当前位置:文档之家› 多微通道式气体静压节流器承载力研究

多微通道式气体静压节流器承载力研究

多微通道式气体静压节流器承载力研究
多微通道式气体静压节流器承载力研究

换热器的研究现状及应用进展

换热器的研究现状及应用进展 摘要:换热器是一种非常重要的换热设备,是实现不同介质在不同温度下传热 的节能设备。它可以利用低温介质对高温介质进行冷却,达到冷却、预冷的效果,也可以利用高温介质对低温介质进行加热,使工艺温度达到生产的要求。长期以来,换热器强化传热技术受到了世界各国学者的关注,高效节能的新型换热器层 出不穷。 关键词:换热器;研究现状;应用进展; 一、换热器的研究现状 1.管式换热器。管式换热器是最典型的间壁式换热器,它操作可靠、结构简单、可在高温高压下使用,是目前应用最为广泛的换热器类型之一。然而,研究 表明,与以往传统的管壳式换热器不同,新型换热元件和高效换热器的研发已经 进入了一个新时期。从目前诸多的研究成果来看,改善换热器的方法主要有对管 程结构改进和对壳程结构改进两大类。在管程结构改进中主要有改变传热面积和 加入管内插入物两类。在壳程结构改进中主要有改变管子外形及表面特性和改变 壳程管间支撑物结构两种。(1)螺旋槽纹管换热器。螺旋槽纹管是一种高效益 异形的强化传热管件,它通过改变传热面的形状大大强化了流体的换热效果。二 十世纪七十年代,美、日、英等国对螺旋槽纹管换热器进行了大量的研究,基于 螺旋槽纹管的特性,美国Argonne国家实验室和GA技术公司设计螺旋槽纹管换 热器的传热效率比光管提高了2至4倍。目前,无论是从传热、流阻、阻垢性能,还是从无相变对流换热和有相变凝结换热,对螺旋槽管的强化传热研究从理论到 实际已达到较高水平。(2)管内插入物换热器。管内插入物换热器是通过在管 内添加插入物增加流体的湍动程度,加强近壁面和流体中心区域的混合程度,从 而达到了强化传热的目的。管内添加物的种类多种多样,常见的有加入纽带、螺 旋线、螺旋片等。试验研究表明,管内插入纽带之后,如果是层流换热,则对流 传热系数可增大2至3倍,压降增加3倍以上。若是紊流换热,传热系数仅增大30%左右,而压降增大2倍以上。管内插入物加工简单,特别适合对已有设备进 行升级改造。(3)折流杆式换热器。传统的管壳式换热器装有折流板,这种结 构的流动阻力大,容易使换热管发生震动而被破坏,为了解决这个问题并强化传 热效果,折流杆换热器应运而生。它通过改变壳程管间支撑物结构强化了传热。 折流杆式结构至少由四片折流栅组成,两横两竖,每个折流栅由若干个相互平行 的折流杆镶嵌在一个折流圈上。折流杆换热器几乎不存在流动死区,从而彻底解 决了传统的折流板换热器中存在的流动死区的问题。另外折流杆换热器不易结垢,流体在经过折流杆时产生文丘里效应对管壁有强烈的冲刷作用使得污垢难以形成。(4)管翅式换热器。管翅式换热器广泛应用于制冷行业,与普通的管壳式换热 器相比,它传热系数高、结构紧凑、使用寿命长、拆装简易,是一种安全可靠的 换热器。管翅式换热器通过在管外加装翅片,强化了壳程的传热。对总结了不同 翅片形式强化传热的机理及翅片参数对传热与流阻的影响规律。对管翅式换热器 进行了优化设计,计算出了特定工况下的最佳换热性能参数,并进行了计算机辅 助优化设计程序的开发。 2.板式换热器。板式换热器是由一系列波纹状的薄板按照固定的间隔并通过 垫片紧压而形成的换热器,板式换热器与管式换热器相比,在相同的污垢系数下,总传热系数是管式换热器的2至3倍,压力损失为其0.5至1倍,重量为其0.25 至0.5倍。体积和占地面积为其的0.3至0.5倍,因此板式换热器的性能更佳。但

微通道换热器流体流动传热研究

微通道换热器流体流动传热研究 刘庆荣,山东豪迈化工技术有限公司 摘要:微小型化是当代科技发展的重要方向之一。近些年来微小通道紧凑式产品在汽车、宇航、电子和制冷等行业内的应用越来越广,但是对于微小型通道内的流动传热机理等问题仍然还存在着很多争论,这方面的基础研究仍然处于初步阶段。本文从流体流动角度总结了近年来学者对微通道内的流动和传热的研究成果,适当分析了不同结构的微通道内流动传热机理的差异。为设计出比较适合的微通道产品,提供了流动特性的定性分析; 引言 微尺度科学中物质和能量的输运均发生在一个受限的微小结构内,而物质的输运和相互作用必然涉及到流动和能量的转换,据热力学第二定律可知,任何不可逆过程中能量的耗散必然有一部分是以热的形式体现的。因此,不仅在微通道中的流动、传热方面,对于其他所有微系统的设计及应用来说,全面了解系统在特定尺寸内的行为已经成为迫在眉睫的任务。 一般来讲,所谓“微尺度”并没有严格的界定,只是一个相对大小的概念。随着研究对象的不同,出现微尺度效应的空间尺度范围也不相同。通常所指的空间微尺度是跨越微米到原子尺度的宽广范围:微米—亚微米—纳米—团簇—原子。 在微尺度中的流动和传热的规律已明显不同于常规尺度条件下的流动和传热,换言之,当研究对象微细到一定程度以后,出现了流动和传热的尺度效应。目前需要着重讨论研究的是尺度微细化后出现的力学、热学等现象和规律的变化,以及微细到什么程度才出现变化等。 尺度效应中下列情况值得注意: (1)由于尺度的微细,面体比增大,从而使表面作用增强,表面作用包括粘性力、表面张力和换热等。 (2)对于微尺度的物体,流动和传热的边缘效应和端部效应特别明显,其三维效应不能忽略,所以一般情况下,微细尺度物体不能简化为二维、一维问题来处理。 1.通道结构型式 根据常规换热器的结构以及微通道换热器研究的文献资料,微通道换热器结构形式可以归纳为两种:一是单一通道(类似于蛇形盘管,不需要对流体工质进行分液处理,如图1),二是并排通道(须考虑对流体工质的分配问题)。为了能有效地找到一种比较实用的、可靠通道结构,这里借助Fluent软件对不同通道结构形式进行了流动特性的定性分析,以便确认一个流动特性较好的通道结构形式。Fluent定性分析的前提是对所有结构而言流体的初始条件是一样的;通过分析他们之间的压力降、流动的均匀性以作比较,从而确定较为理想的通道结构形式。 就单一通道的微通道换热器来说,优势在于不存在流体有效分配的问题,而且由于通道较长有利于制冷剂的相变换热的完全进行,不过其存在的不利因素有:

国外换热器新进展

国外换热器新进展 【关键词】强化传热,传热元件,壳程设计,新型高效换热器 【摘要】简述了国外近年来换热器的发展概况,介绍了强化传热研究、强化传热元件开发、新型壳程结构设计以及国外推出的各种新型高效换热器的有关情况。 Recent advances on foreign heat exchangers Abstract The recent progress of foreign heat exchangers in lasted years is outlined, research of enhanced heat transfer, development of heat transfer elements and structural design of new type shell side are introduced,and new high-effective heat exchangers abroad are commented. Key words:enhanced heat transfer,heat transfer elements, shell side design,new high-effective heat exchangers 1概述 70年代的世界能源危机,有力地促进了传热强化技术的发展。为了节能降耗,提高工业生产经济效益,要求开发适用于不同工业过程要求的高效能换热设备。这是因为,随着能源的短缺(从长远来看,这是世界的总趋势),可利用热源的温度越来越低,换热允许温差将变得更小,当然,对换热技术的发展和换热器性能的要求也就更高。所以,这些年来,换热器的开发与研究成为人们关注的课题。 最近,随着工艺装置的大型化和高效率化,换热器也趋于大型化,

微通道换热器研究进展

微通道换热器研究进展 更新时间:2011-06-13 13:53:26 微通道研究进展 钟毅尹建成潘晟旻 (昆明理工大学) 摘要:从微通道的发展历史出发,介绍其制造方式、结构和材料,重点介绍对微通道发展和降低成本有重要影响的全铝微通道管材成形加工技术。对微通道传热的特征进行述评,从微电子微机械高效传热、CO2制冷减少温室气体排放和提高家用空调能效比几个方面展现微通道换热器的应用前景。 关键词:微通道;换热器;传热特性;压力降;空调;制冷 换热器工质通过的水力学直径从管片式的10~50mm板式的 3~10mm不断发展到小通道的0.6~2mm微通道的10~600卩m,这既是现代微电子机械快速发展对传热的现实需求,也是微通道具有的优良传热特性使然。微通道技术同时触发了传统工业制冷、汽车空调、家用空调等领域提高效率、降低排放的技术革新。 1微通道换热器的发展历程 微通道换热器(见图1[1-2])的工程背景来源于上个世纪80年代高密度电子器件的冷却和90年代出现的微电子机械系统的传热问题。1981 年,Tuckerman和Pease提出了微通道散热器的概念;1985年,Swife,Migliori 和Wheatley研制出了用于两流体热交换的微通道换热器。随着微制造技术的发展,人们已经能够制造水力学直径10~1 000卩m通道所构成的微尺寸换热器。

1986年Cross和Ramshaw研制了印刷电路微尺寸换热器,体积换热系数达到 7MW/(m3 K);1994年Friedrich 和Kang研制的微尺度换热器体积换热系数达 45MW/(m3 K);2001年,Jia ng等提出了微热管冷却系统的概念,该微冷却系统实际上是一个微散热系统,由电子动力泵、微、微热管组成。如果用微压缩冷凝系统替代微,可实现主动冷却,支持高密度热量电子器件的高速运行[3] o 在汽车空调方面,由于传统的氟利昂系列制冷剂对臭氧层具有较强的破坏作用,已被《蒙特利尔议定书》禁止。R134a作为一种过渡型替代品,由于其温室效应指数很高(约为C02的1 300倍[4]),也被《京都议定书》所否定。CO2 在蒸发潜热、比热容、动力黏度等物理性质上具有优势[5],若采用合适的制冷循环,CO2在热力特性上可与传统制冷剂相当,甚至在某些方面更具优势。但是CO2 制冷循环为超临界循环,压力很高[6],在空调系统中高压工作压力要到13MPa以上,设计压力要达到42.5MPa,这对压缩机和换热器的耐压性均提出了很高的要求。在结构轻量化和小型化的前提下,微通道气体冷却器是同时满足耐压性、耐久性和系统安全性的必然选择。目前欧盟已做好准备,将于2011年全面使用CO2 工质的汽车空调系统。 擀H懂诵道换热醤的錯构和外形闕 在家用空调方面,当流道尺寸小于3mm寸,气液两相流动与相变传热规 律将不同于常规较大尺寸,通道越小,这种尺寸效应越明显。当管内径小到 0.5~1mm时,对流换热系数可增大50%~100%将这种强化传热技术用于空调换热器,适当改变换热器结构、工艺及空气侧的强化传热措施,预计可有效增强空调换 热器的传热、提高其节能水平。

微通道换热器前景

微通道换热器研究进展 微通道换热器研究进展 钟毅尹建成潘晟旻 (昆明理工大学) 摘要:从微通道换热器的发展历史出发,介绍其制造方式、结构和材料,重点介绍对微通道换热器发展和降低成本有重要影响的全铝微通道管材成形加工技术。对微通道传热的特征进行述评,从微电子微机械高效传热、CO2制冷减少温室气体排放和提高家用空调能效比几个方面展现微通道换热器的应用前景。 关键词:微通道;换热器;传热特性;压力降;空调;制冷 换热器工质通过的水力学直径从管片式的 10~50mm,板式的 3~10mm,不断发展到小通道的 0.6~2mm,微通道的 10~600μm,这既是现代微电子机械快速发展对传热的现实需求,也是微通道具有的优良传热特性使然。微通道技术同时触发了传统工业制冷、汽车空调、家用空调等领域提高效率、降低排放的技术革新。 1 微通道换热器的发展历程 微通道换热器(见图1[1-2])的工程背景来源于上个世纪80年代高密度电子器件的冷却和90年代出现的微电子机械系统的传热问题。1981年,Tuckerman和Pease提出了微通道散热器的概念;1985年,Swife,Migliori和Wheatley研制出了用于两流体热交换的微通道换热器。随着微制造技术的发展,人们已经能够制造水力学直径 10~1 000μm通道所构成的微尺寸换热器。1986年Cross和Ramshaw研制了印刷电路微尺寸换热器,体积换热系数达到7MW/(m3·K);1994年Friedrich和Kang研制的微尺度换热器体积换热系数达45MW/(m3·K);2001年,Jiang等提出了微热管冷却系统的概念,该微冷却系统实际上是一个微散热系统,由电子动力泵、微冷凝器、微热管组成。如果用微压缩冷凝系统替代微冷凝器,可实现主动冷却,支持高密度热量电子器件的高速运行[3]。 在汽车空调方面,由于传统的氟利昂系列制冷剂对臭氧层具有较强的破坏作用,已被《蒙特利尔议定书》禁止。R134a 作为一种过渡型替代品,由于其温室效应指数很高(约为CO2的1 300倍[4]),也被《京都议定书》所否定。CO2在蒸发潜热、比热容、动力黏度等物理性质上具有优势[5],若采用合适的制冷循环,CO2在热力特性上可与传统制冷剂相当,甚至在某些方面更具优势。但是CO2制冷循环为超临界循环,压力很高[6],在空调系统中高压工作压力要到13MPa以上,设计压力要达到42.5MPa,这对压缩机和换热器的耐压性均提出了很高的要求。在结构轻量化和小型化的前提下,微通道气体冷却器是同时满足耐压性、耐久性和系统安全性的必然选择。目前欧盟已做好准备,将于2011年全面使用CO2工质的汽车空调系统。

板式换热器的研究进展

板式换热器的研究进展 发表时间:2020-04-03T14:58:53.603Z 来源:《建筑实践》2019年38卷第22期作者:陈厶玮1 陆明伟2 [导读] 近年来,随着现代化建设的发展,我国的能源建设发展也有了改善摘要:近年来,随着现代化建设的发展,我国的能源建设发展也有了改善。换热器的出现是人类社会发展中对热量交换管理作出的一次重要改进。通过换热器应用,能够满足人们对于热量交换的处理需求,对于人们日常生活水平提升具有重要意义。由于换热器构成方式不同,整个器件运行过程中形成的热量交换方式也有所不同。一般情况下,换热器构成类型有管式换热器和板式换热器两种,不同类型换 热器能够最大限度上满足人们对于热量交换处理的需求。本文针对换热器应用现状及进展展开讨论研究,希望能够对换热器未来发展方向做出分析,提升换热器应用研究水平。 关键词:板式换热器;研究进展;措施引言 我国能源需求刚性增长,消费水平居世界前列并仍在快速增长,其中工业能耗约占总能耗的70%,节能减排形势严峻、意义重大。换热器广泛应用在化工、石油、冶金和电力等领域,其性能对提高能效具有显著价值,国内外研究人员都非常重视强化换热技术,通过不断开发新型的换热器结构、优化设计参数、选用特殊材料来提高换热效率、减少流动阻力、改善环境适应性,从而提高换热能力,提升设备在行业的竞争水平。其中,板式换热器市场发展迅速。它具有传热系数高、对数平均温差大、占地面积小、重量轻、污垢系数低等优势,同时便于拆卸、清洗,不同结构型式的板片间可灵活组合,可用于加热、冷却、蒸发、冷凝、杀菌消毒、余热回收等各种工业应用。然而在实际使用板式换热器时会出现流动阻力大、耐高温高压能力差等不足之处,缩减了板式换热器的应用范围。为改善提升板式换热器的传热效果,国内外研究人员通过实验研究和数值模拟等手段,在传热、流动、结构和材料等方面开展了大量工作,本文即对相关工作进行总结概述,以期分享板式换热器的研究成果,进一步了解其研究进展及未来发展方向。 1换热器的研究现状 1.1管式换热器 管式换热器作为当前市场上流通性较强的一种换热器类型,在换热器应用和发展中具有重要地位。由于管式换热器具有结构简单以及耐高温性强等特性,使得人们对于管式换热器的应用越来越重视。按照管式换热器构成方式,在现有换热器行业发展中,管式换热器已经形成了以螺旋槽文管换热器、管内插入物换热器、折流杆式换热器和管翅式换热器为主的管式换热器应用形式。由于每种管式换热器构成方式和应用方式不同,在换热器应用过程中,热量交换以及热量传导效率出现了显著差异。以管内插入物换热器为例,在现有换热器应用处理中,其能够在换热交换中借助传热系数变换,将整体传热效率提升30%,对人们换热处理需求起到重要保障作用。 1.2板式换热器 板式换热器是在当前换热器市场发展中较为常见的一种换热器类型,由于板式换热器由不同间隔薄板构成,在进行换热交换过程中,各个薄板中的热量会随着换热方式调整出现热量迁移和转换;并且在相同污垢系数下,板式换热器换热效率能够提升至传统换热器应用效率的2~3倍,这对于换热器的应用而言是非常重要的。在板式换热器应用过程中,由于其占有体积和占地面积较小,使得换热器的应用灵活性较高,所以被很多工厂以及浴池所青睐。同时,由于板式换热器构成中具有较为明显的螺纹板式,能够按照螺纹板式构成中的要求,进行相关数值模拟计算,提升了板式换热器内部换热效率控制水平;尤其是在山东大学文孝强等人研究下,通过对板式换热器内部材料改进,提升了整个换热器换热性能,满足了人们换热处理需求。 2概述 随着可持续发展战略的实施,国家对GDP能耗控制指标不断细化,作为重要过程设备的换热器在暖通、冶金、核电、石油、化工等行业的热量回收和综合利用中发挥着越来越大的作用。根据结构特征换热器主要分为:管式、板式、扩展表面式以及再生式换热器四类。板式换热器因其独特的结构设计,与其它类型的热交换器相比,具有传热效率高、质量轻、占用空间小、结构紧凑、易维修维护等诸多的优点,近几十年来被广泛研究与应用。为适应不断变化的市场需求,全面提高板式换热设备的传热能力,众多企业和学者对板式换热器做了许多卓有成效的研究。未来板式换热器的发展,主要包括三个方面的内容:板式换热器大型化技术、可靠结构和传热性能兼顾的板片开发、流场精细化CFD分析。 3板式换热器的研究进展 3.1板式换热器的结构设计与优化 板式换热器结构设计与优化的目的是强化换热、降低流阻,使换热器的性能达到最佳,其设计基本原则是将换热器的压力损失降到最低从而得到最佳的换热效率。所以,主要从总传热系数与压损的大小两方面来体现板式换热器的性能优越性,并通过选择评相应价标准,对换热器的综合性能进行评价,从而下获得所运行参数下的最优板形。按照设计需求,换热器有若干性能评价标准。早期常用的评价标准是根据单一参数进行评价,比如给定参考流速下对比换热器传热系数和压降两个数值来评价。后续研究人员还提出使用无量纲化的努谢尔特数比和流动阻力比进行评价。板式换热器的流道形状复杂,叠放形式多样,研究者多通过实验和数值模拟对比分析板片的波纹倾角、波高、间距等不同结构参数的影响,以期得到性能最优的波纹结构。 3.2板片结构参数对换热性能影响的CFD研究进展 板片结构参数对板式换热器的换热性能有直接的影响。人字纹板同平板换热器相比,能较早地促使瑞流产生,其临界雷诺数Re为400-800。当Re>1000时,在任何情况下都具有湍流特性。人字形波纹板片的波纹倾角是影响流体在换热器流动状态的主要因数,并且深刻影响着流体的传热与压降等特征。除波纹倾角外,对于人字形波纹板片影响换热器性能的因数还有波纹深度、法向截距(波长)、表面展开系数、波纹截面形状等。近几年,国内学者采用组合通道内局部可视化结合传热机理预测推断板式换热器的传热及流阻特性;特别在板式换热器CFD方面的研究取得很大的进展。然而由于目前国内相关实验研究所用的板片的波纹形状、流道组合、Pr(普朗特数)的选取、黏度的修正等各不相同,故结果也不尽一致。板式换热器CFD分析手段使得新产品的开发和相应流场的分析变得轻松,然而目前国内各方学者的研究出发点多有重复,并且模型简化使得其精确性受限,因此,进一步的系统的CFD精细化研究实验是分析和提高其传热性能重要的方向。同时针对超大型板式换热器的传热及流场研究很少。板式换热器的大型化发展,使得开发可靠结构和传热性能兼顾的板片已是板式换热器优化与改进的主要方向。

微通道换热器-why

微通道换热器综述 1 前言 换热器工质通过的水力学直径从管片式的φ10-50mm,板式的φ3-10mm,不 μ,这既是现代微电子机械快断发展到小通道的φ0.6-2mm,微通道的φ10-600m 速发展对传热的现实需求,也是微通道具有的优良传热特性使然。微通道技术同时触发了传统工业制冷、汽车空调、家用空调等领域提高效率、降低排放的技术革新。 微通道换热器的工程背景来源于上个世纪80年代高密度电子器件的冷却和90 年代出现的微电子机械系统的传热问题。1981年,Tuckerman和Pease提出了微通道散热器的概念;1985年,Swife,Migliori和Wheatley研制出了用于两流体热交换的微通道换热器。随着微制造技术的发展,人们已经能够制造水力学μ通道所构成的微尺寸换热器。1986年,Cross和Ramshaw研直径φ10-1000m 制了印刷电路微尺寸换热器。体积换热系数达到7MW/(m3·K);1994年,Friedrich 和Kang研制的微尺度换热器体积换热系数达45MW/ ( m3·K);2001年,Jiang 等提出了微热管冷却系统的概念。该微冷却系统实际上是一个微散热系统,由电子动力泵、微冷凝器、微热管组成。如果用微压缩冷凝系统替代微冷凝器,可实现主动冷却,支持高密度热量电子器件的高速运行。在汽车空调方面,由于传统的氟利昂系列制冷剂对臭氧层具有较强的破坏作用。已被《蒙特利尔议定书》禁止。R134a作为一种过渡型替代品,由于其温室效应指数很高(约为CO2的1300倍),也被《京都议定书》所否定。CO2在蒸发潜热、比热容、动力黏度等物理性质上具有优势。若采用合适的制冷循环,CO2在热力特性上可与传统制冷剂相当,甚至在某些方面更具优势。但是CO2制冷循环为超临界循环,压力很高。在空调系统中高压工作压力要到13MPa以上,设计压力要达到42.5MPa,这对压缩机和换热器的耐压性均提出了很高的要求。在结构轻量化和小型化的前提下,微通道气体冷却器是同时满足耐压性、耐久性和系统安全性的必然选择。目前欧盟已做好准备,将于2011年全面使用CO2工质的汽车空调系统。 在家用空调方面,当流道尺寸小于3mm时,气液两相流动与相变传热规律将不同于常规较大尺寸。通道越小,这种尺寸效应越明显。当管内径小到φ0.5-1mm 时,对流换热系数可增大50%-100%。将这种强化传热技术用于空调换热器,适当改变换热器结构、工艺及空气侧的强化传热措施,预计可有效增强空调换热器

微通道换热器的探讨

微通道换热器的探讨 微通道换热器是近一两年提得比较多的新式换热器,它是指由0.05-0.1in.(1—2.5mm)厚,0.5-1 in.(12-25mm)宽,内部有许多0.5-1mm的微小通道的换热管组成的换热器。虽然这种换热器在汽车空调(单冷型)及水箱上已经使用了很多年,但是在家用和商用空调与制冷产品上的应用却不多,开利在它的风冷螺杆冷水机30XA系列上使用了微通道换热器作为冷凝器,改进如下: 1.换热量增加10%; 2.制冷剂充注减少30%; 3.风侧阻力减少50%。 现在微通道换热器的优点总结如下: 1.强化了传热,提高了传热效率; 2.缩小了换热器体积; 3.减小了制冷剂的充注; 4.空气侧阻力减小,所需风机,电机规格减小; 5.因为是全铝材料做成,成本下降(但因为没有规模效应,仅指材料成本,单个产品仍比同规格翅片管式贵) 6.有更好的抗腐蚀性; 7.管内压力损失小; 8.容易现场修补泄露点。 缺点如下: 1.对于蒸发器,分液是一个重要问题,现在还不能很好解决; 2.对于蒸发器,冷凝水的快速排出还没有很好解决,这又衍生出结霜化霜问题; 3.因为空气侧阻力减小,使气流的不均匀性更加恶化; 4.设计灵活性减小,如部分负荷,过冷管段的设计等。

微通道换热器作为冷凝器时,经过 实验研究: 1.体积可以缩小约25%; 2.制冷剂充注可以减小约 20%-40%; 3.换热效率提高约10% 对比测试: 原型机规格: KFR-72LW:制冷量:7200W;制冷剂:R22 充注量:2.3kg 制热量:8200W(10300W)电源:220C/50Hz 功率:2630W/2600W(电加热4700W)毛细管:OD2.5x630x3 从表1可以看出,整体结构比原来小了,因为测试是借用原型机结构,所以微通道换热器的设计是主要是从安装方面考虑大小,所以迎风面减速小并不多,但从换热面积减小可以看出结构比原来小了。从表2可以看出,因为对蒸发器的设计和应用还有一些问题,所以对于蒸发器使用微通道换热器效果并不比原来好,但对只使用微通道冷凝器的机组,性能有所改善,特别是制冷剂充注。 以下是另一组只更换冷凝器的测,:

国外换热器新进展

国外换热器新进展 国外换热器新进展 原作者:曹纬 出处: 【关键词】强化传热,传热元件,壳程设计,新型高效换热器 【论文摘要】简述了国外近年来换热器的发展概况,介绍了强化传热研究、强化传热元件开发、新型壳程结构设计以及国外推出的各种新型高效换热器的有关情况。 分类号TQ 051.5 Recent advances on foreign heat exchangers Senior Translator Cao Wei (Lanzhou Petroleum Machinery Reseach Institute, Lanzhou 730050) Abstract The recent progress of foreign heat exchangers in lasted years is ou tlined, research of enhanced heat transfer, development of heat transfer elements a nd structural design of new type shell side are introduced,and new high-effective h eat exchangers abroad are commented. Key words:enhanced heat transfer,heat transfer elements, shell side design,new high-effective heat exchangers 1概述 70年代的世界能源危机,有力地促进了传热强化技术的发展。为了节能降耗,提高工业生产经济效益,要求开发适用于不同工业过程要求的高效能换热设备[1]。这是因为,随着能源的短缺(从长远来看,这是世界的总趋势),可利用热源的温度越来越低,换热允许温差将变得更小,当然,对换热技术的发展和换热器性能的要求也就更高[2]。所以,这些年来,换热器的开发与研究成为人们关注的课题。 最近,随着工艺装置的大型化和高效率化,换热器也趋于大型化,并向低温差设计和低压力损失设计的方向发展。同时,对其一方面要求成本适宜,另一方面要求高精度的设计技术。当今换热器技术的发展以CFD(Computational Fluid Dynamics)、模型化技术、强化传热技术及新型换热器开发等形成了一个高技术体系[3]。 2强化传热技术 所谓提高换热器性能,就是提高其传热性能。狭义的强化传热系指提高流体和传热面之间的传热系数。其主要方法归结为下述两个原理,即使温度边界层减薄和调换传热面附近的

微通道换热器的优势

微通道换热器的优势 MCHE:micro channel heat exchange(微通道换热器) 基于一系列的原因,我们确信未来属于MCHEs,在未来的五年,MCHEs的市场份额将会从3 % 上升到40%。 重量减轻68% 相比于F&T,MCHEs的重量要轻68%,差距如此大,是由于MCHEs的高传热系数性能,在同等的换热量下,能够设计成更小,更轻的机组,重量轻也就意味着更便于运输。 29%的价格优势 由于MCHEs能够做得更加紧凑,所以与F&T相比,MCHEs包含更少的金属。金属成份的减少也就意味着MCHEs能够更好地应对原材料的价格波动。 减少77%的内容积 微通道的扁管设计能够大幅增加传热性能,并且减少制冷剂充注。相比于F&T换热器,其内容积减少约77%。 减少的35%尺寸 轻巧的MCHEs设计意味着更少的换热器能够提供等效的换热性能。这种优势能够减少底盘尺寸及便于物流运输,相比于F&T,MCHEs能够减少35%体积。 减少50%的噪声 由于风阻的降低,MCHEs能降低50%的噪声—在家用空调应用中非常具有竞争优势。同样能节省风机的能耗。

100%的灵活设计度 客户能得到最大的灵活度设计方案,其能满足换热器尺寸和安装的要求。目前MCHEs的最大的尺寸达到1.5m x 4m,并且我们能提供一系列的安装附件来满足各种不同的安装要求。 更高的传热效率 MCHEs比F&Ts更能成功地解决换热性能与风侧换热效率的难题。它们提供更多的管路面积,紧密接触的扁管与翅片、同样紧密接触金属表面与环境空气的结构方式使换热器具有更高的传热效率。 钎焊式的扁管与翅片提高传热性能 翅片与管路存在间隙,传热效率会减弱。但在微通道换热器中,所有的部件都是钎焊在一起的,因此,翅片与扁管之间没有间隙,也意味着高传热效率。 容易清洗 对于F&T换热器,其灰尘和污垢非常难与清除;但是相于MCHEs来说,这是一种非常容易的事。 100%全铝结构 MCHES全铝结构,轻质金属,全铝结构能够防止发生F&T换热器翅片与铜管之间的之类的电腐蚀。由于是同一种金属,产品也易于回收。 低压阻性能 MCHE具有低压阻的性能,所以可以让你选择较小或较慢的风机,也能够减少能耗。或者你能使用同样的风机风量来提高换热能力。 引自:三花丹佛斯 https://www.doczj.com/doc/733416379.html,

国外换热器新进展

国外换热器新进展 曹纬 摘要简述了国外近年来换热器的发展概况,介绍了强化传热研究、强化传热元件开发、新型壳程结构设计以及国外推出的各种新型高效换热器的有关情况。 关键词强化传热传热元件壳程设计新型高效换热器 分类号TQ 051.5 Recent advances on foreign heat exchangers Senior Translator Cao Wei (Lanzhou Petroleum Machinery Reseach Institute, Lanzhou 730050) Abstract The recent progress of foreign heat exchangers in lasted years is outlined, research of enhanced heat transfer, development of heat transfer elements and structural design of new type shell side are introduced,and new high-effective heat exchangers abroad are commented. Key words:enhanced heat transfer,heat transfer elements, shell side design,new high-effective heat exchangers 1概述 70年代的世界能源危机,有力地促进了传热强化技术的发展。为了节能降耗,提高工业生产经济效益,要求开发适用于不同工业过程要求的高效能换热设备[1]。这是因为,随着能源的短缺(从长远来看,这是世界的总趋势),可利用热源的温度越来越低,换热允许温差将变得更小,当然,对换热技术的发展和换热器性能的要求也就更高[2]。所以,这些年来,换热器的开发与研究成为人们关注的课题。 最近,随着工艺装置的大型化和高效率化,换热器也趋于大型化,并向低温差设计和低压力损失设计的方向发展。同时,对其一方面要求成本适宜,另一方面要求高精度的设计技术。当今换热器技术的发展以CFD(Computational Fluid Dynamics)、模型化技术、强化传热技术及新型换热器开发等形成了一个高技术体系[3]。 2强化传热技术 所谓提高换热器性能,就是提高其传热性能。狭义的强化传热系指提高流体和传热面之间的传热系数。其主要方法归结为下述两个原理,即使温度边界层减薄和调换传热面附近的流体。前者采用各种间断翅片结构,后者采用泡核沸腾传热[2]。最近还兴起一种EHD技术,即电气流体力学技术,又称为电场强化冷凝

微通道换热器流动和传热特性的研究

微通道换热器流动和传热特性的研究 微通道换热器流动和传热特性的研究 杨海明朱魁章张继宇杨萍 (中国电子科技集团公司第十六研究所,合肥230043) 摘要:通过对微通道换热器流动和传热特性的研究,设计了实验方案并建立了相应的实验装置,结合流动、传热特性的相关准则,得出了雷诺数Re-摩擦系数f,雷诺数Re、普郎特数Pr-努谢尔特数Nu间关系的实验模型,并对该模型进行了分析。 关键词:微通道换热器;流动特性;传热特性;实验模型 1引言 通道式换热器是利用传热学原理将热量从热流体传给冷流体的,冷热流体分别在固体壁面的两侧流过,热流体的热量以对流和传导的方式传给冷流体。由于它结构紧凑、体积小、换热效果好,已广泛应用于红外探测、电子设备、生物医疗等工程领域的冷却中。然而随着现代科技水平的不断发展,被冷却的器件、设备其功能越来越强大,体积和重量越来越小,结构趋于复杂化,散热要求越来越苛刻,迫使采用通道式换热器的制冷器件向小型化、甚至微型化的方向发展,尤其是半导体激光器、T/R收发组件、微电子集成器件等电子仪器、设备对这方面的要求更高,于是微通道换热器(特别是微型节流制冷器MMR)的研制开发已迫切地提到了议事日程上来。 所谓微通道换热器即是采用拉丝或光刻等技术在金属、玻璃等基材上刻出几十至几百微米的细微槽道来构成换热器的壁面,再采用焊接或胶粘等方式形成封闭腔体来进行冷热流体的热交换,达到制冷的目的。国外对微通道换热特性的研究较多,但主要是进行直线微通道换热器特性的研究,早期关于其流动问题的研究是在微型Joule-Thomson制冷技术中完成的,由美国斯坦福大学利特尔(W.A. Little)教授发明,采用现代半导体光刻加工技术, 在微晶玻璃薄片上刻出几微米到几十微米的细微直线槽道,并采用胶粘技术构成气流的微型换热器、节流元件和蒸发器,从而获得了一种结构新颖的微型平面节流制冷技术以及一定的成果和专利。目前已经开发成微型制冷器,用于低温电子器件的冷却,产品照片如图3所示。 2流动、传热特性的相关准则

微通道换热器研究进展_钟毅

第9卷 第5期制冷与空调 2009年10月 REFRIGERA TION AND A IR CONDITIONIN G 124 收稿日期:2009208217 通信作者:钟毅,Email :zy 5125990@https://www.doczj.com/doc/733416379.html, 微通道换热器研究进展 钟毅 尹建成 潘晟旻 (昆明理工大学) 摘 要 从微通道换热器的发展历史出发,介绍其制造方式、结构和材料,重点介绍对微通道换热器发展和降低成本有重要影响的全铝微通道管材成形加工技术。对微通道传热的特征进行述评,从微电子微机械高效传热、CO 2制冷减少温室气体排放和提高家用空调能效比几个方面展现微通道换热器的应用前景。关键词 微通道;换热器;传热特性;压力降;空调;制冷 R esearch development of microchannel heat exchanger Zhong Y i Y in Jiancheng Pan Shengmin (Kunming U niversity of Science and Technology ) ABSTRACT Based on t he historical develop ment of microchannel heat exchangers ,int ro 2duces it s manufact uring met hods ,st ruct ures and materials.Focuses on t he microchannel t ube forming aluminum processing technology.The technology for t he develop ment of mi 2crochannel heat exchanger ,reducing manufact uring cost s ,is very meaningf ul.Reviewes t he characteristics of microchannel heat t ransfer.Unfolds t he application p rospect of t his technology in microelect ronics or micromechanical high 2efficiency heat t ransfer ,CO 2ref rig 2erant to reduce greenhouse gas emissions and imp rove energy efficiency home air 2condi 2tioning. KE Y WOR DS microchannel ;heat exchanger ;heat t ransfer characteristics ;p ressure drop ;air 2conditioning ;refrigeration 换热器工质通过的水力学直径从管片式的< 10~50mm ,板式的<3~10mm ,不断发展到小通道的<0.6~2mm ,微通道的<10~600μm ,这既是现代微电子机械快速发展对传热的现实需求,也是微通道具有的优良传热特性使然。微通道技术同时触发了传统工业制冷、汽车空调、家用空调等领域提高效率、降低排放的技术革新。 1 微通道换热器的发展历程 微通道换热器(见图1[122])的工程背景来源于上个世纪80年代高密度电子器件的冷却和90年代出现的微电子机械系统的传热问题。1981年, Tuckerman 和Pease 提出了微通道散热器的概念;1985年,Swife ,Migliori 和Wheatley 研制出了用 于两流体热交换的微通道换热器。随着微制造技 术的发展,人们已经能够制造水力学直径<10~ 1000μm 通道所构成的微尺寸换热器。1986年, Cro ss 和Ramshaw 研制了印刷电路微尺寸换热 器,体积换热系数达到7MW/(m 3?K );1994年, Friedrich 和Kang 研制的微尺度换热器体积换热 系数达45MW/(m 3?K );2001年,Jiang 等提出了微热管冷却系统的概念,该微冷却系统实际上是一个微散热系统,由电子动力泵、微冷凝器、微 热管组成。如果用微压缩冷凝系统替代微冷凝器,可实现主动冷却,支持高密度热量电子器件的高速运行[3]。 在汽车空调方面,由于传统的氟利昂系列制冷剂对臭氧层具有较强的破坏作用,已被《蒙特利尔议定书》禁止。R 134a 作为一种过渡型替代品,

换热器的发展现状及前景

换热器的研究发展现状及前景 摘要:随着现代工业的迅速发展,以能源为中心的环境、生态等问题日益加剧。世界各国在寻找新能源的同时,也更加注重了节能新途径的研发。强化传热技术的应用不但能节约能源、保护环境,而且能大大节约投资成本。换热器由于其在化工、石油、动力和原子能等工业部门的广泛应用,使得换热器的强化传热技术一直以来受到研究人员的重视,各种研究成果不断涌现。随着经济的发展,各种不同结构和种类的换热器发展很快,新结构、新材料的换热器不断涌现。换热器又称热交换器,是一种将热流体的部分热量传递给冷流体的设备,也是实现化工生产过程中热量交换和传递不可缺少的设备。换热器既可是一种单独的设备,如加热器、冷却器和凝汽器等;也可是某一工艺设备的组成部分,如石化、煤炭工业中的余热回收装置等。本文主要介绍了现有换热器的分类,各种换热器的特点工作原理及应用情况,对目前换热器的存在问题和发展趋势进行分析。 关键词:换热器;强化换热;研究现状 随着现代工业的迅速发展,以能源为中心的环境、生态等问题日益加剧。世界各国在寻找新能源的同时也更加注重了节能新途径的研发。强化传热技术的应用不但能节约能源、保护环境,而且能大大节约投资成本。换热器由于其在化工、石油、动力和原子能等工业部门的广泛应用,使得换热器的强化传热技术一直以来受到研究人员的重视,各种研究成果不断涌现 1换热器的分类方式 随着科学和生产技术的发展,各种换热器层出不穷,难以对其进行具体、统一的划分。虽然如此,所有的换热器仍可按照它们的一些共同特征来加以区分,具体如下。 按照用途来分:预热器(或加热器)、冷却器、冷凝器、蒸发器等。 按照制造热交换器的材料来分:金属的、陶瓷的、塑料的、石墨的、玻璃的等。 按照温度状况来分:温度工况稳定的热交换器,热流大小以及在指定热交换区域内的温度不随时间而变;温度工况不稳定的热交换器,传热面上的热流和温度都随时间改变。 按照热流体与冷流体的流动方向来分:顺流式、逆流式、错流式、混流式。

微通道换热器在家用空调中的应用情况

微通道换热器在家用空调中的应用情况 张会勇李俊明王补宣 清华大学 摘要:基于对国内外微通道换热器特别是微通道百叶窗式换热器应用于家用空调系统的最新研究成果的分析,探讨了微通道换热器用于家用空调系统的优点及有待解决的问题,指出了进一步研究的方向。 关键词:微通道换热器空调器百叶窗肋片扁管应用 0引言 上世纪80年代以来,微通道内的传热及微通道换热器的研究进展很快。采用微通道不仅可以强化管内传热,使换热器紧凑、高效,而且还可以提高管道的耐压能力。目前,微通道换热器已在部分汽车空调器中应用,其在家用空调器中的应用也呈现出明显的增长趋势。家用空调器中,单冷空调器的冷凝器采用微通道换热器的技术业已成熟,但微通道蒸发器由于涉及到气液两相的均匀分流及热泵工况下融霜水的排除等技术还不是很成熟,国内外一些高等学校及有影响力的企业正在展开研究。微通道换热器应用于家用空调器可采用多种结构形式。换热管一般采用有多个微通道的带状铝管,而肋片形式有多种:片状肋、开缝肋、错列肋和百叶窗肋等。目前受到最多关注的是百叶窗式微通道换热器,其结构示意图见图1。 采用微通道换热器的技术优势在于:通道直径减小,管内换热增强,耐压能力提高;空气侧流动阻力可大大降低,减小了风扇功率,换热面积相同时传热性能与目前广泛采用的肋片管式结构相比有所增强[1];采用全铝结构,抗腐蚀能力得到提高[1];肋片安装在铝带管之间,由于铝带管的宽度稍大于肋片宽度,肋片不易遭受破坏而变形[2];采用整体焊接技术,接触热阻可忽略不计,现

有肋片管式换热器通常采用胀管工艺,接触热阻会随着时间的推移不断增大,甚至导致肋片与管道发生脱离,大大降低系统的性能;流道体积减小,制冷剂充注量可明显减少,有利于环境保护;换热器紧凑、高效,材料成本更低[2];内部的多路通道使总流动长度减小,避免了单管多程的模式,可以减小管内制冷剂两相流动的压降[3]。Kim等人的研究表明,维持换热能力不变的条件下,微通道换热器体积和质量分别减少55%和35%,单位体积传热能力要比传统的肋片管式换热器高14%~33%[4]。总之,微通道换热器总体性能明显优于传统的肋片管式换热器。 采用微通道换热器改进空调器性能目前尚存在许多技术难点:影响换热器性能的因素较多,包括流动深度Fd(即肋片的宽度)、肋高(Fh)、肋间距(Fp)、窗角(La)、窗间距(Lp)、风速(va)、平均流动角(Fa)等,尚无通用性好的对流换热和流动阻力计算方法;结霜后融霜水不能完全排除,对传热性能有所影响,相关的研究还很不足。 由上述可见,空调器采用微通道换热器的技术优势明显,但也存在一些有待深化研究的技术难点。本文主要介绍百叶窗式(条缝形)肋片微通道换热器的研究现状,为进一步的改进研发工作提供参考。 1百叶窗肋片微通道换热器空气侧的流动特点空气侧的热力性能与空气的流动特点密切相关,因此有必要研究百叶窗式微通道换热器内空气的流动特点。空气的流动受较多因素影响,最重要的影响因素是雷诺数Re、窗角La、肋窗间距比Fp/Lp等,另外,结露、霜也对空气的流动有一定的影响。 边界层在每个条缝形窗的条缝边缘都会重新发展以致不会太厚,有利于换热。当空气流速较高时,每个窗后会出现漩涡,对相邻条缝的边界层产生扰动,对换热有利,但会导致流动阻力增大。空气流动可分为两类,一类是通过肋片间的主通道流动,可称为主流(duct-directed),另一类是沿 条缝间隙的流动,可称为窗流(louver-directed),其中窗流所占的比例可用流动效率Fe来表示,当全部流动为窗流时,其数值为1。当然,流动效率越高,窗流所占比例越大[5]。 Re是影响空气流动的一个主要因素。随着Re的增大,窗流所占比例不断增加,换热增强。R 较小时,边界层可能在相邻条缝间发展,导致边界层迅速增厚,阻塞流道[6]。研究发现,一般上边界层要比下边界层厚,这种差别将随Re增大而减小[7]。 为了反映窗流在全部流动中所占的比例,定义了平均流动角Fa,它是参考窗角提出的一个等效概念。随着Re的增大,流动效率提高,平均流动角Fa增大,逐渐趋近于一个小于窗角La的固定值[8]。影响平均流动角Fa的因素有窗角La、肋窗间距比Fp/Lp等,肋窗间距比的影响较大, 而窗角的影响较小[9]。Achaichia等人给出了一个可用于计算平均流动角Fa的公式[8,10]: 式中ReLp为特征长度Lp下的雷诺数。随着Re的增大,流动会出现波动现象,且从下游向上游延伸,临界雷诺数Re*为900左右[11]。这种波动对换热有利,而对压降影响不大[12]。窗角的增大可使流动不稳定现象提前出现,肋间距对不稳定的影响较小;随着窗角和肋片厚度的增加,这种不稳定会更快地向上游传播[13]。换热系数随流动深度Fd的增大而减小,肋间距对换热

相关主题
文本预览
相关文档 最新文档