当前位置:文档之家› 湖南大学污水处理厂毕业设计全套计算书_secret

湖南大学污水处理厂毕业设计全套计算书_secret

湖南大学污水处理厂毕业设计全套计算书_secret
湖南大学污水处理厂毕业设计全套计算书_secret

湖南大学污水处理厂毕业设计全套

(图纸\计算书\说明书)

一、城市污水雨水管网的设计计算 (01)

1.1、城市污水管网的设计计算 (01)

1.1.1、确定城市污水的比流量 (01)

1.1.2、各集中流量的确定 (01)

1.2、城市雨水管网的设计计算 (01)

二、城市污水处理厂的设计计算 (03)

2.1、污水处理构筑物的设计计算 (03)

2.1.1、中格栅 (03)

2.1.2、细格栅 (04)

2.1.3、污水提升泵房 (06)

2.1.4、平流沉沙池 (09)

2.1.5、厌氧池 (11)

2.1.6、氧化沟 (12)

2.1.7、二沉池 (17)

2.2、污泥处理构筑物的设计计算 (22)

2.2.1、污泥浓缩池 (22)

2.2.2、储泥池 (25)

2.2.3、污泥脱水间 (25)

三、处理构筑物高程计算 (25)

3.1、水头损失计算 (25)

3.2、高程确定 (27)

四、污水厂项目总投资,年总成本及经营成本估算 (27)

4.1、项目总投资估算 (27)

4.1.1、单项构筑物工程造价计算 (27)

4.1.2、第二部分费用 (28)

4.1.3、第三部分费用 (28)

4.1.4、工程项目总投资 (29)

4.2、污水厂处理成本估算 (29)

4.2.1、药剂费 (29)

4.2.2、动力费(电费) (29)

4.2.3、工资福利费 (30)

4.2.4、折旧费 (30)

4.2.5、摊销费 (30)

4.2.6、大修理基金提成率 (30)

4.2.7、检修维护费 (31)

4.2.9、其它费用 (31)

4.2.10、工程项目年总成本 (31)

4.2.11、项目年经营成本 (32)

4.3、污水处理厂综合成本 (32)

第1章 城市污水雨水管网的设计计算

1.1、城市污水管网的设计计算 1.1.1 确定城市污水的比流量:

由资料可知,XX 市人口为41.3万(1987年末的统计数字),属于中小城市,居民生活用水定额(平均日)取150l/cap.d 。而污水定额一般取生活污水定额的80-90%,因此,污水定额为150l/cap.d*80%=120 l/cap.d 。则可计算出居住区的比流量为 q 0=864*120/86400=1.20(l/s ) 1.1.2 各集中流量的确定: ○

1

市柴油机厂 450*103

*3.0=15.624(l/s )

2新酒厂取用9.69(l/s ) ○

3市九中取用15.68 (l/s ) ○4火车站设计流量取用6.0(l/s ) 总变化系数K Z =

11

.07.2Q

(Q 为平均日平均时污水流量,l/s )。当Q<5l/s

时,K Z =2.3;当Q 〉1000l/s 时,K Z =1.3;其余见下表: 对于城市居住区面积及街坊的划分可见蓝图所示,而对城市污水管段的计算由计算机计算,其结果可见后附城市污水管网设计计算表。 1.2、城市雨水管网的设计计算:

计算雨水管渠设计流量所用的设计暴雨强度公式及流量公式可写

成: q=167A1(1+clgP)/(t1+mt2+b)n

式中:q——设计暴雨强度(l/(s·ha))

P——设计重现期(a)

t1——地面集水时间(min)

m——折减系数

t2——管渠内雨水流行时间(min)

A 1﹑b ﹑c﹑n——地方系数。

首先,确定暴雨强度公式:由资料可计算径流系数ψψ=5%*0.9+15%*0.9+5%*0.4+17%*0.3+13%*0.15 =0.68

暴雨强度公式:参考长沙的暴雨强度公式:

q=3920(1+0.68lgp)/(t+17)0.86

重现期 p=1年,地面集水时间取t1=10 min,t=t

1+mt

2

折减系数取m=2.0,

所以可以确定该地区的暴雨强度公式为:

q0=ψ*q=0.68*3920*(1+0.7lg1.0)/(27+2∑t2)0.86

=2665.6/(27+2∑t 2)0.86

对于城市雨水汇水面积及其划分可见蓝图所示,而对城市雨水管段的计算由计算机计算,其结果可见后附的城市雨水管网设计计算表。特别说明:将雨湖设为一个雨水处理调节水池,雨湖的面积约为11000m3,根据雨湖两侧的地面标高差约为0.2m 则:设雨湖的有效

调节水深为0.1m,所以调节水池的容积为1100m2。

设调节水池24h排空一次则:进入雨湖外排管段的集水井的调节水量为:11000000/86400=12.73 (l/s)

第2章城市污水处理厂的设计计算

2.1、污水处理构筑物的设计计算

2.1.1中格栅设计:

为保证后续污水提升泵房的安全运行,隔除较大的漂浮物质及垃圾,在污水提升泵房前端设有中格栅。格栅的间距为e=40mm,栅前部分长度0.5m,中隔栅设2组,水量小时可只开一组,水量大时两组都开启。配置自动除渣设备。

栅前流速取0.6m/s,栅前水深根据最优水力断面公

B

1=2h=

v

Q

2=

6.0

382

.0

*

2=1.13m,则h=0.56m,过栅流速取v=0.7m/s,

栅条间隙e=20mm,格栅的安装倾角为60°,则栅条的间隙数为: n=Q max*sinа0.5/ehv

=0.382*(sin60°)0.5/(0.02*0.56*0.7)

=45.3 n取46

栅槽宽度:取栅条宽度为S=0.01 m

B

2

=S*(n-1)+e*n

=0.01*(23-1)+0.02*23=0.68m,即每个槽宽为0.68m,则槽宽度B=2*0.68=1.36m(考虑了墙厚)。

栅槽总长度: L=L

1+L

2

+1.0+0.5+

tg

H

1,

L 1=

1

12αtg B B -=(1.36-1.13)/(2*tg20°)=0.32m]

L 2= L 1/2=0.16m H 1=h+h 2=0.56+0.3=0.86m 则, L=L 1+L 2+1.0+0.5+

α

tg H 1

=0.32+0.16+1.0+0.5+0.86/tg60°=2.48m

每日栅渣量:(单位栅渣量取W 1=0.05 m 3栅渣/103 m 3污水)

W=Q*W 1=3*104*0.05/103=1.5m 3/d 〉0.2 m 3/d

宜采用机械清渣方式。 栅槽高度:

起点采用h 1=0.5m ,则栅槽高度为H=0.56+0.5=1.06m 。由于格栅在污水提升泵前,栅渣清除需用吊车。为了便于操作,将栅槽增高0.8m ,以便在工作平台上设置渣筐,栅渣直接从栅条落入栅筐,然后运走。

2.1.2细格栅设计:

设栅前水深h=0.56m ,进水渠宽度B 1=2h=1.13。过栅流速取v=0.8m/s ,栅条间隙e=10mm ,格栅的安装倾角为60°,则 栅条的间隙数为:

n=Q max ·sin а

0.5

/ehv

=0.382*(sin60°)0.5/(0.01*0.56*0.8) =79.35 n 取80

栅槽宽度:取栅条宽度为S=0.01 m B 2=S*(n-1)+e*n

=0.01*(80-1)+0.01*80 = 1.59m 取1.60m 进水渠道渐宽部分长度:

L

1= (B

2

- B

1

)/2tg

1

α=(1.59-1.13)/2tg20°=0.65m

1

α—进水渠展开角,B2=B—栅槽总宽,B1—进水渠宽度。栅槽与出水渠连接渠的渐宽长度:

L

2= L

1

/2=0.65/2=0.32m

过栅水头损失:

设栅条为矩形断面,h

1=k*ξ*v2

2

*sinα /2g

k—系数,格栅受污物堵塞后,水头损失增大的倍数,取k=3;

v

2

—过栅流速;

ξ—阻力系数,与栅条断面形状有关,ξ=β(s/e)34,当为矩形断面时,β=2.42。

代入数据得:h

1

=3*2.42*(0.01/0.01)34*0.82*sin60°/(2*9.81) =0.21m

为避免造成栅前涌水,故将栅后槽底下降h

1

作为补偿。

栅后槽总的高度:

取栅前渠道超高为h2=0.3 (m),栅前槽高H1=h+h2=0.86 m H= h1+h+h2=0.21+0.56+0.3=1.07m

栅槽总长度:

L= l2+l1+0.5+1.0+ H1/tg60°

=0.32+0.65+1.0+0.5+0.86/tg60°

=2.97m

每日栅渣量:取W1=0.1 m3/(103*m3)

W=Q max* W1*86400/(K总*1000)

=0.382*0.1*86400/(1.4*1000)

=2.4 m3/d 〉0.2 m3/d 宜采用机械清渣方式

中格栅和细格栅均采用型号为JT的阶梯式格栅清污机,并选用?285型长度为5m的无轴螺旋运送机两台。

2.1.3污水提升泵站

设计参数:

○1平均秒流量Q=261.564(l/s)

○2最大秒流量Q max=261.564*1.46=381.88(l/s)

○3进水管管底标高31.624m,管径D g=900mm,充满h/d=0.3,水面标高31.957m,地面标高38.300m。

○4出水管提升后的水面标高38.800m经100m管长至污水处理构筑物。选择集水池与机器间合建式的圆型泵站,考虑3台水

泵(其中1台备用)。

设计内容:

每台水泵的容量为Q

/2=381.88/2=190.94(l/s),集水池容积相当

max

于采用一台泵6min的容量:W=190.94*60*6/1000=68.74(m3)。有效水深采用H=2.0m,则集水池面积为34.37m2。

选泵前总扬程估算:

经过格栅的水头损失为0.1m,集水池最低工作水位与所需提升

的最高水位之间的高差为:

38.800-(31.624-0.9*0.37-0.1-2.0)=9.609(m)

出水管管线水头损失:

a)总出水管:Q=381.88l/s,选用管径500mm,v=1.94m/s,1000i=9.88。当一台水泵运转时,Q=190.94l/s,v=0.97m/s 〉0.7m/s。设总出水管管中心埋深1.0m,局部损失为沿程损失的30%,则泵站外管线水头损失为:

[320+(38.800-38.300+1.0)]*9.88*1.3/1000=4.129m

b)水泵总扬程:

泵站内的管线水头损失假设为1.5m,考虑自由水头为1.0m,则水泵的总扬程为:

H=1.5+4.129+9.609+1.0=16.239(m)

c)选泵:

选用250WD污水泵3台(其中1台备用),水泵参数如下:

Q=180.5—278l/s H=12—17m 转数n=730转/分轴功率N=37—64KW 配电动机功率70KW 效率η=69.5—73% 允许吸上真空高度H

s

=4.2—5.2m 叶轮直径D=460mm

d)泵站经平剖面布置后,对水泵总扬程进行核算:

吸水管路水头损失计算:

每根吸水管Q=190.94l/s,选用管径450mm,v=1.21m/s,1000i=4.41。

根据图示,直管部分长度为1.2m,喇叭口(ξ=0.1),D

g

=450mm90o弯头

1个(ξ=0.67),D

g =450mm闸门1个(ξ=0.1),D

g

=450×d

g

200mm渐

缩管1个(ξ=0.21)

沿程损失:1.2*4.41/1000=0.0053m

局部损失:(0.1+0.67+0.1)*1.212/2g+0.21*6.52/2g=0.518(m)则吸水管路水头总损失为:0.518+0.0053=0.523(m)

出水管路水头损失计算:(计算图见泵房平剖面图)

每根出水管Q=190.94l/s,选用管径400mm,v=1.53m/s,1000i=8.23。从最不利点A点起,沿A、B、C、D、E线顺序计算水头损失:

A—B段

D

g 200×400mm渐放管1个(ξ=0.30),D

g

400mm单向阀1个(ξ=1.40),

D

g 400mm90o弯头1个(ξ=0.60),D

g

400mm阀门1个(ξ=0.10)。

局部损失:0.30*6.52/2g+(1.40+0.60+0.10)*1.532/2g=0.90(m)B—C段

选用D

g

500mm管径,Q=190.94l/s,v=0.97m/s,1000i=2.60,直管部分长0.70m,XX字管1个(ξ=1.5,转弯流)。

沿程损失:0.70*2.60/1000=0.002(m)

局部损失:1.5*1.532/2g=0.179(m)

C—D段

选用D

g

500mm管径,Q=381.88l/s,v=1.94m/s,1000i=9.88,直管部分长0.70m,XX字管1个(ξ=0.10,直流)。

沿程损失:0.70*9.88/1000=0.007(m)

局部损失:0.10*1.942/2g=0.019(m)

D—E段

500mm90o弯头2个直管部分长5.0m,XX字管1个(ξ=0.10),D

g

(ξ=0.64)。

沿程损失:5.0*9.88/1000=0.049(m)

局部损失:(0.10+2*0.64)1.942/2g=0.265(m)

综上,出水管路总水头损失为:

4.128+0.90+0.002+0.179+0.007+0.019+0.049+0.265=

5.549(m)则水泵所需总扬程:

H=0.523+5.549+9.609+1.0=16.688(m)

故选用250WD型污水泵是合适的。

2.1.4 平流沉砂池(设2组)

○1长度:

设平流沉砂池设计流速为v=0.25 m/s停留时间t=40s,则,

沉砂池水流部分的长度(即沉砂池两闸板之间的长度):

L =v*t=0.25*40=10m

○2水流断面面积:

A=Q max/v=0.382/0.25=1.52m2

○3池总宽度 : 设n=2 格,每格宽b=1.2m,则,

B=n*b=2*1.2=2.4m(未计隔离墙厚度,可取0.2m)○4有效深度:

h2=A/B =1.52/2.4=0.64m

5沉砂室所需的容积:

V= Q max*T*86400*X/(k z*105)

V—沉砂室容积,m3;X—城市污水沉砂量,取3 m3砂量/105m3污水;

—流量总变化系数,为1.4。

T—排泥间隔天数,取2d;K

代入数据得:V=86400*0.382*2*3/(1.4*105)=1.41 m3,则每个沉砂斗容积为V'=V/(2*2)=1.41/(2*2)=0.35 m3.

○6沉砂斗的各部分尺寸:

设斗底宽a1=0.5 m,斗壁与水平面的倾角为55°,斗高h3ˊ=0.5m,

沉砂斗上口宽:a=2 h3ˊ/tg55°+a1

=2*0.5/1.428+0.5

=1.2m

沉砂斗的容积:V0 = (h3ˊ/6)*(a2+ a* a1+ a12)

=0.5/6*(1.22+ 1.2* 0.5+ 0.52)

=0.35m3 = V'

这与实际所需的污泥斗的容积很接近,符合要求;

○7沉砂室高度:

采用重力排砂,设池底坡度为0.06,坡向砂斗,

=(L-2*a)/2=(10-2*1.2)/2=3.8m

L

2

h3 = h3ˊ+0.006 L

=0.5+0.06*3.8

2

=0.728m

○8池总高度:

设沉砂池的超高为h1=0.3m,则

H= h1+h2+h3=0.3+0.64+0.728=1.67m

9进水渐宽及出水渐窄部分长度:

进水渐宽长度 L

1=(B-B

1

)/2tg

1

=(2.4-1.0)/(2*tg20°)=1.92m

出水渐窄长度 L

3= L

1

=1.92m

○10校核最小流量时的流速:

最小流量为Q

min

=261.564/2=130.782l/s,则

V

min = Q

min

/A=0.130782/0.76=0.172m/s 〉0.15m/s符合要求

另外,需要说明的是沉砂池采用静水压力排砂,排出的砂子可运至污泥脱水间一起处理。

2.1.5厌氧池

○1设计参数

进入厌氧池的最大流量为Q max=0.382 m3/s,考虑到厌氧池和氧化沟可作为一个处理单元,总的水力停留时间超过了20h,所以设计水量按最大日平均时考虑:Q=Q max/k z=0.382/1.46=0.26 m3/s。共设两座厌氧池,每座设计流量为0.13m3/s,水力停留时间:T=2.5h,污泥浓度:X=3g/l,污泥回流浓度为:X R=10g/l;

○2设计计算

a.厌氧池容积:

V=Q*T=130*10-3*2.5*3600=1170m3

b.厌氧池的尺寸

水深取h=5m,则

厌氧池的面积为:A= V/h=1170/5=234m2

厌氧池的直径为:D=(4A/3.14)1/2=(4*234/3.14)1/2

=17.26m,取D=18m

考虑到0.3m的超高,所以池子的总高度为H=h+0.3=5.3m

c.污泥回流量的计算:

1回流比的计算:

R=X/(X e-X)=3/(10-3)=0.42

○2污泥回流量:

Q R=R*Q=0.42*130*10-3*86400=4717.4m3/d=196.56m3/h

选用型号为JBL800-2000型的螺旋浆式搅拌机,两台

该种型号的搅拌机的技术参数如下;

浆板直径:800-2000mm,转速:4-134 (r/min),

功率:4.5-22KW,浆叶数:3 个。

2.1.6氧化沟

○1设计参数

氧化沟设计为两组。氧化沟按照最大日平均时间流量设计,每个氧化沟的流量为130l/s,即11232m3/d。

进水BOD5:S o=200mg/l 出水BOD5:S e=20mg/l

进水NH3-N: 40mg/l 出水NH3-N: 15mg/l

总污泥龄;22d MLSS:4000mg/l f=MLVSS/MLSS=0.7

曝气池:DO=2mg/l NOD=4.6mgO2/mgNH3-N氧化,

可利用氧2.6 mgO2/mgNO-3-N还原α=0.9 β=0.98

其他参数:

a=0.6 kgoss/kg BOD5, b=0.051/d

脱氮效率:qd n=0.0312kgNO-3-N/(kgMLVSS*d)

k1=0.231/d k02=1.3mg/l

剩余碱度:100mg/l(保持PH≥7.2)

所需要的碱度:7.1mg碱度/mgNH3-N氧化;

产生碱度:3.0mg碱度/mgNO-3-N还原

硝化安全系数:2.5,脱硝温度修正系数:1.0

○2设计计算

a)碱度平衡计算

I.由于设计的出水BOD5为20mg/l,则出水中溶解性BOD5为:

20-0.7*20*1.42*(1-e-0.23*5)=6.4mg/l

II.采用污泥龄22d,则日产泥量为:aQl r/1+bt m =0.6*11232*(200-6.4)/1000(1+0.051*22)=1304.71/2.122=614.85kg/ld 设其中有12.4%的为氮,近似等于TNK中用于合成部分为:

12.4%*614.85=76.24kg/d

TNK中有76.24*1000/11232=6.8mg/l

需要用于氧化的NH3-N:40-6.8-5=28.2mg/l

需要还原的NO-3-N:28.2-10=18.2mg/l

III.碱度平衡计算

已知产生0.1mg碱度/去除1mgBOD5,进水中碱度为280mg/l

剩余碱度:280-7.1*28.2+3.0*18.2+0.1*(200-6.4)

=280-200.22+51.6+19.36=150.74mg/l(caco3)

此值可以保证PH≥7.2。

计算硝化速度:

μn =[0.47*e0.098*(T-15)]* [2/(2+100.05*15-1.158)]* [2/(2+1.3)] =0.204l/s(T=12℃)

故泥龄为:t w=1/0.204=4.9d

采用的安全系数为2.5,故设计污泥龄为:2.5*4.9=12.5d

原来假定的污泥龄为22 d,则硝化速度为:

μn =1/22=0.045l/d

单位基质利用率为:

μ =μn+b/a=0.045+0.05/0.6=0.158 kg BOD5/(kgMLVSS*d)而 MLVSS=0.7*4000=2800mg/l

则,所需要的MLVSS的总量为

11232*194/(0.158*1000)=13791.2kg

硝化容积:V n=13791.2/2800*1000=4925.42m3

水力停留时间为:t n=4925.42/11232*24=10.52h

b)反硝化区的容积:

当温度为12℃时,反硝化速度为

q dn=[0.03*(f/m)+0.029]θ(T-20)θ取1.08

=[0.03*(200*24/4000*16)+0.029]1.08(12-20)

=0.03125*1.08-8

=0.017 kg NO-3-N/(kgMLVSS*d)

还原NO-3-N的总量为:18.2/1000*11232=204.42kg

脱氮所需要的MLSS:204.42/0.017=12024.85kg

脱氮所需要的容积:V dn=12024.85*1000/2800=4294.59m3

水力停留时间:t dn=4294.59/11232*24=9.176h

总的池容积为:V= V n +V dn=4925.42+4294.59=9220.01m3

c)氧化沟的尺寸:

氧化沟采用改良式的carrousel六沟式的氧化沟。取池深为3 m,单沟宽为6m,则沟总的长度为:9220.01/(3*6)=512.22m,

其中好氧段的长度为260.11m,缺氧段的长度为252.11m,弯道处的长度为5*3.14*6+12+2*3.14*6=143.88 m,则,单个直道长度为(512.22-143.88)/6=61.39m,则

氧化沟的总沟长为:61.39+6+12=79.39m,总的池宽为:6*6=36m

d)需氧量计算:

采用以下的经验公式Q2(kg/d)=A*l r+B*MLSS+4.6*N R-2.6NO3

经验系数为:A=0.5, B=0.1

N R需要硝化的氧量为:28.2*11232*10-3=316.74kg/d

R =0.5*11232*(0.2-0.0064)+0.1*2.8*4294.59+4.6*316.74 -2.6*204.42

=1087.258+1202.485+1457.004-531.492

=3215.255kg/d

=133.97kg/h

当温度为20℃时,脱氧清水的充氧量为:

取T=30℃,α=0.8,β=0.9,C s(20)=9.17mg/l,C sb(30)=7.63

则R0=R C s(20)/{α*[β*ρ* C sb(T)-C]*1.024(T-20)}

=133.97*9.17/[0.8*(0.9*1.0*7.63-2)*1.024(30-20)]

=248.9kg/h

e)回流污泥量

X=MVLSS=4g/l X r=10g/l

则,R=4/(10-4)=0.67

因为回流到厌氧池的污泥为11%,则回流到氧化沟的污泥总量为51.7%Q

f)剩余污泥量

Qw=614.85/0.7+(200-180)/1000*11232

=878.357+224.64

=1102.997kg/d

如果污泥由底部排除,,且二沉池的排泥浓度为10 g/l,则

每个氧化沟的产泥量为1102.997/10=110.3m3/d

设计采用的曝气机选用型号为DS325的可调速的倒伞型叶轮曝气机五台,该种机子的技术参数如下所示:

叶轮的直径为3250 mm,电动机额定功率为55 kw,

电动机转速:33 r/min,充气量:21-107 kg/h,

设备重量:4400 kg

曝气机所需要的台数为

n=488.56/100=4.9 取n=5 台

因此,每组共设的曝气机为5 台,全部的机子都是变频调速的。

为了保证氧化沟在缺氧状态下混合液不发生沉淀,还设有型号为SK4430的淹没式搅拌机13 台,即每个廊道设置2台,功率为4.0 KW。而为了保证氧化沟内部水流的循环形成,在进水处的下方设置了一台淹没式搅拌机,能起到推进水流流向的作用。

2.1.7二沉池

○1设计参数

该污水处理厂采用周边进水周边出水的幅流式沉淀池,共设了两座;设计流量为:11232 m3/d(每组),表面负荷:q b=0.8 m3/(m2*h)固体负荷:Ng=2000 kg/(m2*d),堰负荷:2.2l/(s*m)

○2设计计算:

a)沉淀池的面积:

按照表面负荷计算:F1=11232/(24*0.8)=585m3

b)二沉池的尺寸计算:

I.沉淀池的直径为:D=(4A/3.14)0.5=(4*585/3.14)0.5=28m

II.沉淀池的有效水深:

沉淀时间取2.5 h,则,沉淀池的有效水深为

h1= q b *t=0.8*2.5=2m

III.存泥区的所需的容积

为了保证污泥的浓度,存泥时间T w不宜小于2.0 h,

则,所需要的存泥容积为

*(1+R)*Q*X/(X+X r)=2*2*(1+0.67)*11232*4000*2/ V W =2*T

w

[(4000+10000)*24]=1786.423m3

毕业设计计算书

1 污水处理工程初步设计说明 1.1 设计要求 (1)设计规模 污水处理厂处理能力3015m3/d (2)设计进水水质 (3)设计出水水质 经污水处理工程处理后出水水质主要指标应达到《纺织染整工业水污 染排放标准》(GB4287-92)要求的一级水质标准,主要水质指标如表 2所示。 1.2工艺简介及工艺流程 针对*****生产废水和生活污水混合后形成综合废水的水质水量特征,采用以“絮凝沉淀—水解酸化池—交叉流好氧接触氧化池—脱色反应池”为主体的工艺对综合废水进行处理。其工艺流程图如下:

生产废水和生活污水先经过格栅、格网,截留一部份污水中悬浮物和漂浮物,保护后续水泵的正常工作,然后进入调节池;再经泵提升后,污水进入中和池,调节污水pH值;加入絮凝剂,出水进入初沉池沉淀大部分COD、SS和色度;出水流入水解酸化池,水解酸化池主要是分解大的有机物,然后进入二级

好氧池进行生物处理,二级好氧池主要是去除COD 、色度。从好氧池出来的水进入沉淀池进行沉淀,沉淀后的水进入生物活性炭池进行进一步脱色,达标后出水排放。生化污泥浓缩池的污泥一部份用于污泥回流,剩余污泥进入污泥浓缩池进行浓缩,浓缩后的污泥和物化污泥浓缩池的污泥通过带式压滤机进行脱水,泥饼外运,浓缩池的上清液及脱水的滤液则进入调节池。 2 主要构筑物计算 2.1筛网 设计说明 1选定网眼尺寸 污水中的悬浮物为纤维素类物质,所以筛网的网眼应小于2000um 。 2筛网的种类 根据生产的产品规格性能,选用倾斜式筛网,材料为不锈钢,水力负荷0.6~2.4m 3/(min*m 2) 3所需筛网面积A 参数 水力负荷q= 2.0m 3/(min*m 2) 设计流量Q=3015m 3/d=2.1m 3/min 面积 2.1 1.05 2.0 Q A q = ==m 2 设计取A=1.1m 2 2.2调节池 1在周期的平均流量为 33015125.625/24 W Q m h T = ==设计取130m 3/h 2水力停留时间t=8h

结构毕业设计计算书

目录 第一部分设计原始资料 0 第二部分结构构件选型 0 一、梁柱截面的确定 0 二、横向框架的布置 (1) 三、横向框架的跨度和柱高 (2) 第三部分横向框架内力计算 (2) 一、风荷载作用下的横向框架(KJ-14)内力计算 (2) 三、竖向恒载作用下的横向框架(KJ-14)内力计算 (10) 四、竖向活载作用下的横向框架(KJ-14)内力计算 (21) 第四部分梁、柱的内力组合 (28) 一、梁的内力组合 (28) 二、柱的内力组合 (30) 第五部分梁、柱的截面设计 (34) 一、梁的配筋计算 (34) 二、柱的配筋计算 (35) 第六部分楼板计算 (38) 第七部分楼梯设计 (40) 第一节楼梯斜板设计 (40) 第二节平台板设计 (41) 第三节楼梯梁设计 (41) 第八部分基础设计 (43) 第一节地基承载力设计值和基础材料 (43) 第二节独立基础计算 (43) 参考文献 (48) 致谢 (49)

第一部分 设计原始资料 建筑设计图纸:共三套建筑图分别为:某办公楼全套建筑图:某五层框架结构。 1.规模:所选结构据为框架结构,建筑设计工作已完成。总楼层为地上3~5层。各层的层高及各层的建筑面积、门窗标高详见建筑施工图。 2.防火要求:建筑物属二级防火标准。 3.结构形式:钢筋混凝土框架结构。填充墙厚度详分组名单。 4.气象、水文、地质资料: (1)主导风向:夏季东南风、冬秋季西北风。基本风压值W 0详分组名单。 (2)建筑物地处某市中心,不考虑雪荷载和灰荷载作用。 (3)自然地面-10m 以下可见地下水。 (4)地质资料:地质持力层为粘土,孔隙比为e=0.8,液性指数I 1=0.90,场地覆盖层为1.0 M ,场地土壤属Ⅱ类场地土。地基承载力详表一。 (5)抗震设防:该建筑物为一般建筑物,建设位置位于6度设防区,按构造进行抗震设防。 (6)建筑设计图纸附后,要求在已完成的建筑设计基础上进行结构设计。 第二部分 结构构件选型 一、梁柱截面的确定 1、横向框架梁 (1)、截面高度h 框架梁的高度可按照高跨比来确定,即梁高h=)8 1 ~121(L 。 h=)81~121( L 1=)8 1 ~121(×9200=767~1150mm 取h=750mm (2)、截面宽度 b=)2 1~3 1(h=)2 1~3 1(×750=250~375mm 取b=250mm 2、纵向连系梁 (1)、截面高度 h=11( ~)1218L 1=11 (~)1218×3600=300~200mm 取h=300mm (2)、截面宽度

水污染课程设计汇本报告书

1 设计任务 1.1项目概况 某污水处理厂是某市污水处理的主要工程,位于某市大城区东南。主要服务围是该市中市区、东市区、西南郊的生活污水和东市区、西南郊的部分经初步处理但尚未达标的工业废水。服务人口约30万。 1.12 设计进出水质 城市混合污水平均水质 1.13 设计出水水质 由于该厂处理后的污水排进某河流,最终流进太湖流域。因太湖流域现在污染较为严重,为实现国务院的碧水计划,确保太湖湖水达标任务,该污水处理厂的排水必需达到以下指标: 1.2 设计要求 试根据该生产废水水质特点和排放要求,给出合理的废水处理流程,提供设计说明书和计算书,要求容完整、简洁明了、层次清楚、文理通顺、书写工整、装订整齐,还应计算准确,并附有计算草图,标注所计算的尺寸,要求线型分明、

比例准确、正确清晰,符合制图标准有关规定,同时提供一总平面布置图和一流程图(要求用CAD绘制A3图纸)。 具体要求: 1)请按照给定废水的水量、水质以及排放的水质要求,编写废水处理工程 初步设计方案,方案容包括: ?废水产生概况 ?设计依据和设计思路 ?方案比较和选择 ?工艺流程(框图) ?工艺流程说明 ?处理效果预测 ?各单元计算书 ?各建、构筑物尺寸 2)提供CAD设计的工艺流程图、平面图 1.3 废水处理工程设计计划安排 第15周: (1)星期一:设计动员、下达设计任务书; (2)星期二:搜集资料、阅读教材、确定工艺流程; (3)星期三、四、五:工艺设计计算(包括编写设计说明书草稿) ,设备结构设计计算(包括编写设计说明书草稿; (4)星期六:绘制平面布置图和工艺流程草图; (5)星期七:完成绘制平面布置图和工艺流程图;

城市污水处理厂设计计算

污水厂设计计算书 第一章 污水处理构筑物设计计算 一、粗格栅 1.设计流量Q=20000m 3/d ,选取流量系数K z =1.5则: 最大流量Q max =1.5×20000m 3/d=30000m 3/d =0.347m 3/s 2.栅条的间隙数(n ) 设:栅前水深h=0.4m,过栅流速v=0.9m/s,格栅条间隙宽度b=0.02m,格栅倾 角α=60° 则:栅条间隙数85.449 .04.002.060sin 347.0sin 21=???== bhv Q n α(取n=45) 3.栅槽宽度(B) 设:栅条宽度s=0.01m 则:B=s (n-1)+bn=0.01×(45-1)+0.02×45=1.34m 4.进水渠道渐宽部分长度 设:进水渠宽B 1=0.90m,其渐宽部分展开角α1=20°(进水渠道前的流速为0. 6m/s ) 则:m B B L 60.020tan 290.034.1tan 2111=?-=-=α 5.栅槽与出水渠道连接处的渐窄部分长度(L 2) m L L 30.02 60.0212=== 6.过格栅的水头损失(h 1) 设:栅条断面为矩形断面,所以k 取3

则:m g v k kh h 102.060sin 81 .929.0)02.001.0(4.23sin 2234 201=?????===αε 其中ε=β(s/b )4/3 k —格栅受污物堵塞时水头损失增大倍数,一般为3 h 0--计算水头损失,m ε--阻力系数,与栅条断面形状有关,当为矩形断面时形状系数β=2.4将β 值代入β与ε关系式即可得到阻力系数ε的值 7.栅后槽总高度(H) 设:栅前渠道超高h 2=0.3m 则:栅前槽总高度H 1=h+h 2=0.4+0.3=0.7m 栅后槽总高度H=h+h 1+h 2=0.4+0.102+0.3=0.802m 8.格栅总长度(L) L=L 1+L 2+0.5+1.0+ H 1/tan α=0.6+0.3+0.5+1.0+0.7/tan60°=2.8 9. 每日栅渣量(W) 设:单位栅渣量W 1=0.05m 3栅渣/103m 3污水 则:W=Q W 1=05.0105.130000100031max ??=??-Z K W Q =1.0m 3/d 因为W>0.2 m 3/d,所以宜采用机械格栅清渣 10.计算草图:

混凝土结构设计毕业设计计算书

混凝土结构设计毕业设 计计算书 This model paper was revised by LINDA on December 15, 2012.

本科毕业设计 河南省郑州市企业办公楼的设计 学院:城市建设学院 专业:土木工程 学号:1162 学生姓名:郑健 指导教师:唐红 日期:二○一七年六月 摘要 本设计的题目是:河南省郑州市企业办公楼的设计,结构建筑规模为6层框架结构,各层层高(底层层高),建筑物总高度为 ,总建筑面积为。 对本课题的研究将分为毕业实习、建筑设计、结构设计、毕业设计整理四个方面。毕业实习阶段,收集必要的设计原始资料,做好设计前的调查研究工作,参考同类型设计的文字及图纸资料。学习有关的国家法规及规范。建筑设计分为初步设计及施工图设计两个阶段,在此阶段将拟定建筑方案,确定建筑使用的材料及做法,确定建筑的总体形状及各种尺寸,绘出平、立、剖、总平面图、详图、写出施工说明并列出门窗明细表。结构设计

阶段主要是进行结构计算简图的确定、荷载计算、内力分析、内力组合、梁、柱截面配筋、板的设计、楼梯的设计、基础的设计以及结构施工图的绘制等;毕业设计整理阶段则是对毕业设计所需资料的装订,按学校毕业设计条例及教研室实施细则整理毕业设计成果,做好毕业答辩准备工作。 关键词:结构设计;框架结构;荷载;配筋

Abstract This design topic is the design of Zhengzhou city enterprise office building, construction scale of 6 storey frame structure, each layer of (bottom height , the building’s height is , and the total construction area are . The study on this subject will be divided into graduation practice, architectural design, structural design, from four aspects of the design of finishing. The graduation practice stage, collecting the original design information necessary to do research work, before the design, drawings and documents with reference to the text type design. Learn about the national regulations and architectural design specifications. The design of the two stages of preliminary design and construction drawing, this stage will draw the construction plan, determine the use of materials and construction practices, to determine the overall shape and size, building paint Ping, Li, section, general layout, construction details, write instructions and lists the windows list. The structure design stage is mainly determined. The structure calculation diagram load calculation, internal force analysis, the combination of internal forces, beam, column reinforcement, plate design, stair design, foundation design and construction drawing design; finishing The stage is the information needed in the graduation design of binding rules for the

污水处理厂课程设计设计说明书及方案(模版)(参考模板)

1 概述 1.1 工程概况 依据城市总体规划,华东某市在城西地区兴建一座城市污水处理厂,以完善该地区的市政工程配套,控制日益加剧的河道水污染,改善环境质量。该城市现状叙述如下: 1、2号居住区人口3万,污水由化粪池排入河道;3、4号居住区人口5万,正在建设1年内完成;5号居住区人口4.5万,待建,2年后动工,建设周期2年。还有部分主要公共建筑,宾馆5座,2000个标准客房;医院2座,1500张床。以上排水系统均采用分流制系统。同时新区内还有部分排污工厂:电子厂每天排水1500m3,BOD5污染负荷为3000人口当量;食品厂每天排出污水量500 m3,污染负荷为1500人口当量。 旧城区原仅有雨水排水系统,污水排水系统的改造和建设工程计划在10年内完成,届时整个排水区域服务人口将达到18万。 依据上述情况,整个工程划分为近期和远期两个建设阶段,现在实施的工程为近期建设。近期建设周期大概在3年左右,设计服务范围应该包括新区5个已建和待建的居住区、新区内部分主要公共建筑以及2个工厂。依据环保部门以及排放水体的状况,排放水要求达到《城镇污水处理厂污染物排放标准》(GB 18918-2002)一级B标准。 1.2 设计依据 《城镇污水处理厂污染物排放标准》(GB 18918-2002) 《室外排水设计规范》(GB50101) 《城市污水处理工程项目标准》 《给水排水设计手册》,第5册城镇排水 《给水排水设计手册》,第10册技术经济 城市污水处理以及污染物防治技术政策(2002) 污水排入城市下水道水质标准CJ3082-1999 地表水环境质量标准GB3838-2002 城市排水工程规划规范GB50381-2000 1.3设计任务和范围 (1)收集相关资料,确定废水水量水质及其变化特征和处理要求; (2)对废水处理工艺方案进行分析比较,提出适宜的处理工艺方案和工艺流程; (3)确定为满足废水排放要求而所需达到的处理程度; (4)结合水质水量特征,通过经济技术分析比较,确定各处理构筑物的型式; (5)进行全面的处理工艺设计计算,确定各构筑物尺寸和设备选型; (6)进行废水处理站平面布置及主要管道的布置和高程计算; (7)进行工程概预算,说明废水处理站的启动运行和运行管理技术要求 2 原水水量与水质和处理要求: 2.1 原水水量与水质 一期工程: Q=36000m3/d

吨每天城市污水处理厂设计计算

污水厂设计计算书 第一章 污水处理构筑物设计计算 一、粗格栅 1.设计流量Q=20000m 3/d ,选取流量系数K z =则: 最大流量Q max =×20000m 3/d=30000m 3/d =0.347m 3/s 2.栅条的间隙数(n ) 设:栅前水深h=0.4m,过栅流速v=0.9m/s,格栅条间隙宽度b=0.02m,格栅倾 角α=60° 则:栅条间隙数85.449 .04.002.060sin 347.0sin 21=??? ==bhv Q n α(取n=45) 3.栅槽宽度(B) 设:栅条宽度s=0.01m 则:B=s (n-1)+bn=×(45-1)+×45=1.34m 4.进水渠道渐宽部分长度 设:进水渠宽B 1=0.90m,其渐宽部分展开角α1=20°(进水渠道前的流速为0.6 m/s ) 则:m B B L 60.020tan 290 .034.1tan 2111=? -=-= α 5.栅槽与出水渠道连接处的渐窄部分长度(L 2) m L L 30.02 60 .0212=== 6.过格栅的水头损失(h 1) 设:栅条断面为矩形断面,所以k 取3

则:m g v k kh h 102.060sin 81 .929.0)02.001.0(4.23sin 22 34 201=?????===αε 其中ε=β(s/b )4/3 k —格栅受污物堵塞时水头损失增大倍数,一般为3 h 0--计算水头损失,m ε--阻力系数,与栅条断面形状有关,当为矩形断面时形状系数β=将β值代入β与ε关系式即可得到阻力系数ε的值 7.栅后槽总高度(H) 设:栅前渠道超高h 2=0.3m 则:栅前槽总高度H 1=h+h 2=+=0.7m 栅后槽总高度H=h+h 1+h 2=++=0.802m 8.格栅总长度(L) L=L 1+L 2+++ H 1/tan α=++++tan60°= 9. 每日栅渣量(W) 设:单位栅渣量W 1=0.05m 3栅渣/103m 3污水 则:W=Q W 1= 05.0105 .130000 10003 1max ??=??-Z K W Q =1.0m 3/d 因为W>0.2 m 3/d,所以宜采用机械格栅清渣 10.计算草图:

土木工程专业毕业设计完整计算书

该工程为某大学实验楼,钢筋混凝土框架结构;建筑层数为8层,总建筑面积11305.82m2,宽度为39.95m,长度为60.56m ;底层层高4.2m ,其它层层高3.6m ,室内外高差0.6m 。 该工程的梁、柱、板、楼梯、基础均采用现浇,因考虑抗震的要求,需要设置变形缝,宽度为130mm 。 1.1.1设计资料 (1)气象条件 该地区年平均气温为20 C o . 冻土深度25cm ,基本风压m2,基本雪压 kN/m2,以西北风为主导方向,年降水量1000mm 。 (2)地质条件 该工程场区地势平坦,土层分布比较规律。地基承载力特征值240a f kPa 。 (3)地震烈度 7度。 (4)抗震设防 7度近震。 1.1.2材料 梁、柱、基础均采用C30;纵筋采用HRB335,箍筋采用HPB235;单向板和双向板均采用C30,受力筋和分布筋均为HPB235;楼梯采用C20,除平台梁中纵筋采用HRB335外,其余均采用HPB235。 工程特点 本工程为8层,主体高度为29m 左右,为高层建筑。其特点在于:建造高层建筑可以获得更多的建筑面积,缩小城市的平面规模,缩短城市道路和各种管线的长度,从而节省城市建设于管理的投资;其竖向交通一般由电梯来完成,这样就回增加建筑物的造价;从建筑防火的角度来看,高层建筑的防火要求要高于中低层建筑;以结构受力特性来看,侧向荷载(风荷载和地震作用)在高层建筑分析和设计中将起着重要的作用,因此无论从结构分析,还是结构设计来说,其过程都比较复杂。

在框架结构体系中,高层建筑的结构平面布置应力求简单,结构的主要抗侧力构件应对称均匀布置,尽量使结构的刚心与质心重合,避免地震时引起结构扭转及局部突变,并尽可能降低建筑物的重心,以利于结构的整体稳定性;合理地设置变形缝,其缝的宽度视建筑物的高度和抗震设防而定。 该工程的设计,根据工程地震勘探和所属地区的条件,要求有灵活的空间布置和较大的跨度,故采用钢筋混凝土框架结构体系。 本章小结 本章主要论述了本次设计的工程简况和工程特点,特别对于高层建筑的优点和框架结构中高层建筑的布置原则作了详细阐述。 2 结构设计 框架设计 2.1.1 工程简况 该实验楼为八层钢筋混凝土框架结构体系,建筑面积11305.82m2,建筑平面

钢框架结构计算书-毕业设计

摘要 该计算书为滨岛医疗中心门诊楼建筑方案及钢框架结构设计计算书,本设计依据建筑方案及给出的结构类型。参照规范有《建筑结构荷载规范》(GB 50009-2012)、《建筑抗震规范》(GB 50011-2010)、《混凝土结构规范》(GB 50010-2010)、《钢结构设计规范》(GB 50017-2003)等。完成设计内容有:建筑方案、结构平面布置、结构计算简图确定、荷载统计、内力计算、内力组合、主、次梁、柱选取及布置连接截面验算以及节点设计、楼梯设计、基础设计、工程概预算。结构类型为钢框架结构,梁、柱为钢梁、钢柱,板为组合楼板,柱脚采用埋入式,楼梯为板式钢筋混凝土楼梯、基础采用锥形独立基础。本计算书中列出了框架在恒荷载、活荷载、地震荷载、风荷载作用下的弯矩、剪力、轴力图以及内力组合表。 关键词结构设计;钢框架;独立基础;医用建筑

Abstract The calculations for the BinDao medical center clinic building steel frame building solutions and design calculations, based on the design and construction program structure given type. Design process based on structural loads standard (GB50009-2012) determine the structure of the load, in accordance with the Seismic Design of Buildings (GB50011-2010), design of steel structures (GB50017-2003) and the relevant requirements for structural design and calculation. The main work to complete the structure diagram layout and calculation of the identification, load statistics, internal force calculation and combination of primary and secondary beams and floor cross-section design and checking, node connection design, staircase design, basic design as well as project budget.Type of structure is steel frame structure, beams, columns of steel beams, steel columns, plates of composite slabs, column foot buried, reinforced concrete slab staircase stairs, independent foundation with a tapered base. Meanwhile, The calculations in the framework of the book lists the dead load, live load, seismic loads, wind loads bending moment, shear, axial force, and force combination table. Keywords Structural Design; Steel Frame;single footing medical building;

污水处理厂设计计算

某污水处理厂设计说明书 1.1 计算依据 1、工程概况 该城市污水处理厂服务面积为12.00km2,近期(2000年)规划人口10万人,远期(2020年)规划人口15.0万人。 2、水质计算依据 A.根据《室外排水设计规范》,生活污水水质指标为: COD Cr 60g/人d BOD5 30g/人d B.工业污染源,拟定为 COD Cr 500 mg/L BOD5 200 mg/L C.氨氮根据经验值确定为30 mg/L 3、水量数据计算依据: A.生活污水按人均生活污水排放量300L/人·d; B.生产废水量近期1.2×104m3/d,远期2.0×104m3/d考虑; C.公用建筑废水量排放系数近期按0.15,远期0.20考虑; D.处理厂处理系数按近期0.80,远期0.90考虑。 4、出水水质 根据该厂城镇环保规划,污水处理厂出水进入水体水质按照国家三类水体标准控制,同时执行国家关于污水排放的规范和标准,拟定出水水质指标为: COD Cr 100mg/L BOD5 30mg/L SS 30mg/L

NH3-N 10mg/L 1.2 污水量的确定 1、综合生活污水 近期综合生活污水 远期综合生活污水 2、工业污水 近期工业污水 远期工业污水 3、进水口混合污水量 处理厂处理系数按近期0.80,远期0.90考虑,由于工业废水必须完全去除,所以不考虑其处理系数。近期混合总污水量 取 远期混合总污水量 取 4、污水厂最大设计水量的计算 近期; ,取日变化系数;时变化系数;

。 远期; ,取日变化系数;时变化系数; 。 拟订该城市污水处理厂的最大设计水量为 1.3 污水水质的确定 近期取 取 远期取 取 则根据以上计算以及经验值确定污水厂的设计处理水质为: ,,

毕业设计结构计算书(格式模板)

湖南科技大学 毕业设计(论文) 题目 作者 学院 专业 学号 指导教师 二〇〇年月日

湖南科技大学 毕业设计(论文)任务书 院系(教研室) 系(教研室)主任:(签名)年月日 学生姓名: 学号: 专业: 1 设计(论文)题目及专题: 2 学生设计(论文)时间:自年月日开始至年月日止 3 设计(论文)所用资源和参考资料: 4 设计(论文)应完成的主要内容: 5 提交设计(论文)形式(设计说明与图纸或论文等)及要求: 6 发题时间:年月日 指导教师:(签名) 学生:(签名)

湖南科技大学 毕业设计(论文)指导人评语 [主要对学生毕业设计(论文)的工作态度,研究内容与方法,工作量,文献应用,创新性,实用性,科学性,文本(图纸)规范程度,存在的不足等进行综合评价] 指导人:(签名) 年月日指导人评定成绩:

湖南科技大学 毕业设计(论文)评阅人评语 [主要对学生毕业设计(论文)的文本格式、图纸规范程度,工作量,研究内容与方法,实用性与科学性,结论和存在的不足等进行综合评价] 评阅人:(签名) 年月日评阅人评定成绩:

湖南科技大学 毕业设计(论文)答辩记录 日期: 学生:学号:班级: 题目: 提交毕业设计(论文)答辩委员会下列材料: 1 设计(论文)说明书共页 2 设计(论文)图纸共页 3 指导人、评阅人评语共页 毕业设计(论文)答辩委员会评语: [主要对学生毕业设计(论文)的研究思路,设计(论文)质量,文本图纸规范程度和对设计(论文)的介绍,回答问题情况等进行综合评价] 答辩委员会主任:(签名) 委员:(签名) (签名) (签名) (签名)答辩成绩: 总评成绩:

污水处理厂课程设计书

广州大学市政技术学院课程设计书 课程设计名称:某城市污水处理厂设计 系部环境工程系 专业 14环境 班级 14环工 姓名邓敏艳 指导教师王昱 2016 年 5 月 30 日

目录 一、课程设计内容说明 (3) 二、设计原始数据资料 (3) (一)城镇概况 (3) (二)工程设计规模: (4) (三)厂区附近地势资料 (4) (四)气象资料 (5) (五)水文资料 (5) 三、课程设计基本要求 (6) 四、课程设计 (6) (一)、计算设计流量 (6) (二)、计算设计格栅 (6) (二)、沉砂池 (9) (三)、曝气池 (10) 1、曝气池的计算与各个部位尺寸的确定 (10) 2、曝气系统的计算与设计 (12) 3、供气量的计算 (13) 4.空气管系统计算 (14) (四)、二沉池设计 (19) 4.1、二沉池池体计算 (19) 4.2、二次沉淀池污泥区的设计 (20) 4.3、二沉池总高度: (21) 五、污水处理厂平面布置图 (22) 六、污水处理厂的高程布置 (22) 6.1、水力损失的计算 (22) 6.1.1、构筑物水力损失表: (22) 6.1.2、污水管道水力计算表: (22) 6.2、构筑物水面标高计算表: (23) 6.3、污水处理厂的高程布置 (23) 七、参考文献资料 (24) 八、总结 (24)

一、课程设计内容说明 进行某城镇污水处理厂的初步设计,其任务包括: 1、根据所给的原始资料,计算进厂的污水设计流量; 2、根据水体的情况、地形和上述计算结果,确定污水处理方法、流程及有关处理构筑物; 3、对各构筑物进行工艺设计计算,确定其型式、数目与尺寸; 4、进行各处理构筑物的总体布置和污水流程的高程设计; 5、设计说明书的编制。 二、设计原始数据资料 (一)城镇概况 该城市地处东南沿海,北回归线横贯市区中部,该市在经济发展的同时,城市基础设施的建设未能与经济协同发展,城市污水处理率仅为3.4%,大量的污水未经处理直接排入河流,使该城市的生态环境受到严重的破坏。为了把该城市建设成为经济繁荣、环境优美的现代化城市,筹建该市的污水处理厂已迫在眉睫。该城镇计划建设污水处理厂一座,并已获上级计委批准。 目前,城镇面积约28Km2,根据城镇总体规划,城镇面积40Km2,其出水进入B江,B江属地面水Ⅲ类水体,要求排入的污水水质执行《污水综合排放标准》(GB18918-2002)中的一级标准中的B类标准,

污水处理场设计计算书

第二篇设计计算书 1.污水处理厂处理规模 1.1处理规模 污水厂的设计处理规模为城市生活污水平均日流量与工业废水的总和:近期1.0万m3/d,远期2.0万m3/d。 1.2污水处理厂处理规模 污水厂在设计构筑物时,部分构筑物需要用到最高日设计水量。最高日水量为生活污水最高日设计水量和工业废水的总和。 Q设= Q1+Q2 = 5000+5000 = 10000 m3/d 总变化系数:K Z=K h×K d=1.6×1=1.6 2.城市污水处理工艺流程 污水处理厂CASS工艺流程图 3.污水处理构筑物的设计 3.1泵房、格栅与沉砂池的计算 3.1.1 泵前中格栅 格栅是由一组平行的的金属栅条制成的框架,斜置在污水流经的渠道上,或泵站集水井的井口处,用以截阻大块的呈悬浮或漂浮状态的污物。在污水处理流程中,格栅是一种对后续处理构筑物或泵站机组具有保护作用的处理设备。 3.1.1.1 设计参数:

(1)栅前水深0.4m ,过栅流速0.6~1.0m/s ,取v=0.8m/s ,栅前流速0.4~0.9 m/s ; (2)栅条净间隙,粗格栅b= 10 ~ 40 mm, 取b=21mm ; (3)栅条宽度s=0.01m ; (4)格栅倾角45°~75°,取α=65° ,渐宽部分展开角α1=20°; (5)栅前槽宽B 1=0.82m ,此时栅槽内流速为0.55m/s ; (6)单位栅渣量:W 1 =0.05 m 3栅渣/103m 3污水; 3.1.1.2 格栅设计计算公式 (1)栅条的间隙数n ,个 max sin Q n bhv α= 式中, max Q -最大设计流量,3/m s ; α-格栅倾角,(°); b -栅条间隙,m ; h -栅前水深,m ; v -过栅流速,m/s ; (2)栅槽宽度B ,m 取栅条宽度s=0.01m B=S (n -1)+bn (3)进水渠道渐宽部分的长度L 1,m 式中,B 1-进水渠宽,m ; α1-渐宽部分展开角度,(°); (4)栅槽与出水渠道连接处的渐窄部分长度L 2,m (5)通过格栅的水头损失h 1,m 式中:ε—ε=β(s/b )4/3; h 0 — 计算水头损失,m ; k — 系数,格栅受污物堵塞后,水头损失增加倍数,取k=3; 1 112tga B B L -= 1 25.0L L =αε sin 22 01g v k kh h ==

土木工程毕业设计计算书

1 工程概况 1、1 建设项目名称:龙岩第一技校学生宿舍 1、2 建设地点:龙岩市某地 1、3 建筑类型:八层宿舍楼,框架填充墙结构,基础为柱下独立基础,混凝土C30。 1、4 设计资料: 1.4.1 地质水文资料:由地质勘察报告知,该场地由上而下可分为三层: 杂填土:主要为煤渣、石灰渣、混凝土块等,本层分布稳定,厚0-0.5米; 粘土:地基承载力标准值fak=210Kpa, 土层厚0、5-1.5米 亚粘土:地基承载力标准值fak=300Kpa, 土层厚1、5-5.6米 1.4.2 气象资料: 全年主导风向:偏南风夏季主导风向:东南风冬季主导风向:西北风 基本风压为:0、35kN/m2(c类场地) 1.4.3 抗震设防要求:七度三级设防 1.4.4 建设规模以及标准: 1 建筑规模:占地面积约为1200平方米,为8层框架结构。 2建筑防火等级:二级 3建筑防水等级:三级 4 建筑装修等级:中级 2 结构布置方案及结构选型 2、1 结构承重方案选择 根据建筑功能要求以及建筑施工的布置图,本工程确定采用横向框架承重方案,框架梁、柱布置参见结构平面图,如图2、1所示。 2、2 主要构件选型及尺寸初步估算 2.2.1 主要构件选型 (1)梁﹑板﹑柱结构形式:现浇钢筋混凝土结构

图2、1 结构平面布置图 (2)墙体采用:粉煤灰轻质砌块 (3)墙体厚度:外墙:250mm,内墙:200mm (4)基础采用:柱下独立基础 2.2.2 梁﹑柱截面尺寸估算 (1)横向框架梁: 中跨梁(BC跨): 因为梁的跨度为7500mm,则、 取L=7500mm h=(1/8~1/12)L=937、5mm~625mm 取h=750mm、 4 7.9 750 7250 > = = h l n= =h b) 3 1 ~ 2 1 (375mm~250mm 取b=400mm 满足b>200mm且b 750/2=375mm 故主要框架梁初选截面尺寸为:b×h=400mm×750mm 同理,边跨梁(AB、CD跨)可取:b×h=300mm×500mm (2)其她梁: 连系梁: 取L=7800mm h=(1/12~1/18)L=650mm~433mm 取h=600mm = =h b) 3 1 ~ 2 1 (300mm~200mm 取b=300mm 故连系梁初选截面尺寸为:b×h=300mm×600mm 由于跨度一样,为了方便起见,纵向次梁截面尺寸也初选为: b×h=300mm×600mm

某市污水处理厂课程设计计算表

某城镇污水处理厂计算表 1.流量和水质的计算 生活污水设计流量:查《室外给水设计规范》中的综合生活用水定额,生活污水平均流量取252L/(人·d);则25万人生活污水量:252×25×104=63000 m 3/d;内插法求得总变化系数为K 总=1.35;则最大流量Q m ax =1.35×63000=85050 m 3/d。 工业废水量:540+1300+4200+2000+5000=13040 m3/d; K 总=K 时 =1.3;则工业 废水最大流量为13040×1.3=16952 m3/d。 总设计流量为16952+85050=102002 m3/d=1.182 m3/s。 进水水质: 生活污水进水水质:查《室外排水设计规范》BOD 5 可按每人每天25——50g 计算,取25g/(人·d);SS可按每人每天40——65g计算,取40 g/(人·d);总氮可按每人每天5——11g计算,取11 g/(人·d) ;总磷可按每人每天0.7——1.4g 来计算,取0.7g/(人·d)。则BOD 5 =99mg/L; SS=159 mg/L; COD= BOD 5 /0.593=167mg/L.(0.593值的来源:重庆市工学院 建筑系.城市污水BOD 5 与COD关系讨论) 工业废水进水水质: 注:(1)表中值为日平均值 (2)工业废水时变化系数为1.3 (3)污水平均水温:夏季25度,冬季10度 (4)工业废水水质不影响生化处理。

2.距污水处理厂下游25公里处有集中给水水源,在此段河道内无其他污水排放口。 河水中原有的BOD 5与溶解氧(夏季)分别为2与6.5mg/l 则BOD 5= 5000 2000420013005405000 320200048142001851300500540105++++?+?+?+?+?=310 mg/L ; COD= 5000 2000420013005405000 4782000857420049610001300540180++++?+?+?+?+?=582 mg/L ; SS= 50002000420013005405000 20020001311001300540410++++?+?+?+?=124 mg/L ; 油=50002000420013005404200 36++++?=12 mg/L 。 综合污水水质: BOD 5=1182 196 31099986?+?=134mg/L ; COD=1182 196582167986?+?=236mg/L ; SS=1182 196124159986?+?=153 mg/L ; 油=118219612?=2 mg/L 2.粗格栅: 采用回转式机械平面格栅。 设计参数: 格栅槽总宽度B : B=S(n-1)+b ·n S ——栅条宽度,m b ——栅条净间隙,m n ——格栅间隙数。n 可由n= v h b Q ··sin max α 确定 Q m ax ——最大设计流量,m 3/s; b ——栅条间隙,m

污水处理厂设计计算

} 某污水处理厂设计说明书 计算依据 1、工程概况 该城市污水处理厂服务面积为,近期(2000年)规划人口10万人,远期(2020年)规划人口万人。 2、水质计算依据 A.根据《室外排水设计规范》,生活污水水质指标为: COD Cr 60g/人d BOD5 30g/人d — B.工业污染源,拟定为 COD Cr 500 mg/L BOD5 200 mg/L C.氨氮根据经验值确定为30 mg/L 3、水量数据计算依据: A.生活污水按人均生活污水排放量300L/人·d; B.生产废水量近期×104m3/d,远期×104m3/d考虑; C.公用建筑废水量排放系数近期按,远期考虑; , D.处理厂处理系数按近期,远期考虑。 4、出水水质 根据该厂城镇环保规划,污水处理厂出水进入水体水质按照国家三类水体标准控制,同时执行国家关于污水排放的规范和标准,拟定出水水质指标为: COD Cr 100mg/L

BOD5 30mg/L SS 30mg/L NH3-N 10mg/L 污水量的确定 ¥ 1、综合生活污水 近期综合生活污水 远期综合生活污水 2、工业污水 近期工业污水 远期工业污水 3、进水口混合污水量 处理厂处理系数按近期,远期考虑,由于工业废水必须完全去除,所以不考虑其处理系数。& 近期混合总污水量 取 远期混合总污水量 取 4、污水厂最大设计水量的计算

近期; ,取日变化系数;时变化系数; 。 ; 远期; ,取日变化系数;时变化系数; 。 拟订该城市污水处理厂的最大设计水量为 污水水质的确定 近期取 取 /

远期取 取 则根据以上计算以及经验值确定污水厂的设计处理水质为: ,, ,, 考虑远期发展问题,结合《城镇污水处理厂污染物排放标准》(GB18918-2002),处理水质达到《城镇污水处理厂污染物排放标准》(GB18918-2002)中的一级标准(B)排放要求。 拟定出水水质指标为: 表1-1 进出水水质一览表 基本控制项目一级标准(B)进水水质去除率 % 序号 % 1COD80· 325 2BOD20150% 3` 20300% SS 4氨氮8[1]30、 % 5T-N204050% 6T-P) 350% 7pH6~97~8 ' 注:[1]取水温>12℃的控制指标8,水温≤12℃的控制指标15。 [2]基本控制项目单位为mg/L,PH除外。

污水处理厂课程设计说明书(附计算书)

目录 1工程概述 1.1 设计任务与设计依据 1.2 城市概况及自然条件 1.3 主要设计资料 2 污水处理厂设计 2.1污水量与水质确定 2.2 污水处理程度的确定 2.3 污水与污泥处理工艺选择 2.4处理构筑物的设计 按流程顺序说明各处理构筑物设计参数的选择,介绍各处理构筑物的数量、尺寸、构造、材料及其特点,说明主要设备的型号、规格、技术性能与数量等。 2.5污水处理厂平面与高程布置 2.6泵站工艺设计 3 结论与建议 4 参考文献 附录(设计计算书)

第一部分设计说明书 第一章工程概述 1.1设计任务、设计依据及原则 1.1.1设计任务 某城镇污水处理厂处理工艺设计。 1.1.2设计依据 ①《排水工程(下) 》(第四版),中国建筑工业出版社,2000年 ②《排水工程(上) 》(第四版),中国建筑工业出版社,2000年 ③《给水排水设计手册》(第二版),中国建筑工业出版社,2004年2月(第 一、五、十一册) ④《室外排水设计规范》(GB 50014—2006) 1.1.3编制原则 本工程的编制原则是: a.执行国家关于环境保护的政策,符合国家的有关法规、规范及标准。 b.根据招标文件和设计进出水水质要求,选定污水处理工艺,力求技术先进成熟、处理效果好、运行稳妥可靠、高效节能、经济合理,确保污水处理效果,减少工程投资及日常运行费用。 c.在污水厂征地范围内,厂区总平面布置力求在便于施工、便于安装和便于维修的前提下,使各处理构筑物尽量集中,节约用地,扩大绿化面积,并留有发展余地。使厂区环境和周围环境协调一致。 d.污水处理厂的竖向布置力求工艺流程顺畅、合理,污水、污泥处理设施经一次提升后达到工艺流程要求,处理后污水自流排入排放水体。 e.单项工艺构、建筑物设计力求可靠、运行方便、实用、节能、省地、经济合理,尽量减少工程投资,降低运行成本。 f.妥善处理、处置污水处理过程中产生的栅渣、污泥,避免产生二次污染。 g.为确保工程的可靠性及有效性,提高自动化水平,降低运行费用,减少日常维护检修工作量,改善工人操作条件,本工程设备选型考虑采用国内先进、可靠、高效、运行维护管理简便的污水处理专用设备,同时,积极稳妥地引进国外先进设备。 h.采用现代化技术手段,实现自动化控制和管理,做到技术可靠、经济合理。 i.为保证污水处理系统正常运转,供电系统需有较高的可靠性,采用双回路电源,且污水厂运行设备有足够的备用率。 j.厂区建筑风格力求统一,简洁明快、美观大方,并与厂区周围景观相协调。 k.积极创造一个良好的生产和生活环境,把滨湖新城污水处理厂设计成为现代化的园林式工厂。

相关主题
文本预览
相关文档 最新文档