 1. 求函数的解析式 (1)求函数解析式的常用方法: ①换元法( 注意新元的取值范围) ②待定系数法(已知函数类型如:一次、二次函数、反比例函数等) ③整体代换(配凑法) ④构造方程组(如自变量互为倒数、已知f (x )为奇函数且g (x )为偶函数等) (2)求函数的解析式应指明函数的定义域,函数的定义域是使式子有意义的自变量的取值范围,同时也要注意变量的实际意义。 (3)理解轨迹思想在求对称曲线中的应用。 2. 求函数的定义域 求用解析式y =f (x )表示的函数的定义域时,常有以下几种情况: ①若f (x )是整式,则函数的定义域是实数集R ; ②若f (x )是分式,则函数的定义域是使分母不等于0的实数集; ③若f (x )是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合; ④若f (x )是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合; ⑤若f (x )是由实际问题抽象出来的函数,则函数的定义域应符合实际问题. 3. 求函数值域(最值)的一般方法: (1)利用基本初等函数的值域; (2)配方法(二次函数或可转化为二次函数的函数); (3)不等式法(利用基本不等式,尤其注意形如)0(>+=k x k x y 型的函数) (4)函数的单调性:特别关注)0(>+ =k x k x y 的图象及性质 (5)部分分式法、判别式法(分式函数) (6)换元法(无理函数) (7)导数法(高次函数) (8)反函数法 (9)数形结合法 4. 求函数的单调性 (1)定义法: (2)导数法: (3)利用复合函数的单调性: (4)关于函数单调性还有以下一些常见结论: ①两个增(减)函数的和为_____;一个增(减)函数与一个减(增)函数的差是______; ②奇函数在对称的两个区间上有_____的单调性;偶函数在对称的两个区间上有_____的单调性; ③互为反函数的两个函数在各自定义域上有______的单调性; (5)求函数单调区间的常用方法:定义法、图象法、复合函数法、导数法等 (6)应用:比较大小,证明不等式,解不等式。 5. 函数的奇偶性 奇偶性:定义:注意区间是否关于原点对称,比较f (x ) 与f (-x )的关系。f (x ) -

高中函数定义域和值域的求法总结(十一种)

高中函数定义域和值域的求法总结 一、常规型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。 例1 求函数8 |3x |15 x 2x y 2-+--= 的定义域。 解:要使函数有意义,则必须满足 ?? ?≠-+≥--②① 8|3x |015x 2x 2 由①解得 3x -≤或5x ≥。 ③ 由②解得 5x ≠或11x -≠ ④ ③和④求交集得3x -≤且11x -≠或x>5。 故所求函数的定义域为}5x |x {}11x 3x |x {>-≠-≤ 且。 例2 求函数2 x 161 x sin y -+=的定义域。 解:要使函数有意义,则必须满足 ? ??>-≥②①0x 160 x sin 2 由①解得Z k k 2x k 2∈π+π≤≤π, ③ 由②解得4x 4<<- ④ 由③和④求公共部分,得 π≤<π-≤<-x 0x 4或 故函数的定义域为]0(]4(ππ--,, 评注:③和④怎样求公共部分?你会吗? 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。 (1)已知)x (f 的定义域,求)]x (g [f 的定义域。 (2)其解法是:已知)x (f 的定义域是[a ,b ]求)]x (g [f 的定义域是解b )x (g a ≤≤,即为所求的定义域。 例3 已知)x (f 的定义域为[-2,2],求)1x (f 2-的定义域。 解:令21x 22≤-≤-,得3x 12≤≤-,即3x 02≤≤,因此3|x |0≤≤,从而 3x 3≤≤-,故函数的定义域是}3x 3|x {≤≤-。 (2)已知)]x (g [f 的定义域,求f(x)的定义域。 其解法是:已知)]x (g [f 的定义域是[a ,b ],求f(x)定义域的方法是:由b x a ≤≤,求 g(x)的值域,即所求f(x)的定义域。 例4 已知)1x 2(f +的定义域为[1,2],求f(x)的定义域。 解:因为51x 234x 222x 1≤+≤≤≤≤≤,,。 即函数f(x)的定义域是}5x 3|x {≤≤。 三、逆向型 即已知所给函数的定义域求解析式中参数的取值范围。特别是对于已知定义域为R ,求参数的范围问题通常是转化为恒成立问题来解决。 例5 已知函数8m m x 6m x y 2++-=的定义域为R 求实数m 的取值范围。 分析:函数的定义域为R ,表明0m 8mx 6mx 2≥++-,使一切x ∈R 都成立,由2x 项

高一数学《函数的定义域值域》练习题

函数值域、定义域、解析式专题 一、函数值域的求法 1、直接法: 例1:求函数y = 例2:求函数1y 的值域。 2、配方法: 例1:求函数242y x x =-++([1,1]x ∈-)的值域。 例2:求 函 数]2,1[x ,5x 2x y 2 -∈+-= 的 值域。 例3:求函数2256y x x =-++的值域。 3、分离常数法: 例1:求函数125 x y x -=+的值域。 例2:求函数1 22+--=x x x x y 的值域. 例3:求函数1 32 x y x -=-得值域. 4、换元法: 例1:求函数2y x = 例2: 求 函 数1x x y -+=的 值 域。 5、函数的单调性法:确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域。 例1:求函数y x = 例2:求函数()x x x f -++=11的值域。

例3:求 函 数1x 1x y --+=的 值 域。 6、数型结合法:函数图像是掌握函数的重要手段,利用数形结合的方法,根据函数图像求得函数值域,是一种求值域的重要方法。当函数解析式具有某种明显的几何意义(如两点间距离,直线的斜率、截距等)或当一个函数的图象易于作出时,借助几何图形的直观性可求出其值域。 例1:求函数|3||5|y x x =++-的值域。 7、非负数法 根据函数解析式的结构特征,结合非负数的性质,可求出相关函数的值域。 例1、(1)求函数216x y -=的值域。 (2)求函数1 3 22+-=x x y 的值域。 二、函数定义域 例1:已知函数()f x 的定义域为[]15-,,求(35)f x -的定义域. 例2:若()f x 的定义域为[]35-,,求()()(25)x f x f x ?=-++的定义域. 例3:求下列函数的定义域: ① 2 1 )(-= x x f ; ② 23)(+=x x f ; ③ x x x f -+ += 21 1)( 例4:求下列函数的定义域: ④ 14)(2--=x x f ⑤ ②2 14 3)(2-+--= x x x x f ⑥ 3 7 3132+++-= x x y ④x x x x f -+= 0)1()( 三、解析式的求法 1、配凑法 例1:已知 :23)1(2 +-=+x x x f ,求f(x);

函数定义域、值域经典习题及答案88322

复合函数定义域和值域练习题 一、 求函数的定义域 1、求下列函数的定义域: 2) y = 1 + (2 x - 1)0+ 4 - x 2 1+ 1 x -1 2、设函数 f (x )的定义域为[0,1],则函数f (x 2)的定义域为_ _ _;函数 f ( x -2) 的定义域为 _______ 3、若函数 f (x +1)的定义域为[-2,3],则函数 f (2x -1)的定义域是 ;函 数 f (1 + 2)的定义域为 。 x 4、 已知函数f (x )的定义域为[-1, 1],且函数F (x )= f (x +m )-f (x -m )的定义域存在, 求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴ y = x 2 +2x -3 (x R ) ⑵ y = x 2 +2x -3 x [1,2] ⑶y =3x -1 x + 1 ⑷y = 3x -1 (x 5) x +1 三、求函数的解析式 1、 已知函数 f (x -1) = x - 4x ,求函数 f (x ), f (2x +1) 的解析式。 2、 已知 f (x )是二次函数,且 f (x +1)+ f (x -1)=2x -4x ,求 f (x )的解析式。 ⑴y = x 2 -2x -15 x +3-3 y = 2x - 6 x +2

3、已知函数f(x)满足2f(x)+ f(-x)=3x+4,则f(x)= 。 4、设f(x)是R 上的奇函数,且当x[0,+)时,f(x)=x(1+3x),则当x(-,0)时f(x)= ________ _ f(x)在R 上的解析式为 5、设f(x)与g(x)的定义域是{x|x R,且x1},f(x) 是偶函数,g(x)是奇函数,且 f(x)+g(x)=1,求f(x)与g(x) 的解析表达式 x - 1 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ y= x2+2x+3 ⑵ y = -x2+2x +3 ⑶ y = x2- 6x -1 7、函数f(x)在[0,+)上是单调递减函数,则f(1-x2)的单调递增区间是 8、函数y = 2-x的递减区间是;函数y = 2-x的递减 3x + 6 3x + 6 区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴y1=(x+3)(x-5),y2=x-5;⑵y1= x+1 x-1 ,y2= (x+1)(x-1) ; x+3 ⑶f (x) = x,g(x) = x2 ;⑷f (x) = x,g(x)= 3x3 ;⑸f1(x) = ( 2x-5)2 , f (x) = 2x - 5。 A、⑴、⑵ B 、⑵、 ⑶ C 、⑷D、⑶、⑸ 10、若函数f(x)= x - 4的定义域为R ,则实数 m mx2+ 4mx + 3 的取值范围是 ( ) A、(-∞,+∞) 3 B 、(0,3 ] 3 C 、(3,+∞ ) 3 D 、[0, 3 ) 11、若函数f (x) = mx2+mx+1的定义域为R,则实数m的取值范围是( )

含根式函数值域的求法

含根式函数值域的几何求法 函数值域和最大值、最小值问题是高中数学中重要的问题,其求解的方法很多,常见的解法有:观察法、配方法、均值不等式法、反函数法、换元法、判别式法、单调函数法、图解法等。其中,利用数形结合来求函数的值域,尤其是含根式函数的值域,具有其独特的效果,它能够把满足题意的几何图形画出来,生动形象的直观图,提示和启发我们的解题思路,有时,图形式直接提供了我们寻求的答案,因此,几何法既可以使题意更加明确,又可以使运算得到简化。 例1 求函数312+-+=x x y 的最小值. 解:由03≥+x 得:3-≥x . 令???≥+=-≥+=) 0(3)5(12v x v u x u ,消去x 得:)0,5()5(212≥-≥+=v u u v 则点()v u ,在)5(2 12+=u v 的抛物线段上,又在直线y u v -=上,如图1,易知,当直线与抛物线相切时,-y 取最大值,取y 最小值。 联立方程组?????-=+=y u v u v )5(212, 消去u 整理得: 0522=---y v v ,由△=0, 即:0)5(24)1(2=--??--y 解得:=y 8 41-. ∴ 原函数的最小值为841- . 评注:本题可以利用代数换元法,将含根式函数的值域问题转化为二次型函数在某区间上的值域问题,其解题过程中运算量并不大,而且不难接受理解。因此,本题利用构造直线与抛物线进行求解,并没有真正体现出几何解法的优越性。 图1

例2 求函数131-++-=x x y 的值域. 分析:本题不能用换元法进行求解,因此,我们也来尝试利用几何解法。 解:由???≥+≥-0301x x 解得:13≤≤-x . 令???≤≤+=≤≤-=)20(3)20(1v x v u x u ,消去x 得:)20,20(422≤≤≤≤=+v u v u 则点()v u ,在422=+v u 的园弧上,又在直线1++-=y u v 上, 如图2,显然OB y OA ≤+≤1 又 ∵ 22,2==OB OA ∴ 1221-≤≤y 即为原函数所求的值域。 例3 求函数106422+-++=x x x y 的最小值. 分析:当我们把106422+-++=x x x y 化为: y 2222)10()3()20()0(-+-+-+-=x x 时,容易联想到两点间距离。 解: 106422+-++=x x x y 2222)10()3()20()0(-+-+-+-=x x 设P (x , 0),A (0, 2),B (3, 1),则问题转化 为在x 轴上找一点P ,使得P 到A 、B 两点的 距离之和最小。如图3,易求得点A 关于x 轴 的对称点A / 的坐标为(0, -2),则: B A BP P A BP AP //=+=+即为最小. ∴ 32)12()30(22/min =--+-==B A y . 评注:本题可用判别式法以及构造复数由模的重 要不等式进行求解,但是判别式法计算量很大,不易 图2 图3

高考求函数值域及最值得方法及例题_训练题

函数专题之值域与最值问题 一.观察法:通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域. 例1:求函数) + =的值域. y- 3x 3 2( 点拨:根据算术平方根的性质,先求出) -的值域. 3 2(x 解:由算术平方根的性质,知) 2(x -≥3。∴函数的值域为) 3 -≥0,故3+) 2(x 3 ,3[+∞ . 点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。本题通过直接观察算 术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。 练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5}) 二.反函数法:当函数的反函数存在时,则其反函数的定义域就是原函数的值域. 例2:求函数y=(x+1)/(x+2)的值域. 点拨:先求出原函数的反函数,再求出其定义域。 解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数, 故函数y的值域为{y∣y≠1,y∈R}。 点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。 这种方法体现逆向思维的思想,是数学解题的重要方法之一。 练习:求函数y=(10x+10-x)/(10x-10-x)的值域。(答案:函数的值域为{y∣y<-1或y>1})三.配方法:当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域. 例3:求函数y=√(-x2+x+2)的值域. 点拨:将被开方数配方成完全平方数,利用二次函数的最值求。 解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。 此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4] ∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2] 点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。 配方法是数学的一种重要的思想方法。 练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3}) 四.判别式法:若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。 例4:求函数y=(2x2-2x+3)/(x2-x+1)的值域. 点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。

函数定义域知识点梳理、经典例题及解析、高考题带答案

函数的定义域 【考纲说明】 1、理解函数的定义域,掌握求函数定义域基本方法。 2、会求较简单的复合函数的定义域。 3、会讨论求解其中参数的取值范围。 【知识梳理】 (1) 定义:定义域是在一个函数关系中所有能使函数有意义的 的集合。 (2) 确定函数定义域的原则 1.当函数y=f(x)用列表法给出时,函数的定义域指的是表格中所有实数x 的集合。 2.当函数y=f(x)用图象法给出时,函数的定义域指的是图象在x 轴上的投影所覆盖的实数的集合。 3.当函数y=f(x)用解析式给出时,函数定义域指的是使解析式有意义的实数的集合。 4.当函数y=f(x)由实际问题给出时,函数定义域要使函数有意义,同时还要符合实际情况。 3、.确定定义域的依据: ①f(x)是整式(无分母),则定义域为 ; ②f(x)是分式,则定义域为 的集合; ③f(x)是偶次根式,则定义域为 的集合; ④对数式中真数 ,当指数式、对数式底中含有变量x 时,底数 ; ⑤零次幂中, ,即x 0中 ; ⑥若f(x)是由几个基本初等函数的四则运算而合成的函数,则定义域是各个函数定义域的 。 ⑦正切函数x y tan = 4、抽象函数的定义域(难点) (1)已知)(x f 的定义域,求复合函数()][x g f 的定义域 由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可 得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。 (2)已知复合函数()][x g f 的定义域,求)(x f 的定义域 方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。

高中数学求函数值域的类题型和种方法

高中数学求函数值域的类 题型和种方法 Last updated on the afternoon of January 3, 2021

求函数值域的 7类题型和16种方法 一、函数值域基本知识 1.定义:在函数()y f x =中,与自变量x 的值对应的因变量y 的值叫做函数值,函数值的集合叫做函数的值域(或函数值的集合)。 2.确定函数的值域的原则 ①当函数()y f x =用表格给出时,函数的值域是指表格中实数y 的集合; ②当函数()y f x =用图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合; ③当函数()y f x =用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定; ④当函数()y f x =由实际问题给出时,函数的值域由问题的实际意义确定。 二、常见函数的值域,这是求其他复杂函数值域的基础。 函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域。 一般地,常见函数的值域: 1.一次函数()0y kx b k =+≠的值域为R. 2.二次函数()2 0y ax bx c a =++≠,当0a >时的值域为24,4ac b a ?? -+∞?? ?? ,当0a <时的值域为24,4ac b a ?? --∞ ???., 3.反比例函数()0k y k x = ≠的值域为{}0y R y ∈≠. 4.指数函数()01x y a a a =>≠且的值域为{}0y y >. 5.对数函数()log 01a y x a a =>≠且的值域为R.

6.正,余弦函数的值域为[]1,1-,正,余切函数的值域为R. 三、求解函数值域的7种题型 题型一:一次函数()0y ax b a =+≠的值域(最值) 1、一次函数:()0y ax b a =+≠当其定义域为R ,其值域为R ; 2、一次函数()0y ax b a =+≠在区间[],m n 上的最值,只需分别求出()(),f m f n ,并比较它们的大小即可。若区间的形式为(],n -∞或[),m +∞等时,需结合函数图像来确定函数的值域。 题型二:二次函数)0()(2≠++=a c bx ax x f 的值域(最值) 1、二次函数)0()(2≠++=a c bx ax x f ,当其定义域为R 时,其值域为 ()()22 4 044 04ac b y a a ac b y a a ?-≥>???-?≤时,()2b f a -是函数的最小值,最大值为(),()f m f n 中 较大者;当0a <时,()2b f a -是函数的最大值,最大值为 (),()f m f n 中较小者。 (2)若[],2b m n a - ?,只需比较(),()f m f n 的大小即可决定函数的最大(小)值。 特别提醒: ①若给定区间不是闭区间,则可能得不到最大(小)值; ②若给定的区间形式是[)(]()(),,,,,,,a b a b +∞-∞+∞-∞等时,要结合图像来确函数的值域; ③当顶点横坐标是字母时,则应根据其对应区间特别是区间两端点的位置关系进行讨论。 例1:已知()22f x x --的定义域为[)3,-+∞,则()f x 的定义域为(],1-∞。 例2:已知()211f x x -=+,且()3,4x ∈-,则()f x 的值域为()1,17。 题型三:一次分式函数的值域 1、反比例函数)0(≠= k x k y 的定义域为{}0x x ≠,值域为{}0y y ≠ 2、形如:cx d y ax b +=+的值域:

函数值域求法十一种

函数值域求法十一种 1. 直接观察法 对于一些比较简单的函数,其值域可通过观察得到。 例1. 求函数x 1y = 的值域。 解:∵0x ≠ ∴0x 1≠ 显然函数的值域是:),0()0,(+∞-∞ 例2. 求函数x 3y - =的值域。 解:∵0x ≥ 3x 3,0x ≤-≤-∴ 故函数的值域是:]3,[-∞ 2. 配方法 配方法是求二次函数值域最基本的方法之一。 例3. 求函数]2,1[x ,5x 2x y 2 -∈+-=的值域。 解:将函数配方得: 4)1x (y 2 +-= ∵]2,1[x -∈ 由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max = 故函数的值域是:[4,8] 3. 判别式法 例4. 求函数 22x 1x x 1y +++= 的值域。 解:原函数化为关于x 的一元二次方程 0x )1y (x )1y (2=-+- (1)当1y ≠时,R x ∈ 0)1y )(1y (4)1(2≥----=? 解得:23y 2 1≤ ≤

(2)当y=1时,0x =,而? ?????∈23,211 故函数的值域为? ?????23,21 例5. 求函数) x 2(x x y -+ =的值域。 解:两边平方整理得: 0y x )1y (2x 22 2=++-(1) ∵R x ∈ ∴ 0y 8)1y (42 ≥-+=? 解得:21y 21+≤≤- 但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤ 由0≥?,仅保证关于x 的方程: 0y x )1y (2x 222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 0 ≥?求出的围可能比y 的实际围大,故不能确定此函数的值域为? ?? ???23,21。 可以采取如下方法进一步确定原函数的值域。 ∵2x 0≤≤ )x 2(x x y ≥-+=∴ 21y ,0y min + ==∴代入方程(1) 解得:] 2,0[2 2 222x 41∈-+= 即当 22222x 41-+= 时, 原函数的值域为:]21,0[+ 注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。 4. 反函数法 直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。 例6. 求函数6x 54 x 3++值域。 解:由原函数式可得: 3 y 5y 64x --=

相关主题
文本预览
相关文档 最新文档