当前位置:文档之家› 电缆是系统中导致电磁兼容问题的最主要因素

电缆是系统中导致电磁兼容问题的最主要因素

电缆是系统中导致电磁兼容问题的最主要因素
电缆是系统中导致电磁兼容问题的最主要因素

电缆是系统中导致电磁兼容问题的最主要因素.因此,在实际中经常发现:当将设备上的外拖电缆取下来时,设备就可以顺利通过试验,在现场中遇到电磁干扰现象时,只要将电缆拔下来,故障现象就会消失.这是因为电缆是一根高效的接收和辐射天线.另外,电缆中的导线平行传输的距离最长,因此导线之间存在较大的分部电容和互电感,这会导致导线之间发生信号的串扰.

解决电缆问题的主要方法之一是对电缆进行屏蔽,但是屏蔽电缆应该怎样端接,怎样的屏蔽电缆才是有效的,等一系列问题是普遍关心而模糊的问题.本节讨论电缆的辐射问题、电磁场对电缆的干扰问题、导线之间的信号串扰问题,以及这些问题的对策.

1 电缆的辐射问题

电缆的辐射问题是工程中最常见的问题之一,90%以上的设备(主要是含脉冲电路的设备)不能通过辐射发射试验都是由于电缆辐射造成的.电缆产生辐射的机理有两种,一种是电缆中的信号电流(差模电流)回路产生的差模辐射,另一种是电缆中的导线(包括屏蔽层)上的共模电流产生的.电缆的辐射主要来自共模辐射.共模辐射是由共模电流产生的,共模电流的环路面积是由电缆与大地(或邻近其它大型导体)形成的,因此具有较大的环路面积,会产生较强的辐射.共模电流是如何产生的往往是许多人困惑的问题.要理解这个问题,首先明确共模电压是导致共模电流的根本原因,共模电压就是电缆与大地(或邻近的其它大型导体)之间的电压.从共模电压出发,寻找导致共模电流的原因就容易了,而导致一个问题的原因一旦清楚,解决这个问题就不是很困难了.电缆上的共模电流产生的原因有以下几点:差模电流泄漏导致的共模电流.即使电缆中包含了信号回线,也不能保证信号电流100%从回线返回信号源,特别是在频率较高的场合,空间各种杂散参数为信号电流提供了第三条,甚至更多的返回路径.这种共模电流虽然所占的比例很小,但是由于辐射环路面积大,辐射是是不能忽视的.不要试图通过将电路与大地“断开”(将线路板与机箱之间的地线断开,或将机箱与大地之间的地线断开)来减小共模电流,从而减小共模辐射.将电路与大地断开仅能够在低频减小共模电流,高频时寄生电容形成的通路已经阻抗很小.共模电流主要由杂散电容产生.当然,如果共模辐射的问题主要发生在低频,将线路板或机箱与大地断开会有一定效果.从共模电流产生的机理可知,减小这种共模电流的有效方法是减小差模回路的阻抗,从而促使大部分信号电流从信号地线返回.一般信号线与回线靠得越近,则差模电流回路的阻抗越小.一个典型的例子就是同轴电缆,由于同轴电缆的回流电流均匀分布在外皮上,其等效电流与轴心重合,因此回路面积为零,差模阻抗接近为零,几乎100%的信号电流从同轴电缆的外皮返回信号源,共模电流几乎为零,所以共模辐射很小.另一方面,由于差模电流回路的面积几乎为零,差模辐射也很小,所以同轴电缆的辐射是很小的.对于高频信号,用同轴电缆传述可以避免辐射.实际上,这与我们传统上用同轴电缆传输高频信号,以减小信号的损耗的目的具有相同的本质.因为信号的损耗小了,自然说明泄漏的成份少了,而这部分泄漏就是电缆的辐射.线路板的地线噪声导致的共模电流.信号地线就是信号的回流线,因此,地线上的两点之间必然存在电压,对于高频电路而言,这些就是高频噪声电压,它作为共模电压驱动电缆上的共模电流,导致共模辐射.线路板设计一章中提供的各种减小地线阻抗的设计方法,可以用来减小地线上的噪声,从而减小共模电压.一种推荐的方法是在电缆端口设置“干净地”.所谓干净地就是这块地线上没有可以产生噪声的电路,因此地线上的局部电位几乎相等.如果机箱是金属机箱,将这块干净地与金属机箱连接起来.机箱内电磁波空间感应导致的共模电流.机箱内总是充满了电磁波的,这些电磁波会在电缆上感应出共模电压,另外,电缆端口的附近也会有一些产生高频电磁场的电路,这些电路与电缆之间存在着电容性耦合和电感性耦合,在电缆上形成共模电压.电磁感应产生的共模电压.需要注意的是,机箱内的电磁波大多由电路的差模辐射所至,在线路板设计一章,我们讨论了脉冲信号差模辐射的频谱,可知其频率范围是很宽的.这导致了共模电压的频率往往远高于我们所预期的值.

(二)

电缆长度:在满足使用要求的前提下,尽量使用短的电缆.但电缆长度往往受到设备之间连接距离的限制,不能随意缩短.而且,当电缆的长度不能减小到波长的一半以下时,减小电缆长度也没明显效果;增加共模电流环路的阻抗:目的是减小共模电流,因为在共模电压一定的情况下,增加共模电流路径的阻抗可以减小共模电流;减小共模电压:目的是减小共模电流,当共模回路阻抗一定时,减小共模电压就可以减小共模电流;低通滤波器滤波:目的是减少高频共模电流成份,这些高频共模电流的辐射效率很高;电缆屏蔽:目的是为共模电流提供一条环路面积较小的路径.下面介绍在实际工程中应用上述概念的方法.

1 增加共模电流回路的阻抗

设备组装完成后,设备电缆上产生的共模电压也就一定了.这时,减小电缆上的共模电流的方法就是增加共模电流回路的阻抗.但是怎样增加共模回路的阻抗是许多工程师困惑的问题.他们往往试图通过断开线路板与机箱之间的连接,或者机箱与安全地之间的连接,来增加共模回路的阻抗,结果往往令人失望.因为这些方法仅对低频有效,而低频共模电流并不是辐射的主要原因.

实用而有效的方法是在电缆上串联共模扼流圈,共模扼流圈能够对共模电流形成较大的阻抗,而对差模信号没有影响,因此使用上很简单,并且共模扼流圈不需要接地,可以直接加到电缆上.将整束电缆穿过一个铁氧体磁环就构成了一个共模扼流圈,根据需要,也可以将电缆在磁环上绕几匝.为了工程方便,很多厂家提供分体式的磁环,这种磁环可以很容易地卡在电缆上. 电缆上套了铁氧体磁环后,辐射强度的改善量取决于原来共模电流回路的阻抗,从共模辐射的公式容易推导出下面的结论(推导中,应用共模电压不变的条件):

共模辐射改善=20lg(E1 / E2)= 20lg(ICM1 / ICM2)

=20lg(ZCM2 / ZCM1)

=20lg ( 1 + Z/ZCM1)

式中:

E1=加铁氧体前的辐射强度,

E2=加铁氧体后的辐射强度,

ICM1=加铁氧体前的共模电流,

ICM2=加铁氧体后的共模电流,

ZCM2=加铁氧体后的共模环路阻抗,

ZCM1=加铁氧体前的共模环路阻抗,

Z=共模扼流圈的阻抗.

例如,如果没加共模扼流圈时的共模电流环路阻抗为100W,共模扼流圈的阻抗为1000 W,则共模辐射改善为20dB,而如果原来的共模电流环路阻抗为1000W,则改善量仅为6dB. 为了获得预期的干扰抑制效果,在使用铁氧体磁环时,需要注意以下问题:

a. 铁氧体材料的选择:根据要抑制干扰的频率不同,选择不同材料成分和磁导率的铁氧体材料.镍锌铁氧体材料的高频特性由于锰锌铁氧体材料,并且铁氧体材料的磁导率越高,低频的阻抗越大,而高频的阻抗越小.这是由于导磁率高的铁氧体材料电导率较高,当导体穿过时,形成电缆与磁环之间的寄生电容较大.

b.铁氧体磁环的尺寸:磁环的内外径差越大,轴向越长,阻抗越大.但内径一定要包紧导线.因此,要获得大的衰减,在磁环内径包紧电缆的前提下,尽量使用体积较大的磁环.

c.共模扼流圈的匝数:增加穿过磁环的匝数可以增加低频的阻抗,但是由于匝间寄生电容增加,高频的阻抗会减小.盲目增加匝数来增加衰减量是一个常见的错误.当需要抑制的干扰频带较宽时,可在两个磁环上绕不同的匝数.

例:某设备有两个超标辐射频率点,一个是为40MHz,另一个为900MHz.经检查,确定是电缆的

共模辐射所致.在电缆上套一个磁环(1/2匝),900MHz的干扰明显减小,不再超标,但是40MHz 频率仍然超标.将电缆在磁环上绕3匝,40MHz干扰减小,不再超标,但900MHz超标.为了解决这个问题,使用了两个铁氧体磁环,一个1/2匝,另一个3匝.

d.电缆上铁氧体磁环的个数:增加电缆上的铁氧体磁环的个数,可以增加低频的阻抗,但高频的阻抗会减小.这是因为电缆与磁环之间的寄生电容增加的缘故.

e.铁氧体磁环的安装位置:一般尽量靠近干扰源或敏感源.对于屏蔽机箱上的电缆,磁环要尽量靠近机箱的电缆进出口. 由于铁氧体磁环的效果取决于原来共模环路的阻抗,原来回路的阻抗越低,则磁环的效果越明显.因此当原来的电缆两端安装了共模滤波电容时,由于其共模阻抗很低,磁环的效果更明显.

(三)

电磁场对电缆的影响

电缆处于电磁场中时,电缆上会感应出噪声电压.与电缆辐射的情况相对应,电磁场在电缆上感应出的电压也分为共模和差模两种.共模电压是电磁场在电缆与大地之间的回路产生的,差模电压是电磁场在信号线与信号地线形成的回路中产生的.当电路是非平衡电路时,共模电流会转换成差模电压,对电路形成干扰.由于信号线与信号地线形成的回路面积很小,因此噪声电压仍以共模为主.

1. 电磁场在电缆上感应出的电压

电缆很靠近地面时:电场分量垂直于地面,磁场分量垂直于导线-地面回路时,感应最强.

电缆很远离地面时:电场分量平行于地面,磁场分量垂直于导线-地面回路时,感应最强.

电磁场在导线中感应出的电压是共模形式的,负载上的电压是以系统中的公共导体或大地为参考点的,一般以系统中参考地线面为参考点.对于多芯电缆,这意味着电缆中的所有导体都暴露在同一个场中,它们上面所感应的电压取决于每根导体与参考点之间的阻抗.

2.电缆对低频磁场的抑制

低频磁场干扰在实际中是很常见的,例如电源线的附近、马达或变压器的附近等.当电缆穿过这种磁场时,电缆所连接的电路中就会产生干扰.这种干扰是由于导体回路面积所包围的磁通量发生变化所致.根据电磁感应定律,导体上感应的电压幅度与它所包围的磁通变化率成正比.如果回路面积所含的磁通量为j ,则:

VN=(d j / dt)

如果假设回路面积A中所包围的磁场是均匀的,也即,回路中各点的磁通密度B是相等的,则j = A B ,则:

VN=A(dB / dt)

如果磁场按正弦规律变化,且表示成:

B=B0e-jwt

则: VN=j wA B

从公式中,可以看出,感应电压与磁场的频率、磁通密度、回路面积等成正比.由于外界干扰场的频率是不受控的,因此为了减小感应电压,应尽量减小回路中所包围的磁通密度和回路的面积.减小磁通密度只能通过增加电缆与磁场辐射源之间的距离来实现.减小回路面积可以通过使用适当的电缆和接地方式来实现.克服磁场的干扰有效方法是减小回路的面积,也就是使信号线与其回线尽量靠近.双绞线和同轴线在减小磁场干扰方面有很好的效果.双绞线:双绞线能够有效地抑制磁场干扰,这不仅是因为双绞线的两根线之间具有很小的回路面积,而且因为双绞线的每两个相邻的回路上感应出的电流具有相反的方向,因此相互抵销.双绞线的绞节越密,则效果越明显.但是,如果电路的两端接地,则不再具有上述特征.因为这时每根导线与地平面之间构成了一个面积很大的回路,在这个回路中会产生感应电流.由于两根导线是不平衡的,因此会产生差模电压.同轴电缆:当同轴电缆适当连接时,对磁场干扰的抑制效果是十分理

想的.因为同轴电缆上信号电流与回流可以等效为在几何上重合,其面积为0.为了保持同轴电缆的这个特性,在电缆的两端,非同轴部分,要保持面积尽量小.即屏蔽层的联线尽量短.实际的同轴电缆,由于芯线与外层不一定是完全同心,因此会有一定的等效面积,影响其抑制效果.与双绞线的情况相似,同轴线的两端也不能接地,否则在芯线与大地的回路中和外层与大地的回路中都会产生电流,由于电路非平衡性,会产生差模噪声.由于天线的对称原理,上述结构的电缆如果接收效率低,则它们的辐射效率也低,因此,双绞线电缆和同轴电缆的辐射也较小.利用这个特点,可以减小电缆的磁场辐射.屏蔽电缆的效果与屏蔽层和电路的接地密切相关.特别是当外界干扰为磁场时,不同的连接方法效果大不相同.这组数据是在磁场中针对不同的接地结构试验获得的:

结构A:

在信号线上套一个非磁性材料的屏蔽套,并且单点接地.对于磁场而言,当非磁性材料的屏蔽层单点接地时,信号回路中的磁场没有变化,因此磁场感应是相同的,即这种结构没有屏蔽效果.这种情况屏蔽效果定义为0dB,作为参考点.

结构B:

将A中的屏蔽层两端接地.这时就能够提供一定的屏蔽效能了.因为由屏蔽层与地平面构成的环路中也感应了电流,这个电流产生了一个与原磁场相反的磁场,使信号回路中的磁场减弱,感应噪声减小.

结构C:

双绞线本应提供较好的屏蔽效果(由于相邻绞节中感应的电流方向相反,相互抵消),但由于电路两端接地,实际的感应回路并不小,因此效果较差.

结构D:

在双绞线上加了一个单端接地的屏蔽层,由于单端接地的屏蔽层对磁场没有屏蔽效果,因此并没有改善双绞线的屏蔽效能.

结构E:

将屏蔽层两端接地后,同B一样,屏蔽层中的电流产生的反磁场削弱了原磁场,屏蔽效能有所提高.说明:结构C是一种常见的错误,在实践中要避免.

结构F:

电路只在单点接地,利用电缆的屏蔽层作为回流路径,大大减小了感应回路的面积,因此屏蔽效能大幅度提高.理想的同轴电缆回路面积为0,不会感应上任何噪声电压.实际同轴电缆的屏蔽效果取决于芯线与外层轴心的偏差.

结构G:

双绞线由于具有很小的感应回路,并且相邻绞节中的感应电流对消,因此表现出较高的磁场屏蔽效果.实际的抑制效果比55更高,因为这里有些电场感应了进来.这从结构H可以看出.在结构H中,单端接地的屏蔽层抑制了电场感应,是屏蔽效果提高到70.

结构H:

在G的基础上增加一个单端接地的屏蔽层,消除了(实验装置产生的附加)电场的影响.这里的屏蔽效果没有F高,是因为双绞线的回路面积没有同轴电缆的小.增加绞节密度可以进一步提高抑制效果.

结构I:

将H中的屏蔽层两端接地后,导致屏蔽效能下降.这是因为屏蔽层两端接地后,在屏蔽层上产生了感应电流,这个电流在双绞线上感应出电流,由于电路不是平衡的,导致产生差模电压.

结构J:

将H中的屏蔽层非接地的一端接到电路公共端,进一步提高了屏蔽效能,但没有达到F的水平,因为F中的电缆是同轴电缆,具有很小的感应回路.问题:结构H的屏蔽效能比结构G提高了一

些,这是因为单端接地的屏蔽层消除了实验装置产生的附加额外的电场,为什么结构D的屏蔽效能没有比结构C的屏蔽效能提高?

平衡电路:

平衡电路中的两个导体及与其连接的所有电路对地或其它导体有相同的阻抗.

平衡电路对电磁场的响应:平衡电路中的两个导体几何尺寸相同,并且靠得很近,因此可以认为是处于同一个场强.由于它们相对于任何参照物体的阻抗都相等,因此它们上面感应的电流是相同的,在导体两端相对于参考点的电压也是相同的.因此两根导体之间的电压为0V.

若这两个导体连接在电路的输入端,为电路提供输入信号电压,由于它们之间没有噪声电压,因此外界电磁场对电路的输入没有影响.理想的平衡电路能够抵抗任何强度的电磁场干扰. 平衡电路性能的评估:平衡电路的平衡程度用共模抑制比来描述.共模抑制比定义为共模电压与它所产生的差模电压之比,常用分贝来表示.

CMRR=20lg(VC/VD)dB

例如,如果电路的共模抑制比为60dB,则1000V的共模电压在电路的输入端只能产生1V的差模电压.该电路的抗雷电等产生的共模干扰的性能很好.

设计良好的电路,其共模抑制比可以达到60-80 dB.但在高频时,由于寄生参数的影响,电路的平衡性很难作得很好.所以,平衡电路对高频的共模干扰也没有很好的抑制效果.

注意1:

在使用平衡电路时,不仅要选用平衡电路,而且,在布线时也要保证两根线的对称性,这样才能保证高频的平衡性.

注意2:

双绞线是一种平衡结构双绞线是一种平衡结构,因此在平衡系统中经常使用双绞线.同轴电缆则不是平衡结构,在平衡系统中使用时要注意连接方法.同轴电缆只能做一根导体使用,其外层作为屏蔽层使用.

平衡电路对空间和地线的电磁干扰具有很好的抑制作用,因此在通信电缆上得到广泛的应用.当平衡电路的共模抑制比不能满足要求时,可以用屏蔽、共模扼流圈等方法来进行改善.但屏蔽的方法仅适合于空间电磁场造成共模干扰的场合.共模扼流圈的方法可以适合于任何共模干扰的场合,如地线电位差造成的共模干扰.

屏蔽:将电路的输入电缆屏蔽起来,屏蔽层按照规范进行连接,可以起到屏蔽电磁场的作用,它的抑制效果与电路平衡性对空间电磁场的共模干扰的抑制效果是相加的.例如,屏蔽提供的共模抑制效果是30dB,平衡电路的共模抑制比是60dB,则总的共模抑制效果是90dB.电缆屏蔽层的屏蔽效果在很大程度上决定于屏蔽层的端接方式,端接不好的话(不是360度搭接方式),高频的屏蔽效能会下降.

共模扼流圈:共模扼流圈的特殊绕制方法决定了它仅对共模电流有抑制作用,而对电路工作所需要的差模电流没有影响.因此,共模扼流圈是解决共模干扰的理想器件.理想的共模扼流圈低频的共模抑制作用小,而随着频率的升高,抑制效果增加.这与平衡电路低频的共模抑制比高,随着频率升高,平衡性变差,共模抑制比降低的特性正好相反,因此具有互补性.所以,在平衡电路中使用了共模扼流圈后,电路在较宽的频率范围内能保持较高的共模抑制比.

说明1:实际共模扼流圈的频率特性与磁芯的材料,线圈的绕法等因素有关,在实际使用时,要根据具体情况进行参数的调整.

说明2:共模扼流圈的特性与许多共模抑制器件的特性都有互补性,例如,隔离变压器,由于初次级之间寄生电容的影响,对于高频共模干扰抑制效果很差,与共模扼流圈一起使用后,就改善了这个缺陷.共模扼流圈的另一个好处是,不需要接地.这为设计提供了很大方便.

电力系统自动化设备的电磁兼容技术 马洁

电力系统自动化设备的电磁兼容技术马洁 发表时间:2019-08-28T16:04:20.310Z 来源:《云南电业》2019年2期作者:马洁 [导读] 本文阐述了电力系统自动化设备的电磁兼容的特殊性,着重指出了在产品设计和开发过程中遇到电磁兼容问题时应对的手段,同时预测了对电力系统自动化设备的电磁兼容的最新动向。 (内蒙古包头市包头供电局固阳分局内蒙古包头市 014200) 摘要:本文阐述了电力系统自动化设备的电磁兼容的特殊性,着重指出了在产品设计和开发过程中遇到电磁兼容问题时应对的手段,同时预测了对电力系统自动化设备的电磁兼容的最新动向。 关键词:电力自动化;电磁兼容 一、电力系统自动化设备中电磁兼容技术的发展现状 1.1 电磁兼容技术对电力系统自动化设备的有利作用 电磁兼容技术是伴随着电子技术和电子设备的出现而逐渐发展起来的。凡是有电子技术的领域都会有电子干扰,凡是有电子设备的地方都存在电磁干扰现象。而电磁兼容技术的研究对象就是电磁干扰。电磁兼容技术是解决电磁干扰相关问题的一门技术,电力系统自动化设备中的电路之间的相互干扰,外界电磁干扰正是电磁兼容技术需要解决的问题。研究电磁兼容技术对于提高电力系统自动化设备水平利用效率具有重要作用。电磁兼容技术水平的提高有利于减轻电磁波对电子系统自动化设备的干扰,提高设备运行的准确度。电磁兼容技术可以有效防止电子系统自动化设备对外界干扰过度敏感这一问题。 1.2 电力系统自动化设备电磁兼容问题 电磁兼容技术是一门发展迅速的交叉科学,其理论几乎涉及到所有用电领域。在当今信息社会下,电力系统自动化设备的迅速发展对电磁兼容技术提出了更高的要求。电力系统自动化设备与电磁技术兼容,电子设备越是现代化,其造成的电磁环境就越是复杂;相对而言,复杂的电磁环境对电子系统自动化设备又提出了更高的要求。电磁兼容技术作为一种新兴学科,其领域内的理论研究,特性测量和产品开发需要投入高科技的人才和技术资金,其理论研究是一个长期过程,所以电力系统自动化设备中电磁兼容技术的理论研究成功和理论成果应用是一件耗时耗力的事。目前国内电力系统中电磁兼容技术的研究和利用正处于一种高投入,低产出的不良状态。究其原因,市场需求量少,技术更新慢。 二、电磁兼容技术的设计方法 2.1滤波 通过滤波器对电磁干扰进行抑制。滤波器的网络是由分布或集中参数的电感、电容和电阻共同组成,并能对信号的频率进行判断,提取有用信号的频率分量通过,防止干扰频率分量通过,使电磁干扰降低到能够接受的程度。防止和降低电磁干扰的主要措施是使用滤波器,滤波器也能有效减少辐射干扰如对无线电干扰进行抑制,将相应的电磁干扰滤波器安装在接受机的输入端和发射机的输出端,将干扰信号过滤以实现电磁兼容的目标。 2.2隔离 干扰电磁场也存在于干扰线路(馈线)附近,当干扰线路附近存在其他导线时出现电磁耦合产生干扰。将其它线路与干扰线路进行隔离能有效简便防止这种干扰:将馈线按照一定的距离隔离分布能够使线路之间的电磁耦合削弱或切断。以下为隔离的注意事项:不要使其他线路和干扰线路平行排列,如果遇到必须平行的情况,则导线的间距L和直径D的比值不应低于40,并尽可能增大导线间距,另外平行部分越短越好;如果一般线路与敏感线路或者信号线与电源馈线之间需要平行排列时,导线间距不应低于50 mm;对其他线路会造成最大干扰的高频导线需要屏蔽;一些脉冲功率较大的脉冲线路也会严重干扰到其他线路,可以按照干扰线路处理。根据具体情况可以将低功率、低电平的数字电路当做一般线路。 2.3接地 在系统中的一个接地面与选定点之间建立电阻小的导电通路接与地面相接,由于系统中各个电子元件处于零电位并且相互连通,就建立了一个等同于地面的参考点。就是将它的电阻和电位都看作零,并且以其来参考电路中的信号,没有电流通过就没有电压降的产生,所以通过接地设备将干扰电流导入大地,减少干扰源传播的能量。 2.4屏蔽 所谓的屏蔽,就是使用导磁或导电材料来制作壳、屏、板、盒等设备,将电磁能的范围限制在一定区域之内,用屏蔽体来减弱场的能量,最终防止电磁干扰。有三种屏蔽方法:磁屏蔽、电屏蔽以及电磁屏蔽。对不同功能、不同结构和不同安装地点的设备采取不同侧重点的电磁兼容技术措施。 三、电磁干扰对策 3.1 硬件抗干扰 在方案设计、结构设计、电路与线路板设计、电缆设计等四个方面进行相应的安排。 (一)方案设计 (1)设计接口电路,尽量使用平衡电路,必要时可以在接口电路上使用隔离变压器、光耦合器件等提高抗共模干扰的能力。(2)明确所开发的设备或系统要满足的电磁兼容标准。有时根据用户的要求或实际情况(例如,周围有高灵敏度的接受机,或产生强干扰的设备),需要提出专门的电磁兼容要求。 (3)电路中尽量避免使用高速的脉冲信号,脉冲信号的上升/ 下降沿尽量平缓,模拟电路的带宽尽量窄。 (4)根据系统工作原理和地线设计原则,画出系统地线图,不同性质的电路使用不同的地线,不同的地线用不同的符号表示。(5)确定需要采取那些干扰抑制措施,例如屏蔽、滤波等,需要屏蔽的效能和滤波性能(包括频率范围、衰减量等)。 (6)尽量使用大规模集成电路,这样可以获得很小的环路面积,提高抗扰性和减少发射。

电磁兼容性(EMC)仿真

设计早期对电磁兼容性(EMC)问题的考虑 随着产品复杂性和密集度的提高以及设计周期的不断缩短,在设计周期的后期解决电磁兼容性(EMC)问题变得越来越不切合实际。在较高的频率下,你通常用来计算EMC的经验法则不再适用,而且你还可能容易误用这些经验法则。结果,70%~90%的新设计都没有通过第一次EMC测试,从而使后期重设计成本很高,如果制造商延误产品发货日期,损失的销售费用就更大。为了以低得多的成本确定并解决问题,设计师应该考虑在设计过程中及早采用协作式的、基于概念分析的EMC仿真。 较高的时钟速率会加大满足电磁兼容性需求的难度。在千兆赫兹领域,机壳谐振次数增加会增强电磁辐射,使得孔径和缝隙都成了问题;专用集成电路(ASIC)散热片也会加大电磁辐射。此外,管理机构正在制定规章来保证越来越高的频率下的顺应性。再则,当工程师打算把辐射器设计到系统中时,对集成无线功能(如Wi-Fi、蓝牙、WiMax、UWB)这一趋势提出了进一步的挑战。 传统的电磁兼容设计方法 正常情况下,电气硬件设计人员和机械设计人员在考虑电磁兼容问题时各自为政,彼此之间根本不沟通或很少沟通。他们在设计期间经常使用经验法则,希望这些法则足以满足其设计的器件要求。在设计达到较高频率从而在测试中导致失败时,这些电磁兼容设计规则有不少变得陈旧过时。 在设计阶段之后,设计师制造原型并对其进行电磁兼容性测试。当设计中考虑电磁兼容性太晚时,这一过程往往会出现种种EMC问题。

对设计进行昂贵的修复通常是唯一可行的选择。当设计从系统概念设计转入具体设计再到验证阶段时,设计修改常常会增加一个数量级以上。所以,对设计作出一次修改,在概念设计阶段只耗费100美元,到了测试阶段可能要耗费几十万美元以上,更不用提对面市时间的负面影响了。 电磁兼容仿真的挑战 为了在实验室中一次通过电磁兼容性测试并保证在预算内按时交货,把电磁兼容设计作为产品生产周期不可分割的一部分是非常必要的。设计师可借助麦克斯韦(Maxwell)方程的3D解法就能达到这一目的。麦克斯韦方程是对电磁相互作用的简明数学表达。但是,电磁兼容仿真是计算电磁学的其它领域中并不常见的难题。 典型的EMC问题与机壳有关,而机壳对EMC影响要比对EMC性能十分重要的插槽、孔和缆线等要大。精确建模要求模型包含大大小小的细节。这一要求导致很大的纵横比(最大特征尺寸与最小特征尺寸之比),从而又要求用精细栅格来解析最精细的细节。压缩模型技术可使您在仿真中包含大大小小的结构,而无需过多的仿真次数。 另一个难题是你必须在一个很宽的频率范围内完成EMC的特性化。在每一采样频率下计算电磁场所需的时间可能是令人望而却步的。诸如传输线方法(TLM)等的时域方法可在时域内采用宽带激励来计算电磁场,从而能在一个仿真过程中得出整个频段的数据。空间被划分为在正交传输线交点处建模的单元。电压脉冲是在每一单元被发射和散射。你可以每隔一定的时间,根据传输线上的电压和电流计算出电场和磁场。

ANSYS电磁兼容仿真软件解析

ANSYS电磁兼容仿真设计软件 用途:用于电子系统电磁兼容分析,包括PCB信号完整性、电源完整性和电磁辐射协同仿真,数模混合电路的噪声分析和抑制,以及机箱系统屏蔽效能和电磁泄漏仿真,确保系统的电磁干扰和电磁兼容性能满足要求。 一、购置理由 1现代电子系统设计面临越来越恶劣的电磁工作环境,一方面电子系统包括了电源模块、信号处理、计算机控制、传感与机电控制、光电系统及天线与微波电路等部分,系统内部相互不发生干扰,正常工作,本身就非常困难;另一方面,在隐身、电子对抗、静放电,雷击和电磁脉冲干扰等恶劣电磁环境下,设备还需要有足够的抗干扰能力,为电路正常工作留有足够的设计裕量。为了确保xx系统的工作可靠性,设备必须通过相关的电磁兼容标准,如国军标GJB151A,GJB152A。 长期以来,设备的电磁兼容设计和仿真一直缺乏必要的仿真设计手段,只能依赖于设备后期试验测试,不仅测量成本高昂,而且,如果EMI测量超标,后续的查找问题和修正问题基本上依赖于经验和猜测。而解决电磁兼容问题,也只能靠经验进行猜想和诊断,采取的措施也只能通过不断的试验进行验证,这已经成为制约我们产品进度的重要原因。。 2目前我所数字电路设计的经验和手段已经有很大改善,我们在复杂PCB布线、高速仿真方面取得了很多的成果和经验,并且已经开

始高速通道设计的预研。在相关PCB布线工具的帮助下,将复杂的多电源系统PCB布通,确保集成电路之间的正确连接已经基本上没有问题。但是随着应用深入,也存在一些困难,特别在模拟数字转换、高速计算与传输PCB和系统的设计中,我们不仅要保证电路板的正常工作,还要提高关键性的技术指标,例如数模转换电路的有效位数、信号传输系统的速率和误码率等,此外,还要满足整个卫星电子系统的电磁兼容/电磁干扰要求,为此,我们迫切需要建立的仿真功能包括: ●高速通道中,连接器,电缆等三维全波精确和建模仿真, 这些结构的寄生效应对于信号的传输性能有至关重要的影 响; ●有效的PCB电源完整性分析工具,对PCB上的电源、地等 直流网络的信号质量进行仿真 ●为提高仿真精度,需要SPICE模型,IBIS模型和S参数模 型的混合仿真 ●需要同时进行时域和频域仿真和设计,观察时域的眼图、 误码率,调整预加重和均衡电路的频域参数,使得信号通道 的物理特性与集成电路和收/发预加重、均衡等相配合,达到 系统性能的最优 ●有效的PCB的辐射控制与仿真手段,确保系统EMI性能达 标。 现在EDA市场上已经有一些SI/PI和EMI/EMC仿真设计工具,但存在多方面的局限性。我们的PCB布线工具虽然能解决一定的问题,

电气类外文翻译---电力电子系统的电磁兼容问题

外文资料译文 Power Electronics Electromagnetic Compatibility The electromagnetic compatibility issues in power electronic systems are essentially the high levels of conducted electromagnetic interference (EMI) noise because of the fast switching actions of the power semiconductor devices. The advent of high-frequency, high-power switching devices resulted in the widespread application of power electronic converters for human productions and livings. The high-power rating and the high-switching frequency of the actions might result in severe conducted EMI. Particularly, with the international and national EMC regulations have become more strictly, modeling and prediction of EMI issues has been an important research topic. By evaluating different methodologies of conducted EMI modeling and prediction for power converter systems includes the following two primary limitations: 1) Due to different applications, some of the existing EMI modeling methods are only valid for specific applications, which results in inadequate generality. 2) Since most EMI studies are based on the qualitative and simplified quantitative models, modeling accuracy of both magnitude and frequency cannot meet the requirement of the full-span EMI quantification studies, which results in worse accuracy. Supported by National Natural Science Foundation of China under Grant 50421703, this dissertation aims to achieve an accurate prediction and a general methodology. Several works including the EMI mechanisms and the EMI quantification computations are developed for power electronic systems. The main contents and originalities in this research can be summarized as follows. I. Investigations on General Circuit Models and EMI Coupling Modes In order to efficiently analyze and design EMI filter, the conducted EMI noise is traditional decoupled to common-mode (CM) and differential-mode (DM) components. This decoupling is based on the assumption that EMI propagation paths have perfectly balanced and time-invariant circuit structures. In a practical case, power converters usually present inevitable unsymmetrical or time-variant characteristics due to the existence of semiconductor switches. So DM and CM components can not be totally decoupled and they can transform to each other. Therefore, the mode transformation led to another new mode of EMI: mixed-mode EMI. In order to understand fundamental mechanisms by which the mixed-mode EMI noise is excited and coupled, this dissertation proposes the general concept of lumped circuit model for representing the EMI noise mechanism for power electronic converters. The effects of unbalanced noise source impedances on EMI mode transformation are analyzed. The mode transformations between CM and DM components are modeled. The fundamental mechanism of the on-intrinsic EMI is first investigated for a switched mode power supply converter. In discontinuous conduction mode, the DM noise is highly dependent on CM noise because of the unbalanced diode-bridge conduction. It is shown that with the suitable and justified

集成电路的电磁兼容测试.pdf-2018-09-29-14-17-40-598

集成电路的电磁兼容测试 当今,集成电路的电磁兼容性越来越受到重视。电子设备和系统的生产商努力改进他们的产品以满足电磁兼容规范,降低电磁发射和增强抗干扰能力。过去,集成电路生产商关心的只是成本,应用领域和使用性能,几乎很少考虑电磁兼容的问题。即使单片集成电路通常不会产生较大的辐射,但它还是经常成为电子系统辐射发射的根源。当大量的数字信号瞬间同时切换时便会产生许多的高频分量。 尤其是近年来,集成电路的频率越来越高,集成的晶体管数目越来越多,集成电路的电源电压越来越低,加工芯片的特征尺寸进一步减小,越来越多的功能,甚至是一个完整的系统都能够被集成到单个芯片之中,这些发展都使得芯片级电磁兼容显得尤为突出。现在,集成电路生产商也要考虑自己产品电磁兼容方面的问题。 集成电路电磁兼容的标准化 由于集成电路的电磁兼容是一个相对较新的学科,尽管对于电子设备及子系统已经有了较详细的电磁兼容标准,但对于集成电路来说其测试标准却相对滞后。国际电工委员会第47A 技术分委会(IEC SC47A)早在 1990 年就开始专注于集成电路的电磁兼容标准研究。此外,北美的汽车工程协会也开始制定自己的集成电路电磁兼容测试标准 SAE J 1752,主要是发射测试的部分。1997 年,IEC SC47A 下属的第九工作组 WG9 成立,专门负责集成电路电磁兼容测试方法的研究,参考了各国的建议,至今相继出版了150kHz-1GHz的集成电路电磁发射测试标准IEC61967 和集成电路电磁抗扰度标准IEC62132 。此外,在脉冲抗扰度方面,WG9 也正在制定对应的标准 IEC62215。 目前,IEC61967 标准用于频率为 150kHz 到 1GHz 的集成电路电磁发射测试,包括以下 六个部分: 第一部分:通用条件和定义(参考 SAE J1752.1); 第二部分:辐射发射测量方法——TEM 小室法(参考 SAE J1752.3); 第三部分:辐射发射测量方法——表面扫描法(参考 SAE J1752.2); 第四部分:传导发射测量方法——1?/150?直接耦合法; 第五部分:传导发射测量方法——法拉第笼法 WFC(workbench faraday cage); 第六部分:传导发射测量方法——磁场探头法。 IEC62132 标准,用于频率为 150kHz 到 1GHz 的集成电路电磁抗扰度测试,包括以下五部分: 第一部分:通用条件和定义;

电磁兼容实验室简介

电磁兼容实验室简介 本实验室包括电磁场、电磁兼容理论、现代电磁检测基础实验室。 电磁场课程是“电气工程及其自动化专业”“电子信息专业”“通信工程专业”“电子科学技术专业”“生物医学工程专业”的专业基础课,内容含电磁场和电磁波两部分。现代电气装备的发展,一方面与计算机控制技术、电子器件变流技术紧密结合,已经发展为电子电机、电子电器等一体化、智能化电气装备,但同时高速开断的器件形成了严重的电磁干扰;另一方面,电机、电器的设计趋向空间紧凑化、能量高密度化,使部件之间电磁影响严重,无论装置内部以及对外部电力系统及其他设备电磁影响加剧。90年代以来国际上形成了电气装备电磁兼容性研究热点,在国内外电气领域开设电磁兼容性课程。 随着学校办学规模的不断扩大,国家产业政策的调整,专业课程内容、结构调整的需求,为了满足《现代检测技术基础》、《检测与转换》、《电机测试技术基础》、《电器测试技术基础》等课程对实验条件的要求,新建了现代电磁检测基础实验室。其宗旨是:面向本校全体本科生,以满足上述课程的实验要求;兼顾硕士研究生进行课题研究的需求。本实验室主要针对电磁、位移、速度、力及力矩等物理量,特别是快速变化量、微弱信号以及高精度检测而建立的。 本实验室设置以下实验: ●电场模拟 ●无损耗传输线的研究 ●时变电磁场演示实验 ●电磁波的基本性质和简单的测量方法 ●电器放电噪声测试 ●变流装置及开关器件谐波干扰测试 ●屏蔽与接地效应检测 ●辐射EMC测试

●传导性干扰测定 ●力及力矩测量、变速度检测 ●电气设备输入及输出测量 ●多通道磁测量 ●基本电量准确测量 ●弱信号检测 ●震动频谱分析 面向的课程为:电磁场理论、电磁兼容技术基础、现代检测技术基础、工程电磁场基础、电量与非电量测量等。

电力系统中开展电磁兼容测试的必要性

文章编号:1006-7345(2000)02-0044-02 电力系统中开展电磁兼容测试的必要性 毕志周,曹 敏 (云南省电力试验研究所,云南 昆明 650051) 摘要:介绍了国外特别是欧共体国家电磁兼容测试标准的研究情况,电磁兼容的基本概念以及电力系统中供电网络的电磁现象,说明电磁兼容测试的必要性。 关键词:电磁兼容;标准;电磁骚扰 中图分类号:T M93 文献标识码:A 1 概述 近来,电磁兼容性测试标准的研究及发展很快,国际电工委员会(简称IEC)要求各成员尽可能地将其转化为各国和地区的标准。欧共体步伐最快,首先采用国际标准为欧共体标准,然后再转化为各成员国国家标准,其次欧共体率先以法规形式强制执行电磁兼容测试标准,性能合格的产品才允许有 CE标记。CE标记在欧共体市场,相当于产品 通行证。现在,欧洲的进口商和零售行业的中间商已不再购买或出售无CE标记的电子、电气产品。美国联邦通信委员会(简称FCC),已颁布了一些有关电磁兼容性(简称EM C)的法规,并进行这方面的管理。对于通信发射机、接受机、电视机、计算机、各种医疗设备等电气设备均有相应的法律要求,任何出口到美国的这类设备必须取得FCC的认可,否则就是违反美国的法律。日本!电气用品取缔法?涉及甲类和乙类两种产品,甲类产品的安全及电磁骚扰试验是强制性的,乙类是自愿的。日本的通商产业省(简称通产省)负责!电气用品取缔法?中有关事务的处理。在日本生产或销售甲类电气产品,必须向日本通产省有关官员申请注册并到指定试验机构进行试验。甲类电气产品必须符合通产省认定的EM C技术规范。!电气用品取缔法?中还规定了若干惩罚法规,对于未取得注册登记就生产甲类电气用品的,或未通过甲类电气用品型式试验并进行该类电气用品销售的,可处以3年以下徒刑和30万日元以下的罚款。以上表明,欧共体各国,乃至世界各国已从商贸的角度来对待进出口产品生产或销售的电磁兼容问题。 随着我国加入世界贸易组织(World T rade Or gnization,WT O)谈判进程步伐的加快,不远的将来,会有大量的国外电气产品涌入我国市场和我国生产的电气产品出口。在国际贸易中,为消除在非关税壁垒中,由于技术法规、标准和认证体系(合格评定程序)等技术问题而引起的贸易障碍(技术壁垒),保护我国的经济和安全利益,有利于发达国家向我国转让技术,国家质量技术监督局和各部委在近几年也相继颁布了一系列新的国家和部级技术标准,都把电气产品电磁兼容的质量控制与管理技术标准的要求作为重要内容。此外,国家技术监督局正在积极筹备电磁兼容的认证工作,以达到尽快与国际接轨的目的。国家技术监督局指出,今后要在电气产品的市场检测监督和认证两方面深入开展工作,凡不符合电磁兼容标准的产品,不得生产和流通。有关部门将对生产或销售部门进行严肃处理,要求在华外国企业依据中国有关的法律、法规和技术标准,做好电气和电子产品的电磁兼容标准化工作。完善产品质量。 2 电磁兼容的基本概念 2 1 电磁兼容(Electromagnetic Compatibility)的定义 国家标准GB/T4365-1995!电磁兼容术语?对其所下的定义为: 设备或系统在其电磁环境中能正常工作且不对该环境中任何事物构成不能承受的电磁骚扰能力,该标准等同采用IEC60050。这里有三层含义:第一,设备要在电磁环境中正常工作,设备对于电磁环境中的电磁干扰要有一定的抵御能力,而不会导致失效#包括元器件的失效或电 44 2000年第2期 云南电力技术 第28卷

IC芯片的电磁兼容性设计方案

IC芯片的电磁兼容性设计方案 2011-12-19 22:48:43| 分类:EMC/EMI | 标签:|字号大中小订阅 IC芯片的电磁兼容性设计方案 论述了芯片级电磁兼容性的设计方法。最后给出了芯片级电磁兼容性研究中存在的问题及未来的研究重点 1、分析和解决电磁兼容性的一般方法 随着科学技术的发展,系统越来越复杂,使用的频谱越来越宽,根据电磁兼容性学科中多年的研究可知,分析和解决设备、子系统或系统间的电磁兼容性问题一般有3种方法,他们分别为问题解决法(ProlemSolvingApproach)、规范法(SpecificationApproach)和系统法(SystemsApproach)。 1.1问题解决法 问题解决法主要指在建立系统前并不专门考虑电磁兼容性问题,待系统建成后再设法解决在调试过程中出现的电磁兼容性问题的方法。系统内或系统间存在的干扰问题有三要素,即干扰源、接受器和干扰的传播路径。因此用问题解决法解决系统内或系统间的电磁兼容性问题时,首先必须正确地确定干扰源。为了做到这一点,从事电磁兼容性方面工作的工程师要比较全面地熟悉各种干扰源的特性。在确定干扰源后再确定干扰的耦合路径是辐射耦合模式还是传导耦合模式,最终决定消除干扰的方法。 1.2规范法 为了满足电磁兼容性的要求,各国政府和工业部门尤其是军方都制订了很多强制执行的标准和规范,例如美国军用标准MIL-STD-461.所谓规范法是指在采购系统的设备和设计建立子系统时必须满足已制订的规范。规范法预期达到的效果就是:如果组成系统的每个部件都满足规范要求,则系统的电磁兼容性就能保证。 1.3系统法 系统法集中了电磁兼容性方面的研究成果,从系统的设计阶段的最初就用分析程序来预测在系统中将要遇到的那些电磁干扰问题,以便在系统设计过程中作为基本问题来解决。目前有下列几种已广泛使用的大规模电磁干扰分析程序: 系统和电磁兼容性分析程序(SEMCAP);系统和电磁兼容性分析程序; 干扰预测程序IPP-1; 系统内部分析程序IAP; 共场地分析模型程序COSAM等。 对于EMC系统设计的3种方法而言,问题解决法即先建立系统,在系统出现EMC问题时,利用EMI抑制技术解决EMC问题,这种方法很冒险,有可能会出现大量的返工。规范法则是要求每个分系

电磁兼容实验报告

实验四电感耦合对电路性能的影响电力系统中,在电网容量增大、输电电压增高的同时,以计算机和微处理器为基础的继电保护、电网控制、通信设备得到广泛采用。因此,电力系统电磁兼容问题也变得十分突出。例如,集继电保护、通信、SCADA功能于一体的变电站综合自动化设备,通常安装在变电站高压设备的附近,该设备能正常工作的先决条件就是它能够承受变电站中在正常操作或事故情况下产生的极强的电磁干扰。 此外,由于现代的高压开关常常与电子控制和保护设备集成于一体,因此,对这种强电与弱电设备组合的设备不仅需要进行高电压、大电流的试验,同时还要通过电磁兼容的试验。GIS的隔离开关操作时,可以产生频率高达数兆赫的快速暂态电压。这种快速暂态过电压不仅会危及变压器等设备的绝缘,而且会通过接地网向外传播,干扰变电站继电保护、控制设备的正常工作。随着电力系统自动化水平的提高,电磁兼容技术的重要性日益显现出来。 一、实验目的 通过运用Multisim仿真软件,了解此软件使用方法,熟悉电路中因电感耦合造成的电磁兼容性能影响。 二、实验环境:Multisim仿真软件 三、实验原理: 1.耦合 (1)耦合元件:除二端元件外,电路中还有一种元件,它们有不止一条支路,其中一条支路的带压或电流与另一条支路的电压或电流相关联,该类元件称为偶合元件。 (2)磁耦合:如果两个线圈的磁场村相互作用,就称这两个线圈具有磁耦合。(3)耦合线圈:具有磁耦合的两个或两个以上的线圈,称为耦合线圈。 (4)耦合电感:如果假定各线圈的位置是固定的,并且忽略线圈本身所具有的电阻和匝间分布电容,得到的耦合线圈的理想模型就称为耦合电感。

自感磁链:11ψ=1N 11Φ 22ψ=2N 22Φ 互感磁链:21ψ=2N 21Φ 12ψ=1N 12Φ 2.伏安关系 耦合线圈中的总磁链:1ψ=11ψ±12ψ=1L 1i ±M 2i 2ψ=22ψ±21ψ=2L 2i ±M 1i 根据法拉第电磁感定律及楞次定律:电路变化将在线圈的两端产生自感,电压U L1,U L2和互感电压U M21,U M12。 于是有: dt di L dt d L U 11111== ψ dt di L dt d L U 2 2 222 == ψ dt di M dt d M U 1 2121== ψ dt di M dt d M U 21212==ψ 两线圈的总电压U1和U2应是自感电压和互感电压的代数和。即: dt di M dt di L M U L U U 211 1211±±=±±= dt di M dt di L M U L U U 1 22 2122±±=±±= 仿真图: 图中,信号源选择sources 中的AC power ,互感线圈选择Basic Virtual 中的TS Virtual 元件 图 10-1 耦合电感 M + _ + _ * * i 1 1L 2L i 2 u 1 u 2 图 10-2 同名端

系统级电磁兼容现场测量关键技术研究

系统级电磁兼容现场测量关键技术研究 电磁兼容是电子电器设备和系统利用电磁频谱,在共同的电磁环境中,避免 因电磁辐射和敏感而引起的不可接受的降级而实现其功能的能力。因此,具有良好的电磁兼容性能对任何用频设备、系统来讲都至关重要。 一方面,随着科学技术的不断发展,信息化系统越来越复杂,同一平台上装载的电子设备越来越多,对电磁兼容的要求也越来越高;另一方面,电磁环境日益复杂恶劣,电子电器设备和系统面临着越来越多的电磁干扰,造成性能降低、功能丧失的概率显著增加。随着部队大型武器装备服役时间增长以及装备加改装的影响,系统间电磁自扰、互扰问题越来越突出。 而对于舰船、飞机和卫星等大型平台来说,电磁兼容的测量与分析只能在现场进行,首先是由于目前还没有可以容纳如此大型测试对象的室内标准场地,也 不可能将这些超大型装备运输到标准开阔场地进行测试;其次是由于对装备的整体电磁兼容测试与分析需要大功率辐射源满负荷工作,室内测试显然是不合适的;再次,当发现电磁兼容问题时,不能完全依靠等待装备生产研制单位的维修,很多时候必须要需通过现场测量的手段进行排查和分析,及时进行解决,才能保证技 战术任务按时完成;最后,现场环境更为接近测试对象的实际工作环境,测试结果更能反映实际情况。目前,国内在电磁兼容标准测试的研究和设施方面发展已经比较完善,但是针对现场测量的研究还处于起步阶段,学术专著和论文少,相关的标准和相应的测试技术缺乏,所以开展电磁兼容现场测量的研究是重要而紧迫的。 本文围绕系统级电磁兼容现场测量的关键技术展开研究,在环境干扰抑制、接收机敏感度现场测试和现场测试数据分析等技术上取得突破,形成了系统级电磁兼容现场试验的方法体系,为军用装备现场电磁兼容试验提供了重要技术手段。

电力电子装置的电磁兼容性和电磁干扰

第19卷第1期总 第 71 期1997年2月沈阳工业大学学报 Jour nal of Shenyang Polytechnic Univer sity Vol.19No.1 Sum No.71 F eb.1997 电力电子装置的电磁兼容性和电磁干扰 林成武 刘焕生 (电子工程系) 摘 要 分析了电力电子装置产生电磁干扰的原因和种类以及抗电磁干扰的基本措施,并提出了分析电磁干扰和电磁兼容性之间关系的方法. 关键词: 电力电子装置;电磁干扰;电磁兼容性;基本措施 中图法分类:TN973.3 0 引 言 近年来,电力电子技术取得了飞速发展,成为电工领域最具活力的学科之一,并越来越对国民经济产生重大影响.同时电力电子装置所产生的电磁干扰对通讯系统和电子设备的正常运行也会产生不良影响.因此迫切需要抑制电力电子装置的电磁干扰和提高抗电磁干扰能力,即使电力电子装置具有电磁兼容性,能长期稳定可靠地运行. 1 电力电子装置的电磁兼容性 电磁兼容性是在不损失有用信号所包含的信息的条件下,信息和干扰共存的能力.电力电子装置在其使用环境下,在承受来自外部的电磁干扰的同时也向电网系统和周围环境释放电磁干扰.在设计制造电力电子装置时,应考虑到电力电子装置在工作时所产生的电磁干扰不对在同一环境中工作的其它电子设备的运行产生不良影响,同时来自外部环境的电磁干扰又不会影响电力电子装置的工作.能做到这一点,就称电力电子装置具有电磁兼容性. 电磁兼容性是一个与电气利用相关的环境问题.对现代技术社会的确立及确保其安全性具有重要意义.因此在电力电子装置的设计、制造过程中应引起高度的重视,并作为一个重要的课题进行研究. 电力电子装置对电磁干扰的承受水平以及装置自身所产生的电磁干扰水平均与电磁兼容性有关系.可用图1表示产生电磁干扰的水平、装置抗干扰的水平及与电磁兼容性之间的关系. 从电力电子装置设计制造的角度来看,如果允许产生较高的电磁干扰,而抗干扰水平又较低,设计制造要容易些.可是,若允许产生较高的电磁干扰,将会影响其它电子设备的正常工作.而且来自外部的电磁干扰又会影响电力电子装置自身的工作.所以,必须在两者之间取得平衡,满足电磁兼容性的要求.在正常使用环境中,应根据国家标准设定电磁兼容性的水平.电力电子装置自身所产生的电磁干扰必须低于电磁兼容性水平,而抗电磁干扰水平必须高于电磁兼容必须性水平.电力电子装置的主电路中的电流几乎都是工作在开关状态的,其控制系统多采用微电子技 本文收到日期:1996-05-31 第一作者:男.41.硕士.讲师

电磁兼容天线仿真实验报告

电磁场与电磁兼容 实验报告 学号: 姓名: 院系: 专业: 教师: 05月20日

半波对称振子天线阵最大辐射方向控制 实验工具 ?Expert MININEC Classic电磁场数值仿真软件 实验目的 根据要求的参数,利用仿真软件设计和分析自由空间或地面上的细、直线天线的电磁场数值,并完成以下要求: ?改变每幅天线馈电电流的相位控制最大增益的方向:要求的最大增益方向是:1. 00 ;2. 400;3. 800 (选择与自己学号后2位数最近的度数) ?根据运行结果指出: 1.增益方向性图; 2.最大增益; 3.最大增益方向。 实验参数 ?频率 f = 300MHz,波长λ = 1m ?四分之一波长单极子天线L=λ,四个半波长对称振子排列在一条直线上,相邻两幅天线的间隔是四分之一波长 实验过程 ?建立几何模型:点—> 线,尺寸,环境,坐标等 半波对称振子放在 YOZ 平面内,相邻振子的间距是四分之一波长。

图1 问题描述图2 –图4 几何模型 图3 图4 ?定义电特性:频率,电压,当前节点 ZENITH(DEG) 对应球坐标系中的θ, AZIMUTH (DEG) 对应球坐标系中的φ 图5 电特性—频率图6 馈电电流相位设置

图7 球坐标参数θ、ψ以及间隔设置 ?选择模式:辐射模式 ?求解项:近场 ?调试、运行 表格中出现“No detected violations ”表明设置正确 图8 选择运行平面图9 调试结果 ?显示结果 3D display 显示所设计天线的图形 天线增益方向性图中给出了最大增益值和最大增益方向、以及半功率增益带宽的计算结果。

电磁兼容原理及应用试题及答案

电磁兼容原理及应用试题及答案 、填空题(每空 0.5分,共20 分) 构成电磁干扰的三要素是【干扰源】 、【传输通道】和【接收器】 磁干扰可分为【传导干扰】和【辐射干扰】 。 电磁兼容裕量是指【抗扰度限值】和【发射限值】之间的差值。 准。 电容性干扰的干扰量是【变化的电场】;电感性干扰在干扰源和接受体之间存在 【交连的磁通】; 电路性干扰是经【公共阻抗】耦合产生的。 场】主要是干扰源的感应场,而【远区场】呈现出辐射场特性。 随着频率的【增加】,孔隙的泄漏越来越严重。因此,金属网对【微波或超高频】频段不具备 屏蔽效能。 静电屏蔽必须具备完整的【屏蔽导体】和良好的【接地】 电磁屏蔽的材料特性主要由它的【电导率】和【磁导率】所决定。 氧体】材料所组成的。 【20lg (U2/U1)】分贝。 多级电路的接地点应选择在【低电平级】电路的输入端。 电子设备的信号接地方式有【单点接地】 、【多点接地】、【混合接地】和【悬浮接地】。其中, 若设备工作频率高于 10MHz 应采用【多点接地】方式。 二、简答题(每题 5分,共20 分) 1 .电磁兼容的基本概念? 答:电磁兼容一般指电气及电子设备在共同的电磁环境中能够执行各自功能的共存状态,即要求在 同一电磁环境中的上述各种设备都能正常工作,且不对该环境中任何其它设备构成不能承担的电磁 ;如果按照传输途径划分,电 2. 3. 抑制电磁干扰的三大技术措施是【滤波】 【屏蔽】和【接地】。 4. 常见的机电类产品的电磁兼容标志有中国的【 CCC 标志、欧洲的【CE 标志和美国的【FCC 5. 志。 IEC/TC77主要负责指定频率低于【9kHz 】 和【开关操作】等引起的高频瞬间发射的抗扰性标 6. 7. 辐射干扰源可归纳为【电偶极子】辐射和【磁偶极子】辐射。如果根据场区远近划分, 【近区 8. 9. 电磁干扰耦合通道非线性作用模式有互调制、 【交叉调制】和【直接混频】 10. 11. 12. 滤波器按工作原理分为【反射式滤波器】和【吸收式滤波器】 ,其中一种是由有耗元件如【铁 13. 设U1和U2分别是接入滤波器前后信号源在同一负载阻抗上建立的电压, 则插入损耗可定义为 14. 15.

大系统强电磁脉冲综合仿真解决方案

大系统强电磁脉冲综合仿真解决方案 一、必要性 电磁兼容(EMC)已经成为一个日益严重的环境污染源,这是因为: ●越来越多电器设备的投入使用 ●IC时钟频率的越来越高 ●辐射源辐射功率的增大 ●设备抗干扰性的减弱 ●无线通信的迅速发展 诸如此类的原因使得同一环境中各种设备既能正常工作又互不干扰变得越来越困难,同时这种电磁环境对人类的健康产生了越来越大的危害,系统(汽车、飞机、舰船、导弹、卫星等)中的机箱电磁泄露,设备之间的相互干扰导致彼此的器件的误动作,解决电磁兼容性问题已经刻不容缓。解决电磁兼容性问题不能只靠运气和测试,测试的时间成本和费用成本都非常高,利用电磁分析工具可以高效地解决电磁兼容问题,提高产品竞争力。 EMC问题成为电子设备设计流程中一个非常重要的环节,并且贯穿设计流程的各个阶段。人们往往要将大量资金和时间花费在样机生产和EMC测试的循环流程中。而通常来说,整个测试需要花费很长的时间并要支付高额的测试费用,不利于产品的快速研发。 在90年代后期,国家已经明确制订了电子设备的电磁兼容性标准和规范以及严格的认证措施,规范国内外产品的电磁兼容性能。而传统的设计流程依然遵循经验设计——样机生产——测试的模式,也就是常说的Try and Cut方法,一旦测试不能通过,就必需按照设计流程重新开始!无疑,这样做的代价是冗长的设计周期和高昂的成本。 在科学技术日益发展的今天,针对传统设计模式解决电磁兼容性问题的弊端,利用计算机仿真技术在设计前期对系统电磁兼容性能进行模拟分析,即所谓的design-level analysis,找出影响电磁兼容性能的关键因素,有针对性的加以改进,将很多的设计风险扼杀在萌芽状态,从而能大大缩短设计周期和节省设计成本。

电磁兼容知识点总结

填空题 1、电磁干扰的危害主要体现在两个方面:a.电气、电子设备的相互影响;b.电 磁污染对人体的影响 2、电磁兼容设计方法: a.问题解决法。问题解决法是先研制设备,然后针对调试中出现的电磁干扰的问题,采用各种电磁干扰抑制技术加以解决。 b.规范法。规范法是按颁布的电磁兼容性标准和规范进行设备或系统的设计制造。 c.系统法。系统法是利用计算机软件对某一特定系统的设计方案进行电磁兼容性分析和预测。 3、电磁干扰的三要素 1、形成电磁干扰的三个基本条件:骚扰源,对骚扰敏感的接收单元,把能量从骚扰源耦合到接收单元的传输通道,称为电磁干扰三要素。 骚扰源——耦合通道——敏感单元 2、电路受干扰的程度可用公式描述I WC S S 为电路受干扰的程度;W 为骚扰源的强度;C 为骚扰源通过某种路径到达被干扰处的耦合因素;I 为被干扰电路的抗干扰性能。 4、 屏蔽技术是利用屏蔽体阻断或减少电磁能量在空间传播的一种技术,是减少电磁发射和实现电磁骚扰防护的最基本,最重要的手段之一,采用屏蔽有两个目的,一是限制内部产生的辐射超出某一个区域,二是防止外来的辐射进入某一区域。 5、常用的电磁密封衬垫有1.金属丝网衬垫2.导电布衬垫3.导电橡胶4.指形簧 片 6、电源线滤波器:作用主要是抑制设备的传导发射或提高对电网中骚扰的抗扰度,虽然同为抑制骚扰,但两者的方向不同,前者是防止骚扰从设备流入电网(称为电源EMI 滤波器),后者是防止电网中的骚扰进入设备(称为电源滤波器) 6、干扰控制接地:1.浮地2.单点接地3.多点接地4.混合接地 8、电磁兼容性GB 的定义:设备或系统在其电磁环境中能正常工作且不对该环境中任何事物构成不能承受的电磁骚扰的能力。 9、电磁骚扰:可能引起装置、设备或系统性能降低或对有生命、无生命物质产生损害作用的电磁现象。电磁骚扰可以是电磁噪声、无用信号或有用信号,也可以是传播媒介自身的变化。 10、电磁干扰:由电磁骚扰引起的设备、系统或传播通道的性能下降。电磁骚扰是指电磁能量的发射过程,后者则强调电磁骚扰造成的后果。 11、谐波电流的抑制方法 1、电流侧设置LC 滤波器 2、采取有源功率因数校正 3、采用PWM 整流器 4、多绕组变压器的多脉整流

相关主题
文本预览
相关文档 最新文档