当前位置:文档之家› ANSYSLS-DYNA中的数值模拟方法

ANSYSLS-DYNA中的数值模拟方法

流体力学数值模拟实验指导书

流体力学数值模拟 实验指导书 建筑环境与设备工程教研室 2008.3

实验一、圆管内层流流动的数值模拟 一、实验目的 1、了解计算流体力学(CFD)的基本理论,包括:数值求解流体力学问题的基本过程、区域离散化、控制容积积分法的基本概念、对流-扩散方程的离散格式、SIMPLE算法的计算步骤、边界条件处理等。 2、掌握对特定的流动问题的完整数学描述,包括:流动问题的控制方程、单值性条件(初始条件及边界条件)。 3、掌握GAMBIT、FLUENT软件的图形用户界面(GUI)的基本架构及基本操作步骤。 4、学会用FLUENT分析圆管内层流流动现象,并结合所学理论知识分析解释相关数值模拟结果。 二、实验装置 本实验均在计算机上完成,主要用到前处理网格生成软件GAMBIT和数值求解软件FLUENT。GAMBIT界面如下图1:

脚本窗口 视窗 命令窗口 图1 GAMBIT软件的GUI界面FLUENT软件GUI界面如下图2:

后处理相关面板 FLUENT绘图界面 FLUENT工作界面 图2 FLUENT软件的GUI界面 三、实验内容 图3 圆管内层流流动 考虑如上图3所示的通过横截面积一定的圆管的层流流动,管直径 为D=0.2 m,管长为L=8 m,管子入口速度为V in=1 m/ s,此管入口处沿横截面速度分布均为1 m/ s,流动最终流入大气压力为1 atm 的大气环境中,流体密度为ρ=1 kg/ m3,动力粘度为μ= 2 x 10-3

kg/(ms),基于管径的Re数为 ,分别在100X20、100X10、100X5的网格上,用FLUENT求解该问题,绘制管子中心线上的速度变化,出口处的速度分布。 四、实验步骤 1、在前处理网格生成软件GAMBIT中,绘制100X5的网格,保存并输出网格,退出GAMBIT软件。 2、打开FLUENT软件,将生成的100X5的网格导入FLUENT中,根据实验内容规定的相关要求进行基本流体参数设置、求解格式的选取、收敛标准的设定等,并开始迭代求解。 3、利用FLUENT内置的后处理面板按实验内容要求绘制管子中心线上的速度变化,出口处的速度分布,并保存绘图结果。 4、退出FLUENT,重新进入前处理网格生成软件GAMBIT中,分别绘制100X10、100X20网格,重复步骤2~3,并比较随着网格的加密对计算结果的影响。

管内湍流的数值模拟

管内湍流的数值模拟 摘要:当Reynolds数大于临界值时,平滑流动会出现一系列复杂的变化,最终会导致流动特征的本质变化,流动呈无序的混乱状态,这种状态称为湍流。计算流体力学是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。本文以湍流管流模型为例,借助Fluent软件进行空气动力学分析,对该管内湍流流动进行模拟。 关键词:计算流体力学;Fluent;管内湍流;数值模拟 1 引言 流体试验表明,当Reynolds数大于临界值时,平滑流动会出现一系列复杂的变化,最终会导致流动特征的本质变化,流动呈无序的混乱状态。这时,即使是边界条件保持不变,流动也是不稳定的,速度等流动特性都随机变化,这种状态称为湍流。 随着高速电子计算机的出现,数值模拟越来越多地应用于流场的模拟。计算流体力学(Computational Fluid Dynamics ,简称为CFD)就是其中一种有效的研究流体动力学的数值模拟方法,它是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析;是基于计算机技术的一种数值计算工具, 用于求解流体的流动和传热问题。它能够描述几何体边界的复杂的流动现象,能够在设计的初期快速地评价设计并做出修改;在设计的中期,用来研究设计变化对流动的影响,减少未预料到的负面影响;设计完成后,CFD提供各种数据和图像,证实设计目的。CFD大大减少了费用、时间以及新设计带来的风险。近年来,CFD越来越多地应用于翼型设计和流场的分析中,成为一种重要的设计和计算方法。 Fluent软件是用于模拟和分析在复杂几何区域内的流体流动与热交换问题的专用CFD软件。它用于计算计算流体流动和传热问题的软件,其应用的范围有一般流体的流场、自由表面的问题、紊流、非牛顿流流场、化学反应等。Fluent提供了灵活的网格特性,用户可以方便的使用结构网格和非结构网格对各种复杂区域进行网格划分。本文以湍流管流模型为例,借助Fluent软件进行空气动力学分析,对该管内湍流流动进行模拟,并分析了模型内的中心速度分布、表面摩擦系数和流速剖面。 2 数学及物理模型的建立 2.1 数学模型

第三章-数值模拟理论与方法

第三章 数值模拟理论与方法 §3.1 流体力学的基本方程 流体运动所遵循的规律是由物理学三大守恒定律规定的,即质量守恒定律,动量守恒定律和能量守恒定律[44]。 (一)连续方程 0)(=?+??v t ρρ (3.1) 式中 ρ-流体密度 u -流体速度分量 (二)动量方程(x 方向) 对于不可压流体(即0=?v ) x p f v u v x u x ??-+??=??+??ργρρρ)()()( (3.2) 式中 γ-运动粘性系数 p -压力 对于可压缩流体 ()()()()()x p f v x u u v x u x ??-+???+??=????ργργρρρ 31 (3.3) 式中等号后前两项是粘性力 y ,z 方向上的动量方程可类似推出。 (三)能量方程 ()()()v q T k e v e t ερρ++???=??+?? (3.4) 其中 T C e v = 式中等号左边第一项是瞬变项,第二项是对流项,等号右边第一项是扩散项,第二、三项是源项。 所以,流体力学基本方程组为: ()0=?+??v t ρρ

()x p f u u v f t u x ??-+??=??+??ργρ)( ()()y p f v v v f t v y ??-+??=??+??ργρ (3.5) ()()w p f w w v f t w w ??-+??=??+??ρλρ ()()v q e c k e v f e t v ερ++??? ? ????=??+?? §3.2 紊流模式理论概况 §3.2.1 基本方程 在自然界中,真实的流体都具有粘性。粘性流体存在两种不同的运动方式和流态,即层流和紊流。而在自然界和工农业生产中所遇见的流体流动大部分都是紊流。 三维的N-S 方程是目前描述粘性流体运动较为理想的模型,其优点一是应用范围广,在空气、水流、传热等方面均用N-S 方程描述;二是对于有分离、旋涡等情况的复杂三维流动更为适用。 三维直角坐标下的N-S 方程[45],[46],即不可压缩粘性流体的动量方程式为: ?????????????+??+??+??-=??+??+??+??-=??+??+??+??-=)()()(222222222222222222z w y w x w z p F Dt Dw z v y v x v y p F Dt Dv z u y u x u x p F Dt Du z y x μρρμρρ μρρ (3.6) 不可压缩流体的连续性方程为: (3.7) 式(3.6)和(3.7)共有四个未知数(u 、v 、w 、p )和四个方程,加上边界条件,从理论上来讲其解是存在的。但是,要直接求解复杂而详细的粘性流体运动是十分复杂和困难的。其原因是:直接求解N-S 方程要求求解从反映消散运动的最小涡漩尺度到反映大尺度涡体的所有流动尺度,因而只有对简单情况下才有理论解。 0=??+??+??z w y v x u

沿程损失阻力系数的FLUENT数值模拟计算流体力学作业

计算流体力学课程作业 作业题目:沿程损失阻力系数的FLUENT数值模拟 学生姓名:易鹏 学生学号: 专业年级:动力工程及工程热物理12级学院名称:机械与运载工程学院 2012年5月2日

沿程损失阻力系数的 FLUENT 数值模拟 一、 引言 沿程损失(pipeline friction loss )是指管道内径不变的情况下,管内流体流过一段距离后的水头损失。其中边界对水流的阻力是产生水头损失的外因,液体的粘滞性是产生水头损失的内因,也是根 本原因。沿程能量损失的计算公式是:2f l v h =λd 2g 。其中:l 为管长,λ 为沿程损失系数,d 为管道内径,2 v 2g 为单位重力流体的动压头(速度 水头),v 为流体的运动粘度系数。粘性流体在管道中流动时,呈现出两种流动状态,管道中的流速cr v v <(cr v 为层流向湍流转变的临界流速)为层流,此时整个流场呈一簇互相平行的流线。则cr v v >时为湍流,流场中的流体质点作复杂的无规则的运动。沿程损失与流动状态有关,故计算各种流体通道的沿程损失,必须首先判别流体的流动状态。 沿程损失能量损失的计算公式由带粘性的伯努利方程 221122 12f v p v p ++z =++z +h 2g ρg 2g ρg 推出,可知,12f P -P h =ρg 其中: ——单位质量流体的动能(速度水头)。流体静止时为0。 ——单位质量流体的势能(位置水头)。 ——单位质量流体的压力能(压强水头)。 2 v 2g z p ρg

又由量纲分析的π定理,得出 2 Δp L =λ1d ρV 2 ,计算出达西摩擦因子22Δpd λ=LρV , 则2f L V h =λD 2g ,由于Vd Re =ν,μν=ρ,则d λ=f(Re )。 关于沿程损失最著名的是尼古拉茨在1932~ 1933年问所做的实验(右图为实验装置图)。其测得曲线如图1,从此得出了几个重要结论: 1.层流区Re <2320为层流区。在该区域内,管壁的相对粗糙度对沿程损失系数没有影响。 2.过渡区2320<Re <4000为由层流向湍流的转换区,可能是层流,也可能是湍流,实验数据分散,无一定规律。 3.湍流光滑管区4000<Re <26.98(d/ε)8/7,为湍流光滑管区。勃拉修斯(p.Blasius )1911年用解析方法证明了该区沿程损失系数与相对粗糙度无关,只与雷诺数有关,并借助量纲分析得出了4×10e3<Re <10e5范围内的勃拉休斯的计算公式为 0.25 0.3164 Re λ=

湍流的数值模拟方法进展

3 大涡模拟(LES ) 湍流大涡数值模拟(LES )是有别于直接数值模拟和雷诺平均模式的一种数值模拟手段。利用次网格尺度模型模拟小尺度湍流运动对大尺度湍流运动的影响即直接数值模拟大尺度湍流运动, 将N-S 方程在一个小空间域内进行平均(或称之为滤波),以使从流场中去掉小尺度涡,导出大涡所满足的方程。 3.1 基本思想 很多尺度不同的旋涡一起组成了湍流运动平均流动主要取决于大漩涡的流动,大尺度运动则受到小旋涡的影响。流动中的大涡实现了动量、能量质量、热量的交换,耗散主要是由于小涡作用的。大旋涡中受到流场形状、阻碍物的影响,,使大漩涡的各向异性更加明显。然而小漩涡之间各项同性,相互没有太大的区别,所以建立统一的模型比较容易一些。综上所述,大涡模拟将湍流瞬时运动量通过滤波将运动分成小尺度和大尺度。大尺度的运动受到小尺度的运动的影响可以通过应力项(类似于雷诺应力项)来表示,即为亚格子雷诺应力,以建立这种模型的方法来模拟。而大尺度则是求解运动微分方程而计算出来的,也就是说大涡模拟,要先过滤掉小尺度的脉动,然后再推出小尺度的运动封闭方程以及大尺度的运动控制方程。 3.2 滤波函数 正如上面提到,大涡模拟要先将流动变量分解成小尺度量和大尺度量,我们把这个作用叫做滤波。滤波运算就是在一区域内按照一定的条件对函数进行加权平均,作用是将高波数滤掉,使低波数保留,滤波函数的特征尺度决定了截断波数的最大波长,下面三种滤波函数是最为常用的主要有以下三种:盒式、富氏截断以及高斯滤波函数。 不可压常粘性系数的湍流运动控制方程为N-S 方程: j ij i j j i i x S x P x u u t u ???+??-=??+??)2(1γρ 式中:S 拉伸率张量,表达式为:2/)//(i j j i ij x u x u S ??+??=;γ分子粘性系数;ρ流体密度。设将变量i u 分解为方程(11)中i u 和次网格变量(模化变量)'i u ,

数值模拟中的湍流模型

流体力学是力学的一个重要分支,它是研究流体(包括液体和气体)这样一个连续介质的宏观运动规律以及它与其他运动形态之间的相互作用的学科,在现代科学工程中具有重要的地位。宏观上讲,黏性流体的流动形态有三种:层流、湍流以及从层流到湍流的转捩。从工程应用的角度看,大多数情况下转捩过程对流体流动的影响不大可以忽略,层流在很少情况下才出现,而在自然界和工程中最普遍存在的是湍流,因此湍流是科学家和工程师研究的重点。湍流理论的研究主要集中在两个方面:一是湍流的触发;二是湍流的描述和湍流问题的求解。 对于工程中出现的湍流问题,其求解方法可归纳为四种:理论分析、风洞实验、现场测试和数值模拟。四种方法相互补充,以风洞实验和现场测试为主,理论分析和数值模拟为辅。数值模拟又称数值风洞,它的出现才十几年却取得迅猛发展,是目前数值计算领域的热点之一,它是数值计算方法、计算机软硬件发展的结果。我们知道,描述流体运动(层流)的流体力学基本方程组是封闭的,而描述湍流运动的方程组由于采用了某种平均(时间平均或网格平均等)而不封闭,须对方程组中出现的新未知量采用模型而使其封闭,这就是CFD中的湍流模型。湍流模型的主要作用是将新未知量和平均速度梯度联系起来。目前,工程应用中湍流的数值模拟主要分三大类:直接数值模拟(DNS);基于雷诺平均N-S方程组(RANS)的模型和大涡模拟(LES)。 DNS是直接数值求解N-S方程组,不需要任何湍流模型,是目前最精确的方法。其优点在于可以得出流场内任何物理量(如速度和压力)的时间和空间演变过程,旋涡的运动学和动力学问题等。由于直接求解N-S方程,其应用也受到诸多方面的限制。第一:计算域形状比较简单,边界条件比较单一;第二:计算量大。影响计算量的因素有三个:网格数量、流场的时间积分长度(与计算时间长度有关)和最小旋涡的时间积分长度(与时间步长有关),其中网格数量是重要因素。为了得到湍流问题足够精确的解,要求能够数值求解所有旋涡的运动,因此要求网格的尺度和最小旋涡的尺度相当,即使采用子域技术,其网格规模也是巨大的。为了求解各个尺度旋涡的运动,要求每个方向上网格节点的数量与Re3/4成比例,考虑一个三维问题,网格节点的数量与Re9/4成比例。目前,DNS能够求解Re(10e4)的范围。 基于RANS的湍流模型采用雷诺平均的概念,将物理量区分为平均量和脉动量,将脉动量对平均量的影响用模型表示出来。目前,基于RANS方程已经发展了许多模型,几乎能对所有雷诺数范围的工程问题求解,并得出一些有用的结果。其缺点在于:第一:不同的模型解决不同类型的问题,甚至对于同一类型的问题,对应于不同的边界条件需要修改模型的常数;第二:由于不区分旋涡的大小和方向性,对旋涡的运动学和动力学问题考虑不足,不能用来对流体流动的机理进行描述。

现代数值模拟方法及其应用

现代数值模拟方法及其应用 这是一门什么样的课? 研究生的全校公选课。 (怎么讲,有待实践和探讨) 假设应当具有的基本知识 高等数学 如微积分、级数展开、微分方程 线形代数、概率统计 问题:关于级数展开及其应用 21 ()(0)'(0)''(0)...2! f x f f x f x =+++ 答: * 当x 较小时,可取前面几项作为函数的近似 * 当函数形式未知时,可用级数逐项逼近 计算机编程 包括 Linux 系统、画图和数据分析软件, 例如 xmgrace ,mitlab 问题:A=0.0D+00 DO 10 I=1,10 A=A+1.0D+00*I 10 CONTINUE 代表什么含义 物理学 (50%内容或多或少与物理学有关) 最理想是学习过普通物理学 或者中学的物理学,能理解基本的物理问题 比如,物理是研究物质的结构和运动的学科 物质有各种形态,如气态、液态和固态等

物质的运动遵从一定的运动规律 如运动方程,分布函数等 问题:力学、统计物理和量子力学的基本知识 化学、生物学和经济学 简单的基本知识 基本的英文阅读和书写能力 不打算非常系统地讲授种种数值模拟方法 因为时间有限、精力有限 重点讲两种方法 Monte Carlo 模拟 和 分子动力学 简单介绍一些重要的基本方法 一定程度上给出数值模拟方法的概况 目的是学习应用计算机模拟方法研究科学问题 至少了解如何用计算机模拟方法研究科学问题 包括 方法本身 科学问题的表述,模型化 Ising 模型的种种应用 {} 1 1 1 i j i j i H k T i S i H K S S h S kT Z S e -- =+==±∑∑∑

湍流的数值模拟

2012年秋季学期研究生课程考核 (读书报告、研究报告) 考核科目高等流体力学 学生所在院(系)机电工程学院 学生所在学科机械制造及自动化学生姓名高强 学号12S008123 学生类别工学硕士 考核结果阅卷人

湍流的数值模拟 一、流体力学概述 流体力学是研究流体的力学运动规律及其应用的学科。主要研究在各种力的作用下,流体本身的状态,以及流体和固体壁面、流体和流体间、流体与其他运动形态之间的相互作用的力学分支。除水和空气之外,这里的流体还指作为汽轮机工作介质的水蒸气、润滑油、地下石油、含泥沙的江水、血液、超高压作用下的金属和燃烧后产生成分复杂的气体、高温条件下的等离子体等等。它的主要基础是牛顿运动定律和质量守恒定律,常常还要用到热力学知识,有时还用到宏观电动力学的基本定律、本构方程和高等数学、物理学、化学的基础知识。气象、水利的研究,船舶、飞行器、叶轮机械和核电站的设计及其运行,可燃气体或炸药的爆炸,汽车制造,以及天体物理的若干问题等等,都广泛地用到流体力学知识。许多现代科学技术所关心的问题既受流体力学的指导,同时也促进了它不断地发展。 二、数值计算在流体力学研究中的应用 数值计算是研究流体力学的重要方法。它是针对流体运动的特点,用数学语言将质量守恒、动量守恒、能量守恒等定律表达出来,从而得到连续性方程、动量方程和能量方程。此外,还要加上某些联系流动参量的关系式(例如状态方程),或者其他方程。这些方程合在一起称为流体力学基本方程组。 求出方程组的解后,结合具体流动,解释这些解的物理含义和流动机理。通常还要将这些理论结果同实验结果进行比较,以确定所得解的准确程度和力学模型的适用范围。 从基本概念到基本方程的一系列定量研究,都涉及到很深的数学问题,所以流体力学的发展是以数学的发展为前提。反过来,那些经过了实验和工程实践考验过的流体力学理论,又检验和丰富了数学理论,它所提出的一些未解决的难题,也是进行数学研究、发展数学理论的好课题。按目前数学发展的水平看,有不少题目将是在今后几十年以内难于从纯数学角度完善解决的。

流体力学课程报告

流体力学在建筑工程中的应用 姓名:杜科材班级:1033002 学号:1103300233 摘要:简要介绍了流体力学的基本知识,针对计算流体力学计算的特点及模拟的目的, 对当前CFD 在建筑工程方向的研究进展进行了论述, 介绍了CFD的处理过程, 探讨了CFD 技术在建筑工程中的应用前景, 指出将理论分析、实验研究及数值模拟结合起来, 从而推动建筑工程的发展。并结合实际的工程实例论述了计算流体力学在现代建筑消防设计中的应用。 关键词:流体力学;建筑工程;数值模拟;烟气流场模拟 1 流体力学学科的研究方法 流体力学是力学的一个重要分支, 是一门重要的技术基础课程.它是研究流体的机械运动规律以及运用这些规律解决实际工程问题的一门学科。流体力学是一门既有较强理论性又有较强工程实际意义的课程, 几乎每本流体力学教科 书的绪论中都提到: 流体力学是为解决实际问题而产生的,并随着社会的发展而进步的学科。许多近现代科学的重大成就都源于流体力学的研究, 从上远古时期的治水工程, 到18世纪造船、航海的崛起, 从20 世纪的航空技术的发展, 到现 在生物技术、环境科学的飞速进步, 无不渗透着流体力学的相关理论。在整个流体力学课程的学习过程中, 大多数人都被深奥的理论、繁杂的概念和高阶偏微分方程所难倒。这就要求学习者必须有扎实的高等数学知识、灵活的综合分析问题和处理问题能力。 特别是在21 世纪, 最激烈的竞争就是高素质人才的竞争。而高校教育的任务就是要为国家培养造就一大批具有宽广、深厚、扎实的基础理论和技术基础理论, 具有创新性和创造性的高级工程技术人才以适应经济时代对人才的要求。因此要求学生在拓宽基础知识面, 打好坚实的理论基础的基础上重点提高综合析 和迅速解决问题的能力流体力学作为一门古老的学科, 其生命力在于不断同其 它学科领域相结合, 用它自身的学科视角审视其它领域, 解决其中存在的有关 问题, 同时其自身在解决各种矛盾问题当中得到不断的发展同。任何一门学科的知识量是无尽的, 不可能通过有限的学时讲授很多内容, 如何运用流体力学基 本理论解决实际问题就显得十分重要。 那么, 流体力学的学习有什么规律可寻? 怎样才能与实际工程相结合? 这 对教与学的双方都提出了更高的要求。 概括起来, 流体力学的研究方法大致分为3 类: 实验、理论和数值模拟方法。 1.1 实验方法 实验方法是通过对具体流动的观察与测量, 来认识流动的规律。理论上的分析结果需要经过实验验证, 实验又需用理论来指导. 流体力学的实验研究, 包 括原型观测和模型实验, 而以模型实验为主。

数学建模中计算机模拟运用方法研究

数学建模中计算机模拟运用方法研究 摘要:通过对实际问题的非线性、离散、连续三种类型的数学建模解决问题的分析与研究,给出了利用计算机模拟实验验证数学建模有效性的方法,从而使数学建模在解决实际问题中得到更有效的应用。 关键词:计算机模拟;数学建模;技术运用;研究分析 在现阶段信息技术发展的过程中,人们可以利用数学模型方法的设计解决现实中的实际问题,通过对现阶段计算机模拟在数学建模中的运用分析可以发现,其技术形式取得了较大的成就。通过数学与计算机技术的稳定结合,可以实现数学技术的稳定构建,因此,在计算机技术快速发展的今天,计算机及数学建模逐渐成为技术运用中较为重要的途径。通过对实际问题的构建,可以通过计算机模拟技术对于较难解决、而又重要的问题进行系统性的分析。在计算机运用的过程中,不仅可以使问题求解体现出方便、快捷以及精准性的特点,而且也可以使实际问题得到充分性的解决。通过计算机模拟或是计算机程序模拟运用中可以解决实际的问题,并在建立数学、逻辑等模型设计的基础上,可以通过计算机实验对系统资源进行科学化的规定,从而为计算机模拟与数学模型的构建提供稳定支持。 1、计算机模拟及数学建模的概述分析 1.1、计算机模拟 计算机模拟是利用计算机对一个系统使用过程所建立的模型,通过该模型的运用可以进行实验项目的设计。并通过对该系统行为的控制分析,对不同的数据资源进行评估。对于计算机模拟系统而言,其主要是将系统分析以及运筹学作为基础,所模拟的对象以及用途相对广泛,在模拟中可以实现从简单到复杂、从一个变量到多个变量的变化,在交通、经济、生活以及医疗等管理中均得到了广泛性的运用。 1.2、数学建模 对于数学建模而言,主要是运用数学模型解决相关问题,也就是在一组备选数据分析的过程中,选择合理性的数据资源。在现阶段数学模型构建的过程中,其中的空间作为主要的内容,在空间相对应位置设计的基础上,结合了限制条件的保护机制,所选择的模型分为线性以及非线性两种,其中的线性模型以及非线性模型是由变量的阶层所决定的[1]。 2、计算机模拟在数学建模中所解决的问题 第一,对于一些难以在计算环境中进行实验以及观察的数学建模而言,只能运用计算机进行模拟,例如,太空飞行中的数据研究。

流体力学中的四大研究方法

流体力学中的四大研究方法 多年前,我看过一篇杨振宁老先生谈学习和研究方法的文章,记忆深刻。很多人可能都知道,杨老先生大学毕业于西南联大,他总结我们中国学习自然科学的研究方法,主要是“演绎法”,往往直接从牛顿三大定律,热力学定律等基础出发,然后推演出一些结果。然而,对于这些定律如何产生的研究和了解不多,也就不容易产生有重大意义的原创性成果。他到美国学习后发现,世界著名物理学大学费米、泰勒等是从实际试验的结果中,运用归纳的原理,采用的是“归纳法”。这两种方法对杨老先生的研究工作,产生了很大的影响。 除了这两种基本研究方法外,还有很多方法,如量纲分析法、图解法、单一变量研究法、数值模拟法等。每个学科可能都有一些各自独特的研究方法。我是流体力学专业出身,就以流体力学为例。通常,开展流体力学的工作主要有4种研究方法:现场观测法、实验模拟法、理论分析法和数值计算法四个方面。 现场观测法 从流体力学的学科历史来看,流体力学始于人们对各种流动现象的观测。面对奔腾的河流,孔子发出了:“逝者如斯夫,不舍昼夜”的感叹,古希腊哲学家赫拉克利特说“人不能两次踏进同一条河流”。阿基米德在澡盆中,看到溢出的水,提出了流体静力学的一个重要原理——阿基米德原理。丹尼尔·伯努利通过观察发现流速与静压关系的伯努利原理。在流体力学史上还有很多这样的例子,发现自然界的各种流动现象,通过各种仪器进行观察,从而总结出流体运动的规律,再反过来预测流动现象的演变。但此方法有明显的局限性,最主要的体现在两个方面,一是一些流动现象受特定条件的影响,有时不能完成重复发生;二是成本比较大,需要花费大量的人财物。 实验模拟法 为了克服现场观测的缺点,人们制造了多种实验装置和设备,建立了多个专项和综合实验室。实验基本上能可控、重复流动现象,可以让人们仔细、反复地观测物理现象,直接测量相关物理量,从而揭示流动机理、发现流动规律,建立物理模型和理论,同时还能检验理论的正确性。 流体力学史上很多重要的发现都是通过实验发现或证实的,比如意大利物理学家伽俐略利用实验演示了在空气中物体运动所受到的阻力;托里拆利通过大气

湍流的数值模拟方法进展

《高等计算流体力学》课程作业 湍流的数值模拟方法进展

1概述 自然环境和工程装置中的流动常常是湍流,模拟任何实际过程首先遇到的就是湍流问题,而湍流问题本身又是流体力学理论上的难题。对于某些简单的均匀时均流场,如果湍流脉动是各向均匀及各向同性的,可以用经典的统计理论来分析,但实际上的湍流往往是不均匀的,给理论分析带来了极大困难。 湍流是空间上不规则和时间上无秩序的一种非线性的流体运动,表现出非常复杂的流动状态,主要表现在湍流流动的随机性、有旋性、统计性。传统计算流体力学中描述湍流的基础是Navier-Stokes(N-S)方程,根据N-S方程中对湍流处理尺度的不同,湍流数值模拟方法主要分为:直接数值模拟(DNS)、雷诺平均方法(RANS)和大涡模拟(LES)。 直接数值模拟可以获得湍流场的精确信息,是研究湍流机理的有效手段,但现有的计算资源往往难以满足对高雷诺数流动模拟的需要,从而限制了它的应用范围。雷诺平均方法可以计算高雷诺数的复杂流动,但给出的是平均运动结果,不能反映流场脉动的细节信息。大涡模拟基于湍动能传输机制,直接计算大尺度涡的运动,小尺度涡运动对大尺度涡的影响则通过建立模型体现出来,既可以得到比雷诺平均方法更多的诸如大尺度涡结构和性质等的动态信息,又比直接数值模拟节省计算量,从而得到了越来越广泛的发展和应用。 2 雷诺平均方法(RANS) 雷诺平均模拟(RANS)即应用湍流统计理论,将非定常的N - S方程对时间作平均,求解工程中需要的时均量。利用湍流模式理论,对Reynolds应力做出各种假设,即假设各种经验的和半经验的本构关系,从而使湍流的平均Reynolds方程封闭。 2.1控制方程 对非定常的N - S 方程作时间演算,并采用Boussinesp 假设,得到Reynolds 方程

Fluent 湍流模型小结

Fluent 湍流模型小结 湍流模型 目前计算流体力学常用的湍流的数值模拟方法主要有以下三种: ?直接模拟(direct numerical simulation, DNS) 直接数值模拟(DNS)特点在湍流尺度下的网格尺寸内不引入任何封闭模型的前提下对Navier-Stokes方程直接求解。这种方法能对湍流流动中最小尺度涡进行求解,要对高度复杂的湍流运动进行直接的数值计算,必须采用很小的时间与空间步长,才能分辨出湍流中详细的空间结构及变化剧烈的时间特性。基于这个原因,DNS目前仅限于相对低的雷诺数中湍流流动模型。另外,利用DNS模型对湍流运动进行直接的数值模拟对计算工具有很高的要求,计算机的内存及计算速度要非常的高,目前DNS模型还无法应用于工程数值计算,还不能解决工程实际问题。 ?大涡模拟(large eddy simulation, LES) 大涡模拟(LES)是基于网格尺度封闭模型及对大尺度涡进行直接求解N-S方程,其网格尺度比湍流尺度大,可以模拟湍流发展过程的一些细节,但其计算量仍很大,也仅用于比较简单的剪切流运动及管流。大涡模拟的基础是:湍流的脉动与混合主要是由大尺度的涡造成的,大尺度涡是高度的非各向同性,而且随流动的情形而异。大尺度的涡通过相互作用把能量传递给小尺度的涡,而小尺度的涡旋主要起到耗散能量的作用,几乎是各向同性的。这些对涡旋的认识基础就导致了大涡模拟方法的产生。Les大涡模拟采用非稳态的N-S方程直接模拟大尺度涡,但不计算小尺度涡,小涡对大涡的影响通过近似的模拟来考虑,这种影响称为亚格子Reynolds应力模型。大多数亚格子Reynolds模型都是将湍流脉动所造成的影响用一个湍流粘性系数,既粘涡性来描述。LES对计算机的容量和CPU的要求虽然仍然很高,但是远远低于DNS方法对计算机的要求,因而近年来的研究与应用日趋广泛。 ?应用Reynolds时均方程(Reynolds-averaging equations)的模拟方法 许多流体力学的研究和数值模拟的结果表明,可用于工程上现实可行的湍流模拟方法仍然是基于求解Reynolds时均方程及关联量输运方程的湍流模拟方法,即湍流的统观模拟方法。统观模拟方法的基本思想是用低阶关联量和平均流性质来模拟未知的高阶关联项,从而封闭平均方程组或关联项方程组。虽然这种方法在湍流理论中是最简单的,但是对工程应用而言仍然是相当复杂的。即便如此,在处理工程上的问题时,统观模拟方法仍然是最有效、最经济而且合理的方法。在统观模型中,使用时间最长,积累经验最丰富的是混合长度模型和K-E 模型。其中混合长度模型是最早期和最简单的湍流模型。该模型是建立在层流粘性和湍流粘性的类比、平均运动与湍流的脉动的概念上的。该模型的优点是简单直观、无须增加微分方程。缺点是在模型中忽略了湍流的对流与扩散,对于复杂湍流流动混合长度难以确定。 到目前为止,工程中应用最广泛的是k-ε模型。另外针对k-ε模型的不足之处,许多学者通过对K-E模型的修正和发展,开始采用雷诺应力模型(DSM)和代数应力模型(ASM)。近年来,DSM模型已用来预报燃烧室及炉内的强旋及浮力流动。很多情况下能够给出优于k-ε模型的结果。但是该模型也有不足之处,首先它对工程预报来说太复杂,其次经验系数太多难以确定,此外,对压力应变项的模拟还有争议。更主要的是,尽管这一模型考虑了各种应变效应,但是其总精度并不总是高于其它模型,这些缺点导致了DSM模型没有得到广泛的应用。总之,虽然从本质上讲DSM模型和ASM模型比k-ε模型对湍流流场的模拟更加合理,但DSM和ASM中仍然采用精度不高的E方程,模型中常数的通用性还没有得到广泛的验证,边界条件不好给定,计算也比较复杂。正因为如此,目前用计算解决湍流问题时仍然采用比较成熟的K-E模型。 需要注意的是: 1、大涡模拟有自己的亚格子封闭模型,这和k-ε模型完全是两回事。LES的亚格子模型表现

第二章计算流体力学的基本知识

第二章计算流体力学的基本知识 流体流动现象大量存在于自然界及多种工程领域中,所有这些工程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。这章将首先介绍流体动力学的发展和流体力学中几个重要守恒定律及其数学表达式,最后介绍几种常用的商业软件。 2.1 计算流体力学简介 2.1.1计算流体力学的发展 流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。20世纪30~40年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943年一直算到1947年。 数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了"计算流体力学"。 从20世纪60年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。数值计算方法最近发展很快,其重要性与日俱增。 自然界存在着大量复杂的流动现象,随着人类认识的深入,人们开始利用流动规律来改造自然界。最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。航空技术的发展强烈推动了流体力学的迅速发展。 流体运动的规律由一组控制方程描述。计算机没有发明前,流体力学家们在对方程经过大量简化后能够得到一些线形问题解析解。但实际的流动问题大都是复杂的强非线形问题,无法求得精确的解析解。计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现,从而催生了计算流体力

湍流燃烧数值模拟研究

湍流燃烧及其数值模拟研究 1. 湍流燃烧 1.1 湍流燃烧基本概念 当流动雷诺数数较小时,由于流体粘性的作用,流体呈层流流态。当流动的特征雷诺数超过相应的临界值,流动从层流转捩到湍流。湍流燃烧是指湍流流动 中可燃气的燃烧,在能源、动力、航空和航天等工程领域,经常遇到的实际燃烧过程几乎全部都是湍流燃烧过程。湍流燃烧实质是湍流,化学反应和传热传质等过程相耦合的结果。湍流对燃烧的影响与湍流强度和湍流涡旋尺度有关。小尺度湍流通过湍流扩散使火焰区内的输运效应增加,从而使化学反应速率增加。但气流脉动不会火焰面产生皱褶,只能把火焰变成波纹状。大尺度湍流对火焰内部结构没有影响,但使火焰阵面出现皱褶,增加其燃烧面积,造成火焰表现传播速度增加。当湍流强度及湍流尺度均较大时,火焰前沿不再连续而分裂成四分五裂。 燃烧对湍流的影响主要表现在燃烧释放的热流流团膨胀,影响气体的密度和运动速度,从而影响当地的涡旋,湍流强度和湍流结构。 1.2 湍流燃烧分类湍流燃烧按其燃料和氧化剂的初始混合状态可以分类为:湍流非预混燃烧、预混燃烧和部分预混燃烧。在湍流非预混燃烧燃料和氧化剂事先是分离的,燃料和氧化剂一边混合一边燃烧,燃烧速率主要受湍流混合过程控制,而在湍流预混燃烧中,燃料和氧化剂在进入核心燃烧区以前已经充分混合,化学反应的速率由火焰前缘从炽热的燃烧区向冷态无反应区的传播所控制。上面两种燃烧方式是湍流燃烧的两个极限情形,很多情况下两种燃烧模式是并存的,称为部分预混燃烧。部分预混燃烧可出现在下列情形中叫:(1) 在一个完全以非预混燃烧为配置的燃烧装置发牛了局部熄火;(2) 当预混火焰前缘穿过非均匀的混气时;(3) 射流非预混火焰发生抬举,其根部是一。个典型的部分预混火焰。这三种部分预混燃烧情形涉及了经常受到关注的燃烧研究话题如局部熄火、火焰稳定等,它们对研究湍流燃烧过程的机理有很大意义。 在湍流燃烧中,湍流流动过程和化学反应过程有强烈的相互关联和相互影响. 湍流通过强化混合而影响着时平均化学反应速率,同时化学反应放热过程又影响着湍流,如何定量地来描述和确定这种相互作用是湍流燃烧研究的一个重要内容. 湍流是非常复杂的,它包括湍流问题,湍流与燃烧的相互作用,流动参数与

湍流的数值模拟综述

湍流的数值模拟 一、引语 流体的流动形态分为湍流与层流。而层流是流体的最简单的一种流动状态。流体在管内流动时,其质点沿着与管轴平行的方向作平滑直线运动。此种流动称为层流或滞流,亦有称为直线流动的。流体的流速在管中心处最大,其近壁处最小。管内流体的平均流速与最大流速之比等于0.5,根据雷诺实验,当雷诺准数引Re<2320时,流体的流动状态为层流。当雷诺数Re>2320时,流体流动状态开始向湍流态转变,湍流是一种很复杂的流动状态,是流体力学中公认的难题。 自从19世纪末O.Reynolds提出湍流的统计理论以来,已经有一个多世纪了,经过几代科学家的努力,湍流研究取得很大进展,但是仍然不能满足工程应用的需要,以至于经常有悲观的论调侵袭湍流研究。为什么湍流问题没有圆满地解决会受到如此关注呢?因为湍流是自然界和工程中十分普遍的流动现豫,对于湍流问题的正确认识和模化直接影响到对自然环境的预测和工程的质量。例如,当前影响航天器气动力和气动热预测准确度的主要障碍是缺乏可靠的湍流模型。和其他一些自然科学的准题不同,解决湍流问题具有迫切性。 湍流运动的最主要特征是不规则性,这是大家公认的。对于湍流不规则性的深入认识,是一百多年来湍流研究的上要成就之一。早期的科学家认为,像分子运动一样,湍流是完全不规则运动。类似于分子运动产生黏性,湍流的耗散可以用涡黏系数来表述。20世纪初,一些杰出的流体力学家,相继对涡黏系数提出各种流体力学的模型,如Taylor(1921年)的涡模型,Praudtl(1925年)的混合长模型和von Karman(1930年)相似模型等。当科学家用流体力学观念(不是分子观念)来建立湍流耗散的涡黏模型时,就开始考虑连续介质不规则运动的特点,其中有别于气体分子不规则运动的最主要特点是运动的多尺度性。第一个提出流体湍流运动中多尺度输运特性的科学家mchardson(1922年)曾描述湍动能的多尺度传输过程如下:“大涡包含小涡,并喂予速度;小涡包含更小的涡,如此继续直到黏性耗散”。多尺度的思想导致产生描述多尺度的谱概念和谱分析方法,并最终产生了Kolmogorov(1941年)的局部各向同性的通用谱(即5/3谱)。 湍流不仅是多尺度的而且是有结构的运动。20世纪中叶,大量的湍流实验(包括测量和显示)发现多尺度的湍流运动存在某种特殊的运动状态。Townsend(1951年),Corrsin(1955年)和Lumley(1965年)等从脉动序列的间歇性和空间相关相继推测湍流结构的可能形态。理论上也提出过各种湍涡的模型:球涡模型,柱涡模型等。早期的湍流结构主要是从运动学上考虑,把旋涡结构作为湍流统计的样本。我国的周培源教授是近代湍流模式的奠基人之一,他首先提出先解方程后平均的统计方法,就是说湍涡必须满足Navier—Stokes方程(Chou and Chou,1995年)。 真实的、可以观察到的湍流结构通过流动显示,以及稍后湍流直接数值模拟所证实。典型的例子是混合层的Brown—Roshko涡(1976年),图1明显地展示了混合层中存在规则的大涡和分布在大涡周围的细小湍涡。在边界层、槽道和圆管湍流中也存在各式各样的大涡结构。例如,用激光诱导荧光的显示方法,我们可以在圆管湍流中观察到周向(图2a)和流向大涡(图2b)。值得提出的是,不仅在剪切湍流中有大涡结构,简单的均匀各向同性湍流中也存在涡结构。图3展示的是各向同性湍流的直接数值模拟中强涡量等值面,它们是管状结构。仔细分析还可以确定管状涡的平均长度约等于各向同性湍流的积分尺度,它们的平均直径约等于湍流TayLor微尺度,更进一步分析可以算出管状涡内部的平均速度

我所知道的计算流体力学(CFD)大牛们

我所知道的计算流体力学(CFD)大牛们 (1) Jameson的故事 Jameson是当今CFD届的超级大牛。偶的超级偶像哦。Jameson是个英国人,出生在军人世家。从小随老爹驻守印度。于是长大了也抗起枪到海外保卫日不落帝国,军衔是Second Lieutenant。无奈“日不落”已落,皇家陆军已经不需要他了。大概有什么立功表现把,退役后就直接进了剑桥大学。在那里拿到博士学位。辗转间从英国来到了美国,从工厂又到了学校。成了Princeton的教授。在那里提出了著名的中心差分格式和有限体积法。就是在这里,发表了他那篇著名的中心差分离散的有限体积法。中心差分格式,大家都知道,是二阶,但是稳定范围特别小,Pe不能超过2,于是就得加人工粘性(一听这名字,数学家就倔嘴巴,不科学嘛),这是大学生都知道的事,怎么加就是学问了。Jameson用二阶项做背景粘性,用四阶项抑制激波振荡(也亏他想得出来),配合他提出的有限体积法,获得了极大的成功,很快风靡世界,工程界几乎无一例外在使用他的方法,原因很简单,他的方法乐百氏,而且又有相当精度。从此大行于市,座上了P大的航空系系主任,也确立了CFD界第一大牛人的地位。 Jameson发文章有个特点,喜欢发在小会议上或者烂杂志上,反正是SCI检索不到地方。包括后来关于非结构网格,多重网格等等经典的开创性文章,都是这样。(如果按照清华的唯SCI论的评判标准,我估计在清华最多只能给他评一个副教授当当。)牛牛的人总是遭人忌妒,哪里都这样。看着Jameson的有限体积方法这么受欢迎,有些人就红眼了。于是说,有限体积方法不错,可惜只适合于定常问题计算,非定常计算就不怎么样嘛。Jameson那里能容忍别人对他的得意之做胡说。于是,灵机一动,想出了一个双时间尺度的方法,引进一个非物理时间,把非定常问题变成了一个定常问题计算,还真好使,又风靡世界,从此天下太平。97年,Jameson年龄到了,就从P大退休了,结果又被聘请到Standford大学当Thomas V. Jones Professor搞起了湍流来。前不久偶导师见他回来,对欧们边摇头边说,“几年不见,老得快不行了”,言下之意,我们如果想多活几年,不要去搞什么湍流。 (2) Steven A. Orszag的故事 Steven A. Orszag是一个天才级别的人物啦。在直接数值模拟,谱方法,湍流模型等等许多方面都有开创性的贡献。天才嘛,总是有缺陷的,不是生活不能自理,就是不懂得处理人际关系。前者还好办,只是lp不舒服,后者嘛,让同事和同行不舒服,可麻烦就大了。 不幸的是,Orszag属于后者。对于他的恃才傲物,有人早就恨得牙根痒痒,报复的机会终于来了。 三十年前,湍流模型的先驱们,是通过数值试验,再连懵带猜的确定下了双方程湍流模型的参数。20年前,Orszag突发奇想,能否用RNG(重整化群理论)从理论上推导这些参数呢?RNG理论在相变上取得了很大的成功,发明者也在81年获得了Nobel奖。牛人就是牛人很快居然真从理论上推出了这些参数。这下湍流模型界可炸开了锅,这岂不是要砸掉很多人的饭碗?这不等于说那些老家伙几十年前的工作一钱不值么?这帮大学霸可不是省油的灯。环顾地球之大,Orszag居然找不到一本杂志愿意接受他这篇文章。Orszag这个郁闷呀,这个生

《计算流体力学》结课作业

2012~2013学年第1学期 12级研究生《计算流体力学》结课作业 适用专业:供热供燃气通风及空调工程 一、结合某一具体学科,阐述纯理论方法、实验方法及数值方法在科学研究中的各自优缺点,在此基础上论述数值模拟方法的发展前景。(不少于4千字)。 流体力学是力学的一个重要分支, 是研究流体(液体和气体)的力学运动规律及其应用的学科, 主要研究在各种力的作用下,流体本身的静止状态和运动状态特征,以及流体和相邻固体界面有相对运动时的相互作用和流动规律。在人们的生活和生产活动中随时随地都可遇到流体,流体力学与人类的日常生活和生产事业密切相关。按其研究内容的侧重点不同,分为理论流体力学和工程流体力学。其中理论流体力学主要采用严密的数学推理方法,力求准确性和严密性,工程流体力学侧重于解决工程实际中出现的问题,而不追求数学上的严密性。当然由于流体力学研究的复杂性,在一定程度上,两种方法都必须借助于实验研究,得出经验或半经验的公式。 在实际工程的诸多领域流体力学都起着十分重要的作用。如气象、水利的研究,船舶、飞行器、叶轮机械和核电站的设计及其运行,可燃气体或炸药的爆炸,都广泛地用到流体力学知识。许多现代科学技术所关心的问题既受流体力学的指导,同时也促进了流体力学自身的不断发展。1950年后,计算机的发展给予流体力学以极大的推动作用。 目前,解决流体力学问题的方法主要有实验方法、理论分析方法和数值方法三种。 实验方法 同物理学、化学等学科一样,流体力学的研究离不开实验,尤其是对新的流体运动现象的研究。实验能显示运动特点及其主要趋势,有助

于形成概念,检验理论的正确性。二百年来流体力学发展史中每一项重大进展都离不开实验。流体力学实验研究方法有实物实验、比拟研究和模型研究三类:实物实验是用仪器实测原型系统的流动参数,适用于较小的原型;比拟实验是利用电场和磁场来模拟流场,实施起来限制条件较多;模型研究是实验流体力学最常用的研究方法。 实验研究的一般过程是:在相似理论的指导下建立实验模型,用流体测量技术测量流动参数,处理和分析实验数据。建立实验模型要求模型与原型满足相似理论,即满足两个流场相似。流体力学中两个流场相似要求: 几何相似、运动相似、动力相似、边界条件、初始条件相似。两个流场动力相似,则两个流场所有的动力相似准则应分别相等。但要做到两个独立的动力相似准则同时分别与原型的同名准则相等是不可能的,所以只能部分相似,即近似模型实验。模拟实验在流体力学中占有重要地位。根据模型实验所得的数据可以用像换算单位制那样的简单算法求出原型的数据。 实验方法有诸多优点:实验方法可靠性高,能反映工程中的实际流动规律,发现新现象,检验理论结果等;工程实际中,由于控制方程多为非线性方程,大多问题无法得到理论解析结果,而必须借助于实验的方法,尤其是对于目前尚未有合适数学模型的复杂湍流流动、某些非牛顿流体的流动、多相流等问题,实验测试则是唯一的研究方法。但实验方法受到模型尺寸、流动扰动、人身安全和测量精度的限制,有时可能通过实验无法得到结果;另外实验中还会遇到经费投入不足,人力、物力的巨大耗费及周期长等诸多困难。 理论分析方法 理论分析(理论研究方法)是根据流体运动的普遍规律如质量守恒、动量守恒、能量守恒等,利用数学分析的手段,研究流体的运动,解释已知的现象,预测可能发生的结果。 理论分析的一般过程是:建立力学模型,用物理学基本定律推导流体力学数学方程,用数学方法求解方程,检验和解释求解结果。理论研

相关主题
文本预览
相关文档 最新文档