当前位置:文档之家› 2006年高考第一轮复习数学:9.6 空间向量及其运算(B)

2006年高考第一轮复习数学:9.6 空间向量及其运算(B)

2006年高考第一轮复习数学:9.6  空间向量及其运算(B)
2006年高考第一轮复习数学:9.6  空间向量及其运算(B)

9.6 空间向量及其运算(B )

●知识梳理

空间两个向量的加法、减法法则类同于平面向量,即平行四边形法则及三角形法则. a ·b =|a ||b |cos 〈a ,b 〉. a 2=|a |2.

a 与

b 不共线,那么向量p 与a 、b 共面的充要条件是存在实数x 、y ,使p =x a +y b . a 、b 、

c 不共面,空间的任一向量p ,存在实数x 、y 、z ,使p =x a +y b +z c . ●点击双基

1.在以下四个式子中正确的有 a+b ·c ,a ·(b ·c ),a (b ·c ),|a ·b|=|a||b| A.1个 B.2个 C.3个 D.0个

解析:根据数量积的定义,b ·c 是一个实数,a +b ·c 无意义.实数与向量无数量积,故a ·(b ·c )错,|a ·b |=|a ||b ||cos 〈a ,b 〉|,只有a (b ·c )正确.

答案:A

2.设向量a 、b 、c 不共面,则下列集合可作为空间的一个基底的是 A.{a +b ,b -a ,a } B.{a +b ,b -a ,b } C.{a +b ,b -a ,c } D.{a +b +c ,a +b ,c }

解析:由已知及向量共面定理,易得a +b ,b -a ,c 不共面,故可作为空间的一个基底,故选C.

答案:C

3.在平行六面体ABCD —A ′B ′C ′D ′中,向量B A '、D A '、是 A.有相同起点的向量

B.等长的向量

C.共面向量

D.不共面向量

解析:∵D A -B A =D B '=BD , ∴B A 、D A 、BD 共面.

答案:C

4.已知a =(1,0),b =(m ,m )(m >0),则〈a ,b 〉=_____________. 答案:45°

5.已知四边形ABCD 中,AB =a -2c ,CD =5a +6b -8c ,对角线AC 、BD 的中点分别为E 、F ,则=_____________.

解析:∵=++, 又=++,

两式相加,得2=(+EC )+(+CD )+(+).

∵E 是AC 的中点,

故EA +EC =0.同理,BF +DF =0.

∴2EF = AB +CD =(a -2c )+(5a +6b -8c )=6a +6b -10c .∴EF =3a +3b -5c . 答案:3a +3b -5c ●典例剖析

【例1】 证明空间任意无三点共线的四点A 、B 、C 、D 共面的充分必要条件是:对于空间任一点O ,存在实数x 、y 、z 且x +y +z =1,使得OA =x OB +y OC +z OD .

剖析:要寻求四点A 、B 、C 、D 共面的充要条件,自然想到共面向量定理.

解:依题意知,B 、C 、D 三点不共线,则由共面向量定理的推论知:四点A 、B 、C 、D 共面 对空间任一点O ,存在实数x 1、y 1,使得OA =OB +x 1BC +y 1BD =OB +x 1(OC -

OB )+y 1(OD -OB )=(1-x 1-y 1)OB +x 1OC +y 1OD ,取x =1-x 1-y 1、y =x 1、z =y 1,

则有OA =x OB +y OC +z OD ,且x +y +z =1.

特别提示

向量基本定理揭示了向量间的线性关系,即任一向量都可由基向量唯一的线性表示,为向量的坐标表示奠定了基础.共(线)面向量基本定理给出了向量共(线)面的充要条件,可用以证明点共(线)面.本题的结论,可作为证明空间四点共面的定理使用.

【例2】 在平行四边形ABCD 中,AB =AC =1,∠ACD =90°,将它沿对角线AC 折起,使AB 与CD 成60°角,求B 、D 间的距离.

解:如下图,因为∠ACD =90°,

A

A

C

B

D

D

(1)(2)

所以· =0.同理,·=0. 因为AB 与CD 成60°角,

所以〈,〉=60°或120°.因为=++,

所以2=2+2+2+2·+2·+2·=2+2+

2+2·=3+2×1×1×cos 〈,〉=

4 (〈BA ,〉=60°), 2 (〈BA ,〉=120°).

所以||=2或2,

即B 、D 间的距离为2或2.

【例3】 在棱长为1的正方体ABCD —A 1B 1C 1D 1中,BD 1交平面ACB 1于点E ,

A A

D D

B B

C C

1

1

1

1

E

M

求证:(1)BD 1⊥平面ACB 1; (2)BE =

2

1

ED 1. 证明:(1)我们先证明BD 1⊥AC .

∵1BD = BC + CD +1DD ,AC = AB +BC ,

∴1BD ·AC =(BC +CD +1DD )·(AB +BC )=BC ·BC + CD ·AB =BC ·BC -AB ·AB =|BC |2-|AB |2=1-1=0.

∴BD 1⊥AC .同理可证BD 1⊥AB 1,于是BD 1⊥平面ACB 1. (2)设底面正方形的对角线AC 、BD 交于点M ,则BM =

21BD = 2

1

11D B ,即2BM =11D B .对于空间任意一点O ,设OB =b ,OM =m ,1OB =b 1,1OD =d 1,则上述等式

可改写成2(m -b )=d 1-b 1或b 1+2m =d 1+2b .记

2121++m b =2

121++b

d =

e .此即表明,由e 向量所

对应的点E 分线段B 1M 及D 1B 各成λ(λ=2)之比,所以点E 既在线段B 1M (B 1M ?面ACB 1)

上又在线段D 1B 上,所以点E 是D 1B 与平面ACB 1之交点,此交点E 将D 1B 分成2与1之比,即D 1E ∶EB =2∶1.∴BE =

2

1

ED 1. 思考讨论

利用空间向量可以解决立体几何中的线线垂直、线线平行、四点共面、求长度、求夹角等问题.

●闯关训练 夯实基础

1.平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 和BD 的交点,若11B A =a ,11D A =b ,A 1 =

c ,则下列式子中与B 1相等的是

A A

B B

C C

D

1

1M

A.-

21a + 21

b +c

B.

21a + 21b +c C. 21a - 2

1

b +c

D.- 21a - 2

1

b +c

解析:M B 1=B B 1 + BM =B B 1+ 21(BA +BC )=A A 1- 2111B A + 2

1

11D A =c -

21a + 2

1

b ,故选A. 答案:A

2.O 、A 、B 、C 为空间四个点,又OA 、OB 、OC 为空间的一个基底,则 A.O 、A 、B 、C 四点不共线

B.O 、A 、B 、C 四点共面,但不共线

C.O 、A 、B 、C 四点中任意三点不共线

D.O 、A 、B 、C 四点不共面

解析:由基底意义,、、三个向量不共面,但A 、B 、C 三种情形都有可能使、、共面.只有D 才能使这三个向量不共面,故应选D.

答案:D

3.已知a +3b 与7a -5b 垂直,且a -4b 与7a -2b 垂直,则〈a ,b 〉=_____________. 解析:由条件知(a +3b )·(7a -5b )=7|a |2-15|b |2+16a ·b =0,及(a -4b )·(7a -2b )=

7|a |2+8|b |2-30a ·b =0.两式相减得46a ·b =23|b |2,∴a ·b =

2

1|b |2

.代入上面两个式子中的任意一个,即可得到|a |=|b |.∴cos 〈a ,b 〉=||||b a b a ?=22||21||

b b =2

1

.

∴〈a ,b 〉=60°.

答案:60°

4.试用向量证明三垂线定理及其逆定理.

已知:如下图,PO 、P A 分别是平面α的垂线和斜线,OA 是P A 在α内的射影,a α,

求证:a ⊥P A ?a ⊥OA

.

证明:设直线a 上非零向量a ,要证a ⊥P A ?a ⊥OA ,即证a ·AP =0?a · =0. ∵a

α,a · =0,∴a ·=a ·(+)=a ·+a ·=a ·.

∴a ·=0?a ·=0,即a ⊥P A ?a ⊥OA .

评述:向量的数量积为零是证明空间直线垂直的重要工具.在应用过程中,常需要通过

加、减法对向量进行转换,当然,转换的方向是有利于计算向量的数量积.

5.直三棱柱ABC —A 1B 1C 1中,BC 1⊥AB 1,BC 1⊥A 1C ,求证:AB 1=A 1C

.

A 1

证明:∵A 1=)()(,,11111111111CC C C A BC A CC BC C C A +?+=?++=11C A ·

,021=-C C

∴AB =AC .又A 1A =B 1B ,∴A 1C =AB 1.

评述:本题在利用空间向量来解决位置关系问题时,要用到空间多边形法则、向量的运算、数量积以及平行、相等和垂直的条件.

培养能力

6.沿着正四面体OABC 的三条棱、、的方向有大小等于1、2、3的三个力f 1、f 2、f 3.试求此三个力的合力f 的大小以及此合力与三条棱所夹角的余弦.

A

解:用a 、b 、c 分别代表棱、、上的三个单位向量,则f 1=a ,f 2=2b ,f 3=3c ,则f =f 1+f 2+f 3=a +2b +3c ,

∴|f |2=(a +2b +3c )·(a +2b +3c )=|a |2+4|b |2+9|c |2+4a ·b +6a ·c +12b ·c =1+4+9+4|a ||b |cos 〈a ,b 〉

+6|a ||c |cos 〈a ,c 〉+12|b ||c |cos 〈b ,c 〉=14+4cos60°+6cos60°+12cos60°=14+2+3+6=25.

∴|f |=5,即所求合力的大小为5,

且cos 〈f ,a 〉=|a ||f |a f ?=5

32|2c

a b a a ?+?+|=

523

11+

+=10

7. 同理,可得cos 〈f ,b 〉=

54,cos 〈f ,c 〉=10

9

. 7.在空间四边形ABCD 中,求证:·+· +·BC =0.

证法一:把拆成+后重组,·+·+·=( + CB )

·CD +AC ·+·=AC ·CD +CB ·CD +AC ·+·=AC ·(CD +DB )+CB ·(CD +DA )=AC ·CB +CB ·CA = CB ·(AC +CA )=CB ·0=0.

证法二:如下图,设a =DA ,b = DB ,c =,则AB ·+·DB +AD ·BC =(b -a )·(-c )+(c -a )·b +(-a )·(c -b )=-b ·c +a ·c +c ·b -a ·b -a ·c +a ·b =0.

D

评述:把平面向量的运算推广到空间后,许多基本的运算规则没有变.证法一中体现了向量的拆分重组技巧,要求较高;证法二设定三个向量为基底,而原式中所有向量化归为关于a 、b 、c 的式子,化简时的思路方向较清楚.

探究创新

8.(2004年全国Ⅰ,理20)如下图,已知四棱锥P —ABCD ,PB ⊥AD ,侧面P AD 为边长等于2的正三角形,底面ABCD 为菱形,侧面P AD 与底面ABCD 所成的二面角为120°

.

(1)求点P 到平面ABCD 的距离;

(2)求面APB 与面CPB 所成二面角的大小.

(1)解:如下图,作PO ⊥平面ABCD ,垂足为点O .连结OB 、OA 、OD ,OB 与AD 交于点E ,连结PE .

∵AD ⊥PB ,∴AD ⊥OB .∵P A =PD ,∴OA =OD .

于是OB 平分AD ,点E 为AD 的中点,∴PE ⊥AD .由此知∠PEB 为面P AD 与面ABCD 所成二面角的平面角,∴∠PEB =120°,∠PEO =60°.由已知可求得PE =3,∴PO =PE ·sin60°=

23=23,即点P 到平面ABCD 的距离为2

3. (2)解法一:如下图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA .

P (0,0,

23),B (0,233,0),PB 中点G 的坐标为(0,433,4

3

),连结AG .

又知A (1,23,0),C (-2,2

3

3,0).

由此得到 =(1,-43,-4

3

),

PB =(0,233,-2

3

),=(-2,0,0).

于是有·=0,BC ·=0,

∴⊥,⊥. ,的夹角θ等于所求二面角的平面角. 于是cos θ=-

7

7

2, ∴所求二面角的大小为π-arccos 7

7

2. 解法二:如下图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG

∥ BC ,FG =

2

1BC

.

∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB .∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB ,∴AD ⊥EG .

又∵PE =BE ,∴EG ⊥PB ,且∠PEG =60°. 在Rt △PEG 中,EG =PE ·cos60°=2

3, 在Rt △GAE 中,AE =

21AD =1,于是tan ∠GAE =AE

EG

= 23.

又∠AGF =π-∠GAE , ∴所求二面角的大小为π-arctan

2

3

. ●思悟小结

1.若表示向量a 1,a 2,…,a n 的有向线段终点和始点连结起来构成一个封闭折图形,则a 1+a 2+a 3+…+a n =0.

2.应用向量知识解决几何问题时,一方面要选择恰当的基向量,另一方面要熟练地进行

向量运算.

●教师下载中心 教学点睛

1.要使学生正确理解空间向量的加法法则、减法法则以及空间向量的数量积,掌握空间向量平行、垂直的条件及三个向量共面及四点共面的条件.

2.空间中的任何一个向量都可以用不共面的三个向量线性表示,这三个向量也称为一个基底.在证明两个向量平行、垂直或求其夹角时,往往把它们用同一个基底来表示,从而实现解题的目的.

拓展题例

【例1】 下列命题中不正确的命题个数是

①若A 、B 、C 、D 是空间任意四点,则有++ +=0 ②|a |-|b |=|a +b |是a 、b 共线的充要条件 ③若a 、b 共线,则a 与b 所在直线平行 ④对空间任意点O 与不共线的三点A 、B 、C ,若=x +y +z (其中x 、y 、z ∈R ),则P 、A 、B 、C 四点共面

A.1

B.2

C.3

D.4

解析:易知只有①是正确的,对于④,若O 平面ABC ,则、、不共面,由空间向量基本定理知,P 可为空间任一点,所以P 、A 、B 、C 四点不一定共面.

答案:C 【例2】 A 是△BCD 所在平面外一点,M 、N 分别是△ABC 和△ACD 的重心,若BD =4,试求MN 的长

.

B

D

解:连结AM 并延长与BC 相交于E ,连结AN 并延长与CD 相交于E ,则E 、F 分别是BC 及CD 的中点.

现在=- =32 -32 = 32(-)=32= 3

2

(-)=

32(21CD - 21CB )=31(CD -CB )=3

1

BD . ∴=||= 31||= 31BD =3

4

.

说明:本题的关键是利用重心这一特殊位置逐步进行转化.

【例3】 设A 、B 、C 及A 1、B 1、C 1分别是异面直线l 1、l 2上的三点,而M 、N 、P 、Q 分别是线段AA 1、BA 1、BB 1、CC 1的中点.求证:M 、N 、P 、Q 四点共面.

证明: =

21, = 2

1

11B A , ∴BA =2NM ,11B A =2NP .

又∵ = 2

1

(+11C B ),

(*)

A 、

B 、

C 及A 1、B 1、C 1分别共线,

∴=λ=2,11C B =ω11B A =2ω. 代入(*)式得PQ =

2

1

(2λ+2ω)=λ+ω,∴PQ 、、共面. ∴M 、N 、P 、Q 四点共面.

空间向量及其运算

§8.5 空间向量及其运算 1. 空间向量的概念 (1)定义:空间中既有大小又有方向的量叫作空间向量. (2)向量的夹角:过空间任意一点O 作向量a ,b 的相等向量OA →和OB → ,则∠AOB 叫作向量a ,b 的夹角,记作〈a ,b 〉,0≤〈a ,b 〉≤π. 2. 共线向量定理和空间向量基本定理 (1)共线向量定理 对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb . (2)空间向量基本定理 如果向量e 1,e 2,e 3是空间三个不共面的向量,a 是空间任一向量,那么存在唯一一组实数λ1,λ2,λ3使得a =λ1e 1+λ2e 2+λ3e 3,其中e 1,e 2,e 3叫作空间的一个基底. 3. 空间向量的数量积及运算律 (1)定义 空间两个向量a 和b 的数量积是一个数,等于|a ||b |cos 〈a ,b 〉,记作a ·b . (2)空间向量数量积的运算律 ①结合律:(λa )·b =λ(a·b ); ②交换律:a·b =b·a ; ③分配律:a·(b +c )=a·b +a·c . 4. 空间向量的坐标表示及应用 (1)数量积的坐标运算 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a·b =a 1b 1+a 2b 2+a 3b 3. (2)共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a ∥b ?a =λb ?a 1=λb 1,a 2=λb 2,a 3=λb 3 (λ∈R ), a ⊥b ?a·b =0?a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). (3)模、夹角公式 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则|a |=a·a =a 21+a 22+a 23,

空间向量及其运算详细教案

空间向量及其运算 3.1.1 空间向量及其加减运算 教学目标: (1)通过本章的学习,使学生理解空间向量的有关概念。 (2)掌握空间向量的加减运算法则、运算律,并通过空间几何体加深对运算的理解。 能力目标: (1)培养学生的类比思想、转化思想,数形结合思想,培养探究、研讨、综合自学应用能力。 (2)培养学生空间想象能力,能借助图形理解空间向量加减运算及其运算律的意义。(3)培养学生空间向量的应用意识 教学重点: (1)空间向量的有关概念 (2)空间向量的加减运算及其运算律、几何意义。 (3)空间向量的加减运算在空间几何体中的应用 教学难点: (1)空间想象能力的培养,思想方法的理解和应用。 (2)空间向量的加减运算及其几何的应用和理解。 考点:空间向量的加减运算及其几何意义,空间想象能力,向量的应用思想。 易错点:空间向量的加减运算及其几何意义在空间几何体中的应用 教学用具:多媒体 教学方法:研讨、探究、启发引导。 教学指导思想:体现新课改精神,体现新教材的教学理念,体现学生探究、主动学习的思维习惯。 教学过程: (老师):同学们好!首先请教同学们一个问题:物理学中,力、速度和位移是什么量?怎样确定? (学生):矢量,由大小和方向确定 (学生讨论研究)(课件)引入:(我们看这样一个问题)有一块质地均匀的正三角形面的钢板,重500千克,顶点处用与对边成60度角,大小200千克的三个力去拉三角形钢板,问钢板在这些力的作用下将如何运动?这三个力至少多大时,才能提起这块钢板? (老师):我们研究的问题是三个力的问题,力在数学中可以看成是什么? (学生)向量 (老师):这三个向量和以前我们学过的向量有什么不同? (学生)这是三个向量不共面 (老师):不共面的向量问题能直接用平面向量来解决么? (学生):不能,得用空间向量 (老师):是的,解决这类问题需要空间向量的知识这节课我们就来学习空间向量板书:空间向量及其运算 (老师):实际上空间向量我们随处可见,同学们能不能举出一些例子? (学生)举例 (老师):然后再演示(课件)几种常见的空间向量身影。(常见的高压电线及支架所在向量,长方体中的三个不共线的边上的向量,平行六面体中的不共线向量) (老师):接下来我们我们就来研究空间向量的知识、概念和特点,空间向量与平面向量既有联系又有区别,我们将通过类比的方法来研究空间向量,首先我们复习回顾一下平面向量

高中数学:空间向量

空间向量 一、向量的基本概念与运算 1.定义:在空间内,把具有大小和方向的量叫空间向量,可用有向线段来表示.用同向且 等长的有向线段表示同一向量或相等的向量. 2.零向量:起点与终点重合的向量叫做零向量,记为0或0. 3.书写:在手写向量时,在字母上方加上箭头,如a ,AB . 4.模:表示向量a 的有向线段的长度叫做向量的长度或模,记作||a 5.方向:有向线段的方向表示向量的方向. 6.基线:有向线段所在的直线叫做向量的基线. 7.平行向量:如果空间中一些向量的基线互相平行或重合,则这些向量叫做共线向量或平 行向量.a 平行于b 记为a b ∥. 8.向量运算:与平面向量类似; 二、空间向量的基本定理 1.共线向量定理:对空间两个向量a ,b (0b ≠),a b ∥的充要条件是存在实数x ,使a xb =. 2.共面向量:通常我们把平行于同一平面的向量,叫做共面向量. 3.共面向量定理:如果两个向量a ,b 不共线,则向量c 与向量a ,b 共面的充要条件是, 存在唯一的一对实数x ,y ,使c xa yb =+. 4.空间向量分解定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在一 个唯一的有序实数组x ,y ,z ,使p xa yb zc =++.表达式xa yb zc ++,叫做向量a ,b ,c 的线性表示式或线性组合.

注:上述定理中,a ,b ,c 叫做空间的一个基底,记作{}a b c , ,,其中a b c ,,都叫做基向量. 由此定理知,空间任意三个不共面的向量都可以构成空间的一个基底. 三、向量的数量积 1.两个向量的夹角 已知两个非零向量a b ,,在空间任取一点O ,作OA a =,OB b =,则AOB ∠叫做向量a 与b 的夹角,记作a b ??, .通常规定0πa b ??≤,≤.在这个规定下,两个向量的夹角就被唯一确定了,并且a b b a ??=??, ,.如果90a b ??=,°,则称a 与b 互相垂直,记作a b ⊥. 2.两个向量的数量积 已知空间两个向量a ,b ,定义它们的数量积(或内积)为:||||cos a b a b a b ?=??, 空间两个向量的数量积具有如下性质: 1)||cos a e a a e ?=??,;(2)0a b a b ??=; (3)2||a a a =?;(4)a b a b ?||≤||||. 空间两个向量的数量积满足如下运算律: 1)()()a b a b λλ?=?;(2)a b b a ?=?;(3)()a b c a c b c +?=?+?. 四、空间向量的直角坐标运算 前提:建立空间直角坐标系Oxyz ,分别沿x 轴,y 轴,z 轴的正方向引单位向量i j k ,,,这三个互相垂直的单位向量构成空间向量的一个基底{}i j k ,,,这个基底叫做单位正交基底. 空间直角坐标系Oxyz ,也常说成空间直角坐标系[]O i j k ;, ,. 1.坐标 在空间直角坐标系中,已知任一向量a ,根据空间向量分解定理,存在唯一数组123()a a a ,,,使123a a i a j a k =++,1a i ,2a j ,3a k 分别叫做向量a 在i j k ,, 方向上的分量,有序实数组123()a a a ,,叫做向量a 在此直角坐标系中的坐标.上式可以简记作123()a a a a =,,. 若123()a a a a =, ,,123()b b b b =,,, 则:112233()a b a b a b a b +=+++, ,;112233()a b a b a b a b -=---,,;

空间向量及其运算练习题

空间向量及其运算 基础知识梳理 1.空间向量的有关概念 (1)空间向量:在空间中,具有________和________的量叫做空间向量. (2)相等向量:方向________且模________的向量. (3)共线向量:表示空间向量的有向线段所在的直线互相______________的向量. (4)共面向量:________________________________的向量. 2.共线向量、共面向量定理和空间向量基本定理 (1)共线向量定理 对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是________________________. 推论 如图所示,点P 在l 上的充要条件是: OP →=OA →+t a ①其中a 叫直线l 的方向向量,t ∈R ,在l 上取AB →=a , 则①可化为OP →=________或OP →=(1-t )OA →+tOB →. (2)共面向量定理的向量表达式:p =____________,其中x ,y ∈R ,a , b 为不共线向量,推论的表达式为MP →=xMA →+yMB →或对空间任意一点 O ,有OP →=____________或OP →=xOM →+yOA →+zOB →,其中x +y +z = ______. (3)空间向量基本定理 如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =____________,把{a ,b ,c }叫做空间的一个基底. 3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角 已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向 量a 与b 的夹角,记作____________,其范围是____________,若〈a ,b 〉=π2 ,则称a 与b __________,记作a ⊥b . ②两向量的数量积 已知空间两个非零向量a ,b ,则____________叫做向量a ,b 的数量积,记作__________,即__________________. (2)空间向量数量积的运算律 ①结合律:(λa )·b =____________;②交换律:a·b =__________; ③分配律:a·(b +c )=__________. 4.空间向量的坐标表示及应用 (1)数量积的坐标运算 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a·b =________________. (2)共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a ∥b ?______________?____________,____________,______________, a ⊥b ?__________?________________________(a ,b 均为非零向量). (3)模、夹角和距离公式 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则|a |=a·a =__________________,

空间向量知识点与题型归纳总结

空间向量知识点与题型归纳总结 知识点精讲 一、空间向量及其加减运算 1.空间向量 在空间,我们把具有大小和方向的量叫做空间向量,向量的大小叫做向量的长度或模.空间向量也可 用有向线段表示,有向线段的长度表示向量的模,若向量a r 的起点是A ,终点是B ,则向量a r 也可以记作 AB u u u r ,其模记为a r 或AB u u u r . 2.零向量与单位向量 规定长度为0的向量叫做零向量,记作0r .当有向线段的起点A 与终点B 重合时,0AB =u u u r r . 模为1的向量称为单位向量. 3.相等向量与相反向量 方向相同且模相等的向量称为相等向量.在空间,同向且等长的有向线段表示同一向量或相等向量.空间任意两个向量都可以平移到同一个平面,成为同一平面内的两个向量. 与向量a r 长度相等而方向相反的向量,称为a r 的相反向量,记为a -r . 4.空间向量的加法和减法运算 (1)OC OA OB a b =+=+u u u r u u u r u u u r r r ,BA OA OB a b =-=-u u u r u u u r u u u r r r .如图8-152所示. (2)空间向量的加法运算满足交换律及结合律 a b b a +=+r r r r ,()() a b c a b c ++=++r r r r r r 二、空间向量的数乘运算 1.数乘运算 实数λ与空间向量a r 的乘积a λr 称为向量的数乘运算.当0λ>时,a λr 与向量a r 方向相同;当0λ<时,向量a λr 与向量a r 方向相反. a λr 的长度是a r 的长度的λ倍. 2.空间向量的数乘运算满足分配律及结合律 () a b a b λλλ+=+r r r r ,() ()a a λμλμ=r r . 3.共线向量与平行向量 如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量,a r 平行于b r ,记作//a b r r . 4.共线向量定理

空间向量及其运算练习题

空间向量及其运算练习题 一、选择题 1、在空间直角坐标系中,已知点P (x ,y ,z ),下列叙述中正确的个数是 ①点P 关于x 轴对称点的坐标是P 1(x ,-y ,z ) ②点P 关于yOz 平面对称点的坐标是P 2(x ,-y ,-z ) ③点P 关于y 轴对称点的坐标是P 3(x ,-y ,z ) ④点P 关于原点对称的点的坐标是P 4(-x ,-y ,-z ) A.0 B.1 C.2 D.3 2、点(2,3,4)关于xoz 平面的对称点为( ) A 、(2,3,-4) B 、(-2,3,4) C 、(2,-3,4) D 、(-2,-3,4) 3、在空间直角坐标系中,设z 为任意实数,相应的点(3,1,)P z 的集合确定的图形为 ( )A .点 B .直线 C .圆 D .平面 4、在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若B A 1=a ,11D A =b , A A 1=c .则下列向量中与M B 1相等的向量是( ) A .c b a ++- 21 21 B . c b a ++21 21 C .c b a +-2 1 21 D .c b a +--2 1 21 5、在下列条件中,使M 与A 、B 、C 一定共面的是 ( ) A .OC O B OA OM --=2 B .O C OB OA OM 2 1 3151++= C .=++MC MB MA 0 D .=+++OC OB OA OM 0 5、已知平行六面体''' ' ABCD A B C D -中,AB=4,AD=3,' 5AA =,0 90BAD ∠=, ''060BAA DAA ∠=∠=,则'AC 等于 ( ) A .85 B .85 C .52 D .50 图

高三数学空间向量一轮复习

第十三章空间向量 1.理解空间向量的概念;掌握空间向量的加法、减法和数乘. 2.了解空间向量的基本定理;理解空间向量坐标的概念;掌握空间向量的坐标运算. 3.掌握空间向量的数量积的定义及其性质;掌握用直角坐标计算空间向量数量积的公式;掌握空间两点间的距离公式. 理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;掌握空间向量的数量积的坐标形式;能用向量的数量积判断向量的共线与垂直 第1课时 空间向量及其运算 空间向量是平面向量的推广.在空间,任意两个向量都可以通过平移转化为平面向量.因此,空间向量的加减、数乘向量运算也是平面向量对应运算的推广. 本节知识点是: 1.空间向量的概念,空间向量的加法、减法、数乘运算和数量积; (1) 向量:具有和的量. (2) 向量相等:方向且长度. (3) 向量加法法则:. (4) 向量减法法则:. (5) 数乘向量法则:. 2.线性运算律 (1) 加法交换律:a +b =. (2) 加法结合律:(a +b )+c =. (3) 数乘分配律:λ(a +b )=. 3.共线向量 (1)共线向量:表示空间向量的有向线段所在的直线互相或. (2) 共线向量定理:对空间任意两个向量a 、b (b ≠0),a ∥b 等价于存在实数λ,使. 基础过关 知识网络 考纲导读 高考导航 空间向量 定义、加法、减法、数乘运算 数量积 坐标表示:夹角和距离公式 求距离 求空间角 证明平行与垂直

(3) 直线的向量参数方程:设直线l 过定点A 且平行于非零向量a ,则对于空间中任意一点O ,点P 在l 上等价于存在R t ∈,使. 4.共面向量 (1) 共面向量:平行于的向量. (2) 共面向量定理:两个向量a 、b 不共线,则向量P 与向量a 、b 共面的充要条件是存在实数对(y x ,),使P . 共面向量定理的推论:. 5.空间向量基本定理 (1) 空间向量的基底:的三个向量. (2) 空间向量基本定理:如果a ,b ,c 三个向量不共面,那么对空间中任意一个向量p ,存在一个唯一的有序实数组z y x ,,,使. 空间向量基本定理的推论:设O ,A ,B ,C 是不共面的的四点,则对空间中任意一点P ,都存在唯一的有序实数组z y x ,,,使. 6.空间向量的数量积 (1) 空间向量的夹角:. (2) 空间向量的长度或模:. (3) 空间向量的数量积:已知空间中任意两个向量a 、b ,则a ·b =. 空间向量的数量积的常用结论: (a) cos 〈a 、b 〉=; (b) ?a ?2=; (c) a ⊥b ?. (4) 空间向量的数量积的运算律: (a ) 交换律a ·b =; (b ) 分配律a ·(b +c )=. ABCD —A 1B 1C 1D 1中,点F 是侧面CDD 1C 1的中心,若1AA y x ++=,求x -y 的值. 解:易求得0,2 1 =-∴==y x y x 变式训练1.在平行六面体1111D C B A ABCD -中,M 为AC 与BD 的交点,若=11B A a ,=11D A b , =A 1c ,则下列向量中与B 1相等的向量是 ( ) A .-2 1a +2 1b +c B .2 1a +2 1b +c C .2 1a -2 1b +c D .-2 1a -2 1b +c 解:A 例2.底面为正三角形的斜棱柱ABC -A 1B 1C 1中,D 为AC 的中点, 求证:AB 1∥平面C 1BD. 证明:记,,,1c AA b AC a AB ===则 A B C D A 1 B 1

【精品复习】立体几何篇-第6讲 空间向量及其运算

第6讲 空间向量及其运算 【2014年高考会这样考】 1.考查空间向量的线性运算及其数量积. 2.利用向量的数量积判断向量的关系与垂直. 3.考查空间向量基本定理及其意义. 【复习指导】 空间向量的运算类似于平面向量的运算,复习时又对比论证,重点掌握空间向量共线与垂直的条件,及空间向量基本定理的应用. 基础梳理 1.空间向量的有关概念 (1)空间向量:在空间中,具有大小和方向的量叫做空间向量. (2)相等向量:方向相同且模相等的向量. (3)共线向量:表示空间向量的有向线段所在的直线互相平行或重合的向量. (4)共面向量:平行于同一个平面的向量. 2.空间向量的线性运算及运算律 (1)定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算,如下:OB →=OA →+AB →=a +b ;BA →=OA →-OB →=a -b ;OP →=λa (λ∈R ). (2)运算律:(1)加法交换律:a +b =b +a . (3)加法结合律:(a +b )+c =a +(b +c ). (4)数乘分配律:λ(a +b )=λa +λb . 3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角 已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π2, 则称a 与b 互相垂直,记作a ⊥b. ②两向量的数量积

已知空间两个非零向量a ,b 则|a||b|cos 〈a ,b 〉叫做向量a ,b 的数量积,即a·b =|a||b|cos 〈a ,b 〉. (2)空间向量数量积的运算律 ①结合律:(λa )·b =λ(a·b ); ②交换律:a·b =b·a ; ③分配律:a·(b +c )=a·b +a·c . 4.基本定理 (1)共线向量定理:空间任意两个向量a 、b (b ≠0),a ∥b 的充要条件是存在实数λ,使a =λb . (2)共面向量定理:如果两个向量a ,b 不共线,p 与向量a ,b 共面的充要条件是存在实数x ,y 使p =x a +y b . (3)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x ,y ,z ,使p =x a +y b +z c . 一种方法 用空间向量解决几何问题的一般方法步骤是: (1)适当的选取基底{a ,b ,c }; (2)用a ,b ,c 表示相关向量; (3)通过运算完成证明或计算问题. 两个理解 (1)共线向量定理还可以有以下几种形式: ①a =λb ?a ∥b ; ②空间任意两个向量,共线的充要条件是存在λ,μ∈R 使λa =μb . ③若OA →,OB →不共线,则P ,A ,B 三点共线的充要条件是OP →=λOA →+μOB →且λ+μ=1. (2)对于共面向量定理和空间向量基本定理可对比共线向量定理进行学习理解.空间向量基本定理是适当选取基底的依据,共线向量定理和共面向量定理是证明三点共线、线线平行、四点共面、线面平行的工具,三个定理保证了由向量作为桥梁由实数运算方法完成几何证明问题的完美“嫁接”.

高考数学(全国文理通用)一轮复习: 考点31 空间向量及其运算

温馨提示: 此题库为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合 适的观 看比例,关闭Word 文档返回原板块。 考点31 空间向量及其运算 一、填空题 1.(2012·四川高考文科·T14)与(2012·四川高考理科·T14)相同 如图,在正方体1111ABCD A B C D -中,M ,N 分别是棱CD , 1CC 的中点,则异面直线1A M 与DN 所成的角的大小是 ____________. 【解题指南】建立空间直角坐标系,先求两直线的方向向量所成的角,再求两直线所成的角. 【解析】设正方体1111ABCD A B C D -的棱长为1,建立如图所示的空间直角坐标系D xyz -, 则111(0,0,0),(0,1,),(1,0,1),(0,,0)22 D N A M , 11(1,,1)2∴=--A M ,1(0,1,)2 DN =, 111cos ,0A M DN A M DN A M DN ?∴==, 1,90A M DN ∴=,∴异面直线1A M 与DN 所成的角的大小为90. 【答案】90 二、解答题 2.(2012·四川高考理科·T17)某居民小区有两个相互独立的安全

防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为 1 10 和p . (1)若在任意时刻至少有一个系统不发生故障的概率为49 50 ,求p 的值; (2)设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列及数学期望E ξ. 【解析】(1)设“至少有一个系统不发生故障”为事件C,那么 1491()1.1050 P C p -=- ?= 解得1 .5 p = (2)由题意,0331 1 (0)(),10 1 000 === P C ξ 12 31127(1)()(1),1010 1 000==?-=P C ξ 22311243 (2)()(1),1010 1 000 ==?-=P C ξ 3 331729(3)(1).10 1 000 ==- =P C ξ 所以,随机变量ξ的概率分布列为: 故随机变量ξ的数学期望 E ξ=127243729 0123 2.71 000 1 000 1 000 1 000 ? +?+?+?=. 3.(2012·重庆高考文科·T20)如图,在直三棱柱111C B A ABC -中,,3,4===BC AC AB D 为AB 的中点.

数学选修空间向量及其运算教案

第三章空间向量与立体几何 §3.1空间向量及其运算 3.1.1 空间向量及其加减运算 师:这节课我们学习空间向量及其加减运算,请看学习目标。 学习目标:⒈理解空间向量的概念,掌握其表示方法; ⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律; ⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题. 师:在必修四第二章《平面向量》中,我们学习了平面向量的一些知识,现在我们一起来复习。(不要翻书) (在黑板或背投上呈现或边说边写) 1、在平面中,我们把具有__________________的量叫做平面向量; 2、平面向量的表示方法:

①几何表示法:_________________________ ②字母表示法:_________________________ (注意:向量手写体一定要带箭头) 3、平面向量的模表示_________________,记作____________ 4、一些特殊的平面向量: ①零向量:__________________________,记作___(零向量的方向具有任意性) ②单位向量:______________________________ (强调:都只限制了大小,不确定方向) ③相等向量:____________________________ ④相反向量:____________________________ 5、平面向量的加法: 6、平面向量的减法: 7、平面向量的数乘:实数λ与向量a的积是一个向量,记作λa,其长度和 方向规定如下: (1)|λa|=|λ||a| (2)当λ>0时,λa与a同向; 当λ<0时,λa与a反向; 当λ=0时,λa=0. 8、向量加法和数乘向量满足以下运算律 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 数乘分配律:λ(a+b)=λa+λb 数乘结合律:λ(aμ)=a) (λμ [师]:刚才我们复习了平面向量,那空间向量会是怎样,与平面向量有怎样的区别和联系呢?请同学们阅读书P84-P86.(5分钟) [师]:对比平面向量,我们得到空间向量的相关概念。(在刚复习的黑板或幻灯片上,只需将平面改成空间) [师]:空间向量与平面向量有什么联系? [生]:向量在空间中是可以平移的.空间任意两个向量都可以用同一平面内的两条有向线段表示.因此我们说空间任意两个向量是共面的.所以凡涉及 空间两个向量的问题,平面向量中有关结论仍适用于它们。

高中数学--空间向量之法向量求法及应用方法

高中数学空间向量之--平面法向量的求法及其应用 一、 平面的法向量 1、定义:如果α⊥→ a ,那么向量→ a 叫做平面α的法向量。平面α的法向量共有两大类(从方向上分),无数条。 2、平面法向量的求法 方法一(内积法):在给定的空间直角坐标系中,设平面α的法向量(,,1)n x y =[或(,1,)n x z =,或( 1,,)n y z =],在平面α内任找两个不共线的向量,a b 。由n α⊥,得0n a ?=且0n b ?=,由此得到关于,x y 的方程组,解此方程组即可得到n 。 方法二:任何一个z y x ,,的一次次方程的图形是平面;反之,任何一个平面的方程是z y x ,,的一次方程。 0=+++D Cz By Ax )0,,(不同时为C B A ,称为平面的一般方程。其法向量),,(C B A n =→ ;若平面与3个坐 标轴的交点为),0,0(),0,,0(),0,0,(321c P b P a P ,如图所示,则平面方程为:1=++c z b y a x ,称此方程为平面的截距式方程,把它化为一般式即可求出它的法向量。 方法三(外积法): 设 , 为空间中两个不平行的非零向量,其外积→ → ?b a 为一长度等于θsin ||||→ → b a ,(θ 为 ,两者交角,且πθ<<0),而与 , 皆垂直的向量。通常我们采取「右手定则」,也就是右手四指由 的方向转为 的方向时,大拇指所指的方向规定为→→?b a 的方向,→ →→→?-=?a b b a 。 :),,,(),,,(222111则设z y x b z y x a ==→ → ??=?→ → 21y y b a ,2 1z z 21x x - ,21z z 21x x ???? 21y y (注:1、二阶行列式:c a M = cb ad d b -=;2、适合右手定则。 ) 例1、 已知,)1,2,1(),0,1,2(-==→ → b a , 试求(1):;→ → ?b a (2):.→ →?a b Key: (1) )5,2,1(-=?→ → b a ;)5,2,1()2(-=?→ → a b 例2、如图1-1,在棱长为2的正方体1111ABCD A B C D -中, 求平面AEF 的一个法向量n 。 )2,2,1(:=?=→ →→AE AF n key 法向量

空间向量及其运算测试题

高二选修(2—1)第三章3.1空间向量及其运算测试 一、选择题 1 抛物线2 81x y - =的准线方程是 ( ) A . 321=x B . 2=y C . 32 1 =y D . 2-=y 2.已知两点1(1,0)F -、2(1,0)F ,且12F F 是1PF 与2PF 的等差中项,则动点P 的轨迹方程是 ( ) A . 22 1169x y += B . 22 11612x y += C .22 143x y += D .22 134 x y += 1.已知向量a =(3,-2,1),b =(-2,4,0),则4a +2b 等于 ( ) A .(16,0,4) B .(8,-16,4) C .(8,16,4) D .(8,0,4) 2.在三棱柱ABC -A 1B 1C 1中,若CA →=a ,CB →=b ,CC 1→=c ,则A 1B → = ( ) A .a +b -c B .a -b +c C .-a +b +c D .-a +b -c 4.在下列条件中,使M 与A 、B 、C 一定共面的是 ( ) A.OM →=2OA →-OB →-OC → B.OM →=15OA →+13OB →+12OC → C.MA →+MB →+MC → =0 D.OM →+OA →+OB →+OC → =0 6.在正方体ABCD -A 1B 1C 1D 1中,给出以下向量表达式:①(A 1D 1→-A 1A →)-AB →;②(BC → + BB 1→)-D 1C 1→; ③(AD →-AB →)-2DD 1→;④(B 1D 1→+A 1A →)+DD 1→. 其中能够化简为向量BD 1→ 的是 ( ) A .①② B .②③ C .③④ D .①④ 7.已知向量a =(1,-1,1),b =(-1,2,1),且k a -b 与a -3b 互相垂直,则k 的值是 A .1 B .15 C .35 D .-20 9 8.若a =(2,-3,1),b =(2,0,3),c =(0,2,2),a ·(b +c )的值为 ( ) A .4 B .15 C .7 D .3 9.已知四边形ABCD 满足:AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB → >0,则该四边形 为 ( ) A .平行四边形 B .梯形 C .长方形 D .空间四边形

高考数学第一轮复习:空间向量及其运算

8.6 空间向量及其运算 一、选择题 1.若{a ,b ,c }为空间的一组基底,则下列各项中,能构成基底的一组向量是( ). A .{a ,a +b ,a -b } B .{b ,a +b ,a -b } C .{c ,a +b ,a -b } D .{a +b ,a -b ,a +2b } 解析 若c 、a +b 、a -b 共面,则c =λ(a +b )+m (a -b )=(λ+m )a +(λ-m )b ,则a 、b 、c 为共面向量,此与{a ,b ,c }为空间向量的一组基底矛盾,故c ,a + b ,a -b 可构成空间向量的一组基底. 答案 C 2.以下四个命题中正确的是( ). A .空间的任何一个向量都可用其他三个向量表示 B .若{a ,b ,c }为空间向量的一组基底,则{a +b ,b +c ,c +a }构成空间向量的另一组基底 C .△ABC 为直角三角形的充要条件是AB → ·AC → =0 D .任何三个不共线的向量都可构成空间向量的一组基底 解析 若a +b 、b +c 、c +a 为共面向量,则a +b =λ(b +c )+μ(c +a ),(1-μ)a =(λ-1)b +(λ+μ)c ,λ,μ不可能同时为1,设μ≠1,则a =λ-11-μb +λ+μ1-μc ,则a 、b 、c 为共面向量,此与{a ,b ,c }为空间向量基底矛盾. 答案 B 3.有下列命题: ①若p =x a +y b ,则p 与a ,b 共面; ②若p 与a ,b 共面,则p =x a +y b . ③若MP → =xMA → +yMB → ,则P ,M ,A 、B 共面; ④若P ,M ,A ,B 共面,则MP → =xMA → +yMB → . 其中真命题的个数是( ).

3.1空间向量及其运算教案(经典例题及答案详解)

3.1 空间向量及其运算 第一课时 3.1.1 空间向量及其加减运算----3.1.2 空间向量的数乘运 算 教学要求:理解空间向量的概念,掌握其表示方法;会用图形说明空间向量加法、减法、数乘向量及它们的运算律;能用空间向量的运算意义及运算律解决简单的立体几何中的问题. 教学重点:空间向量的加减与数乘运算及运算律. 教学难点:由平面向量类比学习空间向量. 教学过程: 一、复习引入 1、有关平面向量的一些知识:什么叫做向量?向量是怎样表示的呢? 既有大小又有方向的量叫向量.向量的表示方法有:用有向线段表示;用字母a 、b 等表示; 用有向线段的起点与终点字母:AB .长度相等且方向相同的向量叫相等向量. 2. 向量的加减以及数乘向量运算: 向量的加法: 向量的减法: 实数与向量的积: 实数λ与向量a 的积是一个向量,记作λa ,其长度和方向规定如下:|λa |=|λ||a | (2)当λ>0时,λa 与a 同向; 当λ<0时,λa 与a 反向; 当λ=0时,λa =0. 3. 向量的运算运算律:加法交换律:a +b =b +a 4. 三个力都是200N ,相互间夹角为60°,能否提起一块重500N 的钢板? 二、新课讲授 1. 定义:我们把空间中具有大小和方向的量叫做空间向量.向量的大小叫做向量的长度或模. → 举例? 表示?(用有向线段表示) 记法? → 零向量? 单位向量? 相反向量? → 讨论:相等向量? 同向且等长的有向线段表示同一向量或相等的向量. → 讨论:空间任意两个向量是否共面? 2. 空间向量的加法、减法、数乘向量的定义与平面向量的运算一样: OB OA AB =+=a +b , AB OB OA =-(指向被减向量), OP =λa ()R λ∈ (请学生说说数乘运算的定义?) 3. 空间向量的加法与数乘向量的运算律. ⑴加法交换律:a + b = b + a ; ⑵加法结合律:(a + b ) + c =a + (b + c ); ⑶数乘分配律:λ(a + b ) =λa +λb ; ⑶数乘结合律:λ(u a ) =(λu )a . 4. 推广:⑴12233411n n n A A A A A A A A A A -++++=; ⑵122334110n n n A A A A A A A A A A -+++++=;⑶空间平行四边形法则. 5. 出示例:已知平行六面体(底面是平行四边形的四棱柱)''''ABCD A B C D - (如图),化简下列向量表达式,并标出化简结果的向量: AB BC +⑴; 'AB AD AA ++⑵; 1(3)'2AB AD CC ++; 1(')3 AB AD AA ++⑷. 师生共练 → 变式训练 6. 小结:概念、运算、思想(由平面向量类比学习空间向量)

3.1.1空间向量及其运算

3. 1.1空间向量及其运算(一) 教学目标: ㈠知识目标:⒈空间向量;⒉相等的向量;⒊空间向量的加减与数乘运算及运算律; ㈡能力目标:⒈理解空间向量的概念,掌握其表示方法; ⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律; ⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题. ㈢德育目标:学会用发展的眼光看问题,认识到事物都是在不断的发展、进化的,会用联系的观点看待事物. 教学重点:空间向量的加减与数乘运算及运算律. 教学难点:应用向量解决立体几何问题. 教学方法:讨论式. 教学过程: Ⅰ.复习引入 [师]在必修四第二章《平面向量》中,我们学习了有关平面向量的一些知识,什么叫做向量?向量是怎样表示的呢? [生]既有大小又有方向的量叫向量.向量的表示方法有: ①用有向线段表示; ②用字母a、b等表示; ③用有向线段的起点与终点字母:AB. [师]数学上所说的向量是自由向量,也就是说在保持向量的方向、大小的前提下可以将向量进行平移,由此我们可以得出向量相等的概念,请同学们回忆一下.[生]长度相等且方向相同的向量叫相等向量. [师]学习了向量的有关概念以后,我们学习了向量的加减以及数乘向量运算: ⒈向量的加法: ⒉向量的减法: ⒊实数与向量的积: 实数λ与向量a的积 是一个向量,记作λa,其长度 和方向规定如下: (1)|λa|=|λ||a| (2)当λ>0时,λa 与a同向; 当λ<0时,λa与a反向; 当λ=0时,λa=0. [师]关于向量的以上几种运算,请同学们回忆一下,有哪些运算律呢? [生]向量加法和数乘向量满足以下运算律 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 数乘分配律:λ(a+b)=λa+λb [师]今天我们将在必修四第二章平面向量的基础上,类比地引入空间向量的概念、表示方法、相同或向等关系、空间向量的加法、减法、数乘以及这三种运算的运算率,并进行一些简单的应用.请同学们阅读课本

(完整word版)高三数学空间向量专题复习附答案

一、利用向量处理平行与垂直问题 例1、 在直三棱柱111C B A ABC -中,090=∠ACB , 030=∠BAC ,M A A BC ,6,11==是1CC 得中点。求证:AM B A ⊥1 练习:棱长为a 的正方体ABCD —A 1B 1C 1D 1中,在棱DD 1上是否存在点P 使B 1D ⊥面P AC ? 例2 如图,已知矩形ABCD 和矩形ADEF 所在平面互相垂直,点N M ,分别在对角线AE BD ,上,且AE AN BD BM 3 1,31==,求证://MN 平面CDE 练习1、在正方体1111D C B A ABCD -中,E,F 分别是BB 1,,CD 中点,求证:D 1F ⊥平面ADE

2、如图,在底面是菱形的四棱锥P —ABCD 中, ?=∠60ABC , ,2,a PD PB a AC PA ====点E 在PD 上,且PE :ED = 2: 1.在棱PC 上是否存在一点 F, 使BF ∥平面AEC?证明你的结论. 二、利用空间向量求空间的角的问题 例1 在正方体1111D C B A ABCD -中,E 1,F 1分别在A 1B 1,,C 1D 1上,且E 1B 1=4 1A 1B 1,D 1F 1=4 1D 1C 1,求BE 1与DF 1所成的角的大小。 例2 在正方体1111D C B A ABCD -中, F 分别是BC 的中点,点E 在D 1C 1上,且 = 11E D 41 D 1C 1,试求直线 E 1 F 与平面D 1AC 例3 在正方体1111D C B A ABCD -中,求二面角1C BD A --的大小。

空间向量及其运算和空间位置关系 练习题

空间向量及其运算和空间位置关系 1.在下列命题中: ①若向量a ,b 共线,则向量a ,b 所在的直线平行; ②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面; ③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面; ④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y , z 使得p =x a +y b +z c. 其中正确命题的个数是( ) A .0 B .1 C .2 D .3 解析:选A a 与b 共线,a ,b 所在直线也可能重合,故①不正确;根据自由向量的意义知,空间任意两向量a ,b 都共面,故②错误;三个向量a ,b ,c 中任意两个一定共面,但它们三个却不一定共面,故③不正确;只有当a ,b ,c 不共面时,空间任意一向量p 才能表示为p =x a +y b +z c ,故④不正确,综上可知四个命题中正确的个数为0,故选A. 2.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1 的交点.若AB ―→=a ,AD ―→=b ,AA 1―→=c ,则下列向量中与BM ―→ 相等的向量是( ) A .-12a +12b +c B.12a +1 2b +c C .-12a -12b +c D.12a -1 2 b +c 解析:选A BM ―→=BB 1―→+B 1M ―→=AA 1―→+12(AD ―→-AB ―→ )=c +12(b -a)=-12a +12b +c. 3.已知空间任意一点O 和不共线的三点A ,B ,C ,若OP ―→=x OA ―→+y OB ―→+z OC ―→ (x , y ,z ∈R),则“x =2,y =-3,z =2”是“P ,A ,B ,C 四点共面”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件 解析:选B 当x =2,y =-3,z =2时,OP ―→=2OA ―→-3OB ―→+2OC ―→.则AP ―→-AO ―→=2OA ―→-3(AB ―→-AO ―→)+2(AC ―→-AO ―→),即AP ―→=-3AB ―→+2AC ―→ ,根据共面向量定理

高中数学人教A版选修(2—1)第三章3.1空间向量及其运算测试题(含解析答案)

祈福教育 高二选修(2—1)第三章3.1空间向量及其运算测试题 一、选择题 1.已知向量a =(3,-2,1),b =(-2,4,0),则4a +2b 等于 ( ) A .(16,0,4) B .(8,-16,4) C .(8,16,4) D .(8,0,4) 2.在三棱柱ABC -A 1B 1C 1中,若CA →=a ,CB →=b ,CC 1→=c ,则A 1B → = ( ) A .a +b -c B .a -b +c C .-a +b +c D .-a +b -c 3.在棱长都是1的三棱锥A -BCD 中,下列各数量积的值为1 2的是 ( ) A. BC AB ? B. BD AB ? C.DA AB ? D.AC AB ? 4.在下列条件中,使M 与A 、B 、C 一定共面的是 ( ) A.OM →=2OA →-OB →-OC → B.OM →=15OA →+13OB →+12OC → C.MA →+MB →+MC → =0 D.OM →+OA →+OB →+OC → =0 5.若向量{c b a ,,}是空间的一个基底,向量b a n b a m -=+=,,那么可以与m 、n 构成空间另一个基底的向量是 ( ) A .a B .b C .c D .2a 6.在正方体ABCD -A 1B 1C 1D 1中,给出以下向量表达式:①(A 1D 1→-A 1A →)-AB →;②(BC → + BB 1→)-D 1C 1→; ③(AD →-AB →)-2DD 1→;④(B 1D 1→+A 1A →)+DD 1→. 其中能够化简为向量BD 1→ 的是 ( ) A .①② B .②③ C .③④ D .①④ 7.已知向量a =(1,-1,1),b =(-1,2,1),且k a -b 与a -3b 互相垂直,则k 的值是 A .1 B .15 C .35 D .-20 9 8.若a =(2,-3,1),b =(2,0,3),c =(0,2,2),a ·(b +c )的值为 ( ) A .4 B .15 C .7 D .3 9.已知四边形ABCD 满足:AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB → >0,则该四边形 为 ( )

相关主题
文本预览
相关文档 最新文档