当前位置:文档之家› Isospin effects on squeeze-out flow in heavy-ion collisions

Isospin effects on squeeze-out flow in heavy-ion collisions

Isospin effects on squeeze-out flow in heavy-ion collisions
Isospin effects on squeeze-out flow in heavy-ion collisions

a r X i v :n u c l -t h /0011015v 1 6 N o v 2000Isospin e?ects on squeeze-out ?ow in heavy-ion collisions

Feng-Shou Zhang 1,2,5,Lie-Wen Chen 1,2,3,Zhi-Yuan Zhu 1,41Center of Theoretical Nuclear Physics,National Laboratory of Heavy Ion

Accelerator,Lanzhou 730000,China 2Institute of Modern Physics,Academia Sinica,P.O.Box 31,Lanzhou 730000,China

3

Department of Applied Physics,Shanghai Jiao Tong University,Shanghai 200030,China 4Shanghai Institute of Nuclear Research,Academia Sinica,Shanghai 201800,China 5CCAST (World Laboratory),P.O.Box 8730,Beijing 100080,China

The squeeze-out ?ow in reactions of 124Sn +124Sn and 124Ba +124Ba at di?erent

incident energies for di?erent impact parameters is investigated by means of an isospin-

dependent quantum molecular dynamics model.For the ?rst time,it is found that the

more neutron-rich system (124Sn +124Sn)exhibits weaker squeeze-out ?ow.This

isospin dependence of the squeeze-out ?ow is shown to mainly result from the isospin

dependence of nucleon-nucleon cross section and the symmetry energy.

PACS.25.70.-z Low and intermediate energy heavy-ion collisions ?25.75.Ld Collective

?ow The recent advance in radioactive nuclear beam (RNB)physics provides people a unique opportunity to investigate isospin e?ects in heavy-ion collisions (HIC’s)[1,2].Isospin e?ects on directed ?ow [3–5],radial ?ow [6]and rotational ?ow [7]in HIC’s at intermediate energies have been explored theoretically and/or experimentally,and it is indicated that the isospin dependence of nuclear collective ?ow may provide people some important information about the isospin-dependent nuclear EOS,particularly the symmetry energy,and the isospin-dependent in-medium N-N cross section.The squeeze-out ?ow [8]is of special interest since it comes from the only direction where the nuclear matter might escape without being hindered by the presence of the cold spectator remnants and thus a less disturbed information on the matter of high density and temperature is expected.Therefore,it is very signi?cant to explore isospin e?ects on the squeeze-out ?ow.In this Short note we report results of the ?rst theoretical study on the squeeze-out ?ow from reac-tions of 124Sn +124Sn and 124Ba +124Ba at di?erent energies for di?erent impact parameters within the framework of an isospin-dependent quantum molecular dynamics (IDQMD)model which includes the symmetry energy,Coulomb interaction,isospin-dependent experimental N -N cross sections,and particularly the isospin-dependent Pauli blocking [5,9].In the initialization process of the IDQMD model,the neutron and proton are distinguished from each other and meanwhile the nonphysical rotations in the initialized nuclei have been removed [7].In the IDQMD model,the nuclear mean ?eld can be parameterized by

U (ρ,τz )=α(ρ/ρ0)+β(ρ/ρ0)γ+

1ρ0τz +U Y uk ,

(1)with ρ0the normal nuclear matter density (here is 0.16fm ?3);ρ,ρn ,and ρp are the total,neutron,

and proton interaction densities,respectively;τz is the z th component of the isospin degree of free-

dom,which equals 1or ?1for neutrons or protons,respectively;C is the symmetry strength;V c is

the Coulomb potential;and U Y uk is the ?nite range Yukawa (surface)potential which will vanish for

in?nite nuclear matter.The forms and parameters of Eq.(1)can be found in Ref.[6].The IDQMD is

di?erent from the so-called IQMD (Isospin-QMD)model [10–12]by the Pauli blocking,the initializa-

tion process,and construction of fragment.This model has been used recently to explain successfully

several phenomena in HIC’s at intermediate energies,which depend on the isospin of the reaction

system [5–7,9,13].In the present calculations,the so-called soft EOS with an incompressibility of

K =200MeV is used and the symmetry strength C =32MeV without particular consideration.

In the QMD model [14],the reaction plane is known a priori and it is de?ned as the x -z plane

(z -axis corresponds to the beam direction).The azimuthal angle with respect to the reaction plane

can be written as

φ=arctan(P y/P x),(2)

where P x and P y are the x-and y-components of nucleon momentum in the center-of-mass(c.m.) system.Many studies have shown that the azimuthal distribution in HIC’s can be?tted well by the Legendre polynomial up to the second order[15],i.e.,

dN/dφ=c(1+a1cos(φ)+a2cos(2φ)).(3)

The coe?cient a1represents the strength of the in-plane directed?ow while a positive a2re?ects the strength of the rotational collective motion(the azimuthal distribution peaks atφ=0?and±180?simultaneously)and negative one(the azimuthal distribution peaks atφ=±90?)the out-of-plane squeeze-out.For the mid-rapidity azimuthal distribution,the ratio R N,

R N=dN/dφ(90?)+dN/dφ(?90?)

1+a2

,(4)

measures the strength of the squeeze-out?ow in a quantitative way.A value R N>1corresponds to a preferential out-of-plane emission.It has been shown that R N depends on the transverse momenta of nucleons[16]and in the present study the normalized nucleon transverse momentum P t/P proj(where P t and P proj represent the transverse momenta of nucleon and the projectile momentum in the c.m. system,respectively)is limited to P t/P proj≥0.5for simplicity.Meanwhile,the mid-rapidity is de?ned as a narrow region around the c.m.rapidity by applying the condition?0.25≤(y/y proj)c.m.≤0.25, where(y/y proj)c.m.is the reduced c.m.rapidity.In addition,it has been shown that R N depends on the fragment mass[16]and in this work the calculated results are obtained from all nucleons entering the analysis to accumulate the numerical statistics.

Fig.1displays the IDQMD model prediction of R N as a function of incident energy for reactions of 124Sn+124Sn and124Ba+124Ba at impact parameter b=4fm.The errors shown are the statistical errors resulting from the Legendre polynomial?ts.It is indicated in Fig.1that the R N value increases with increment of the incident energy and then saturate or decrease at higher incident energies,which is in agreement with the recent experimental results[17,18].The reduction of the R N value at higher incident energies is easy to understand by the shadowing e?ects of the cold nuclear matter surrounding the participant zone which decrease because the projectile spectators escape faster.A more interesting feature in Fig.1is that the more neutron-rich system124Sn+124Sn displays systematically smaller R N values than the system124Ba+124Ba,which implies that there exists a strong isospin dependence of the squeeze-out?ow,namely,the more neutron-rich system displays weaker squeeze-out?ow.Meanwhile,one can?nd that the isospin dependence of the squeeze-out?ow decreases as the incident energy increases,which may be due to the fact that the isospin dependence of the N-N cross section disappears at higher incident energies.

In order to investigate further the isospin dependence of the squeeze-out?ow,we show in Fig.2the ratio R N as a function of impact parameter for reactions of124Sn+124Sn and124Ba+124Ba at350 MeV/nucleon.The errors shown are the statistical errors resulting from the Legendre polynomial?ts. Similarly,a strong isospin dependence of the squeeze-out?ow is observed once again,namely,the more neutron-rich system124Sn+124Sn displays systematically smaller R N values than the system124Ba +124Ba at di?erent impact parameters.In particular,this isospin dependence is more pronounced in semi-central collisions.In addition,it is indicated that the largest R N value is obtained at b=6fm,i.e., in semi-central collisions,which is in good agreement with the recent experiment where a maximum of R N located at about b=6fm has been evidenced in reaction of Au+Au at400MeV/nucleon[17,18]. This phenomenon can be explained by an expansion shadowing scenario[14]where the expansion of the participant matter is rescattered by the cold target or projectile spectator.

It is important to investigate the in?uence of the symmetry energy and isospin-dependent N-N cross section on the squeeze-out?ow since the isospin dependence of the squeeze-out?ow may result from the competition among several mechanisms in the isospin-dependent reaction dynamics,such as the symmetry energy,isospin-dependent N-N cross sections,and so on.

Using di?erent symmetry energy strength C and parametrizations of N-N cross sections,we show in Fig.3the IDQMD model predicted normalized azimuthal distribution from124Sn+124Sn(solid

circles)and124Ba+124Ba(open circles)at350MeV/nucleon and b=6fm for mid-rapidity nucleons.

Meanwhile,the results of Legendre polynomial?ts according to Eq.(3)for124Sn+124Sn(solid line) and124Ba+124Ba(dashed line)as well as the resulting a1and a2are also included in Fig.3.For

the results shown in Fig.3(a)we use C=32MeV and experimental N-N cross sectionσexp which

is isospin dependent.In Fig.3(b)we use C=0(no symmetry energy)andσexp.The case of using C=32MeV and Cugnon’s N-N cross sectionσCug which is isospin independent,is plotted in Fig.3

(c).

One can see from Fig.3that the azimuthal distribution exists minima atφ=0?and±180?(i.e., in the in-plane P x-direction)and maxima atφ=±90?(i.e.,in out-of-plane P y-direction which is

perpendicular to the reaction plane).These features imply that at mid-rapidity more nucleons are squeezed out perpendicular to the reaction plane than in the reaction plane.In order to see more

clearly the isospin e?ects on the squeeze-out?ow,we give in Table1the R N values extracted from a2

in Fig.3for di?erent cases.The errors shown are the statistical errors resulting from the Legendre polynomial?ts.One can see from Table1that both the symmetry energy and the isospin-dependent

N-N cross section enhance the strength of the squeeze-out?ow but the latter enhances it more strongly. Particularly,it is indicated that the in?uence ofσexp on system124Ba+124Ba is stronger than that on the system124Sn+124Sn,which is easy to understand since the neutron-proton cross section is

about three times larger than the neutron-neutron or proton-proton cross section forσexp at energy of about350MeV/nucleon,which results in more N-N collisions for124Ba+124Ba.On the other hand, the symmetry energy is generally repulsive and the change of symmetry strength C might modify the equation of state and thus the squeeze-out?ow.From above analysis,one can conclude that the isospin dependence of the squeeze-out?ow seems to mainly result from the isospin dependence of N-N cross section and the symmetry potential has less in?uence on it.In above calculations,only the free-space N-N cross sections are adopted and the in-medium e?ect is only simulated by the Pauli blocking.However,the in-medium N-N cross sections and their isospin dependence might be strongly density dependent[19,20].The isospin dependence of the squeeze-out?ow may provide a unique opportunity to study the isospin dependent in-medium N-N cross sections.

In summary,by using the IDQMD model,we studied for the?rst time the out-of-plane squeeze-out

?ow in reactions of124Sn+124Sn and124Ba+124Ba.A strong isospin dependence of squeeze-out ?ow has been found,namely,the more neutron-rich system exhibits weaker squeeze-out?ow,which is shown to mainly result from the isospin dependence of N-N cross section and the symmetry energy. Meanwhile,it is indicated that the squeeze-out?ow depends strongly on the impact parameter and incident energy.Our study proposes that one can investigate the isospin-dependent reaction dynamics by studying the isospin e?ects on the azimuthal distribution and suggests that the isospin dependence of the squeeze-out?ow could be as a probe of the isospin-dependent in-medium N-N cross section. This work was supported by the National Natural Science Foundation of China under Grant NOs. 19875068and19847002,the Major State Basic Research Development Program under Contract NO. G2000077407,and the Foundation of the Chinese Academy of Sciences.

Greiner,Nucl.Phys.A495,303c(1989)

[11]S.A.Bass,C Hartnack,H.St¨o cker,and W.Greiner,Phys.Rev.C51,3343(1995)

[12]C.Hartnack,R.K.Puri,J.Aichelin,J.Konopka,S.A.Bass,H.St¨o cker,W.Greiner,Eur.Phys.J.A1,

151(1998)

[13]F.S.Zhang,L.W.Chen,Z.Y.Ming,and Z.Y.Zhu,Phys.Rev.C60,064604(1999)

[14]J.Aichelin,Phys.Rep.202,233(1991)

[15]W.Reisdorf and H.G.Ritter,Annu.Rev.Nucl.Part.Sci.47,663(1997)

[16]C.Hartnack,J.Aichelin,H.St¨o cker,and W.Greiner,Phys.Lett.B336,131(1994)

[17]N.Bastid et al.,Nucl.Phys.A622,573(1997)

[18]P.Crochet et al.,Nucl.Phys.A624,755(1997)

[19]G.Q.Li and R.Machleidt,Phys.Rev.C49,566(1994)

[20]T.Alm,G.Ropke,W.Bauer,F.Da?n,and M.Schmidt,Nucl.Phys.A587,815(1995)

FIGURE CAPTIONS

Fig.1The IDQMD model predicted R N as a function of incident energy for reactions of124Sn+ 124Sn and124Ba+124Ba at impact parameter b=4fm.The lines are plotted to guide the eye. Fig.2The IDQMD model predicted R N as a function of impact parameter for reactions of124Sn+ 124Sn and124Ba+124Ba at350MeV/nucleon.The lines are plotted to guide the eye.

Fig.3The IDQMD model predicted normalized azimuthal distribution for124Sn+124Sn(solid circles)and124Ba+124Ba(open circles)at350MeV/nucleon and b=6fm for mid-rapidity nucleons by using di?erent symmetry energy strength C and parametrizations of N-N cross sections:C=32MeV with experimental N-N cross sectionσexp(a),C=0(no symmetry energy)withσexp(b),and C=32MeV with Cugnon’s N-N cross sectionσCug(c).Meanwhile, the results of Legendre polynomial?ts according to Eq.(3)for124Sn+124Sn(solid line)and 124Ba+124Ba(dashed line)as well as the resulting a1and a2are also included.

TABLE CAPTIONS

Table1:The R N values at di?erent situations(see text)for124Sn+124Sn and124Ba+124Ba at 350MeV/nucleon and b=6fm.

Reaction systems C=32MeV withσexp C=0withσexp C=32MeV withσCug

100150200250300350400450500550600

0.95

1.001.05

1.10

FIG. 1

E beam (MeV/nucleon)R N

2468

1.00

1.05

1.10

1.15FIG. 2

b (fm)R N

FIG. 3φ (degree)d N /d φ (1/d e g r e e )

BP神经网络实验——【机器学习与算法分析 精品资源池】

实验算法BP神经网络实验 【实验名称】 BP神经网络实验 【实验要求】 掌握BP神经网络模型应用过程,根据模型要求进行数据预处理,建模,评价与应用; 【背景描述】 神经网络:是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。BP神经网络是一种按照误差逆向传播算法训练的多层前馈神经网络,是目前应用最广泛的神经网络。其基本组成单元是感知器神经元。 【知识准备】 了解BP神经网络模型的使用场景,数据标准。掌握Python/TensorFlow数据处理一般方法。了解keras神经网络模型搭建,训练以及应用方法 【实验设备】 Windows或Linux操作系统的计算机。部署TensorFlow,Python。本实验提供centos6.8环境。 【实验说明】 采用UCI机器学习库中的wine数据集作为算法数据,把数据集随机划分为训练集和测试集,分别对模型进行训练和测试。 【实验环境】 Pyrhon3.X,实验在命令行python中进行,或者把代码写在py脚本,由于本次为实验,以学习模型为主,所以在命令行中逐步执行代码,以便更加清晰地了解整个建模流程。 【实验步骤】 第一步:启动python: 1

命令行中键入python。 第二步:导入用到的包,并读取数据: (1).导入所需第三方包 import pandas as pd import numpy as np from keras.models import Sequential from https://www.doczj.com/doc/7b2504162.html,yers import Dense import keras (2).导入数据源,数据源地址:/opt/algorithm/BPNet/wine.txt df_wine = pd.read_csv("/opt/algorithm/BPNet/wine.txt", header=None).sample(frac=1) (3).查看数据 df_wine.head() 1

有限元网格划分心得

有限元网格划分的基本原则 划分网格是建立有限元模型的一个重要环节,它要求考虑的问题较多,需要的工作量较大,所划分的网格形式对计算精度和计算规模将产生直接影响。为建立正确、合理的有限元模型,这里介绍划分网格时应考虑的一些基本原则。 1网格数量 网格数量的多少将影响计算结果的精度和计算规模的大小。一般来讲,网格数量增加,计算精度会有所提高,但同时计算规模也会增加,所以在确定网格数量时应权衡两个因数综合考虑。 图1中的曲线1表示结构中的位移随网格数量收敛的一般曲线,曲线2代表计算时间随网格数量的变化。可以看出,网格较少时增加网格数量可以使计算精度明显提高,而计算时间不会有大的增加。当网格数量增加到一定程度后,再继续增加网格时精度提高甚微,而计算时间却有大幅度增加。所以应注意增加网格的经济性。实际应用时可以比较两种网格划分的计算结果,如果两次计算结果相差较大,可以继续增加网格,相反则停止计算。 图1位移精度和计算时间随网格数量的变化 在决定网格数量时应考虑分析数据的类型。在静力分析时,如果仅仅是计算结构的变形,网格数量可以少一些。如果需要计算应力,则在精度要求相同的情况下应取相对较多的网格。同样在响应计算中,计算应力响应所取的网格数应比计算位移响应多。在计算结构固有动力特性时,若仅仅是计算少数低阶模态,可以选择较少的网格,如果计算的模态阶次较高,则应选择较多的网格。在热分析中,结构内部的温度梯度不大,不需要大量的内部单元,这时可划分较少的网格。 2网格疏密 网格疏密是指在结构不同部位采用大小不同的网格,这是为了适应计算数据的分布特点。在计算数据变化梯度较大的部位(如应力集中处),为了较好地反映数据变化规律,需要采用比较密集的网格。而在计算数据变化梯度较小的部位,为减小模型规模,则应划分相对稀疏的网格。这样,整个结构便表现出疏密不同的网格划分形式。 图2是中心带圆孔方板的四分之一模型,其网格反映了疏密不同的划分原则。小圆孔附近存在应力集中,采用了比较密的网格。板的四周应力梯度较小,网格分得较稀。其中图b中网格疏密相差更大,它比图a中的网格少48个,但计算出的孔缘最大应力相差1%,而计算时间却减小了36%。由此可见,采用疏密不同的网格划分,既可以保持相当的计算精度,又可使网格数量减小。因此,网格数量应增加到结构的关键部位,在次要部位增加网格是不必要的,也是不经济的。

数据挖掘常用资源及工具

资源Github,kaggle Python工具库:Numpy,Pandas,Matplotlib,Scikit-Learn,tensorflow Numpy支持大量维度数组与矩阵运算,也针对数组提供大量的数学函数库 Numpy : 1.aaa = Numpy.genfromtxt(“文件路径”,delimiter = “,”,dtype = str)delimiter以指定字符分割,dtype 指定类型该函数能读取文件所以内容 aaa.dtype 返回aaa的类型 2.aaa = numpy.array([5,6,7,8]) 创建一个一维数组里面的东西都是同一个类型的 bbb = numpy.array([[1,2,3,4,5],[6,7,8,9,0],[11,22,33,44,55]]) 创建一个二维数组aaa.shape 返回数组的维度print(bbb[:,2]) 输出第二列 3.bbb = aaa.astype(int) 类型转换 4.aaa.min() 返回最小值 5.常见函数 aaa = numpy.arange(20) bbb = aaa.reshape(4,5)

numpy.arange(20) 生成0到19 aaa.reshape(4,5) 把数组转换成矩阵aaa.reshape(4,-1)自动计算列用-1 aaa.ravel()把矩阵转化成数组 bbb.ndim 返回bbb的维度 bbb.size 返回里面有多少元素 aaa = numpy.zeros((5,5)) 初始化一个全为0 的矩阵需要传进一个元组的格式默认是float aaa = numpy.ones((3,3,3),dtype = numpy.int) 需要指定dtype 为numpy.int aaa = np 随机函数aaa = numpy.random.random((3,3)) 生成三行三列 linspace 等差数列创建函数linspace(起始值,终止值,数量) 矩阵乘法: aaa = numpy.array([[1,2],[3,4]]) bbb = numpy.array([[5,6],[7,8]]) print(aaa*bbb) *是对应位置相乘 print(aaa.dot(bbb)) .dot是矩阵乘法行乘以列 print(numpy.dot(aaa,bbb)) 同上 6.矩阵常见操作

_基于ANSYS的有限元法网格划分浅析

文章编号:1003-0794(2005)01-0038-02 基于ANSYS的有限元法网格划分浅析 杨小兰,刘极峰,陈 旋 (南京工程学院,南京210013) 摘要:为提高有限元数值的计算精度和对复杂结构力学分析的准确性,针对不同分析类型采用了不同的网格划分方法,结合实例阐述了ANSYS有限元网格划分的方法和技巧,指出了采用ANSYS有限元软件在网格划分时应注意的技术问题。 关键词:ANSYS;有限元;网格;计算精度 中图号:O241 82;TP391 7文献标识码:A 1 引言 ANSYS有限元分析程序是著名的C AE供应商美国ANSYS公司的产品,主要用于结构、热、流体和电磁四大物理场独立或耦合分析的CAE应用,功能强大,应用广泛,是一个便于学习和使用的优秀有限元分析程序。在ANSYS得到广泛应用的同时,许多技术人员对ANSYS程序的了解和认识还不够系统全面,在工作和研究中存在许多隐患和障碍,尤为突出的是有限元网格划分技术。本文结合工程实例,就如何合理地进行网格划分作一浅析。 2 网格划分对有限元法求解的影响 有限元法的基本思想是把复杂的形体拆分为若干个形状简单的单元,利用单元节点变量对单元内部变量进行插值来实现对总体结构的分析,将连续体进行离散化即称网格划分,离散而成的有限元集合将替代原来的弹性连续体,所有的计算分析都将在这个模型上进行。因此,网格划分将关系到有限元分析的规模、速度和精度以及计算的成败。实验表明:随着网格数量的增加,计算精确度逐渐提高,计算时间增加不多;但当网格数量增加到一定程度后,再继续增加网格数量,计算精确度提高甚微,而计算时间却大大增加。在进行网格划分时,应注意网格划分的有效性和合理性。 3 网格划分的有效性和合理性 (1)根据分析数据的类型选择合理的网格划分数量 在决定网格数量时应考虑分析数据的类型。在静力分析时,如果仅仅是计算结构的变形,网格数量可以少一些。如果需要计算应力,则在精度要求相同的情况下取相对较多的网格。同样在响应计算中,计算应力响应所取的网格数应比计算位移响应多。在计算结构固有动力特性时,若仅仅是计算少数低阶模态,可以选择较少的网格。如果计算的模态阶次较高,则应选择较多的网格。在热分析中,结构内部的温度梯度不大,不需要大量的内部单元,可划分较少的网格。 (2)根据分析数据的分布特点选择合理的网格疏密度 在决定网格疏密度时应考虑计算数据的分布特点,在计算固有特性时,因为固有频率和振型主要取决于结构质量分布和刚度分布,采用均匀网格可使结构刚度矩阵和质量矩阵的元素不致相差很大,可减小数值计算误差。同样,在结构温度场计算中也趋于采用均匀的网格形式。在计算数据变化梯度较大的部位时,为了更好地反映数据变化规律,需要采用比较密集的网格,而在计算数据变化梯度较小的部位,为了减小模型规模,则应划分相对稀疏的网格,这样整个结构就表现出疏密不同的网格划分形式。 以齿轮轮齿的有限元分析模型为例,由于分析的目的是求出齿轮啮合传动过程中齿根部分的弯曲应力,因此,分析计算时并不需要对整个齿轮进行计算,可根据圣文男原理将整个区域缩小到直接参与啮合的轮齿。虽然实际上参与啮合的齿数总大于1,但考虑到真正起作用的是单齿,通常只取一个轮齿作为分析对象,这样作可以大大节省计算机内存。考虑到轮齿应力在齿根过渡圆角和靠近齿面处变化较大,网格可划分得密一些。在进行疏密不同网格划分操作时可采用ANSYS提供的网格细化工具调整网格的疏密,也可采用分块建模法设置网格疏密度。 图1所示即为采用分块建模法进行网格划分。图1(a)为内燃机中重要运动零件连杆的有限元应力分析图,由于连杆结构对称于其摆动的中间平面,其厚度方向的尺寸远小于长度方向的尺寸,且载荷沿厚度方向近似均匀分布,故可按平面应力分析处 38 煤 矿 机 械 2005年第1期

题库深度学习面试题型介绍及解析--第7期

1.简述激活函数的作用 使用激活函数的目的是为了向网络中加入非线性因素;加强网络的表示能力,解决线性模型无法解决的问题 2.那为什么要使用非线性激活函数? 为什么加入非线性因素能够加强网络的表示能力?——神经网络的万能近似定理 ?神经网络的万能近似定理认为主要神经网络具有至少一个非线性隐藏层,那么只要给予网络足够数量的隐藏单元,它就可以以任意的精度来近似任何从一个有限维空间到另一个有限维空间的函数。 ?如果不使用非线性激活函数,那么每一层输出都是上层输入的线性组合;此时无论网络有多少层,其整体也将是线性的,这会导致失去万能近似的性质 ?但仅部分层是纯线性是可以接受的,这有助于减少网络中的参数。3.如何解决训练样本少的问题? 1.利用预训练模型进行迁移微调(fine-tuning),预训练模型通常在特征上拥有很好的语义表达。此时,只需将模型在小数据集上进行微调就能取得不错的效果。CV 有 ImageNet,NLP 有 BERT 等。 2.数据集进行下采样操作,使得符合数据同分布。

3.数据集增强、正则或者半监督学习等方式来解决小样本数据集的训练问题。 4.如何提升模型的稳定性? 1.正则化(L2, L1, dropout):模型方差大,很可能来自于过拟合。正则化能有效的降低模型的复杂度,增加对更多分布的适应性。 2.前停止训练:提前停止是指模型在验证集上取得不错的性能时停止训练。这种方式本质和正则化是一个道理,能减少方差的同时增加的偏差。目的为了平衡训练集和未知数据之间在模型的表现差异。 3.扩充训练集:正则化通过控制模型复杂度,来增加更多样本的适应性。 4.特征选择:过高的特征维度会使模型过拟合,减少特征维度和正则一样可能会处理好方差问题,但是同时会增大偏差。 5.你有哪些改善模型的思路? 1.数据角度 增强数据集。无论是有监督还是无监督学习,数据永远是最重要的驱动力。更多的类型数据对良好的模型能带来更好的稳定性和对未知数据的可预见性。对模型来说,“看到过的总比没看到的更具有判别的信心”。 2.模型角度

VFP常用函数大全整理

VFP常用函数大全整理 一.字符及字符串处理函数:字符及字符串处理函数的处理对象均为字符型数据,但其返回值类型各异. 1.取子串函数: 格式:substr(c,n1,n2) 功能:取字符串C第n1个字符起的n2个字符.返回值类型是字符型. 例:取姓名字符串中的姓. store \"王小风\" to xm ?substr(xm,1,2) 结果为:王 2.删除空格函数:以下3个函数可以删除字符串中的多余空格,3个函数的返回值均为字符型. trim(字符串):删除字符串的尾部空格 alltrim(字符串):删除字符串的前后空格 ltrim(字符串):删除字符串的前面的空格 例:去掉第一个字符串的尾空格后与第二个字符串连接 store \"abcd \" to x store \"efg\" to y ?trim(x)+y abcdefg 3.空格函数: 格式:space(n) 说明:该函数的功能是产生指定个数的空格字符串(n用于指定空格个数). 例:定义一个变量dh,其初值为8个空格 store space(8) to dh 4.取左子串函数: 格式:left(c,n) 功能:取字符串C左边n个字符. 5.取右子串函数: 格式:right(c,n) 功能:取字符串c右边的n个字符 例:a=\"我是中国人\" ?right(a,4) 国人 ?left(a,2) 我 6.empty(c):用于测试字符串C是否为空格. 7.求子串位置函数: 格式:At(字符串1,字符串2) 功能:返回字符串1在字符串2的位置 例:?At(\"教授\",\"副教授\") 2

8.大小写转换函数: 格式: lower(字符串) upper(字符串) 功能:lower()将字符串中的字母一律变小写;upper()将字符串中的字母一律变大写 例: bl=\"FoxBASE\" ?lower(bl)+space(2)+upper(bl) foxbase FOXBASE 9.求字符串长度函数: 格式:len(字符串) 功能:求指定字符串的长度 例:a=\"中国人\" ?len(a) 6 二.数学运算函数: 1.取整函数: 格式:int(数值) 功能:取指定数值的整数部分. 例:取整并显示结果 ?int(25.69) 25 2.四舍五入函数: 格式:round(数值表达式,小数位数) 功能:根据给出的四舍五入小数位数,对数值表达式的计算结果做四舍五入处理 例:对下面给出的数四舍五入并显示其结果 ?round(3.14159,4),round(2048.9962,0),round(2048.9962,-3) 3.1416 2049 2000 3.求平方根函数: 格式:sqrt(数值) 功能:求指定数值的算术平方根 例:?sqrt(100) 10 4.最大值、最小值函数: 格式: Max(数值表达式1,数值表达式2) Min(数值表达式1,数值表达式2) 功能:返回两个数值表达式中的最大值和最小值 例:

CATIA有限元高级划分网格教程

CATIA有限元高级网格划分教程 盛选禹李明志 1.1进入高级网格划分工作台 (1)打开例题中的文件Sample01.CATPart。 (2)点击主菜单中的【开始】→【分析与模拟】→【Advanced Meshing Tools】(高级网格划分工具),就进入【Advanced Meshing Tools】(高级网格划分工具)工作台,如图1-1所示。进入工作台后,生成一个新的分析文件,并且显示一个【New Analysis Case】(新分析算题)对话框,如图1-2所示。 图1-1【开始】→【分析与模拟】→【Advanced Meshing Tools】(高级网格划分工具)(3)在【New Analysis Case】(新分析算题)对话框内选择【Static Analysis】(静力分析)选项。如果以后打开该对话框的时候均希望是计算静力分析,可以把对话框内的【Keep as default starting analysis case】(在开始时保持为默认选项)勾选。这样,下次进入本工作台时,将自动选择静力分析。 (4)点击【新分析算题】对话框内的【确定】按钮,关闭对话框。 1.2定义曲面网格划分参数 本节说明如何定义一个曲面零件的网格类型和全局参数。 (1)点击【Meshing Method】(网格划分方法)工具栏内的【高级曲面划分】按钮

,如图1-3所示。需要在【Meshing Method】(网格划分方法)工具栏内点击中间按钮的下拉箭头才能够显示出【高级曲 面划分】按钮。 图1-2【New Analysis Case】(新分析算题)对话框图1-3【高级曲面划分】按钮

人工智能实践:Tensorflow笔记 北京大学 7 第七讲卷积网络基础 (7.3.1) 助教的Tenso

Tensorflow笔记:第七讲 卷积神经网络 本节目标:学会使用CNN实现对手写数字的识别。 7.1 √全连接NN:每个神经元与前后相邻层的每一个神经元都有连接关系,输入是特征,输出为预测的结果。 参数个数:∑(前层×后层+后层) 一张分辨率仅仅是28x28的黑白图像,就有近40万个待优化的参数。现实生活中高分辨率的彩色图像,像素点更多,且为红绿蓝三通道信息。 待优化的参数过多,容易导致模型过拟合。为避免这种现象,实际应用中一般不会将原始图片直接喂入全连接网络。 √在实际应用中,会先对原始图像进行特征提取,把提取到的特征喂给全连接网络,再让全连接网络计算出分类评估值。

例:先将此图进行多次特征提取,再把提取后的计算机可读特征喂给全连接网络。 √卷积Convolutional 卷积是一种有效提取图片特征的方法。一般用一个正方形卷积核,遍历图片上的每一个像素点。图片与卷积核重合区域内相对应的每一个像素值乘卷积核内相对应点的权重,然后求和,再加上偏置后,最后得到输出图片中的一个像素值。 例:上面是5x5x1的灰度图片,1表示单通道,5x5表示分辨率,共有5行5列个灰度值。若用一个3x3x1的卷积核对此5x5x1的灰度图片进行卷积,偏置项

b=1,则求卷积的计算是:(-1)x1+0x0+1x2+(-1)x5+0x4+1x2+(-1)x3+0x4+1x5+1=1(注意不要忘记加偏置1)。 输出图片边长=(输入图片边长–卷积核长+1)/步长,此图为:(5 – 3 + 1)/ 1 = 3,输出图片是3x3的分辨率,用了1个卷积核,输出深度是1,最后输出的是3x3x1的图片。 √全零填充Padding 有时会在输入图片周围进行全零填充,这样可以保证输出图片的尺寸和输入图片一致。 例:在前面5x5x1的图片周围进行全零填充,可使输出图片仍保持5x5x1的维度。这个全零填充的过程叫做padding。 输出数据体的尺寸=(W?F+2P)/S+1 W:输入数据体尺寸,F:卷积层中神经元感知域,S:步长,P:零填充的数量。 例:输入是7×7,滤波器是3×3,步长为1,填充为0,那么就能得到一个5×5的输出。如果步长为2,输出就是3×3。 如果输入量是32x32x3,核是5x5x3,不用全零填充,输出是(32-5+1)/1=28,如果要让输出量保持在32x32x3,可以对该层加一个大小为2的零填充。可以根据需求计算出需要填充几层零。32=(32-5+2P)/1 +1,计算出P=2,即需填充2

常用函数 类参考

全局函数1、common.func.php 公用函数 获得当前的脚本网址 function GetCurUrl() 返回格林威治标准时间 function MyDate($format='Y-m-d H:i:s',$timest=0) 把全角数字转为半角 function GetAlabNum($fnum) 把含HTML的内容转为纯text function Html2Text($str,$r=0) 把文本转HTML function Text2Html($txt) 输出Ajax头 function AjaxHead() 中文截取2,单字节截取模式 function cn_substr($str,$slen,$startdd=0) 把标准时间转为Unix时间戳 function GetMkTime($dtime) 获得一个0000-00-00 00:00:00 标准格式的时间 function GetDateTimeMk($mktime) 获得一个0000-00-00 标准格式的日期 function GetDateMk($mktime) 获得用户IP function GetIP() 获取拼音以gbk编码为准 function GetPinyin($str,$ishead=0,$isclose=1)

dedecms通用消息提示框 function ShowMsg($msg,$gourl,$onlymsg=0,$limittime=0) 保存一个cookie function PutCookie($key,$value,$kptime=0,$pa="/") 删除一个cookie function DropCookie($key) 获取cookie function GetCookie($key) 获取验证码 function GetCkVdValue() 过滤前台用户输入的文本内容 // $rptype = 0 表示仅替换html标记 // $rptype = 1 表示替换html标记同时去除连续空白字符// $rptype = 2 表示替换html标记同时去除所有空白字符// $rptype = -1 表示仅替换html危险的标记 function HtmlReplace($str,$rptype=0) 获得某文档的所有tag function GetTags($aid) 过滤用于搜索的字符串 function FilterSearch($keyword) 处理禁用HTML但允许换行的内容 function TrimMsg($msg) 获取单篇文档信息 function GetOneArchive($aid)

有限元网格划分

有限元网格划分 摘要:总结近十年有限元网格划分技术发展状况。首先,研究和分析有限元网格划分的基本原则;其次,对当前典型网格划分方法进行科学地分类,结合实例,系统地分析各种网格划分方法的机理、特点及其适用范围,如映射法、基于栅格法、节点连元法、拓扑分解法、几何分解法和扫描法等;再次,阐述当前网格划分的研究热点,综述六面体网格和曲面网格划分技术;最后,展望有限元网格划分的发展趋势。 关键词:有限元网格划分;映射法;节点连元法;拓扑分解法;几何分解法;扫描法;六面体网格 1 引言 有限元网格划分是进行有限元数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。 2 有限元网格划分的基本原则 有限元方法的基本思想是将结构离散化,即对连续体进行离散化,利用简化几何单元来近似逼近连续体,然后根据变形协调条件综合求解。所以有限元网格的划分一方面要考虑对各物体几何形状的准确描述,另一方面也要考虑变形梯度的准确描述。为正确、合理地建立有限元模型,这里介绍划分网格时应考虑的一些基本原则。 2.1 网格数量 网格数量直接影响计算精度和计算时耗,网格数量增加会提高计

算精度,但同时计算时耗也会增加。当网格数量较少时增加网格,计算精度可明显提高,但计算时耗不会有明显增加;当网格数量增加到一定程度后,再继续增加网格时精度提高就很小,而计算时耗却大幅度增加。所以在确定网格数量时应权衡这两个因素综合考虑。 2.2 网格密度 为了适应应力等计算数据的分布特点,在结构不同部位需要采用大小不同的网格。在孔的附近有集中应力,因此网格需要加密;周边应力梯度相对较小,网格划分较稀。由此反映了疏密不同的网格划分原则:在计算数据变化梯度较大的部位,为了较好地反映数据变化规律,需要采用比较密集的网格;而在计算数据变化梯度较小的部位,为减小模型规模,网格则应相对稀疏。 2.3 单元阶次 单元阶次与有限元的计算精度有着密切的关联,单元一般具有线性、二次和三次等形式,其中二次和三次形式的单元称为高阶单元。高阶单元的曲线或曲面边界能够更好地逼近结构的曲线和曲面边界,且高次插值函数可更高精度地逼近复杂场函数,所以增加单元阶次可提高计算精度。但增加单元阶次的同时网格的节点数也会随之增加,在网格数量相同的情况下由高阶单元组成的模型规模相对较大,因此在使用时应权衡考虑计算精度和时耗。 2.4 单元形状 网格单元形状的好坏对计算精度有着很大的影响,单元形状太差的网格甚至会中止计算。单元形状评价一般有以下几个指标: (1)单元的边长比、面积比或体积比以正三角形、正四面体、正六面体为参考基准。 (2)扭曲度:单元面内的扭转和面外的翘曲程度。 (3)节点编号:节点编号对于求解过程中总刚矩阵的带宽和波前因数有较大的影响,从而影响计算时耗和存储容量的大小 2.5 单元协调性 单元协调是指单元上的力和力矩能够通过节点传递给相邻单元。为保证单元协调,必须满足的条件是: (1)一个单元的节点必须同时也是相邻点,而不应是内点或边界

人工智能实践:Tensorflow笔记 北京大学 4 第四讲神经网络优化 (4.6.1) 助教的Tenso

Tensorflow笔记:第四讲 神经网络优化 4.1 √神经元模型:用数学公式表示为:f(∑i x i w i+b),f为激活函数。神经网络是以神经元为基本单元构成的。 √激活函数:引入非线性激活因素,提高模型的表达力。 常用的激活函数有relu、sigmoid、tanh等。 ①激活函数relu: 在Tensorflow中,用tf.nn.relu()表示 r elu()数学表达式 relu()数学图形 ②激活函数sigmoid:在Tensorflow中,用tf.nn.sigmoid()表示 sigmoid ()数学表达式 sigmoid()数学图形 ③激活函数tanh:在Tensorflow中,用tf.nn.tanh()表示 tanh()数学表达式 tanh()数学图形 √神经网络的复杂度:可用神经网络的层数和神经网络中待优化参数个数表示 √神经网路的层数:一般不计入输入层,层数 = n个隐藏层 + 1个输出层

√神经网路待优化的参数:神经网络中所有参数w 的个数 + 所有参数b 的个数 例如: 输入层 隐藏层 输出层 在该神经网络中,包含1个输入层、1个隐藏层和1个输出层,该神经网络的层数为2层。 在该神经网络中,参数的个数是所有参数w 的个数加上所有参数b 的总数,第一层参数用三行四列的二阶张量表示(即12个线上的权重w )再加上4个偏置b ;第二层参数是四行两列的二阶张量()即8个线上的权重w )再加上2个偏置b 。总参数 = 3*4+4 + 4*2+2 = 26。 √损失函数(loss ):用来表示预测值(y )与已知答案(y_)的差距。在训练神经网络时,通过不断改变神经网络中所有参数,使损失函数不断减小,从而训练出更高准确率的神经网络模型。 √常用的损失函数有均方误差、自定义和交叉熵等。 √均方误差mse :n 个样本的预测值y 与已知答案y_之差的平方和,再求平均值。 MSE(y_, y) = ?i=1n (y?y_) 2n 在Tensorflow 中用loss_mse = tf.reduce_mean(tf.square(y_ - y)) 例如: 预测酸奶日销量y ,x1和x2是影响日销量的两个因素。 应提前采集的数据有:一段时间内,每日的x1因素、x2因素和销量y_。采集的数据尽量多。 在本例中用销量预测产量,最优的产量应该等于销量。由于目前没有数据集,所以拟造了一套数据集。利用Tensorflow 中函数随机生成 x1、 x2,制造标准答案y_ = x1 + x2,为了更真实,求和后还加了正负0.05的随机噪声。 我们把这套自制的数据集喂入神经网络,构建一个一层的神经网络,拟合预测酸奶日销量的函数。

有限元网格划分和收敛性

一、基本有限元网格概念 1.单元概述?几何体划分网格之前需要确定单元类型.单元类型的选择应该根据分析类型、形状特征、计算数据特点、精度要求和计算的硬件条件等因素综合考虑。为适应特殊的分析对象和边界条件,一些问题需要采用多种单元进行组合建模。? 2.单元分类选择单元首先需要明确单元的类型,在结构有限元分析中主要有以下一些单元类型:平面应力单元、平面应变单元、轴对称实体单元、空间实体单元、板单元、壳单元、轴对称壳单元、杆单元、梁单元、弹簧单元、间隙单元、质量单元、摩擦单元、刚体单元和约束单元等。根据不同的分类方法,上述单元可以分成以下不同的形式。?3。按照维度进行单元分类 根据单元的维数特征,单元可以分为一维单元、二维单元和三维单元。?一维单元的网格为一条直线或者曲线。直线表示由两个节点确定的线性单元。曲线代表由两个以上的节点确定的高次单元,或者由具有确定形状的线性单元。杆单元、梁单元和轴对称壳单元属于一维单元,如图1~图3所示。 ?二维单元的网 格是一个平面或者曲面,它没有厚度方向的尺寸.这类单元包括平面单元、轴对称实体单元、板单元、壳单元和复合材料壳单元等,如图4所示。二维单元的形状通常具有三角形和四边形两种,在使用自动网格剖分时,这类单元要求的几何形状是表面模型或者实体模型的边界面。采用薄壳单元通常具有相当好的计算效率。

??三维单元的网格具有空间三个方向的尺寸,其形状具有四面体、五面体和六面体,这类单元包括空间实体单元和厚壳单元,如图5所示.在自动网格划分时,它要求的是几何模型是实体模型(厚壳单元是曲面也可以)。 ? 4.按照插值函数进行单元分类 根据单元插值函数多项式的最高阶数多少,单元可以分为线性单元、二次单元、三次单元和更高次的单元。 线性单元具有线性形式的插值函数,其网格通常只具有角节点而无边节点,网格边界为直线或者平面.这类单元的优点是节点数量少,在精度要求不高或者结果数据梯度不太大的情况下,采用线性单元可以得到较小的模型规模.但是由于单元位移函数是线性的,单元内的位移呈线性变化,而应力是常数,因此会造成单元间的应力不连续,单元边界上存在着应力突变,如图6所示。

数据库常用函数

数据库常用函数

一、基础 1、说明:创建数据库 CREATE DATABASE database-name 2、说明:删除数据库 drop database dbname 3、说明:备份和还原 备份:exp dsscount/sa@dsscount owner=dsscount file=C:\dsscount_data_backup\dsscount.dmp log=C:\dsscount_data_backup\outputa.log 还原:imp dsscount/sa@dsscount file=C:\dsscount_data_backup\dsscount.dmp full=y ignore=y log=C:\dsscount_data_backup\dsscount.log statistics=none 4、说明:创建新表 create table tabname(col1 type1 [not null] [primary key],col2 type2 [not null],..) CREATE TABLE ceshi(id INT not null identity(1,1) PRIMARY KEY,NAME VARCHAR(50),age INT) id为主键,不为空,自增长 根据已有的表创建新表: A:create table tab_new like tab_old (使用旧表创建新表) B:create table tab_new as select col1,col2… from tab_old definition only 5、说明:删除新表 drop table tabname 6、说明:增加一个列 Alter table tabname add column col type 注:列增加后将不能删除。DB2中列加上后数据类型也不能改变,唯一能改变的是增加varchar类型的长度。 7、说明:添加主键: Alter table tabname add primary key(col) 说明:删除主键: Alter table tabname drop primary key(col) 8、说明:创建索引:create [unique] index idxname on tabname(col….) 删除索引:drop index idxname 注:索引是不可更改的,想更改必须删除重新建。 9、说明:创建视图:create view viewname as select statement 删除视图:drop view viewname 10、说明:几个简单的基本的sql语句 选择:select * from table1 where 范围 插入:insert into table1(field1,field2) values(value1,value2) 删除:delete from table1 where 范围 更新:update table1 set field1=value1 where 范围

ANSYS有限元网格划分的基本要点

ANSYS有限元网格划分的基本要点 1引言 ANSYS有限元网格划分是进行数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。从几何表达上讲,梁和杆是相同的,从物理和数值求解上讲则是有区别的。同理,平面应力和平面应变情况设计的单元求解方程也不相同。在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。辛普生积分点的间隔是一定的,沿厚度分成奇数积分点。由于不同单元的刚度矩阵不同,采用数值积分的求解方式不同,因此实际应用中,一定要采用合理的单元来模拟求解。 2ANSYS网格划分的指导思想 ANSYS网格划分的指导思想是首先进行总体模型规划,包括物理模型的构造、单元类型的选择、网格密度的确定等多方面的内容。在网格划分和初步求解时,做到先简单后复杂,先粗后精,2D单元和3D单元合理搭配使用。为提高求解的效率要充分利用重复与对称等特征,由于工程结构一般具有重复对称或轴对称、镜象对称等特点,采用子结构或对称模型可以提高求解的效率和精度。利用轴对称或子结构时要注意场合,如在进行模态分析、屈曲分析整体求解时,则应采用整体模型,同时选择合理的起点并设置合理的坐标系,可以提高求解的精度和效率,例如,轴对称场合多采用柱坐标系。有限元分析的精度和效率与单元的密度和几何形状有着密切的关系,按照相应的误差准则和网格疏密程度,避免网格的畸形。在网格重划分过程中常采用曲率控制、单元尺寸与数量控制、穿透控制等控制准则。在选用单元时要注意剪力自锁、沙漏和网格扭曲、不可压缩材料的体积自锁等问题 ANSYS软件平台提供了网格映射划分和自由适应划分的策略。映射划分用于曲线、曲面、实体的网格划分方法,可使用三角形、四边形、四面体、五面体和六面体,通过指定单元边长、网格数量等参数对网格进行严格控制,映射划分只用于规则的几何图素,对于裁剪曲面或者空间自由曲面等复杂几何体则难以

人工智能tensorflow实验报告

一、软件下载 为了更好的达到预期的效果,本次tensorflow开源框架实验在Linux环境下进行,所需的软件及相关下载信息如下: 1.CentOS 软件介绍: CentOS 是一个基于Red Hat Linux 提供的可自由使用源代码的企业级Linux 发行版本。每个版本的CentOS都会获得十年的支持(通过安全更新方式)。新版本的CentOS 大约每两年发行一次,而每个版本的CentOS 会定期(大概每六个月)更新一次,以便支持新的硬件。这样,建立一个安全、低维护、稳定、高预测性、高重复性的Linux 环境。CentOS是Community Enterprise Operating System的缩写。CentOS 是RHEL(Red Hat Enterprise Linux)源代码再编译的产物,而且在RHEL的基础上修正了不少已知的Bug ,相对于其他Linux 发行版,其稳定性值得信赖。 软件下载: 本次实验所用的CentOS版本为CentOS7,可在CentOS官网上直接下载DVD ISO镜像文件。 下载链接: https://www.doczj.com/doc/7b2504162.html,/centos/7/isos/x86_64/CentOS-7-x86_64-DVD-1611.i so. 2.Tensorflow 软件介绍: TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理。Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow为张量从流图的一端流动到另一端计算过程。TensorFlow是将复杂的数据结构传输至人工智能神经网中进行分析和处理过程的系统。TensorFlow可被用于语音识别或图像识别等多项机器深度学习领域,对2011年开发的深度学习基础架构DistBelief进行了各方面的改进,它可在小到一部智能手机、大到数千台数据中心服务器的各种设备上运行。TensorFlow将完全开源,任何人都可以用。

ANSYS有限元分析中的网格划分

ANSYS有限元分析中的网格划分 有限元分析中的网格划分好坏直接关系到模型计算的准确性。本文简述了网格划分应用的基本理论,并以ANSYS限元分析中的网格划分为实例对象,详细讲述了网格划分基本理论及其在工程中的实际应用,具有一定的指导意义。 作者: 张洪才 关键字: CAE ANSYS 网格划分有限元 1 引言 ANSYS有限元网格划分是进行数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。从几何表达上讲,梁和杆是相同的,从物理和数值求解上讲则是有区别的。同理,平面应力和平面应变情况设计的单元求解方程也不相同。在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。辛普生积分点的间隔是一定的,沿厚度分成奇数积分点。由于不同单元的刚度矩阵不同,采用数值积分的求解方式不同,因此实际应用中,一定要采用合理的单元来模拟求解。 2 ANSYS网格划分的指导思想 ANSYS网格划分的指导思想是首先进行总体模型规划,包括物理模型的构造、单元类型的选择、网格密度的确定等多方面的内容。在网格划分和初步求解时,做到先简单后复杂,先粗后精,2D单元和3D单元合理搭配使用。为提高求解的效率要充分利用重复与对称等特征,由于工程结构一般具有重复对称或轴对称、镜象对称等特点,采用子结构或对称模型可以提高求解的效率和精度。利用轴对称或子结构时要注意场合,如在进行模态分析、屈曲分析整体求解时,则应采用整体模型,同时选择合理的起点并设置合理的坐标系,可以提高求解的精度和效率,例如,轴对称场合多采用柱坐标系。有限元分析的精度和效率与单元的密度和几何形状有着密切的关系,按照相应的误差准则和网格疏密程度,避免网格的畸形。在网格重划分过程中常采用曲率控制、单元尺寸与数量控制、穿透控制等控制准则。在选用单元时要注意剪力自锁、沙漏和网格扭曲、不可压缩材料的体积自锁等问题ANSYS软件平台提供了网格映射划分和自由适应划分的策略。映射划分用于曲线、曲面、实体的网格划分方法,可使用三角形、四边形、四面体、五面体和六面体,通过指定单元边长、网格数量等参数对网格进行严格控制,映射划分只用于规则的几何图素,对于裁剪曲面或者空间自由曲面等复杂几何体则难以控制。自由网格划分用于空间自由曲面和复杂实体,采用三角形、四边形、四面体进行划分,采用网格数量、边长及曲率来控制网格的质量。 3 ANSYS网格划分基本原则 3.1 网格数量 网格数量的多少将影响计算结果的精度和计算规模的大小。一般来讲,网格数量增加,计算精度会有所提高,但同时计算规模也会增加,所以在确定网格数量时应权衡两个因数综合考虑。 图1 位移精度和计算时间随网格数量的变化 图1中的曲线1表示结构中的位移随网格数量收敛的一般曲线,曲线2代表计算时间随

EXCEL常用分类函数

EXCEL常用分类函数 (注意有些函数只有加载“分析工具库”以后方能使用) 一、查找和引用函数 ROW 用途:返回给定引用的行号。 语法:ROW(reference)。 Reference为需要得到其行号的单元格或单元格区域。 实例:公式“=ROW(A6)”返回6,如果在C5单元格中输入公式“=ROW()”,其计算结果为5。 COLUMN 用途:返回给定引用的列标。 语法:COLUMN(reference)。 参数:Reference为需要得到其列标的单元格或单元格区域。如果省略reference,则假定函数COLUMN是对所在单元格的引用。如果reference为一个单元格区域,并且函数COLUMN作为水平数组输入,则COLUMN函数将reference中的列标以水平数组的形式返回。 实例:公式“=COLUMN(A3)”返回1,=COLUMN(B3:C5)返回2。 CELL 用途:返回某一引用区域的左上角单元格的格式、位置或内容等信息 IS类函数 用途:用来检验数值或引用类型的函数。它们可以检验数值的类型并根据参数的值返回TRUE或FALSE。ISBLANK(value)、ISNUMBER(value)、ISTEXT(value)和ISEVEN(number)、ISODD(number)。 ADDRESS 用途:以文字形式返回对工作簿中某一单元格的引用。 语法:ADDRESS(row_num,column_num,abs_num,a1,sheet_text) 参数:Row_num是单元格引用中使用的行号;Column_num是单元格引用中使用的列标;Abs_num指明返回的引用类型(1或省略为绝对引用,2绝对行号、相对列标,3相对行号、绝对列标,4是相对引用);A1是一个逻辑值,它用来指明是以A1或R1C1返回引用样式。如果A1为TRUE或省略,函数ADDRESS返回A1样式的引用;如果A1为FALSE,函数ADDRESS返回R1C1样式的引用。Sheet_text为一文本,指明作为外部引用的工作表的名称,如果省略sheet_text,则不使用任何工作表的名称。 实例:公式“=ADDRESS(1,4,4,1)”返回D1。 CHOOSE 用途:可以根据给定的索引值,从多达29个待选参数中选出相应的值或操作。 语法:CHOOSE(index_num,value1,value2,...)。

相关主题
相关文档 最新文档