当前位置:文档之家› 1-9.极限的计算---两个重要极限

1-9.极限的计算---两个重要极限

1-9.极限的计算---两个重要极限
1-9.极限的计算---两个重要极限

高等数学极限计算方法总结

极限计算方法总结 《高等数学》是理工科院校最重要的基础课之一,极限是《高等数学》的重要组成部分。求极限方法众多,非常灵活,给函授学员的学习带来较大困难,而极限学的好坏直接关系到《高等数学》后面内容的学习。下面先对极限概念和一些结果进行总结,然后通过例题给出求极限的各种方法,以便学员更好地掌握这部分知识。 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可 以用上面的极限严格定义证明,例如: )0,(0lim ≠=∞→a b a an b n 为常数且; 5 )13(lim 2 =-→x x ; ???≥<=∞→时当不存在, 时 当,1||1||0lim q q q n n ;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运 用,而不需再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条 件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x

(2) e x x x =+→10 ) 1(lim ; e x x x =+∞ →)11(lim 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如:133sin lim 0=→x x x ,e x x x =--→21 0) 21(lim ,e x x x =+ ∞ →3 )31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的 等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2x - ~ 2x -。 定理4 如果函数)(),(),(),(11x g x f x g x f 都是0x x →时的无穷小,且 )(x f ~)(1x f ,)(x g ~)(1x g ,则当) ()(lim 110 x g x f x x →存在时,)() (lim 0x g x f x x →也存在且等于)(x f )()(lim 110 x g x f x x →,即)() (lim 0x g x f x x →=) ()(lim 110x g x f x x →。 5.洛比达法则 定理5 假设当自变量x 趋近于某一定值(或无穷大)时,函数)(x f 和)(x g 满 足:(1))(x f 和)(x g 的极限都是0或都是无穷大; (2))(x f 和)(x g 都可导,且)(x g 的导数不为0; (3)) () (lim x g x f ''存在(或是无穷大);

极限的计算、证明

极限的论证计算,其一般方法可归纳如下 1、 直接用定义()等δεε--,N 证明极限 例、试证明01 lim =∞→n n 证:要使ε<-01n ,只须ε 1 >n ,故 0>?ε,11 +?? ? ???=?εN ,N n >?,有ε<-01 n 2、 适当放大,然后用定义或定理求极限或证明极限 例、证明:0! lim =∞→n a n n ,0>a 证:已知0>a 是一个常数 ?∴正整数k ,使得k a ≤ ()ε 1!,01+???? ????=?>?∴+εεk a N k ,当N n >时,有 ε<-0! n a n 3、用两边夹定理在判定极限存在的同时求出极限 例、求()() n n n n 264212531lim ??-??∞ → 解: ()()()()n n n n n 212264212753264212531?-??-??=??-?? ()()()()n n n n n n 41 125312642211253264?-????=?-??> ∴ ()()n n n 41 2642125312 >??? ? ????-??

两边开n 2次方: ()()121 21412642125311222→?=>??-??>n n n n n n n n 由两边夹:()() 1264212531lim =??-??∞ →n n n n 4、 利用等价性原理把求一般极限的问题化为无穷小量的极限问 题 例、设0≠→l S n ()∞→n ,0>p 为常数,求证:p p n l S →()∞→n 证:00→-≤-≤l S l S n n ,得 l S n →()∞→n 记 n n l S α+=,其中 0→n α()∞→n 再记n n l S α+=()n n l l l βα+=??? ? ? ?+=11,其中0→=l n n αβ()∞→n 则有()p n p p n l S β+=1。 若取定自然数p K >,则当1

极限计算方法总结

极限计算方法总结 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的 极限严格定义证明,例如:)0,(0lim ≠=∞→a b a an b n 为常数且; 5)13(lim 2=-→x x ;??? ≥<=∞→时当不存在,时当,1||1||0lim q q q n n ;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需 再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时, 不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+→1 )1(lim ; e x x x =+∞→)11(l i m 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如:133sin lim 0=→x x x ,e x x x =--→21 0) 21(lim ,e x x x =+∞ →3 )31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2 x - ~ 2x -。

归纳函数极限的计算方法

归纳函数极限的计算方法-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

归纳函数极限的计算方法 摘 要 :本文总结出了求极限的几种方法,比如用定义、公式、定理、性质求极限. 关键词 :函数极限;计算方法;洛必达法则; 四则运算 The sum of the Method of Computing Function Limit Abstract :The write sums up in this article several ways of extacting the limit by the means of definition, formula,nature, theorem and so on. Key Words :Function Limit ;Computing method ;L’Hospita l rules; Four fundamental rules 前言 极限的概念是高等数学中一个最基本、最重要的概念,极限理论是研究连续、导数、积分、级数等的基本工具,因此正确理解和运用极限的概念、掌握极限的求法,对学好数学分析是十分重要的.求极限的方法很多且非常灵活,本文归纳了函数极限计算的一些常见方法和技巧. 1. 预备知识 1.1函数极限的εδ-定义]1[ 设函数f 在点0x 的某个空心邻域'0(;)U x δ内有定义,A 为定数,若对任给的0ε>,存在正数'()δδ<,使得当00||x x δ<-<时有|()|f x A ε-<,则称函数当趋于0x 时以A 为极限,记作0 lim ()x x f x A →=或()f x A →0()x x →. 2.求函数极限的方法总结 极限是描述函数的变化趋势,以基于图形或直观结合定义可以求出一些简单的函数的极限;但是结构较为复杂的函数的图形不易画出,基于直观也就无法得出极

极限计算方法总结(简洁版)

极限计算方法总结(简洁版) 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证 明,例如:)0,(0lim ≠=∞→a b a an b n 为常数且;5)13(lim 2=-→x x ;???≥<=∞→时当不存在, 时当,1||1||0lim q q q n n ; 等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 2.极限运算法则 定理 1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1) B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+ →1 )1(lim ; e x x x =+∞ →)11(lim 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如: 133sin lim 0=→x x x ,e x x x =--→21 0)21(lim ,e x x x =+∞→3)3 1(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价

建筑结构应按承载能力极限状态和正常使用极限状态设计

第一章概述 建筑结构应按承载能力极限状态和正常使用极限状态设计。前者指结构或构件达到最大承载力或达到不适于继续承载的变形时的极限状态;后者为结构或构件达到正常使用的某项规定限值时的极限状态[1]。钢结构可能出现的承载能力极限状态有:①结构构件或连接因材料强度被超过而破坏;②结构转变为机动体系;③整个结构或其中一部分作为刚体失去平衡而倾覆;④结构或构件丧失稳定;⑤结构出现过度塑性变形,不适于继续承载;⑥在重复荷载下构件疲劳断裂。其中稳定问题是钢结构的突出问题,在各种类型的钢结构中,都可能遇到稳定问题,因稳定问题处理不利造成的事故也时有发生。 1.1钢结构的失稳破坏 钢结构因其优良的性能被广泛地应用于大跨度结构、重型厂房、高层建筑、高耸构筑物、轻型钢结构和桥梁结构等。如果钢结构发生事故则会造成很大损失。 1907年,加拿大圣劳伦斯河上的魁北克桥,在用悬臂法架设桥的中跨桥架时,由于悬臂的受压下弦失稳,导致桥架倒塌,9000t钢结构变成一堆废铁,桥上施工人员75人罹难。大跨度箱形截面钢桥在1970年前后曾出现多次事故[2]。 美国哈特福德市(Hartford City)的一座体育馆网架屋盖,平面尺寸92m×110m,该体育馆交付使用后,于1987年1月18日夜突然坍塌[3]。由于网架杆件采用了4个等肢角钢组成的十字形截面,其抗扭刚度较差;加之为压杆设置的支撑杆有偏心,不能起到预期的减少计算长度的作用,导致网架破坏[4]。20世纪80年代,在我国也发生了数起因钢构件失稳而导致的事故[5]。 科纳科夫和马霍夫曾分析前苏联1951—1977年期间所发生的59起重大钢结构事故,其中17起事故是由于结构的整体或局部失稳造成的。如原古比雪夫列宁冶金厂锻压车间在1957年末,7榀钢屋架因压杆提前屈曲,连同1200 m2屋盖突然塌落。 高层建筑钢结构在地震中因失稳而破坏也不乏其例。1985年9月19日,墨西哥城湖泊沉淀区发生8.1级强震,持时长达180s,只隔36h又发生一次7.5级强余震。震后调查表明,位于墨西哥城中心区的Pino Suarez综合楼第4层有3根钢柱严重屈曲(失稳),横向X形支撑交叉点的连接板屈曲,纵向桁架梁腹杆屈曲破坏[6]。1994年发生在美国加利福尼亚州Northridge的地震震害表明,该地区有超过100座钢框架发生了梁柱节点破坏[7],对位于Woodland Hills地区的一座17层钢框架观察后发现节点破坏很严重[8],竖向支撑的整体失稳和局部失稳现象明显。1995年发生在日本Hyogoken-Nanbu的强烈地震中,钢结构发生的典型破坏主要有局部屈曲、脆性断裂和低周疲劳破坏[9]。 对结构构件,强度计算是基本要求,但是对钢结构构件,稳定计算比强度计算更为重要。强度问题与稳定问题虽然均属第一极限状态问题,但两者之间概念不同。强度问题关注在结构构件截面上产生的最大内力或最大应力是否达到该截面的承载力或材料的强度,因此,强度问题是应力问题;而稳定问题是要找出作用与结构内部抵抗力之间的不稳定平衡状态,即变形开始急剧增长的状态,属于变形问题。稳定问题有如下几个特点: (1)稳定问题采用二阶分析。以未变形的结构来分析它的平衡,不考虑变形对作用效应的影响称为一阶分析(FOA—First Order Analysis);针对已变形的结构来分析它的平衡,则是二阶分析(SOA—Second Order Analysis)。应力问题通常采用一阶分析,也称线性分析;稳定问题原则上均采用二阶分析,也称几何非线性分析。 (2)不能应用叠加原理。应用叠加原理应满足两个条件:①材料符合虎克定律,即应力与应变成正比;②结构处于小变形状态,可用一阶分析进行计算。弹性稳定问题不满足第二个条件,即对二阶分析不能用叠加原理;非弹性稳定计算则两个条件均不满足。因此,叠加原理不适用于稳定问题。 (3)稳定问题不必区分静定和超静定结构。对应力问题,静定和超静定结构内力分析方法

高数求极限方法总结

第一章极限计算方法总结 一、极限定义、运算法则和一些结果 1.定义: 数列极限、函数极限, 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:0)1(1 lim 2=+-∞→n n ;5)13(lim 2=-→x x ;1,0lim <=∞ →q q n n 当等。 定义证明按着总结的四个步骤来,缺一不可!(2)在后面求极限时,(1)中提到的简单极限 作为已知结果直接运用,而不需再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在, 且(1)B A x g x f ±=±)]()(lim[(2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+→1 0)1(lim ; e x x x =+∞→)11(lim 说明:(1)不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式。 (2)一定注意两个重要极限成立的条件。 例如: 133sin lim 0=→x x x ,e x x x =--→210)21(lim ,e x x x =+∞→3)31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2x - ~ 2x -。 定理4 如果函数 )(),(),(),(11x g x f x g x f 都是0x x →时的无穷小,且)(x f ~)(1x f , )(x g ~)(1x g ,则当)()(lim 110 x g x f x x →存在时,)() (lim 0x g x f x x →也存在且等于)()(lim 1 10x g x f x x →。 5.连续性 定理5 一切连续函数在其定义去间内的点处都连续,即如果0x 是函数)(x f 的定义去间内

极限状态承载力计算

极限状态承载力计算 1)和载效应组合计算 承载能力极限状态组合(基本组合): 00(1.2 1.4) 1.0(1.210.35 1.413.20)30.90()d Gk Qk M M M kN m γγ=+=-??+?=-? 00(1.2 1.4) 1.0(1.215.20 1.438.83)72.60()d Gk Qk V M M kN γγ=+=??+?= 作用短期效应组合(不计冲击力): 0.710.350.713.2019.59()sd Gk Qk M M M kN m =+=+?=? 作用长期效应组合(不计冲击力): 0.710.350.513.2016.95()ld Gk Qk M M M kN m =+=+?=? 承载能力极限状态组合(偶然组合,不同时组合汽车竖向力): 10.3588.5898.93()d Gk ck M M M kN m =+=+=? 2)正截面抗弯承载力 ①基本组合 对于矩形截面其正截面抗弯承载能力应符合《公预规》式(5.2.1-1)规定: 00()2 ud cd x M f bx h γ≤- sd s cd f A f bx = 受压区高度应符合0b x h ξ≤,查看《公预规》表5.2.1得0.56b ξ=。设0223h mm =可得到: 020*******.90 =0.2230.22322.41000 6.27()121.5ud cd b M x h h f b mm h mm γξ=-- ?-- ?=<= 2s 1000 6.2722.4 502()280 A mm ??= = 其中1000b mm =,0217h mm =,33s a mm =,22.4cd f MPa =,280cd f MPa =。 实际每延米板配10束2根12φ,则222262502s A mm mm =>,满足要求。 ②偶然组合 对于矩形截面其正截面抗弯承载能力应符合《公预规》式(5.2.1-1)规定:

数学分析求极限的方法

求极限的方法 具体方法 ⒈利用函数极限的四则运算法则来求极限 定理1①:若极限)(lim 0 x f x x →和)(lim x g x x →都存在,则函数)(x f ±)(x g ,)()(x g x f ? 当0x x →时也存在且 ①[])()()()(lim lim lim 0 .00 x g x f x g x f x x x x x →→→± = ± ②[])()()()(lim lim lim 0 x g x f x g x f x x x x x x →→→?= ? 又若0)(lim 0 ≠→x g x x ,则 ) ()(x g x f 在0x x →时也存在,且有 ) ()() ()(lim lim lim x g x f x g x f x x x x x x →→→= 利用极限的四则运算法则求极限,条件是每项或每个因子极限存在,一般所给的变量都不满足这个条件,如 ∞ ∞、 0等情况,都不能直接用四则运算法则, 必须要对变量进行变形,设法消去分子、分母中的零因子,在变形时,要熟练掌握饮因式分解、有理化运算等恒等变形。 例1:求2 42 2 lim --- →x x x 解:原式=()() ()022 22lim lim 2 2 =+= -+-- - →→x x x x x x ⒉用两个重要的极限来求函数的极限 ①利用1sin lim =→x x x 来求极限 1sin lim =→x x x 的扩展形为: 令()0→x g ,当0x x →或∞→x 时,则有 ()() 1sin lim =→x g x g x x 或()() 1sin lim =∞ →x g x g x

高数-极限求解方法与技巧总结

第一章 极限论 极限可以说是整个高等数学的核心,贯穿高等数学学习的始终。因为有关函数的可积、连续。可导等性质都是用极限来定义的。毫不夸张地说,所谓高数,就是极限。衡量一个人高等数学的水平只需看他对极限的认识水平,对极限认识深刻,有利于高等数学的学习,本章将介绍数列的极限、函数的极限以及极限的求解。重点是求极限。 ??????? ?? ?? ?? 极限的定义数列极限极限的性质 函数极限的定义函数极限函数极限的性质 一、求极限的方法 1.利用单调有界原理 单调有界原理:若数列具有单调性、且有有界性,也即单调递增有上界、单调递减有下界,则该数列的极限一定存在。可以说,整个高等数学是从该结论出发来建立体系的。 利用该定理一般分两步:1、证明极限存在。2、求极限。 说明:对于这类问题,题中均给出了数列的第n 项和第1n +项的关系式,首先用归纳法或作差法或作商法等证明单调性,再证明其有界性(或先证有界、再证单调性),由单调有界得出极限的存在性,在最终取极限。 例1设0110,0,()0,1,2n n n a a x x x n x +>>=+=,…证{}n x 的极限存在,并求其极限。 分析:本题给出的是数列前后两项的关系,所以应该用单调有界原理求解。 解:由基本不等式,11()2n n n a x x x +=+≥n x 有下界;下面证单 调性,可知当2n ≥时,有2 111 ()()22n n n n n n n x a x x x x x x +=+≤+=,则n x 单调递减。综 合可得,则n x 单调递减有下界,所以lim n n x →∞ 存在;令lim n n x A →∞ = ,带入等式解得 A 评注:对于该题,再证明有界性的过程中用到基本不等式;特别是在证明单调性

混凝土结构设计规范--正常使用极限状态验算

https://www.doczj.com/doc/754891304.html, 正常使用极限状态验算 8.1 裂缝控制验算 第8.1.1条钢筋混凝土和预应力混凝土构件,应根据本规范第3.3.4条的规定,按所处环境类别和结构类别确定相应的裂缝控制等级及最大裂缝宽度限值,并按下列规定进行受拉边缘应力或正截面裂缝宽度验算: 1一级--严格要求不出现裂缝的构件 在荷载效应的标准组合下应符合下列规定: σck-σpc≤0(8.1.1-1) 2二级--一般要求不出现裂缝的构件 在荷载效应的标准组合下应符合下列规定: σck-σpc≤f tk(8.1.1-2) 在荷载效应的准永久组合下宜符合下列规定: σcq-σpc≤0(8.1.1-3) 3三级--允许出现裂缝的构件 按荷载效应的标准组合并考虑长期作用影响计算的最大裂缝宽度,应符合下列规定; ωmax≤ω1im(8.1.1-4) 式中 σck、σcq——荷载效应的标准组合、准永久组合下抗裂验算边缘的混凝土法向应力; σpc——扣除全部预应力损失后在抗裂验算边缘混凝土的预压应力,按本规范公式(6.1.5-1)或公式(6.1.5-4)计算; f tk--混凝土轴心抗拉强度标准值,按本规范表4.1.3采用; ωmax--按荷载效应的标准组合并考虑长期作用影响计算的最大裂缝宽度,按本规范第8.1.2条计算; ω1im--最大裂缝宽度限值,按本规范第3.3.4条采用。 注:对受弯和大偏心受压的预应力混凝土构件,其预拉区在施工阶段出现裂缝的区段,公式(8.1.1-1)至公式(8.1.1-3)中的σpc应乘以系数0.9。 第8.1.2条在矩形、T形、倒T形和I形截面的钢筋混凝土受拉、受弯和偏心受压构件及预应力混凝土轴心受拉和受弯构件中,按荷载效应的标准组合并

承载能力极限状态计算

一,为什么进行承载能力极限状态计算?? 答:承载能力极限状态是已经破坏不能使用的状态。正常使用极限状态是还可以勉强使用,承载能力极限状态是根据应力达到破坏强度,为了使建筑避免出现这种状态从而进行计算,使建筑数值高于极限承载能力状态的数值。 二,承载能力极限状态计算要计算那些方面?? 答:1作用效应组合计算;2正截面承载力的计算;3斜截面承载力计算;4扭曲截面承载力计算;5受冲击切承载力计算;6局部受压承载力计算。 三,1作用效应组合计算所用到的公式及其作用: 其效应组合表达式为: ) (2 111 00∑∑==++=n j QjK Qj C K Q Q m i GiK Gi ud S S S S γψγγγγ 跨中截面设计弯矩 M d =γG M 恒+γq M 汽+γq M 人 支点截面设计剪力 V d =γG V 恒+γG1V 汽+γG2V 人 2正截面承载力的计算所用到的公式及其作用:

(1)T形截面受弯构件位于受压区的翼缘计算宽度,应按下列三者中最小值取用。 翼缘板的平均厚度h′f =(100+130)/2=115mm ①对于简支梁为计算跨径的1/3。 b′f=L/3=19500/3=6500mm ②相邻两梁轴线间的距离。 b′f = S=1600mm ③b+2b h+12h′f,此处b为梁的腹板宽,b h为承托长度,h′f为不计承托的翼缘厚度。 b′f=b+12h′f=180+12×115=1560mm (2)判断T形截面的类型 设a s=120mm,h0=h-a s=1300-120=1180mm;

mm N M mm N h h h b f d f f f cd -?=>-?=- ??='- ''60601022501000.2779) 2 115 1180(11515608.13)2(γ 故属于第一类T 形截面。 (3)求受拉钢筋的面积A s mm h mm x x x x h x b f M f f cd d 11517.92:) 2 1180(15608.13102250) 2(:600='<=-?=?-'=解得根据方程γ 2 708728017 .9215608.13mm f x b f A sd f cd s =??= '= 满足多层钢筋骨架的叠高一般不宜超过0.15h~0.20h 的要求。 梁底混凝土净保护层取32mm ,侧混凝土净保护层取32mm ,两片焊接平面骨架间距为: ?? ?=>>=?-?-mm d mm mm 4025.1404.448.352322180 §2.2正截面抗弯承载力复核 ⑴跨中截面含筋率验算 mm a s 60.1137238) 4.188.35432(804)8.35232(6434=+?++?+= h 0=h -a s =1300-113.60=1186.40mm ???=>>=>=?== %19.0/45.0%2.0%39.340.11861807238 min 0sd td s f f bh A ρρ ⑵判断T 形截面的类型 N A f N h b f s sd f f cd 331064.202628072381072.247511515608.13?=?=>?=??=''

关于计算极限的几种方法

目录 摘要 (1) 引言 (2) 一.利用导数定义求极限 (2) 二.利用中值定理求极限 (2) 三.利用定积分定义求极限 (3) 四.利用施笃兹公式 (4) 五.利用泰勒公式 (5) 六.级数法 (5) 七.结论 (6) 参考文献 (6)

内容摘要 摘要:极限是数学分析中最基本、最重要的概念之一,极限是微积分的重要基础,研究函数性质的重要手段.极限是描述函数在无限过程中的变化趋势的重要概念,本文通过典型例题,举一反三,给出几种常用的求极限方法。极限的计算方法很多,并且有一定的规律和技巧性,对此,本文将根据实例进行分析、探讨,并归纳出一些计算方法. 关键词:极限;计算;方法 Abstract:the limit is one of the most basic, the most important concept in mathematical analysis, the limit is an important foundation for the calculus, an important means to study the function of the nature of the concept description. The limit is an important trend in the infinite process function, through typical examples, infer other things from one fact,several commonly used methods for the limits. A lot of calculation method of limit, and there are rules and skills, certain of

极限的几种计算方法论文

极限的几种计算方法 摘要:极限是描述函数在无限过程中的变化趋势的重要概念,本文通过典型例题,举一反三,给出几种常用的求极限方法. 关键词:极限;计算;方法 极限是数学分析中最基本、最重要的概念之一,极限是微积分的重要基础,研究函数性质的重要手段.极限的计算方法很多,并且有一定的规律和技巧性,对此,本文将根据实例进行分析、探讨,并归纳出一些计算方法. 一、 利用极限定义求极限 设{}n a 为数列, a 为定数.若对任给的正数ε ,总存在正整N ,使得当n N > ,n a a ε-<则称数列{}n a 收敛于a ,定数a 称为数列{}n a 的极限, 并记作lim n n a a →∞ =或()n a a n →→∞. 例1 证明33545 lim 232 n n n n →∞+-=- 分析: 成立.从中解n 很困 难 ,因为要找的N 不是唯一的,所以可以用“放大”不等式的方法,再解不等式,并可限定正整数n 大于某个正常数,当然“放大”和“限定”的也不是唯一的. 证明:限定7n >,从而3 30n ->,要使不等式 ()()333333 54527272232222323n n n n n n n n n n n +-+++-==<--+- 3232 2n n n ε= << 成立,

从不等式 22n ε<,解得 n >取N = 于是, N = , N ,有33 545 232 n n n +---ε< , 即 . 例2 证明 ! lim 0n n n n →∞= 证明: 由于 !!10n n n n n n n -=≤,故对0ε>,取N =+1,则当n N >时,有 !1 0n n n n ε-≤<,因此!lim 0n n n n →∞=. 二、利用两个重要极限求极限 例3 求 2lim 1x n x -→∞ ?? - ??? 分析: 此题是一道比较典型的应用第二个重要极限的问题. 解: 2 2221lim 112x x t x n x x -?--=→∞ ??????- =+ ?? ??? ?? -? ? 2 21lim 1t t e t →∞ ?? ??+=?? ?????? ?. 例4 求 2 c o s l i m 2 x x x π π → - 解: 202cos cos 2lim lim 2 x t t x t x t x π πππ-=→→ ?? + ???→←???- 0sin lim 1t t t →=-=-. 例5 求30tan sin lim x x x x →- 解: 3200tan sin tan 1cos lim lim()x x x x x x x x x →→--=?

正常使用极限状态计算

6 +正常使用极限状态计算 6.1 抗裂性验算 6.1.1 正截面抗裂性验算 正截面抗裂性验算以跨中截面受拉边的正应力控制。在荷载短期效应组合作用下应满足: 085.0≤-pc st σ σ 上式中: st σ—荷载短期效应组合作用下,截面受拉边的法向拉应力; () x o o QK K G o x o mK G n x n PK G st y I M M I y M I y M 33 22 211 111/7.0μσ +++ + = 查表=PK G M 12236.58m KN ?,1n I =47040154.19564cm ,=x n y 1132.1121cm =mK G M 1264.53m KN ?,2o I =55811557.40454cm ,=x o y 2123.3379cm = K G M 2803.61m KN ?,3o I =63399576.03934cm ,=x o y 3133.4974cm =QK M 3380.18m KN ?, 1.23871=+μ 代入数据得: MPa st 453.25264.9834.1355.145846 .4749122387 .1/10001371.44197.0100061.8034096 .452509100053.2643557 .356062100058.2236=++=??+?+ ?+ ?= σ pc σ —截面下边缘的有效预压应力。 nx n pn p n p pc y I e N A N + =σ p N — 有效预压力, ()()KN A A N p s s con p pe p 674.5558/1000 5580312.175510.2231395=?--=--==∏ I σ σ σσ 1n A — 净截面面积,2 15826.7850cm A n = 1pn e — 净截面钢束群重心到形心轴的距离,cm e pn 2550.1131=

极限计算方法总结

极限计算方法总结 靳一东 《高等数学》是理工科院校最重要的基础课之一,极限是《高等数学》的重要组成部分。求极限方法众多,非常灵活,给函授学员的学习带来较大困难,而极限学的好坏直接关系到《高等数学》后面内容的学习。下面先对极限概念和一些结果进行总结,然后通过例题给出求极限的各种方法,以便学员更好地掌握这部分知识。 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的 极限严格定义证明,例如:)0,(0lim ≠=∞→a b a an b n 为常数且;5)13(lim 2 =-→x x ;???≥<=∞→时当不存在,时当,1||1||0lim q q q n n ;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需 再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,) ()(lim 成立此时需≠= B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时, 不能用。 3.两个重要极限 (1) 1sin lim =→x x x (2) e x x x =+→1 )1(lim ; e x x x =+∞→)11(l i m 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如:133sin lim =→x x x ,e x x x =--→21 ) 21(lim ,e x x x =+∞ →3)3 1(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。

第六章 钢结构的正常使用极限状态

第6章钢结构的正常使用极限状态 6.1常使用极限状态的特点 正常使用极限状态对应于结构或构件达到正常使用或耐久性能的某项规定限值。《建筑结构可靠度设计统一标准》(GB50068-2001)规定,当结构或构件出现下列状态之一时,即认为超过了正常使用极限状态: 1)影响正常使用或外观的变形; 2)影响正常使用或耐久性能的局部破坏(包括裂缝) 3)影响正常使用或耐久性能的振动 4)影响正常使用或耐久性能的其它特定状态。 正常使用极限状态可以理解为适用性极限状态,常见的适用性问题有以下七类:1)由荷载、温度变化、潮湿、收缩和徐变引起的非结构构件的局部损坏(如顶棚、隔墙、墙、窗); 2)荷载产生的挠度防碍家具或设备(如电梯)的正常使用功能; 3)明显的挠度使居住者感到不安; 4)由剧烈的自然现象(如飓风、龙卷风)造成的非结构构件彻底损坏; 5)结构因时效和服役而退化(如地下停车场结构因防水层破坏而损坏); 6)建筑物因活荷载、风荷载、或地震荷载造成的运动,导致居住者身体或心理上不舒适感; 7)使用荷载下的连续变形(如高强螺栓滑移)。 长期以来,正常使用极限状态不如承载极限状态那样受到重视,认为只不过是适当限制一下挠度和侧移。随着结构材料强度的提高和构件的轻型化(包括围护结构和非承重结构构件),情况已经有所改变,研究工作日趋活跃,包括分析正常使用极限状态的可靠指标取值问题。不过我国的设计规范和规程中仍然只有变形和振动限制两个方面。 6.2拉杆、压杆的刚度要求 1. 轴心受力构件刚度验算 按照结构的使用要求,钢结构的轴心拉杆、轴心压杆以及拉弯构件都不应过分柔弱而应该具有必要的刚度,保证构件不产生过度的变形。这种变形可能因其自重而产生,也可能在运输或安装构件的过程中产生。承受轴线拉力或压力的构件其刚度用长细比控制,即: λmax=(L0/i) max≤[λ] 式中λmax——杆件的最大长细比 L0——杆件的计算长度 I —截面的回转半径

第2章结构按极限状态法设计计算地原则(新)

第2章结构按极限状态法设计计算的原则 钢筋混凝土结构构件的“设计”是指在预定的作用及材料性能条件下,确定构件按功能要求所需要的截面尺寸、配筋和构造要求。 自从19世纪末钢筋混凝土结构在土木建筑工程中出现以来,随着生产实践的经验积累和科学研究的不断深入,钢筋混凝土结构的设计理论在不断地发展和完善。 最早的钢筋混凝土结构设计理论,是采用以弹性理论为基础的容许应力计算法。这种方法要求在规定的标准荷载作用下,按弹性理论计算得到的构件截面任一点的应力应不大于规定的容许应力,而容许应力是由材料强度除以安全系数求得的,安全系数则依据工程经验和主观判断来确定。然而,由于钢筋混凝土并不是一种弹性匀质材料,而是表现出明显的塑性性能,因此,这种以弹性理论为基础的计算方法是不可能如实地反映构件截面破坏时的应力状态和正确地计算出结构构件的承载能力的。 20世纪30年代,前苏联首先提出了考虑钢筋混凝土塑性性能的破坏阶段计算方法。它以充分考虑材料塑性性能的结构构件承载能力为基础,使按材料标准极限强度计算的承载能力必须大于计算的最大荷载产生的内力。计算的最大荷载是由规定的标准荷载乘以单一的安全系数而得出的。安全系数仍是依据工程经验和主观判断来确定。 随着对荷载和材料强度的变异性的进一步研究,前苏联在20世纪50年代又率先提出了极限状态计算法。极限状态计算法是破坏阶段计算法的发展,它规定了结构的极限状态,并把单一安全系数改为三个分项系数,即荷载系数、材料系数和工作条件系数。从而把不同的外荷载、不同的材料以及不同构件的受力性质等,都用不同的安全系数区别开来,使不同的构件具有比较一致的安全度,而部分荷载系数和材料系数基本上是根据统计资料用概率方法确定的。因此,这种计算方法被称为半经验、半概率的“三系数”极限状态设计法。我国

求二元函数极限的几种方法

11 1.二元函数极限概念分析 定义1 设函数f 在2D R ?上有定义,0P 是D 的聚点,A 是一个确定的实数.如果对于任意给定的正数ε,总存在某正数δ,使得00(;)P U P D δ∈时,都有 ()f P A ε-<, 则称f 在D 上当0P P →时,以A 为极限,记0 lim ()P P P D f P A →∈=. 上述极限又称为二重极限. 2.二元函数极限的求法 利用二元函数的连续性 命题 若函数(,)f x y 在点00(,)x y 处连续,则 0000(,)(,) lim (,)(,)x y x y f x y f x y →=. 例1 求2 (,)2f x y x xy =+ 在点(1,2)的极限. 解: 因为2 (,)2f x y x xy =+在点(1,2)处连续,所以 12 212 2lim (,) lim(2) 12125.x y x y f x y x xy →→→→=+=+??= 例2 求极限()()2 21,1,21 lim y x y x +→. 解: 因函数在()1,1点的邻域内连续,故可直接代入求极限,即 ()()221,1,21lim y x y x +→=31 .

22 利用恒等变形法 将二元函数进行恒等变形,例如分母或分子有理化等. 例3 求 00 x y →→ 解: 00 x y →→ 00 x y →→= 00 x y →→= 00 1. 4 x y →→==-例4 ()() 2 2220,0,321 )31)(21(lim y x y x y x +-++→. 解: 原式()() ( )) () () ,0,02 211lim 231x y x y →+= + ()( 22 ,0,0lim x y →= + 11022 = +=.

相关主题
文本预览
相关文档 最新文档