当前位置:文档之家› 压缩机中冷器椭圆肋管与圆肋管的传热及流动阻力性能比较试验研究

压缩机中冷器椭圆肋管与圆肋管的传热及流动阻力性能比较试验研究

压缩机中冷器椭圆肋管与圆肋管的传热及流动阻力性能比较试验研究
压缩机中冷器椭圆肋管与圆肋管的传热及流动阻力性能比较试验研究

文章编号: 1005—0329(2002)04—0008—03

压缩机中冷器椭圆肋管与圆肋管的传热及

流动阻力性能比较试验研究

卿德藩

(南华大学,湖南衡阳 421001)

摘 要: 对椭圆肋管和圆肋管的传热及流动阻力性能进行了对比试验,给出了相应的传热系数曲线和流动阻力系数曲线并指出椭圆肋管的传热及流动阻力性能优于圆肋管。

关键词: 压缩机;中冷器;传热;流动阻力

中图分类号: T Q051121 文献标识码: A

The Comparative Experiment on H eat T ransfer and Flow R esistance of E lliptic

Rib Tube and Circular Rib for Compressor I ntercooler

Qing Defang

Abstract: The comparative experiment on heat trans fer and flow resistance of elliptic rib and circular rib was carried out and curves on heat trans fer coefficient and flow resistance coefficient were given.It was pointed out that the characteristics of heat trans fer and flow re2 sistance of elliptic rib are preferable.

K eyw ords: compress or;intercooler;heat trans fer;flow resistance

1 引言

为了提高气体侧的对流传热性能,对压缩机中冷器常采用外肋片管以增大扩展面积、强化对气流的扰动。这种扩展换热面的式样很多,常见的有管子截面为圆形、肋片为方形和圆形等形式,也有管子截面为椭圆形、肋片也为椭圆形的形式。其中带外肋的椭圆形管管束由于椭圆形管受外压容易失稳变形,所以限制了它在较高压力情况下的应用。采用管子截面为圆形、肋片为椭圆形结构型式的中冷器可以在较高压力情况下使用,但其传热及流动阻力性能尚未见诸有关报道。笔者对管子截面为圆形、肋片分别为椭圆形和圆形两种结构型式进行对比试验,试验表明肋片为椭圆形的结构型式其传热及流动阻力性能优于肋片为圆形的结构型式。

2 结构型式及试验装置

带圆形及椭圆形外肋管束的结构型式如图1,有关尺寸见表1。试验装置如图2所示,蒸汽发生器产生饱和蒸汽在管内冷凝,冷凝液经容积流量计测量,空气用通风机输送,经转子流量计在肋片管束外流动。温度变化由前后两组精密温度计测定,压力的变化由水柱压差计测出。

表1 圆形及椭圆形外肋管管束尺寸 (mm)

名 称

带椭圆形

外肋管束

带圆形

外肋管束换热管外径d

肋片高度h

肋片厚度δ

布管横向节距c

1

布管纵向节距c2

20

12Π5

018

32

40

20

812

018

38

38

注:每米管长上肋片数为220。

3 试验结果及分析

311 传热性能

管束传热带速率Q存在如下关系式:

Q=K S0Δt m(1) 1

K

=

1

α

η+

1

α

i

S0

S i

+

S0

2πnλL

ln

d0

d i

(2)

收稿日期: 2001—12—17

8 流 体 机 械 2002年第30卷第4期

式中 Q ———传热速率,W

K ———总传热系数,W Πm 2

?℃ d i ———换热管内径,m d 0———换热管外径,m

α0———对应d 0侧介质放热系数,W Πm 2

?℃ αi —

——对应d i 侧介质放热系数,W Πm 2?℃ Δt m ———平均温度差,℃

λ———换热管的导热系数,W Πm ?℃ S i ———换热管束的内侧的总面积,m 2

S 0———换热管束的肋片侧的总面积,m

2

η———肋面的总效率

n ———换热管根数 L ———单根换热管的长度

,m

图1 带圆形及椭圆形外肋管束的结构型式

蒸汽在管内冷凝,其对流传热系数按下式进

行计算[1]

:

αi =1113(ρ2g λ3w r L

μΔt )1Π

4(3)式中 ρ———冷凝液的密度,kg Πm 3

λw —

——冷凝液的导热系数,W Π(m ?℃) r ———饱和蒸汽的冷凝潜热,J Πkg

μ———冷凝液的粘度,kg Π(m ?s )

Δt ———饱和蒸汽温度与壁面温度之差,

图2 试验装置

传热速率也可按下式进行计算:

Q =αi S i Δt =Wr (4)

式中 W ———冷凝液的质量流量,kg Πs

将式(3)中的Δt 代入式(2),则可得:

αi =11177(g

ρ2λ3S i μLW

)1Π3(5)

空气侧的Re 数按下式确定:

Re =

lu

γg

(6)

式中 l ———肋片的节距,m

u ———气体流动最窄截面处的流速,m Πs γg ———空气在进、出口平均温度下的运动

粘度,m 2

Πs

在传热性能分析中,肋面总效率与肋效率有关,圆肋的肋效率已经有较详细的分析

[2]

。但对

于椭圆形肋,由于肋片的温度场实际上是一个二维温度场,因此,对其肋效率进行理论分析是很困难的。在工程应用中,人们更关注肋面的总效率

与肋面放热系数之积(即ηα0)的大小,因为该值反映了肋面扩大传热面积与强化传热的综合影响。在本试验中,也采用该值来比较椭圆肋管与圆肋管的传热性能。试验结果如图3。

从试验结果可以看出,椭圆形肋片换热管束的传热性能优于圆形肋片换热管束,椭圆肋管的

ηα0值较圆肋管的ηα0值高11%左右。

产生上述结果的原因是由于气体掠过换热管时,流动边界层状态在换热管壁面不一样,壁面的局部换热系数也不一样,气流在壁面的边界层会出现从层流到紊流的转变点和脱体点,该转变点和脱体点局部换热系数最低。而椭圆形肋片导致掠过换热管的气流涡旋向后排换热管推移,使涡旋加强了对气流在后排换热管的脱体点和转变点

9

Vol.30,No.4,2002 F LUI D M ACHI NERY

的影响,提高了其局部换热系数,从而强化了传热效果

图3 椭圆形肋片换热管束圆形肋片换热管束

传热性能比较

图4 椭圆形肋片换热管束与圆形肋片换热管束

的阻力系数比较

312 流动阻力特性

气流通过换热管束时的阻力按下式进行计算:

ΔP =ζρ

u 2

2

(7)

式中 ΔP ———气体进出管束的压力降,N Πm 2

ζ———管束阻力系数 试验结果如图4所示。拟合曲线表达式分别

是: 对圆形肋片管束:

ζ=11167Re -01239

(8)对椭圆形肋片管束:

ζ=11163Re -01247

(9)

试验表明,椭圆形肋片换热管束的流动阻力性能优于圆形肋片换热管束。这是由于椭圆形肋片促使流体脱体点后移,缩小了管子后部的低速

旋涡区,所以阻力可以减小[3]

。4 结论

(1)椭圆形肋片换热管由于促使流体脱体点

后移,与圆形肋片换热管相比,可以更进一步强化

传热。在本试验条件下,椭圆肋管的ηα0值较圆肋管的ηα0值高11%左右。

(2)椭圆形肋片换热管与圆形肋片换热管相

比,流动阻力下降。其阻力系数差与流体的Re 数有关,并随Re 的增大,阻力系数差减小。

(3)比较传热及流动阻力性能,椭圆形结构型式的肋片优于圆形结构型式的肋片,因而具有一定的工程应用价值并值得进一步研究。

参考文献

[1] 章熙民等1传热学[M ]1中国建筑工业出版社,

19871

[2] 李荫亭等译1传热学手册[M]1科学出版社,19851[3] 林宗虎1强化传热及其工程应用[M]1机械工业出

版社,19871

作者简介:卿德藩,男,1963年生,讲师,主要从事过程装备的教学研究工作。通讯地址:421001湖南省衡阳市南华大学机械工程学院。

(上接第43页)

Tube and W ork Output Expansion Devices for the T ran 2

scritical Carbon Dioxide Cycle [A ],IIR ΠIIF C ommission B1,B2,E1,and E2Purdue University ,US A 120001[4] 范晓伟等1一种新型蒸汽压缩Π喷射混合制冷循环

的探讨[J ]1西安交通大学学报,1996,30(5)1

[5] Jostein Pettersen ,an E fficient New Autom obile Air -C on 2

ditioning System Based on C O2Vapor C ompression [A ],ASHRAE T ransactions[C]:symposia 1

作者简介:刘军朴,男,1971年生,博士生。通讯地址:200030上海交通大学动力与能源工程学院制冷及低温研究所。

1 流 体 机 械 2002年第30卷第4期

浙大高等传热学复习题部分答案

高等传热学复习题 1.简述求解导热问题的各种方法和傅立叶定律的适用条件。 不论如何,求解导热微分方程主要依靠三大方法: 理论法、试验法、综合理论和试验法 理论法:借助数学、逻辑等手段,根据物理规律,找出答案。它又分: 分析法;以数学分析为基础,通过符号和数值运算,得到结果。方法有:分离变量法,积分变换法(Laplace变换,Fourier变换),热源函数法,Green函数法,变分法,积分方程法等等,数理方程中有介绍。 近似分析法:积分方程法,相似分析法,变分法等。 分析法的优点是理论严谨,结论可靠,省钱省力,结论通用性好,便于分析和应用。缺点是可求解的对象不多,大部分要求几何形状规则,边界条件简单,线性问题。有的解结构复杂,应用有难度,对人员专业水平要求高。 数值法:是当前发展的主流,发展了大量的商业软件。方法有:有限差分法,有限元法,边界元法,直接模拟法,离散化法,蒙特卡罗法,格子气法等,大大扩展了导热微分方程的实用范围,不受形状等限制,省钱省力,在依靠计算机条件下,计算速度和计算质量、范围不断提高,有无穷的发展潜力,能求解部分非线性问题。缺点是结果可靠性差,对使用人员要求高,有的结果不直观,所求结果通用性差。 比拟法:有热电模拟,光模拟等 试验法:在许多情况下,理论并不能解决问题,或不能完全解决问题,或不能完美解决问题,必须通过试验。试验的可靠性高,结果直观,问题的针对性强,可以发掘理论没有涉及的新规律。可以起到检验理论分析和数值计算结果的作用。理论越是高度发展,试验法的作用就越强。理论永远代替不了试验。但试验耗时费力,绝大多数要求较高的财力和投入,在理论可以解决问题的地方,应尽量用理论方法。试验法也有各种类型:如探索性试验,验证性试验,比拟性试验等等。 综合法:用理论指导试验,以试验促进理论,是科学研究常用的方法。如浙大提出计算机辅助试验法(CA T)就是其中之一。 傅里叶定律向量形式说明,热流密度方向与温度梯度方向相反。它可适用于稳态、非稳态,变导热系数,各向同性,多维空间,连续光滑介质,气、液、固三相的导热问题。 2.定性地分析固体导热系数和温度变化的关系 3.什么是直肋的最佳形状与已知形状后的最佳尺寸? Schmidt假定:如要得到在给定传热量下要求具有最小体积或最小质量的肋的形状和尺寸,肋片任一导热截面的热流密度都应相等。 1928年,Schmidt等提出了一维肋片换热优化理论:设导热系数为常数,沿肋高的温度分布应为一条直线。Duffin应用变分法证明了Schmidt假定。Wikins[3]指出只有在导热系数和换热系数为常数时,肋片的温度分布才是线性的。Liu和Wikins[4]等人还得到了有内热源及辐射换热时优化解。长期以来肋片的优化问题受到理论和应用两方面的重视。 对称直肋最优型线和尺寸的无量纲表达式分析: 假定一维肋片,导热系数和换热系数为常数,我们有对称直肋微分方程(忽略曲 线弧度): yd2θ/dx2+(dy/dx)dθ/dx-θh/λ=0 由Schmidt假定,对任意截面x: dθ/dx=-q/λ=const

导热系数、传热系数、热阻值概念及热工计算方法(简述实用版)

导热系数、传热系数、热阻值概念及热工计算方法 导热系数λ[W/(m.k)]: 导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,℃),在1小时内,通过1平方米面积传递的热量,单位为瓦/米?度(W/m?K,此处的K可用℃代替)。导热系数可通过保温材料的检测报告中获得或通过热阻计算。 传热系数K [W/(㎡?K)]: 传热系数以往称总传热系数。国家现行标准规范统一定名为传热系数。传热系数K值,是指在稳定传热条件下,围护结构两侧空气温差为1度(K,℃),1小时内通过1平方米面积传递的热量,单位是瓦/平方米?度(W/㎡?K,此处K可用℃代替)。传热系数可通过保温材料的检测报告中获得。 热阻值R(m.k/w): 热阻指的是当有热量在物体上传输时,在物体两端温度差与热源的功率之间的比值。单位为开尔文每瓦特(K/W)或摄氏度每瓦特(℃/W)。 传热阻: 传热阻以往称总热阻,现统一定名为传热阻。传热阻R0是传热系数K的倒数,即R0=1/K,单位是平方米*度/瓦(㎡*K/W)围护结构的传热系数K值愈小,或传热阻R0值愈大,保温性能愈好。 (节能)热工计算: 1、围护结构热阻的计算 单层结构热阻:R=δ/λ 式中:δ—材料层厚度(m);λ—材料导热系数[W/(m.k)] 多层结构热阻: R=R1+R2+----Rn=δ1/λ1+δ2/λ2+----+δn/λn 式中: R1、R2、---Rn—各层材料热阻(m.k/w) δ1、δ2、---δn—各层材料厚度(m) λ1、λ2、---λn—各层材料导热系数[W/(m.k)] 2、围护结构的传热阻 R0=Ri+R+Re 式中: Ri —内表面换热阻(m.k/w)(一般取0.11) Re —外表面换热阻(m.k/w)(一般取0.04) R —围护结构热阻(m.k/w) 3、围护结构传热系数计算 K=1/ R0 式中: R0—围护结构传热阻 外墙受周边热桥影响条件下,其平均传热系数的计算 Km=(KpFp+Kb1Fb1+Kb2Fb2+ Kb3Fb3 )/( Fp + Fb1+Fb2+Fb3) 式中:Km—外墙的平均传热系数[W/(m.k)] Kp—外墙主体部位传热系数[W/(m.k)]

传热学试卷和答案20页

传热学(一) 第一部分选择题 1. 在稳态导热中 , 决定物体内温度分布的是 ( ) A. 导温系数 B. 导热系数 C. 传热系数 D. 密度 2. 下列哪个准则数反映了流体物性对对流换热的影响 ?( ) A. 雷诺数 B. 雷利数 C. 普朗特数 D. 努谢尔特数 3. 单位面积的导热热阻单位为 ( ) A. B. C. D. 4. 绝大多数情况下强制对流时的对流换热系数 ( ) 自然对流。 A. 小于 B. 等于 C. 大于 D. 无法比较 5. 对流换热系数为 100 、温度为 20 ℃的空气流经 50 ℃的壁面,其对流换热的热流密度为() A. B. C. D. 6. 流体分别在较长的粗管和细管内作强制紊流对流换热,如果流速等条件相同,则() A. 粗管和细管的相同 B. 粗管内的大 C. 细管内的大 D. 无法比较 7. 在相同的进出口温度条件下,逆流和顺流的平均温差的关系为() A. 逆流大于顺流 B. 顺流大于逆流 C. 两者相等 D. 无法比较 8. 单位时间内离开单位表面积的总辐射能为该表面的() A. 有效辐射 B. 辐射力 C. 反射辐射 D. 黑度 9. ()是在相同温度条件下辐射能力最强的物体。 A. 灰体 B. 磨光玻璃 C. 涂料 D. 黑体 10. 削弱辐射换热的有效方法是加遮热板,而遮热板表面的黑度应() A. 大一点好 B. 小一点好 C. 大、小都一样 D. 无法判断 第二部分非选择题

?填空题(本大题共 10 小题,每小题 2 分,共 20 分) 11. 如果温度场随时间变化,则为。 12. 一般来说,紊流时的对流换热强度要比层流时。 13. 导热微分方程式的主要作用是确定。 14. 当 d 50 时,要考虑入口段对整个管道平均对流换热系数的影响。 15. 一般来说,顺排管束的平均对流换热系数要比叉排时。 16. 膜状凝结时对流换热系数珠状凝结。 17. 普朗克定律揭示了按波长和温度的分布规律。 18. 角系数仅与因素有关。 19. 已知某大平壁的厚度为 15mm ,材料导热系数为 0.15 ,壁面两侧的温度差为 150 ℃,则通过该平壁导热的热流密度为。 20. 已知某流体流过固体壁面时被加热,并且,流体平均温度为 40 ℃,则壁面温度为。 ?名词解释(本大题共 5 小题,每小题 4 分,共 20 分) 21. 导热基本定律 22. 非稳态导热 23. 凝结换热 24. 黑度 25. 有效辐射 ?简答题( 本大题共 2 小题 , 每小题 8 分 , 共 16 分 ) 26. 简述非稳态导热的基本特点。 27. 什么是临界热绝缘直径?平壁外和圆管外敷设保温材料是否一定能起到保温的作用,为什么? ?计算题(本大题共 2 小题,每小题 12 分,共 24 分)

压缩机的热力性能和计算

§2.2.1压缩机的热力性能和计算 一、排气压力和进、排气系统 (1)排气压力 ①压缩机的排气压力可变,压缩机铭牌上的排气压力是指额定值,压缩机可以在额定排气压力以内的任意压力下工作,如果条件允许,也可超过额定排气压力工作。 ②压缩机的排气压力是由排气系统的压力(也称背压)所决定,而排气系统的压力又取决于进入排气系统的压力与系统输走的压力是否平衡,如图2-20所示。 ③多级压缩机级间压力变化也服从上述规律。首先是第一级开始建立背压,然后是其后的各级依次建立背压。 (2)进、排气系统 如图所示。

①图a的进气系统有气体连续、稳定产生,进气压力近似恒定;排气压力也近似恒定,运行参数基本恒定。 ②图b的进气系统有气体连续、稳定产生,进气压力近似恒定;排气系统为有限容积,排气压力由低到高逐渐增加,一旦达到额定值,压缩机停止工作。 ③图c的进气系统为有限容积,进气压力逐渐降低;排气系统压力恒定,一旦低于某一值,压缩机停止工作。

④图d的进、排气系统均为有限容积,压缩机工作后,进气压力逐渐降低;排气系统压力不断升高,当进气系统低于某一值或排气系统高于某一值,压缩机停止工作。

二、排气温度和压缩终了温度 (1)定义和计算 压缩机级的排气温度是在该级工作腔排气法兰接管处测得的温度,计算公式如下: 压缩终了温度是工作腔内气体完成压缩机过程,开始排气时的温度,计算公式如下: 排气温度要比压缩终了温度稍低一些。 (2)关于排气温度的限制 ①汽缸用润滑油时,排气温度过高会使润滑油黏度降低及润滑性能恶化;另外,空气压缩机中如果排气温度过高,会导致气体中含油增加,形成积炭现象,因此,一般空气压缩机的排气温度限制在160°C以内,移动式空气压缩机限制在180°C以内。

《传热学期末复习试题库》含参考答案

传热学试题 第一章概论 一、名词解释 1.热流量:单位时间所传递的热量 2.热流密度:单位传热面上的热流量 3.导热:当物体有温度差或两个不同温度的物体接触时,在物体各部分之间不发生相对位移的情况下,物质微粒(分子、原子或自由电子)的热运动传递了热量,这种现象被称为热传导,简称导热。 4.对流传热:流体流过固体壁时的热传递过程,就是热对流和导热联合用的热量传递过程,称为表面对流传热,简称对流传热。 5.辐射传热:物体不断向周围空间发出热辐射能,并被周围物体吸收。同时,物体也不断接收周围物体辐射给它的热能。这样,物体发出和接收过程的综合结果产生了物体间通过热辐射而进行的热量传递,称为表面辐射传热,简称辐射传热。 6.总传热过程:热量从温度较高的流体经过固体壁传递给另一侧温度较低流体的过程,称为总传热过程,简称传热过程。 7.对流传热系数:单位时间单位传热面当流体温度与壁面温度差为1K是的对流传热量,单位为W/(m2·K)。对流传热系数表示对流传热能力的大小。 8.辐射传热系数:单位时间单位传热面当流体温度与壁面温度差为1K是的辐射传热量,单位为W/(m2·K)。辐射传热系数表示辐射传热能力的大小。 9.复合传热系数:单位时间单位传热面当流体温度与壁面温度差为1K是的复合传热量,单位为W/(m2·K)。复合传热系数表示复合传热能力的大小。 10.总传热系数:总传热过程中热量传递能力的大小。数值上表示传热温差为1K时,单位传热面积在单位时间的传热量。 二、填空题 1.热量传递的三种基本方式为、、。 (热传导、热对流、热辐射) 2.热流量是指,单位是。热流密度是指,单位是。 (单位时间所传递的热量,W,单位传热面上的热流量,W/m2) 3.总传热过程是指,它的强烈程度用来衡量。 (热量从温度较高的流体经过固体壁传递给另一侧温度较低流体的过程,总传热系数) 4.总传热系数是指,单位是。 (传热温差为1K时,单位传热面积在单位时间的传热量,W/(m2·K)) 5.导热系数的单位是;对流传热系数的单位是;传热系数的单位是。 (W/(m·K),W/(m2·K),W/(m2·K))

高等传热学复习题

高等传热学复习题 1. 太空飞行物伸出的细长散热棒,以辐射方式与外部进行换热,棒长L 、截面积A 、截面周 长U 、导热系数λ、发射率ε、棒根部温度t 0 ,外部空间为绝对黑体,写出该问题的完整 数学描述。 2. 半径为R 的实心球,初时温度为t 0,突然放入t f 冷水中,已知球的物性λ、c 、ρ及表面 传热系数h ,写出球冷却的完整数学描述。 3. 直径为d 、单位长度电阻为R 、发射率为ε的金属棒,初始时与温度为T ∞的环境处于热 平衡状态,后通过电流I ,已知棒与环境的表面传热系数为h 。试导出通电流期间金属棒 温度随时间变化的规律,并写出处于新的热平衡状态的条件。(不用求解) 4. 大平板:δ,Φ 1) 已知两侧为对称第三类边界条件,h ,f t 求t 的分布; 2) 一侧为第三类边界条件,h ,f t 另一侧绝热, 求t 的分布。 3) 一侧为第一类边界条件,另一侧为绝热,,求t 的分布。 4) 两侧为相同的第一类边界条件,求t 的分布。 5) 两侧为不同的第一类边界条件,求t 的分布。 5. 厚为L 、导热系数λ =1.5W/(m K)的浇注混凝土墙,两边保持温度为20℃,由于混凝土的 固化,单位体积释放100W/m 2的化学热能。若要求浇注时墙内任意处每米墙厚的温度梯 度不大于50℃,墙的最大厚度是多少? 6. 敷设肋片就一定能强化传热? 增加散热量满足的条件? 解:敷设肋片时 : ()()0sh()ch()ch()sh() mH h m mH ΦmH h m mH λλ+=+ 不敷设肋片时: 0nf ΦhA θ= ()()00sh()ch() ch()sh()nf mH h m mH A m mH h m mH ΦΦhA λλθλθ++= ()sh()ch()ch()sh() nf mH h m mH Φm Φh mH h m mH λλλ+=+ th()11th()nf m mH Φh h ΦmH m λλ +=+ 1>=< >1 增强换热;=1 不增强不减弱;<1 减弱换热。

传热学总复习试题及答案【第五版】【精】【_必备】

总复习题 基本概念 : ?薄材 : 在加热或冷却过程中 , 若物体内温度分布均匀 , 在任意时刻都可用一个温度来代表整个物体的温度 , 则该物体称为 ----. ?传热 : 由热力学第二定律 , 凡是有温差的地方 , 就有热量自发地从高温物体向低温物体转移 , 这种由于温差引起的热量转移过程统称为 ------. ?导热 : 是指物体内不同温度的各部分之间或不同温度的物体相接触时 , 发生的热量传输的现象 . 物体各部分之间不发生相对位移,仅依靠物体内分子原子和自由电子等微观粒子的热运动而产生的热能传递成为热传导简称导热 ?对流 : 指物体各部分之间发生相对位移而引起的热量传输现象 . 由于流体的宏观运动而引起的流体各部分之间发生相对位移,冷热流体相互渗混所导致的热量传递过程 ?对流换热 : 指流体流过与其温度不同的物体表面时 , 流体与固体表面之间发生的热量交换过程称为 ------. ?强制对流 : 由于外力作用或其它压差作用而引起的流动 . ?自然对流 : 由于流体各部分温度不同 , 致使各部分密度不同引起的流动 . ?流动边界层 : 当具有粘性的流体流过壁面时 , 由于粘滞力的作用 , 壁面附近形成一流体薄层 , 在这一层中流体的速度迅速下降为零 , 而在这一流层外 , 流体的速度基本达到主流速度 . 这一流体层即为 -----. ?温度边界层 : 当具有粘性的流体流过壁面时 , 会在壁面附近形成一流体薄层 , 在这一层中流体的温度迅速变化 , 而在这一流层外 , 流体的温度基本达到主流温度 . 这一流体层即为 -----. ?热辐射 : 物体由于本身温度而依靠表面发射电磁波而传递热量的过程称为 ------. 物体由于本身温度而依靠表面发射电磁波而传递热量的过程成为热辐射 ?辐射力 : 物体在单位时间内 , 由单位表面积向半球空间发射的全部波长的辐射能的总量 . ?单色辐射力 : 物体在单位时间内 , 由单位表面积向半球空间发射的波长在λ -- λ +d λ 范围内的辐射能量 . ?立体角 : 是一个空间角度 , 它是以立体角的角端为中心 , 作一半径为 r 的半球 , 将半球表面上被立体角切割的面积与半径平方 r 2 的比值作为 ------ 的大小 . ?定向辐射强度 : 单位时间内 , 在单位可见面积 , 单位立体角内发射的全部波长的辐射能量称为 ----. ?传质 : 在含有两种或两种以上组分的流体内部 , 如果有浓度梯度存在 , 则每一种组分都有向低浓度方向转移 , 以减弱这种浓度不均匀的趋势 . 物质由高浓度向低浓度方转移过程称为 ----.

高等传热学考试范围(答案)

1.强迫流动换热如何受热物性影响? 答:强迫对流换热与Re和Pr有关;加热与对流的粘性系数发生变化。 2.强化传热是否意味着增加换热量?工程上强化传热的收益和代价通常是指什么? 答:不一定,强化传热是指在一定条件(如一定的温差、体积、重量或泵功等)下增加所传递的热量。工程上的收益是减小换热器的体积节省材料和重量;提高现有换热器的换热量;减少换热器的阻力,以降低换热器的动力消耗等。代价是耗电,并因增大流速而耗功。 3.传热学和热力学中的热平衡概念有何区别? 答:工程热力学是温度相同时,达到热平衡,而传热学微元体获得的能量等于内热源和进出微元体热量之和,内热源散热是有温差的。 4.表面辐射和气体辐射各有什么特点? 为什么对辐射板供冷房间,无需考虑气体辐射的影响,而发动机缸内传 热气体辐射却成了主角? 答:表面辐射具有方向性和选择性。气体辐射的特点:1.气体的辐射和吸收具有明显的选择性。2. 气体的辐射和吸收在整个气体容器中进行,强度逐渐减弱。空气,氢,氧,氮等分子结构称的双原子分子,并无发射和吸收辐射能的能力,可认为是热辐射的透明体。但是二氧化碳,水蒸气,二氧化硫,氯氟烃和含氯氟烃的三原子、多原子以及不对称的双原子气体(一氧化碳)却具有相当大的辐射本领。房间是自然对流,气体主要是空气。由于燃油,燃煤及然气的燃烧产物中通常包含有一定浓度的二氧化碳和水蒸气,所以发动机缸内要考虑。 5.有人在学完传热学后认为,换热量和热流密度两个概念实质内容并无差别,你的观点是? 答:有差别。热流密度是指通过单位面积的热流量。而换热量跟面积有关。 6.管内层流换热强化和湍流换热强化有何实质性差异?为什么? 答:层流边界层是强化管内中间近90%的部分,层流入口段的热边界层比较薄,局部表面传热系数比充分发展段高,且沿着主流方向逐渐降低。如果边界层出现湍流,则因湍流的扰动与混合作用又会使局部表面传热系数有所提高,再逐渐向于一个定值。而湍流是因为其推动力与梯度变化和温差有关,减薄粘性底层,所以强化壁面。 7.以强迫对流换热和自然对流换热为例,试谈谈你对传热、流动形态、结构三者之间的关联 答:对流换热按流体流动原因分为强制对流换热和自然对流换热。一般地说,强制对流的流速较自然对流高,因而对流换热系数也高。例如空气自然对流换热系数约为5~25 W/(m2?℃),强制对流换热的结构影响了流体的流态、流速分布和温度分布,从而影响了对流换热的效果。流体在管内强制流动与管外强制流动,由于换热表面不同,流体流动产生的边界层也不同,其换热规律和对流换热系数也不相同。在自然对流中,流体的流动与换热表面之间的相对位置,对对流换热的影响较大,平板表面加热空气自然对流时,热面朝上气流扰动比较激烈,换热强度大;热面朝下时流动比较平静,换热强度较小。 8.我们经常用Q=hA·Δt.计算强迫对流换热、自然对流换热、沸腾和凝结换热,试问在各种情况下换热系数与 温差的关联? 答:强迫对流的换热系数与Re,Pr有关但与温差无关,自然对流与Gr的0.25次方有关联,即与温差有关,凝结换热换热系数是温差的-0.25次方。 9.试简述基尔霍夫定理的基本思想 答:一、基尔霍夫第一定律:汇于节点的各支路电流的代数和等于零,用公式表示为: ∑I=0 又被称作基尔霍夫电流定律(KCL)。 二、基尔霍夫第二定律:沿任意回路环绕一周回到出发点,电动势的代数和等于回路各支路电阻(包括电 源的内阻在内)和支路电流的乘积(即电压的代数和)。用公式表示为: ∑E=∑RI 又被称作基尔霍夫电压定律(KVL)。 10.简述沸腾换热与汽泡动力学、汽化核心、过热度这些概念的关联 答:沸腾是指在液体内部以产生气泡的形式进行的气化过程,就流体运动的动力而言,沸腾过程又有大容器沸

传热学试题库含答案

《传热学》试题库 第一章概论 一、名词解释 1.热流量:单位时间内所传递的热量 2.热流密度:单位传热面上的热流量 3.导热:当物体内有温度差或两个不同温度的物体接触时,在物体各部分之间不发生相对位移的情况下,物质微粒(分子、原子或自由电子)的热运动传递了热量,这种现象被称为热传导,简称导热。 4.对流传热:流体流过固体壁时的热传递过程,就是热对流和导热联合用的热量传递过程,称为表面对流传热,简称对流传热。 5.辐射传热:物体不断向周围空间发出热辐射能,并被周围物体吸收。同时,物体也不断接收周围物体辐射给它的热能。这样,物体发出和接收过程的综合结果产生了物体间通过热辐射而进行的热量传递,称为表面辐射传热,简称辐射传热。 6.总传热过程:热量从温度较高的流体经过固体壁传递给另一侧温度较低流体的过程,称为总传热过程,简称传热过程。 7.对流传热系数:单位时间内单位传热面当流体温度与壁面温度差为1K是的对流传热量,单位为W/(m2·K)。对流传热系数表示对流传热能力的大小。 8.辐射传热系数:单位时间内单位传热面当流体温度与壁面温度差为1K是的辐射传热量,单位为W/(m2·K)。辐射传热系数表示辐射传热能力的大小。 9.复合传热系数:单位时间内单位传热面当流体温度与壁面温度差为1K是的复合传热量,单位为W/(m2·K)。复合传热系数表示复合传热能力的大小。 10.总传热系数:总传热过程中热量传递能力的大小。数值上表示传热温差为1K时,单位传热面积在单位时间内的传热量。 四、简答题 1.试述三种热量传递基本方式的差别,并各举1~2个实际例子说明。 (提示:从三种热量传递基本方式的定义及特点来区分这三种热传递方式) 2.请说明在传热设备中,水垢、灰垢的存在对传热过程会产生什么影响?如何防止? (提示:从传热过程各个环节的热阻的角度,分析水垢、灰垢对换热设备传热能力与壁面的影响情况)3. 试比较导热系数、对流传热系数和总传热系数的差别,它们各自的单位是什么? (提示:写出三个系数的定义并比较,单位分别为W/(m·K),W/(m2·K),W/(m2·K)) 4.在分析传热过程时引入热阻的概念有何好处?引入热路欧姆定律有何意义? (提示:分析热阻与温压的关系,热路图在传热过程分析中的作用。) 5.结合你的工作实践,举一个传热过程的实例,分析它是由哪些基本热量传递方式组成的。 (提示:学会分析实际传热问题,如水冷式内燃机等) 6.在空调房间内,夏季与冬季室内温度都保持在22℃左右,夏季人们可以穿短袖衬衣,而冬季则要穿毛线衣。试用传热学知识解释这一现象。 (提示:从分析不同季节时墙体的传热过程和壁温,以及人体与墙表面的热交换过程来解释这一现象(主

D~5.72~3~250天然气压缩机~计算书

第一部分热力计算 一、初始条件 1.排气量:Q N=20Nm3/min 2.压缩介质:天然气 (气体组分:CH4:94%;CO2:0.467%;N2:4.019%;C2H6:1.514%) 3.相对湿度:ψ=100% 4.吸入压力:P S0=0.4 MPa(绝对压力) 5.排出压力:P d 0=25.1 MPa(绝对压力) 6.大气压力:P0 =0.1 MPa(绝对压力) 7.吸入温度:t S0=35℃(T S0=308°K) 8.排气温度:t d0=45℃(T d0=318°K) 9.压缩机转速:n=740rpm 10.压缩机行程:S=120mm 11.压缩机结构型式:D型 12.压缩级数:4级 13.原动机:低压隔爆异步电机,与压缩机直联 14.一级排气温度:≤130℃ 二、初步结构方案 三、初始条件换算(以下计算压力均为绝对压力) Q= Q N×[P0×T S0/(P S0-ψ×P sa)×T0]

进气温度状态下的饱和蒸汽压为P sa =0.005622 MPa P 0 =0.1MPa T 0=273°K 其余参数详见初始条件。 Q= 20×[0.1×308/(0.4-1×0.005622)×273]=5.72m 3/min 四、 级数的选择和各级压力 要求为四级压缩 总压缩比ε0=01 4S d P P =0.425.1 =62.75 ε10=ε20=ε30=ε40=4 75.62=2.8145 求出各级名义压力如下表 五、 计算各级排气温度 查各组分气体绝热指数如下: CH 4: 94% K=1.308; CO 2: 0.467% K=1.30 N 2: 4.019% K= 1.40; C 2H 6: 1.514% K=1.193 11-K =∑1r i -Ki =11.3080.94- +1.310.00467- +11.40.04019- +1 1.1930.01514 - =3.2464

如何根据压缩机的制冷量计算冷凝器及蒸发器的面积

如何根据压缩机的制冷量配冷凝器散热面积? 帖子创建时间: 2013年03月04日08:34评论:1浏览:2520投稿 1)风冷凝器换热面积计算方法 制冷量+压缩机电机功率/200~250=冷凝器换热面例如:(3SS1-1500压缩机)CT=40℃:CE=-25℃压缩机制冷量=12527W+压缩机电机功率11250W=23777/230=风冷凝器换热面积103m2 2)水冷凝器换热面积与风冷凝器比例=概算1比18(103 /18)=6m2 蒸发器的面积根据压缩机制冷量(蒸发温度℃×Δt相对湿度的休正系数查表)。 3)制冷量的计算方法:=温差×重量/时间×比热×设备维护机构 例如:有一个速冻库 1)库温-35℃ 2)速冻量1T/H 3)时间2/H内 4)速冻物质(鲜鱼) 5)环境温度27℃ 6)设备维护机构保温板计算:62℃×1000/2/H×0.82×1.23=31266 kcal/n 可以查压缩机蒸发温度CT =40 CE-40℃制冷量=31266 kcal/n 冷凝器换热面积大于蒸发器换热面积有什么缺点 如果通过加大冷凝风扇的风量可以吗 rainbowyincai |浏览1306 次 发布于2015-06-07 10:19 最佳答案 冷凝器换热面积大于蒸发器换热面积的缺点: 1、高压压力过低;

2、压机走湿行程,易液击,通过加大蒸发器风扇的风量。风冷

冷凝器和蒸发器换热面积计算方法: 1、风冷凝器换热面积计算方法:制冷量+压缩机电机功率/200~250=冷凝器换热面积 例如:(3SS1-1500压缩机)CT=40℃:CE=-25℃压缩机制冷量=12527 W+压缩机电机功率11250W=23777/230=风冷凝器换热面积103m2。 2、水冷凝器换热面积与风冷凝器比例=概算1比18(103 /18)=6m2,蒸发器的面积根据压缩机制冷量(蒸发温度℃×Δt相对湿度的休正系数查表)。 (注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注)

高等传热学肋片分析

高等传热学导热理论 第三讲肋片导热分析 肋片(伸(延、扩)展面、):从壁面扩展出的换热面。 肋片的作用: 增加传热面积,改变换热条件和增加表面传热系数。 目的:强化传热,调整温度,减小体积及流阻,减轻重量。 肋的种类:直肋,环肋,异形肋等: 一维肋片的条件(假定): (1)稳定导热,无内热源。 (2)连续均质,各向同性。 (3)表面传热系数h为常量。 不变。 (4)环境换热温度t f (5)导热系数λ为常量 (6)肋基温度均匀。 (7)δ《H,温度变化与宽度无关。 (8)肋基与壁面间无接触热阻 (无温差) 3.1一维对称直肋传热的通用微分方程: 对沿x方向一维传热,设传热面积A,由F o u r i e r定律和热力学第一定律,应用微元分析法,当λ=常量时, )d x=0 有:-dΦ-h U(t-t f

d(λA d t/d x)-h U(t-t f)d x =(λA d2t/d x)+λ(d A/d x)d t-h U(t-t f )d x=0 λA d2t/d x2+λ(d A/d x)d t/d x-h U(t-t f )=0 导热面A矩形时A=2l y,U=2(l+2y), 取l=1,2y<

各种材料的导热系数

220kV交联聚乙烯绝缘电力电缆 最高额定温度 电缆导体长期允许最高工作温度为90℃,短时过负载最高工作温度为130℃,短路时(短路时间为5S)最高工作温度为250℃。 电缆使用特性: (1)电缆导体长期允许温度为90℃。 (2)短路时(最长持续时间不超过5秒),导体最高温度不超过250℃,电缆线路中间有接头时,锡焊接头不超过120℃,压接接头不超过150℃,电焊或气焊接头不超过250℃。 (3)电缆敷设时,在保证足够机械拉力的情况下不受落差限制,但不允许敷设于铁质管道中,也不允许沿电缆周围形成环状的铁质金具固定电缆。 (4)电缆敷设时,其温度应不低于零度,当电缆温度低于零度时应采用适当的方法将电缆加热至零度有以上。 高密度聚乙烯HD 980 密度0.50导热系数 热传导和热导率物体内部分子和原子微观运动所引起的热量传递过程称为热传导,又称导热。在单位时间内从tω1的高温壁面传递到tω2的低温壁面的热流量φ(W)的大小,和壁的面积F(m2)与两壁温差(tω1-tω2)(℃)成正比,与壁的厚度δ(m)成反比。此外,还与壁的材料性质等因素有关。因此由上面的比例关系, 导热量 = f(两壁温差) / 壁的厚度 * 导热系数 聚乙烯(PE)的导热系数 0.4 W / K-Meter PVC 0.231 ABS 0.245 PP 0.138 Cu 365

SUS 16 Steel 86 水的导热系数0.54 空气的导热系数 0.024 pvc的导热系数 0.14W/MK 殷钢 11 拌石水泥 1.5 海砂 20 0.03 对某一特定物质而言,只考虑热传递时,热量与温度之间存在一个线性关系,即 变化的内能(亦即传递的热量)=该物质的比热容*质量*该物质变化的温度 导热系数 指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,℃),在1小时内,通过1平方米面积传递的热量,单位为瓦/米?度(W/m?K,此处为K可用℃代替)。导热系数与材料的组成结构、密度、含水率、温度等因素有关。非晶体结构、密度较低的材料,导热系数较小。材料的含水率、温度较低时,导热系数较小。通常把导热系数较低的材料称为保温材料,而把导热系数在0.05瓦/米?度以下的材料称为高效保温材料。 材料的厚度加大则材料的导热系数如何变化?

传热系数与给热系数(特选内容)

传热系数K 和给热系数α的测定 一. 实验目的 1. 了解间壁式传热元件的研究和给热系数测定的实验组织方法; 2. 掌握借助于热电偶测量壁温的方法; 3. 学会给热系数测定的试验数据处理方法; 4. 了解影响给热系数的因素和强化传热的途 径。 二. 基本原理 1.传热系数K 的理论研究 在工业生产和科学研究中经常采用间壁式换热装置 来达到物料的冷却和加热。这种传热过程系冷、热流体 通过固体壁面进行热量交换。它是由热流体对固体壁面 的 对流给热,固体壁面的热传导和固体对冷流体的对 流给热三个传热过程所组成。如图1所示。 由传热速率方程知,单位时间所传递的热量 Q=()t T KA - (1) 而对流给热所传递的热量,对于冷、热流体均可由牛顿冷却定律表示 Q=()1w h h t T A -α (2) 或 Q=()t t A w c c -2α (3) 对固体壁面由热传导所传递的热量,则由傅立叶定律表示为 Q ()21w w m t t A -?=δ λ (4) 由热量平衡和忽略热损失,可将(2)、(3)、(4)式写成如下等式 Q=KA t T A t t A t t A t T c c w m w w h h w 1 112211-=-=-=-αλδα (5)所以 c c m h h A A A K αλδα111 ++= (6) 图1传热过程示意图

()22222111111,,,,,,,,,,,,u c u c d f K p p λμρδλλμρ==()5,2,6f (7) 从上式可知,除固体的导热系数和壁厚对传热过程的传热性能有影响外,影响传热过程的参数还有12个,这不利于对传热过程作整体研究。根据因次分析方法和π定理,热量传递范畴基本因次有四个:[L],[M],[T],[t] ,壁面的导热热阻与对流给热热阻相比可以忽略 K ≈()21,ααf (8) 要研究上式的因果关系,尚有π=13-4=9个无因次数群,即由正交网络法每个水平变化10次,实验工作量将有108次实验,为了解决如此无法想象的实验工作量,过程分解和过程合成法由此诞生。该方法的基本处理过程是将(7)式研究的对象分解成两个子过程如(8)式所示,分别对21,αα进行研究,之后再将21,αα合并,总体分析对K 的影响,这有利于了解影响传热系数的因素和强化传热的途径。 当1α>>2α时,2α≈K ,反之当1α<<2α时,1α≈K 。欲提高K 设法强化给热系数小的一侧α,由于设备结构和流体已定,从(9)式可知,只要温度变化不大,1α只随1u 而变, ()1111111,,,,,λμραp c u d f = (9) 改变1u 的简单方法是改变阀门的开度,这就是实验研究的操作变量。同时它提示了欲提高K 只要强化α小的那侧流体的u 。而流体u 的提高有两种方法: (1)增加流体的流量; (2)在流体通道中设置绕流内构件,导致强化给热系数。 由(9)式,π定理告诉我们,π=7-4=3个无因次数群,即: ()1111111,,,,,λμραp c u d f = ? ??? ? ??=λμμρλαp c du f d , (10) 经无因次处理,得: c b o a Nu Pr Re = (11)

导热系数和传热系数区别

. 传热系数以往称总传热系数。国家现行标准规范统一定名为传热系数。传热系数K值,是指在稳定传热条件下,围护结构两侧空气温差为1度(K,℃),1小时内通过1平方米面积传递的热量,单位是瓦/平方米·度(W/㎡·K,此处K可用℃代替)。 导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,℃),在1小时内,通过1平方米面积传递的热量,单位为瓦/米?度(W/m?K,此处为K可用℃代替)。导热系数与材料的组成结构、密度、含水率、温度等因素有关。非晶体结构、密度较低的材料,导热系数较小。材料的含水率、温度较低时,导热系数较小。 通常把导热系数较低的材料称为保温材料,而把导热系数在0.05瓦/米?度以下的材料称为高效保温材料。 传热系数(Heat transfer coefficient) 传热系数以往称总传热系数。国家现行标准规范统一定名为传热系数。传热系数K值,是指在稳定传热条件下,围护结构两侧空气温差为1度(K/℃)1小时内通过1平方米面积传递的热量单位是瓦/平方米?度(W/㎡?K)此处K可用℃代替。 传热系数不是描述物质物性的物理量,它会随着不同的外界条件而发生变化,例如温度,流速,流量等,总的说来,它是一个工程上的概念. 机械工程中遇到的传热过程常常是热传导、对流换热和辐射换热三者的综合,而在应用最多的表面式换热器(又称间壁式换热器)中温度不太高,辐射换热的作用不大,所以分析时主要考虑热传导和对流换热的综合过程。因此,传热系数不仅与器壁的材料性能和厚度有关,还与器壁两侧的对流换热(有时还有辐射换热)过程有关。 导热系数(Thermal conductivity) 导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,°C),在1小时内,通过1平方米面积传递的热量,用λ表示,单位为瓦/(米·度),w/(m·k)(W/m·K,此处的K可用℃代替)。 导热系数与材料的组成结构、密度、含水率、温度等因素有关。导热系数又被称作“热导系数”或“导热率”,反映材料热性能的重要物理量.这个特性跟材料本身的大小、形状、厚度都是没有关系的,只是跟材料本身的成分有关系。所以同类材料的导热率都是一样的,并不会因为厚度不一样而变化。 热传导是热交换的三种(热传导,对流和辐射)基本形式之一.是工程热物理、材料科学、固态物理、能源、环保等各个研究领域的课题。材料的导热机理在很大程度上取决于它的微观结构。热量的传递依靠原子、分子围绕平衡位置的振动以及自由电子的迁移。 .

传热学试题库含参考答案2新版

1、外径为200mm采暖热水输送保温管道,水平架空铺设于空气温度为-5℃的室外,周围墙壁表面平均温度近似为0℃,管道采用岩棉保温瓦保温,其导热系数为λ(W/m℃)=0.027+0.00017t(℃)。管内热水平均温度为100℃,由接触式温度计测得保温层外表面平均温度为45℃,表面发射率为0.9,若忽略管壁的导热热阻,试确定管道散热损失、保温层外表面复合换热系数及保温层的厚度。 解:管道散热损失包括自然对流散热损失和辐射散热损失两部分。 确定自然对流散热损失: 定性温度℃ 则 确定辐射散热损失: 属空腔(A 2)与内包壁(A 1 )之间的辐射换热问题,且。 单位管长管道散热损失 确定保温层外表面复合换热系数: 确定保温层的厚度: 由傅立叶定律积分方法获得。 ,分离变量得:,即:

得管道外径 保温层的厚度为 2、一所平顶屋,屋面材料厚δ=0.2m,导热系数λ w =0.6W/(m·K),屋面两侧的材料发射率ε均 为0.9。冬初,室内温度维持t f1 =18℃,室内四周墙壁亦为18℃,且它的面积远大于顶棚面积。天 空有效辐射温度为-60℃。室内顶棚表面对流表面传热系数h 1 =0.529W/(m2·K),屋顶对流表面传 热系数h 2=21.1W/(m2·K),问当室外气温降到多少度时,屋面即开始结霜(t w2 =0℃),此时室内顶 棚温度为多少?此题是否可算出复合换热表面传热系数及其传热系数? 解:⑴求室内顶棚温度t w1 稳态时由热平衡,应有如下关系式成立: 室内复合换热量Φ’=导热量Φ=室内复合换热量Φ” ; 因Φ’=Φ,且结霜时℃,可得: ,即 解得:℃。 ⑵求室外气温t f2

压缩机热力学计算解读

2 热力学计算 2.1 初步确定各级排气压力和排气温度 2.1.1 初步确定各级压力 本课题所设计的压缩机为单级压缩 则: 吸气压力:P s =0.1Mpa 排气压力:P d =0.8Mpa 多级压缩过程中,常取各级压力比相等,这样各级消耗的功相等,而压缩机的总耗功也最小。各级压力比按下式确定。 z i t εε= (2-1) 式中: i ε—任意级的压力比; t ε—总压力比; z —级数。 总压力比:t ε= 0.8/0.1=8 各级压力比: 83.28==ε i 压缩机可能要在超过规定的排气压力值下工作,或者所用的调解方式(如余隙容积调节和部分行程调节)要引起末级压力比上升而造成末级气缸温度过高,末级压力比值取得较低,可按下式选取: Z =εε t i )75.0~9.0( (2-2) 则各级压力比: ε 2=2.12~2.55=2.5 ε 1 =3.2 各级名义进、排气压力及压力比已经调整后列表如下 表2-1 各级名义进、排气压力及压力比 级数 名义进气压力 p 1(MPa ) 名义排气压力 p 2(Mpa ) 名义压力比 ε Ⅰ 0.1 0.32 3.2 Ⅱ 0.32 0.8 2.5

2.1.2 初步确定各级排气温度 各级排气温度按下式计算: 1n n d s i T T ε-= (2-3) 式中:T d —级的排气温度,K ; T s —级的吸气温度,K ; n —压缩过程指数。 在实际压缩机中,压缩过程指数可按以下经验数据选取。 对于大、中型压缩机:n k = 对于微、小型空气压缩机:(0.9~0.98)n k = 空气绝热指数k =1.4,则(0.9~0.98)(1.26~1.372)n k ==,取n =1.30 各级名义排气温度计算结果列表如下。 一级的吸气温度T s1=210C+273=294(K ) 一级的排气温度T d1==X =-2 .323 .0113.11 1 294ε T s 382(K) 二级的吸气温度T s2=400C+273=313(K ) 二级的排气温度:=X =-5 .223 .0113.12 2 313ε T s 471(K)=386(K) 表2-2 各级排气温度 级数 名义吸气温度T 1 压缩过程指数n n n 1-')(ε 名义排气温度T 2 ℃ K ℃ K Ⅰ 21 294 1.30 1.31 130 382 Ⅱ 40 313 1.30 1.313 1.23 386 2.2 确定各级的进、排气系数 2.2.1 计算容积系数v λ 容积系数是由于气缸存在余隙容积,使气缸工作容积的部分容积被膨胀气体占据,而对气缸容积利用率产生的影响。 )1(11 --=m v εαλ (2-4) 式中: v λ—容积系数; α —相对余隙容积; ε — 压力比。 各级膨胀过程指数m 按下表计算。

相关主题
文本预览
相关文档 最新文档