当前位置:文档之家› CMM测量同轴度测量策略探讨及误差分析

CMM测量同轴度测量策略探讨及误差分析

CMM测量同轴度测量策略探讨及误差分析
CMM测量同轴度测量策略探讨及误差分析

同轴度测量方法[1]

同轴度测量方法 方法一:用两个相同的刃口状V 形块支承基准部位,然后用打表法测量被测部位。 1、测量器具准备:百分表、表座、表架、刃口状V 形块、平板、被测件、全棉布数块、防锈油等。 2、测量步骤 1)将准备好的刃口状V 形块放置在平板上,并调整水平。 2)将被测零件基准轮廓要素的中截面(两端圆柱的中间位置)放置在两个等高的刃口状V 形块上,基准轴线由V 形块模拟,如下图所示。 同轴度测量方法示意图 3)安装好百分表、表座、表架,调节百分表,使测头与工件被测外表面接触,并有1~2圈的压缩量。 4)缓慢而均匀地转动工件一周,并观察百分表指针的波动,取最大读数Mmax 与最小读数Mmin 的差值之半,作为该截面的同轴度误差。 5)转动被测零件,按上述方法测量四个不同截面(截面A 、B、C、D),取各截面测得的最大读数Mimax 与最小读数Mimin 差值之半中的最大值(绝对值)作为该零件的同轴度误差。 6)完成检测报告,整理实验器具。 3、数据处理 1)先计算出单个测量截面上的同轴度误差值,即Δ = (Mmax -Mmin )/2。 2)取各截面上测得的同轴度误差值中的最大值,作为该零件的同轴度误差。 4、检测报告 按步骤完成测量并将被测件的相关信息及测量结果填入检测报告单中,并检验零件的行为误差是否合格。 方法二:利用数据采集仪连接百分表测量法[1] 1、测量仪器:偏摆仪、百分表、数据采集仪 2、测量原理:数据采集仪会从百分表中自动读取测量数据的最大值跟最小值,然后由数据采集仪软件里的计算软件自动计算出所测产品的圆度误差,最后数据采集仪会自动判断所测零件的同轴度误差是否在同轴度范围内,如果所测同轴度误差大于同轴度公差值,采集仪会自动发出报警功能,提醒相关操作人员该产品不合格。测量效果示意图: 数据采集仪连接百分表测量同轴度误差示意图 优势:1)无需人工用肉眼去读数,可以减少由于人工读数产生的误差; 2)无需人工去处理数据,数据采集仪会自动计算出同轴度误差值。 3)测量结果报警,一旦测量结果不在同轴度公差带时,数据采集仪就会自动报警。

测量同轴度误差的方法

测量同轴度误差的方法

一、同轴度 同轴度用于控制轴类零件的被测轴线对基准轴线的同轴度误差。 二、同轴度公差带 同轴度公差带是直径为公差值t,且与基准轴线同轴的圆柱面内的区域。如下图所示。?d孔轴线必须位于直径为公差值0.1mm,且与基准轴线同轴的圆柱面内。 三、任务:测量联动轴零件的同轴度误差 任务分析:被测项目是被测要素为大圆柱面的轴线,基准要素为两端小圆柱面的公共轴线。

含义:大圆柱面的轴线必须位于直径为公差值Φt(Φ0.08mm)的圆柱面内,此圆柱面的轴线与公共基准轴线A‐B(即 两个小圆柱面的公共轴线)重合。 根据含义可知,我们选择测量方法有两种。 四、测量方法 方法一: 用两个相同的刃口状 V 形块支承基准部位,然后用打表法测量被测部位。 1、测量器具准备 百分表、表座、表架、刃口状 V 形块、平板、被测件、全棉布数块、防锈油等。 2、测量步骤 1)将准备好的刃口状 V 形块放置在平板上,并调整水平。 2)将被测零件基准轮廓要素的中截面(两端圆柱的中间位置)放置在两个等高的刃口状 V 形块上,基准轴线由 V 形块模拟,如图 3-77 所示。

3)安装好百分表、表座、表架,调节百分表,使测头与工件被测外表面接触,并有1~2圈的压缩量。 4)缓慢而均匀地转动工件一周,并观察百分表指针的波动,取最大读数Mmax 与最小读数 Mmin 的差值之半,作为该截面的同轴度误差。 5)转动被测零件,按上述方法测量四个不同截面(截面 A 、B、C、D),取各截面测得的最大读数 Mimax 与最小读数 Mimin 差值之半中的最大值(绝对值)作为该零件的同轴度误差。 6)完成检测报告,整理实验器具。 3、数据处理 1)先计算出单个测量截面上的同轴度误差值,即Δ=(Mmax - Mmin )/2。 2)取各截面上测得的同轴度误差值中的最大值,作为该零件的同轴度误差。 4、检测报告 按步骤完成测量并将被测件的相关信息及测量结果填入检测报告单中,并 检验零件的行为误差是否合格。 方法二: 直接利用数据采集仪连接百分表实现高效测量 1、测量仪器:偏摆仪、百分表、太友科技QSmart 数据采集仪。 2、测量原理:数据采集仪会从百分表中自动读取测量数据的最大值跟最小值, 然后由数据采集仪软件里的计算软件自动计算出所测产品的同轴度误差(Δ=(Mmax - Mmin )/2),最后数据采集仪会自动判断所测零件的同轴度误差是否在同轴度公差范围内,如果所测同轴度误差大于圆度公差值,采集仪会自动发出报警功能,提醒相关操作人员该产品不合格。 测量效果示意图:

塔吊垂直度检测、安全检查标准

塔吊垂直度检测塔吊安全检查标准 一、塔吊垂直度检测 1、塔吊垂直度的允许偏差范围 JGJ196-2010《建筑施工塔式起重机安装、使用、拆卸安全技术规程》第30页对塔机垂直度要求规定如下:独立状态或附着状态下最高附着点以上塔身轴线对支承面垂直度不得大于4/1000,最高附着点下塔身轴线对支承面垂直度不得大于相应高度的2/1000, 2、塔吊垂直度的计算 塔机垂直度<4/1000,。 安装附着装置后,附着以下<2/1000,附着以上<4/1000 例:标准节的高度为30m,则最大偏差不能超过30*4=120mm=12cm 注:塔吊的一节标准节长2.5m,一个角铁宽15cm。高度为:从第一个标准节到驾驶室下面的标准节。观测距离为:距塔吊高度1.5倍的距离架设仪器观测。 例:宁晋****项目1#、2#、3#、4#塔吊垂直度检测 1# 塔吊21m,距离塔吊1.5倍距离观测,限差按最小值2/1000 A、大臂朝北仪器顺着大臂方向,架在北侧,测得向东偏1cm B、大臂朝西仪器顺着大臂方向,架在西侧,测得向南偏5cm,限差 4.2cm,超限,调整后,测得向南偏1cm,符合要求。 2# 塔吊27m,距离塔吊1.5倍距离观测,限差按最小值2/1000 A、大臂朝西仪器顺着大臂方向,架在东侧,测得向北偏7cm,限差 5.4cm,超限,调整后,测得向北偏1.3cm,符合要求。 B、大臂朝北仪器顺着大臂方向,架在北侧,测得向东偏3.5cm,限差5.4cm,符合要求

3# 塔吊33m,距离塔吊1.5倍距离观测,限差按最小值2/1000 A、大臂朝西仪器顺着大臂方向,架在西侧,测得向北偏16.5cm,限差6.6cm,超限,调整后,测得向北偏cm,符合要求。 B、大臂朝南仪器顺着大臂方向,架在北侧,测得向西偏25cm,限差6.6cm,超限,调整后,测得向北偏cm,符合要求。 A′大臂朝北仪器顺着大臂方向,架在北侧,测得向东偏1cm,符合要求。 B′大臂朝西仪器顺着大臂方向,架在西侧,测得向北偏4cm,符合要求。 4# 塔吊37.5m,距离塔吊1.5倍距离观测,限差按最小值2/1000 A、大臂朝东仪器顺着大臂方向,架在东侧,测得向南偏1cm,限差 7.5cm,符合要求。 B、大臂朝北仪器顺着大臂方向,架在北侧,测得向东偏7.5cm,限差7.5cm,符合要求,调整后,测得向东偏cm,符合要求。 二、塔吊安全检查标准 (一)力矩限制器 塔吊应安装灵敏可靠的起重力矩限制器。当达到额定起重力矩时,限制器应发出报警信号;当起重力矩超过额定值的8%时,限制器应切断上升和增幅电源,但塔吊可做下降和减幅运动。 (二)限位器 塔吊根据不同型号应装设行程限位(包括小车和驾驶室)、起重臂变幅限位和起升超高限位,各限位装置灵敏可靠。 (三)保险装置 1、塔吊吊钩应设置防止吊物滑脱的保险装置。 2、卷扬机卷筒应设置防止钢丝绳滑出的防护保险装置。 3、当爬梯高度超过5M时,从25M处开始应设置直径0.65—0.8M,间距

三坐标测量同轴度方法

三坐标测量同轴度方法 方法一同轴度测量方法 两个孔的公共轴心线是指两孔各自被测表面长度的中点连线;假使是三个或三个以上的圆柱表面,它们的公共轴心线应该在图样上另做规定。 - 几种测量机通常采用的同轴度测量方法: 一、应用系统功能法: 即测量机软件系统中自带的同轴度和同心度测量标准子程序,用户在测量时可方便地进行调用。 二、极坐标测量法: 这是一种类似于平台测量的检测方法,其基准元素可以通过圆柱、阶梯柱、直线以及圆/圆等测量后构造的直线获得。可以说,几乎所有用作基准元素的单一基准或组合基准都将包括在内,而被测要素则更为简单,通常情况只是圆的测量。 其操作步骤如下: 1、测量单一基准轴线或公共基准轴线并用其建立第一轴(同心度测量除外); 2、将基准轴线清零(即平移原点到基准中心); 3、在被测元素(孔或轴)上测若干截圆(通常测两端); 4、输出被测截圆极径(PR值); 5、取其输出较大PR值的2倍为所测同轴度误差。 三、求距法: 该方法的基本原理是通过计算圆心到基准轴线距离的方法求得同轴度误差。与极坐标测量方法不同的是,被选定的基准轴线无须清零,但评定同轴度误差时同样要取计算结果中最大距离乘以2。 - 关于两个相邻较远的短基准同轴度的测量: 这是一个比较典型困扰测量机用户的问题,事实上已经证明由此单从测量数据上来看将有相当一部分工件被视为“超差品”,而那些“超差品”经装配实验后证明大多数没有问题。这就不得不需要引起测量机操作员的注意。分析其原因,既不是机器精度太低,也不是系统软件计算错误,主要是图样标注不妥。 对此,可采用以下几种相应的测量方法: 1、当基准元素为孔时,可插入配合间隙较为合适的心棒,以延长基准轴线的实测长度; 2、采用建立公共基准的测量方法,模拟专用心棒进行检验的方法,分别测量两圆柱对公共轴心线的同轴度;(参看前面公共基准轴线的建立方法和极坐标测量法); 3、在基准圆柱表面内测量更多的点,(多用于连续扫描测头)以加大计算的信息量,使系统确定最大内接圆或最小外接圆时有充足的表面形状信息。

三坐标测量同轴度方法

浅析三坐标测量同轴度方法 同轴度检测是我们在测量工作中经常遇到的问题,用三坐标进行同轴度的检测不仅直观且又方便,其测量结果精度高,并且重复性好。辽宁曙光汽车集团零部件公司主要生产汽车零部件,有很多产品需要进行严格的同轴度检查,特别是出口产品的检查更加严密,如EATON差速器壳、AAM拨叉、主减速器壳等。因此能否准确地测量出此类零件的同轴度对以后的装配有着一定的影响。 1、影响同轴度的因素 在国标中同轴度公差带的定义是指直径公差为值t,且与基准轴线同轴的圆柱面内的区域。它有以下三种控制要素:①轴线与轴线;②轴线与公共轴线; ③圆心与圆心。 因此影响同轴度的主要因素有被测元素与基准元素的圆心位置和轴线方向,特别是轴线方向。如在基准圆柱上测量两个截面圆,用其连线作基准轴。在被测圆柱上也测量两个截面圆,构造一条直线,然后计算同轴度。假设基准上两个截面的距离为10 mm,基准第一截面与被测圆柱的第一截面的距离为100 mm,如果基准的第二截面圆的圆心位置与第一截面圆圆心有5μm的测量误差,那么基准轴线延伸到被测圆柱第一截面时已偏离50μm(5μmx100÷10),此时,即使被测圆柱与基准完全同轴,其结果也会有100μm的误差(同轴度公差值为直径,50μm是半径),测量原理图如图1所示。 2、用三坐标测量同轴度的方法 对于基准圆柱与被测圆柱(较短)距离较远时不能用测量软件直接求得,通常用公共轴线法、直线度法、求距法求得。 2.1 公共轴线法 在被测元素和基准元素上测量多个横截面的圆,再将这些圆的圆心构造一条3D直线,作为公共轴线,每个圆的直径可以不一致,然后分别计算基准圆柱和被测圆柱对公共轴线的同轴度,取其最大值作为该零件的同轴度。这条公共

同轴度误差测量方法介绍

同轴度误差测量方法介绍

摘要:同轴度属于形位公差中的一种,主要是用来控制理论上应同轴的被测轴线与基准轴线的不同轴程度。下面我们将对同轴度进行介绍,主要包括其测量方法等内容。 什么是同轴度? 同轴度:用于控制轴类零件的被测轴线对基准轴线的同轴度误差。 同轴度公差:是用来控制理论上应同轴的被测轴线与基准轴线的不同轴程度。 同轴度误差:被测轴线相对基准轴线位置的变化量. 简单理解就是:零件上要求在同一直线上的两根轴线,它们之间发生了多大程度的偏离,两轴的偏离通常是三种情况(基准轴线为理想的直线)的综合——被测轴线弯曲、被测轴线倾斜和被测轴线偏移。 同轴度误差是反映在横截面上的圆心的不同心。 同轴度的作用 1、轴类零件圆度、同心度、圆周跳动、断面差的精密测量 2、轴类零件外圆及内园参数的同时精密测量、 3、轴类零件多点参数的同时精密测量; 4、快速测量、断差面、内圆及外圆可同时测量。 任务:测量联动轴零件的同轴度误差

任务分析:被测项目是被测要素为大圆柱面的轴线,基准要素为两端小圆柱面的公共轴线。 含义:大圆柱面的轴线必须位于直径为公差值Φt(Φ0.08mm)的圆柱面内,此圆柱面的轴线与公共基准轴线A‐B(即两个小圆柱面的公共轴线)重合。 根据含义可知,我们选择测量方法有两种。 方法一: 用两个相同的刃口状 V 形块支承基准部位,然后用打表法测量被测部位。 1、测量器具准备 百分表、表座、表架、刃口状 V 形块、平板、被测件、全棉布数块、防锈油等。 2、测量步骤 1)将准备好的刃口状 V 形块放置在平板上,并调整水平。 2)将被测零件基准轮廓要素的中截面(两端圆柱的中间位置)放置在两个等高的刃口状 V 形块上,基准轴线由 V 形块模拟,如下图所示。

同轴度测量方法

同轴度测量方法 方法一: 用两个相同的刃口状V 形块支承基准部位,然后用打表法测量被测部位。 1、测量器具准备 百分表、表座、表架、刃口状V 形块、平板、被测件、全棉布数块、防锈油等。 2、测量步骤 1)将准备好的刃口状V 形块放置在平板上,并调整水平。 2)将被测零件基准轮廓要素的中截面(两端圆柱的中间位置)放置在两个等高的刃口状V 形块上,基准轴线由V 形块模拟,如下图所示。 同轴度测量方法示意图 3)安装好百分表、表座、表架,调节百分表,使测头与工件被测外表面接触,并有1~2圈的压缩量。 4)缓慢而均匀地转动工件一周,并观察百分表指针的波动,取最大读数Mmax与最小读数Mmin的差值之半,作为该截面的同轴度误差。 5)转动被测零件,按上述方法测量四个不同截面(截面A 、B、C、D),取各截面测得的最大读数Mimax与最小读数Mimin差值之半中的最大值(绝对值)作为该零件的同轴度误差。 6)完成检测报告,整理实验器具。 3、数据处理 1)先计算出单个测量截面上的同轴度误差值,即Δ = (Mmax-Mmin)/2。 2)取各截面上测得的同轴度误差值中的最大值,作为该零件的同轴度误差。 4、检测报告 按步骤完成测量并将被测件的相关信息及测量结果填入检测报告单中,并 检验零件的行为误差是否合格。 方法二:利用数据采集仪连接百分表测量法[1] 1、测量仪器:偏摆仪、百分表、数据采集仪 2、测量原理:数据采集仪会从百分表中自动读取测量数据的最大值跟最小值,然后由数据采集仪软件里的计算软件自动计算出所测产品的圆度误差,最后数据采集仪会自动判断所测零件的同轴度误差是否在同轴度范围内,如果所测同轴度误差大于同轴度公差值,采集仪会自动发出报警功能,提醒相关操作人员该产品不合格。测量效果示意图:

垂直度误差检测

任务一垂直度误差检测 知识目标 理解直线度公差的含义 了解自准直仪的工作原理 技能目标 掌握自准直仪测量直线度误差的方法 熟悉直线度误差的评定方法 1、任务描述 2、任务分析 3、相关知识 (1)垂直度公差 限制实际要素对基准在垂直方向上变动量的一项指标。 垂直度公差也有面对面、面对线、线对面、线对线等情形,如图,面对面的垂直度公差带是间距等于公差值且与基准面垂直的两平行平面之间的区域。

线对面的垂直度公差带是直径等于公差值且与基准面垂直的圆柱面内的区域。 (2)检测原则 测量特征值的原则。 (3)方箱 是平台测量的主要辅助工具,具有垂直度精度很高的四个相邻平面,用作测量的辅助基准,也可用作划线使用。 (4)塞尺 也称厚薄规,测量精度一般为0.01mm,每把13、14、17、20片不等,当遇到测量很小的两个平面之间的距离时,塞尺可以测出缝隙的大小,使用时可以单片使用也可以不同厚度尺片组合一起。 使用时要注意用力适当,方向合适,不可强塞,防止弯曲过度甚至折断和操作,只检查某一间隙是否小于规定值时,则用符合规定的最大值的塞片塞该间隙,如果不能塞入即合格,反之不合格。 4、任务实施 (1)操作步骤 1)清洁工件、平板、方箱,检查百分表零位偏差 2)将方箱放在平板合适位置,将工件基准平面旋转在平板上 3)调整被测平面靠近方箱,保持基准平面与平板稳定接触 4)用塞尺测量间隙的最大值,并记录 5)塞尺读数的最大值就是垂直度误差,填写检测报告,给出合格性结论

6)仪器清洁保养并归位。 (2)注意事项 在检测过程中,实际基准平面要与平板保持稳定接触,用平板模拟理想基准平面。 5、知识拓展 (1)垂直度公差值 (2)垂直度误差其他检测方法介绍 垂直度误差可用平板和带指示表的表架、自准直仪和三坐标测量机等测量。主要有打表法、间隙法和水平仪光学仪器法。 1)先用直角尺调整指示表,当直角尺与固定支撑接触时,将指示表的指针调零,然后对工件进行测量,使固定支撑与被测实际表面接触,指示表的读数即该测点相对于理论位置的偏差。改变指示表在表架上的高度位置,对被测表面的不同点进行测量,取指示表读数的最大值与最小值之差作为被测表面对基准平面的垂直度误差。 2)面对线的垂直度误差测量 用导向块模拟基准轴线,将被测零件旋转在导向块内,然后测量整个被测表面,取指示表读数的最大值与最小值之差作为垂直度误差。 3)将被测零件的基准面固定在直角座上,同时调整靠近基准的被测表面的读数差为最小值,取指示表在整个表面各点测得的最大与最小读数之差,作为该零件睥垂直度误差。 4)将准直仪放置在基准实际表面上,时间调整准直仪使其光轴平行于基准实际表面,然后

水泵机组同轴度的测量与校正

水泵机组同轴度的测量 与校正 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

水泵机组同轴度的测量与校正 状元水厂项慧均 摘要:本文主要是根据状元水厂的水泵机组的特点,叙述联轴器的配合偏差、机泵同轴度测量误差产生的原因及解决方法、主要以叙述水泵机组同轴度的测量和校正方法为主。 关键词:配合偏差,同轴度,联轴器,轴向窜动,径向偏差,轴向偏差,不同心度,不平行度。 前言:水泵机组的同轴度是指水泵轴和电机轴的装配偏差,而联轴器是电机和水泵传动的联接部件,机泵的配合偏差也就是联轴器的配合偏差,联轴器装配后都存在着配合偏差,联轴器的配合偏差过大会造成水泵机组的振动增大,是影响轴承、联轴器损坏的主要原因,因此,为了减少水泵机组的振动,就必须减少联轴器的配合偏差,把偏差调整到允许的范围内,才能有效地保证机组的机械寿命,在机泵的运行过程中,因机组自身的振动或基础与管路的沉降等等原因都会造成联轴器配合偏差变化,所以定期对水泵机组同轴度的测量与校正是机泵维护中的重要项目。 一. 联轴器配合偏差的介绍。 联轴器配合的偏差有三种:径向偏差、轴向偏差、角向偏差,径向偏差是指联轴器的两个圆心之间的偏差,可用不同心度来表示,轴向偏差是指两配合面之间的距离与标准配合距离之间的偏差,同轴度测量中用联轴器的间距来表示,间距的测量较简单,用游标尺可直接测量出来,由于轴向偏差的精度要求较低(误差为±3mm),且基座的沉降或设备的振动基本上不影响间距的变化,即使偏差超值校正也简单,所以在同轴度测量中以

测量径向偏差和角向偏差为主,角向偏差是指联轴器两端面与平行端面的角度偏差,角向偏差可用机泵轴心的不平行度来表示,定义为在轴向的一米的距离上的与基准轴中心线的偏差值。由于习惯上把联轴器的角向偏差称为机泵同轴度中的轴向偏差,所以此本文也依照习惯在接下来叙述中把联轴器的角向偏差称为“轴向偏差”,联轴器的轴向偏差用联轴器的间距来表示。 二. 机泵同轴度测量的误差原因分析 状元水厂以前测同轴度的方法是习惯上用一只百分表对联轴器的径向和轴向进行测量,往往在同一时间里多次测量的值都存在较大的偏差,而且数值有时为正偏差有时为负偏差,即使后来用激光校正仪来测,在同一时间里多次测量的值都存在偏差,因测量值不准,就无法校正机泵的同轴度。经过分析发现:我厂的机泵联轴器是膜片式联轴器,在测量中时将联轴器转动180°时,水泵或电机有轴向窜动现象出现,每次测量时其轴向窜动量都是不同的,窜动量从几丝到几十丝的之间变化,所以机泵同轴度测量的误差主要是机泵的轴向窜动造成的,轴向窜动对径向偏差的测量影响微小,对轴向偏差的测量影响很大,为了消除轴向窜动对轴向偏差测量的误差,准确地测量出轴向偏差值,通过在CAD图形上进行模拟分析,发现如在测量轴向偏差是用两只相隔180°的百分表同时测量,就可以消除掉轴向窜动引起的测量误差,如下的图1就是模拟轴向窜动时测量轴向偏差的分析图形。 图1 三. 机泵同轴度的测量只要是测量径向偏差和轴向偏差,径向偏差和轴向偏差说明如下:

怎样正确标注同轴度公差

怎样正确标注同轴度公差

什么是同轴度?怎样正确标注同轴度公差? 2015-07-29 11:07 作者:管理员11 来源:未知浏览: 3678 次字号: 大中小摘要:什么是同轴度?怎样正确标注同轴度公差?答:同轴度是表示两个轴线保持在同一直线的状况,即通常所说的共轴状况。同轴度公差是被测实际轴线相对于基准轴线所允许的最大变动量。零件上同轴位置的要素很多,如图109所示o中间齿轮轴上定位圆柱面轴线与齿轮 什么是同轴度?怎样正确标注同轴度公差? 答:同轴度是表示两个轴线保持在同一直线的状况,即通常 所说的共轴状况。 同轴度公差是被测实际轴线相对于基准轴线所允许的最大变 动量。 零件上同轴位置的要素很多,如图109所示o中间齿轮轴 上定位圆柱面轴线与齿轮支承圆柱面轴线间(图109a)、衬套 内孔轴线与外圆柱面轴线间(图109b)、曲轴飞轮连接锥面轴 线与主轴颈轴线间(图109c)及箱体支承孔各轴线间(图 109d)等。 各种零件结构形式虽然不同,但其同轴关系几何特征都完全

一样。因此,控制同轴度误差变动范围的公差带形式只有一种, 即直径为公差值t,且与基准轴线同轴的圆柱面所限定的区域。

同轴要素结构形式多种多样,其功能要求也各不相同,为此 应给出不同形式的同轴度公差要求,且采用不同方法进行标注。 应当指出:无论哪种形式的同轴度公差要求,其被测与基准 要素均为中心要素(轴线),故在标注时框格指引线箭头和基准 符号均应与相应的尺寸线对齐。 (1)单一基准要素同轴度公差要求是指基准要素为单一 轴线要素,如图110所示的中间齿轮座用于支承中间齿轮,为保 证安装在其上的中间齿轮与齿轮系相关齿轮间 正确啮合,必须使 其安装位置正确。该零件上φ30mm圆柱面作为安装定位面,而 φ25mm圆柱面是中间齿轮回转中心面,因而必须保持两轴线间 同轴,才能保证其正确的啮合位置,故给出同轴度公差。 标注时,首先与基准要素尺寸线对齐注出基准符号,以确定 基准轴线A,并在公差框格内注出相应的基准字母代号,同时在 公差值前加注“φ”,然后将框格指引线箭头与被

建筑物垂直度的规定及要求

建筑物垂直度的规定 1.相关规范:《建筑变形测量规程》、《工程测量规范》。 2.在土木工程施工中,测量工作是贯穿整个施工过程各个阶段的基础性技术工作。施工测量工作的内容及其完成情况的准确程度,对工程能否顺利施工及其质量水平起着至关重要的作用。为此,国家颁布了系统的工程测量和施工验收规范、规程,以指导和规范工程测量技术工作。应高度的重视施工测量技术、测量管理。 3.施工测量的主要内容: (1)工程场地施工控制测量,主要包括建立建筑平面控制网和高程控制网。 (2)建筑主轴线测量及定位放线。 (3)主体施工测量,包括轴线投测及高程传递。高层(超高层)建筑物主体施工测量中的主要问题是控制垂直度,即是须将基准轴线准确地向高层引测,要求各层相应轴线位于同一竖直平面内。因此,控制轴线投测的竖向偏差,并使其偏差值不超过规范、规程允许的限值,是高层建筑施工测量中一件很重要的工作。 (4)建筑变形测量。其主要内容包括对建筑物实体的沉降观测、倾斜观测、位移观测及裂缝观测等。 (5)施工偏差检测。各种结构构件及建筑设备,其就位、垂直度、标高等状态,难免会因施工及环境等原因出现偏差。因此,施工规范、规程及质量验评标准都规定了要对结构施工偏差情况进行检查,并规定了允许偏差值。 4.关于高层建筑施工竖向(垂直度)控制的规定要求。从以上对建筑施工测量有关内容分类可看出,对于建筑物施工过程,其施工过程的竖向(垂直度)控制,也即轴线投测的控制是非常重要的一环。轴线投测的准确度直接关系到建筑结构施工质量及安全性。对于超高层建筑物来讲尤其重要。因此,《高层建筑混凝土结构技术规程》(JGJ 3—2002)对高层建筑结构施工的测量放线作业及其允许误差作了明确的规定。其中第7.2.3条,规定了测量竖向垂直度时,必须根据建筑平面布置的具体情况确定若干竖向控制轴线,并应由初始控制线向上投测。对于轴线投测的误差,规定了层间测量偏差不应超过3mm;建筑全高垂直度测

同轴度误差的非接触精密测量方法

!""#年第$%卷第!期测试技术学报&’()$%*’)!!""#+总第,,期-./01234/56786329:738017:72667;<2/4/=> +?@A *’B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B ),,-文章编号C$D %$E %,,F +!""#-"!E "$#G E "#同轴度误差的非接触精密测量方法 王天煜I 马 和I 张树森+辽宁工程技术大学机械工程学院I 辽宁阜新$!#"""-摘要C 根据夫朗和费单缝衍射原理I 以激光作光源I 采用线阵J J K 获取衍射条纹图像I 实现同轴度误差 的非接触自动测量L 通过对比测量和精度分析表明该方法测量精度高I 测量装置结构简单I 具有实用价值L 关键词C 同轴度误差M 激光M 衍射条纹M J J K 中图分类号C N O !!文献标识码C P 6Q R :R S T U V W X Y;Z S [S \W ]^7V V Z V _W ]Q‘V R a W T W Z X S X b2Z X c 6Z U a Q W X Y:R ]Q Z b dP *e N f g h E i @I jP k l I m k P *e ?n @E o l h p +J ’((l p l ’q jl r n g h f r (s h p f h l l t f h p I u f g ’h f h pN l r n h f r g (v h f w l t o f x i I y @z f h $!#"""I J n f h g -3{T ]V S a ]C O g o l |’hy @(g h n l q l f }oo f h p (lp g ~|f q q t g r x f ’h~t f h r f ~(lg h |@o f h pu g o l tg o(f p n x o ’@t r lg h | r ’((l r x f h p|f q q t g r x f ’hf A g p l !iJ J K I g hg @x ’A g x f ’hg h |h ’h E x ’@r n f h pA l x n ’|q ’t A l g o @t f h pr ’g z g (f x i l t t ’t f o t l g (f "l |)O ir ’A ~g t f h pA l g o @t f h pg h |g h g (i "f h p~t l r f o f ’h I f x ~t ’w l o x n g x x n f o A l x n ’|f o ’q n f p n ~t l r f o f ’h I o f A ~(l o x t @r x @t l g h |~t g r x f r g (w g (@l )#R ^_Z V b T C r ’g z g (f x il t t ’t M (g o l t M |f q q t g r x f ’ho x t l g $M J J K 在几何量测量中I 同轴度误差常见的测量方法有坐标法%对径双测头测量法%反向法和壁厚差法等&$I !’I 这些测量方法都是在通用测量器具上如圆度仪%坐标测量仪%分度头或以平板为基准I 利用&型块和指示器进行测量)本文介绍用激光测量同轴度误差I 实现非接触测量I 用J J K 获取衍射条纹图像I 通过对比测量和精度分析I 证明该方法测量精度高I 测量装置结构简单I 自动化程度高I 有很高的实用价值)$测量系统构成 如图$所示I 将激光器%被测工件%光路部分及接收屏布置在同一平台上I 且激光器%棱缘%接收屏图$测量系统构成示意图5W Y )$N n l o $l x r n’q A l g o @t l A l h x o i o x l g A 可作上下%前后调整I 被测工件安装在顶尖上I 或放在& 型块上I &型块可沿导轨前后滑动)调整棱缘对工件的高 度I 使之与工件形成狭缝I k l E *l 激光器发出的激光束经 孔径光阑消除杂散光后I 照射到被测工件与棱缘形成的 狭缝上I 在屏幕与工件之间放一负透镜&#’I 可提高测量精 度和衍射条纹的分辨率)将线阵J J K 摄像头固定在接收 屏上I J J K 位置可调I 用J J K 获取衍射条纹图像I J J K 将衍射条纹图样的光强信号转换成电信号I 经数据采集卡及接口电路送入计算机中进行数据处理)!测量原理 根据夫朗和费单缝衍射原理I 当激光束通过棱缘与被测圆柱表面形成狭缝(时I 在接收屏上可看到明暗相间的衍射条纹I 其条纹间距)与激光波长*I 狭缝至屏幕间的距离+之间关系为(,*+-.I 加入H 收稿日期C!""#E "#E "D 基金项目C 辽宁工程技术大学校基金资助项目I 基金号"!/,G 作者简介C 王天煜+$F D 0/-I 女I 高级工程师I 硕士生I 主要从事机械制造及自动化的研究)万方数据

各种测量方法

各种测量方法 一、轴径 在单件小批生产中,中低精度轴径的实际尺寸通常用卡尺、千分尺、专用量表等普通计量器具进行检测;在大批量生产中,多用光滑极限量规判断轴的实际尺寸和形状误差是否合格;;高精度的轴径常用机械式测微仪、电动式测微仪或光学仪器进行比较测量,用立式光学计测量轴径是最常用的测量方法。 二、孔径 单件小批生产通常用卡尺、内径千分尺、内径规、内径摇表、内测卡规等普通量具、通用量仪;大批量生产多用光滑极限量规;高精度深孔和精密孔等的测量常用内径百分表(千分表)或卧式测长仪(也叫万能测长仪)测量,用小孔内视镜、反射内视镜等检测小孔径,用电子深度卡尺测量细孔(细孔专用)。 三、长度、厚度 长度尺寸一般用卡尺、千分尺、专用量表、测长仪、比测仪、高度仪、气动量仪等;厚度尺寸一般用塞尺、间隙片结合卡尺、千分尺、高度尺、量规;壁厚尺寸可使用超声波测厚仪或壁厚千分尺来检测管类、薄壁件等的厚度,用膜厚计、涂层测厚计检测刀片或其他零件涂镀层的厚度;用偏心检查器检测偏心距值,用半径规检测圆弧角半径值,

用螺距规检测螺距尺寸值,用孔距卡尺测量孔距尺寸。 四、表面粗糙度 借助放大镜、比较显微镜等用表面粗糙度比较样块直接进行比较;用光切显微镜(又称为双管显微镜测量用车、铣、刨等加工方法完成的金属平面或外圆表面;用干涉显微镜(如双光束干涉显微镜、多光束干涉显微镜)测量表面粗糙度要求高的表面;用电动轮廓仪可直接显示Ra0.025~6.3μm 的值;用某些塑性材料做成块状印模贴在大型笨重零件和难以用仪器直接测量或样板比较的表面(如深孔、盲孔、凹槽、内螺纹等)零件表面上,将零件表面轮廓印制印模上,然后对印模进行测量,得出粗糙度参数值(测得印模的表面粗糙度参数值比零件实际参数值要小,因此糙度测量结果需要凭经验进行修正);用激光测微仪激光结合图谱法和激光光能法测量Ra0.01~0.32μm的表面粗糙度。 五、角度 1.相对测量:用角度量块直接检测精度高的工件;用直角尺检验直角;用多面棱体测量分度盘精密齿轮、涡轮等的分度误差。 2.直接测量:用角度仪、电子角度规测量角度量块、多面棱体、棱镜等具有反射面的工作角度;用光学分度头测量工件的圆周分度或;用样板、角尺、万能角度尺直接测量精度要求不高的角度零件。3.间接测量:常用的测量器具有正弦规、滚柱和钢球等,也可使用三坐标测量机。 4.小角度测量:测量器具有水平仪、自准直仪、激光小角度测量仪

三坐标测量仪同轴度测量的方法

三坐标测量仪同轴度测量的方法 作者:admin 来源:未知时间:2014-03-20 08:38 查看:1640次 摘要:同轴度是表示零件的有关要素(轴与轴、孔与孔、轴与孔之间)要求同轴,即控制实际轴线与基准轴线的偏离程度。公司内部有三坐标测仪的,建议使用三坐标测量仪进行测量,三坐 同轴度是表示零件的有关要素(轴与轴、孔与孔、轴与孔之间)要求同轴,即控制实际轴线与基准轴线的偏离程度。公司内部有三坐标测仪的,建议使用三坐标测量仪进行同轴度测量,三坐标是公认的测量空间形状误差较好的精密检测设备。 1、利用三坐标测量仪进行测量并直接评价出同轴度误差,有两种方法:一种是测量轴线与基准轴线直接评价法,而另一种是公共轴线法; 一些书中介绍的以一个孔建立一个基准轴线,而评价另个孔与基准的同轴度,由于测量孔和基准孔之间存在一定的距离,因此在评价时,测量误差就会被延长。通过三坐标测量验证,这种方法得出的数据是非常大的,而用这样的数据进行校对机床,反而产生了不良的效果,因此我们采用了用公共轴线法进行评价的方法,这种方法是比较适合生产现场和装配的实际情况的。 如用公共轴线法测量距离为L 的两个孔的同轴度,我们可以分别在两个孔测量两个截面圆,如果孔比较长的情况下,建议各孔均测出两个截面圆,用两个截面圆连线找出其中点即中间截面圆,两孔中间截面圆圆心连线建立公共轴线,把零点设在公共轴线上,这样公共基准就找好了,然后用刚刚测量的单个孔的两个截面圆连线,分别与公共轴线进行比较同轴度,取最大值为两孔同轴度的误差。如图 评价1、2 连线与公共轴线同轴度, 评价4、5 连线与公共轴线同轴度, 取最大差值为同轴度 如本例中就很按照图的规律用三坐标直接评价,在两个外圆上分别取截面圆,因其外 圆的长度很短,可直接取两端A、B 基准的一个截面圆心连线为公共轴线,在坐标系中并设 为零点,然后测量两端内孔后分别与公共轴线同轴度进行比较,测得 零件标记 1# 2# 3# 4# 5# 同轴度◎ 0.164 0.228 0.173 0.260 0.093 可以看出按客户0.15 的同轴度要求,只有5#合格(5#是由远离操作者那个轴加工的),1#、2#、3#、4#超差(靠近操作者的轴加工)。机床靠近操作者的轴应该调整。

同轴度量规的设计及误差分析

同轴度量规的设计及误差分析 位置量规是检验零件关联被测要素的实际轮廓是否超越规定边界(最大实体边界或实效边界)的量规。边界的方向由基准确定,位置由基准的理论正确尺寸确定。同轴度量规是实际生产中广泛使用的一种位置量规,具有设计加工简单,使用方便,成本低廉等优点,下面对同轴度量规的设计方法及所产生的误差作简单的阐述与分析。 一、同轴度量规的设计: GB8069-87《位置量规》国家标准适用于按GB1182~1184-80《形状和位置公差》,GB4249-84《公差原则》所规定的被测要素遵守相关原则(最大实体原则、包容原则)的平行度、垂直度,倾斜度、同轴度、对称度和位置度的量规。下面看一个典型的同轴度测量的例子,如图1所示,要求测量孔d2对d1的同轴度要求,制件定位基准孔d1遵守最大实体原则,被测要素孔d2遵守最大实体原则,其基本条件完全满足GB8069-87中所规定的条件,可以适用此标准设计同轴度量规。 因此我们可以按照GB8069-87《位置量规》的计算公式来计算各部分尺寸,如下所示: 1、定位部分: (1)基本尺寸d BP=D MMC (2)极限尺寸d LP=D BP0 -TP (3)磨损极限尺寸d WP=D BP-(TP+WP) 2、测量部分: (1)基本尺寸d BM=D MMC-t (2)极限尺寸d LM=(D BM+FM) 0 -TP (3)磨损极限尺寸d WM=(D BM+FM)-(TM+WM) 其中TP、WP、TM、WM及FM可以从GB8069-87的表2和表3中查出。 必须指出,上述所列量规设计公式只适用于分别检验场合,即是在零件基准孔本身的形位公差和尺寸公差检验合格后再作为基准检测其它要素。量规具体结构如图2所示。量规能够完全插入,则制件该检测项目合格。

长距离同轴度测量方法及实验

第18卷 第2期1997年4月 计 量 学 报ACTA METROLO GICA SIN ICA Vol.18,№2  April ,1997 长距离同轴度测量方法及实验 3 成相印 方仲彦 殷纯永 郭继华 (清华大学,北京 100084) 摘要 本文介绍了一种新型的自适应双频激光同轴度测量系统,该系统利用两个完全对称的渥拉斯顿棱镜,一个作为测量元件,另一个作为补偿元件。采用比相技术处理测量信号,因而测量元件可以暂时移出光路,能够进行同轴度的测量。系统的光学设计使激光光束的平漂和角漂不影响测量结果,对激光的漂移有自适应性。两束干涉光基本符合共光路原则,因而对大气湍流、空气扰动的影响具有更强的适应性,可用于长距离直线度、同轴度的测量。该系统与HP5528双频激光干涉仪在27m 的长导轨上进行了测量直线度的比对实验及挡光实验。比对实验结果表明,该系统在测量精度及稳定性上不低于HP5528。挡光实验表明,该系统挡光后,数据能够自动恢复,可用于同轴度的测量。 关键词: 直线度测量 同轴度测量 自适应系统 本文于1995-12-26收到,1996-10-16修改收到。3 国家自然科学基金资助项目 1 前言 激光在准直测量方面的应用十分广泛。利用双频激光干涉仪的直线度附件测直线度是其成功的范例,其光路如图1所示。该方案对于激光光束的平漂和角漂有自适应作用,测量精度 图1 双频激光测直线度原理图 高,工作稳定。传统的双频激光干涉仪在信号处理上采用锁相倍频计数技术,不允许光路信号中断,否则计数立即无效,因而HP5528等双频激光干涉仪不可能用于测量同轴度。 作者提出了一种新型的自适应双频激光准直系 统,该系统可以用于同轴度测量。本文介绍了该系统 的测量原理,并与HP5528测直线度系统进行了比对实验。 2 测量原理 同轴度测量系统原理如图2所示。双频激光头出射的正交线偏振光通过第一个渥拉斯顿棱镜W 1,分开一小角度,再通过第二个渥拉斯顿棱镜W 2后,变成两束平行光,经直角棱镜反射后,再依次通过W 2、W 1又变成一束光,经探测器D 2接收,形成测量信号。D 1输出的是参考

用三坐标测量机正确测量同轴度误差

收稿日期:2006年6月用三坐标测量机正确测量同轴度误差 叶宗茂 神龙汽车有限公司襄樊总厂 同轴度是机械产品检测中常见的一种形位公差项目。对于规则轴类零件,一般可采用V型支架、钢球加杠杆百分表或偏摆仪等专用检具及组合辅具来检测同轴度;对于箱体孔类零件,一般可采用芯轴加杠杆百分表或利用圆度仪来检测同轴度。但对于一些大型零部件(如机床主轴等)或不规则轴类零件以及箱体零件的不规则内孔,采用常规方法测量同轴度则很难实现或非常麻烦。此时,用三坐标测量机(C M M)来测量同轴度是一种不错的选择。与专用同轴度测量仪相比,C M M测量同轴度的最大特点是无须转动工件,无须专用芯轴或专用支架,无须机械找正,只需用测头探针对工件取点采样,即可快速输出测量结果。但用C M M测量同轴度时,由于对基准轴线理解的差异,或对被测要素轴线测量方法不同,或对同轴度评价方法不同,以及C M M采点误差的影响等原因,有时会出现测量结果误差较大、重复性较差的现象,即测量结果不能真实反映零件真实的同轴度误差。针对这种情况,本文将探讨如何在C M M上正确测量零件的真实同轴度误差。 1 C M M测量同轴度的误差原因分析 (1)同轴度公差带的定义 在国家标准中,同轴度公差带的定义是指直径为公差值t,且与基准轴线同轴的圆柱面内的区域,它有三种控制要素:轴线对轴线,轴线对公共轴线,圆心对圆心。 (2)C M M测量同轴度误差放大的原因分析 根据同轴度的定义,用C M M测量同轴度时,可从三个方面考察其测量误差:①基准轴线的采集与建立;②被测元素轴线的采集与建立;③基准轴线与被测元素轴线之间位置关系的评价。 从测量原理上说,C M M直接测得的是被测工件上一些特征点的坐标位置,为了获得被测参数值,需要通过测量软件的数据处理和运算。因此,被测参数的测量精度主要与C M M的系统误差、测头系统误差、工件形状误差、算法误差、环境误差、采样策略和敏感系数等因素有关。而对于同轴度的测量,采样策略和敏感系数对精度的影响更大。 采样策略是指如何在被测物体表面合理安排采样点。所谓“合理”,是指在相同环境下,用同一台C M M测量同一零件时,怎样安排采样点数和采样位置可以获得最高的测量精度(测量误差最小)。采样数量和采样位置会影响测量结果的原因在于:①被测元素并非理想元素,存在形状误差;②C M M采点及计算方法有局限性,存在测量误差。由于采样策略对测量结果影响较大,因此如对测量结果有异议,可考虑改变采样策略多测几次,然后分析测量结果,给出正确的测量数据。 敏感系数表示测量结果受初始测量要素影响的大小。对于同轴度测量,被测要素的测量误差受基准误差的影响很大。 根据以上分析,采样策略和敏感系数是影响同轴度测量精度的主要原因。因此, 在同轴度检测中采用科学的采样策略和尽量减小敏感系数,有助于提高测量结果的精度水平。例如:有两个短圆柱,求其中一个圆柱相对于另一圆柱的同轴度。如图1所示,在基准圆柱上测量两个截面圆,将其连线作为基准轴;在被测圆柱上也测量两个截面圆,构造一条直线,然后计算其同轴度。假设基准圆柱上两测量截面间的距离较小(10mm),而基准第一截面与被测第一截面间的距离较大(100mm),即该检测方案的同轴度对采点的敏感系数很大,如果基准圆柱第二截面圆的圆心位置有5μm的测量误差,则测量轴线到达被检截面时已偏离了5×100/10=50μm,此时即使被检轴线与基准轴线完全同轴,同轴度误差(等于误差圆柱的直径)的测量结果也会有2×50=100μm 的误差。 图1 同轴度误差放大示意图 2 减小C M M测量同轴度误差的方法采用以下科学合理的采样策略,可将敏感系数

垂直度误差、位置度误差的测量教程文件

任务五垂直度误差、位置度误差的测量 【课题名称】 平面零件的误差测量 【教学目标与要求】 一、知识目标 了解线、面垂直度误差和面对称度误差的检测工具及测量方法。 二、能力目标 能够正确使用百分表进行测量,并准确计算误差值。 三、素质目标 熟悉平面零件形位误差的检测原理、测量工具和使用方法,并能准确计算其误差。 四、教学要求 能够按照误差要求正确地选择检测工具,并能够掌握测量工具的使用方法,对工件进行准确的测量。 【教学重点】 百分表的使用,各种形位误差的检测方法。 【难点分析】 百分表的使用,各种形位误差的检测方法。 【分析学生】 该内容的难度较大,比较难理解,需要多做解释,学生才能够掌握。 【教学设计思路】

本次课内容较多,且内容难懂,建议分成2学时,以保证有更多的练习机会,由于实训条件所限,可以分组进行测量,对于垂直度的检测也应先讲测量原理和方法,再让学生实测,最后介绍如何调零位计算误差值,边讲边练再总结提高。 【教学安排】 2学时 先讲后练,以练为主,加强巡视指导。 【教学过程】 一. 复习旧课 在形状和位置误差中,直线度、平面度的误差在平面零件中出现比较多,大家是否还能记住这些形位公差的含义呢? 二、导入新课 需要应用什么测量工具来检测零件的垂直度和对称度呢?对于测量出来的数值又需要进行怎么样的处理才能得出正确的误差值?这是本次课程的主要内容。 三、讲授新课 垂直度和对称度误差的测量应用百分表或千分表作为量具,用标准平扳为基准面,借助于表座、方箱或直角尺座工具,将被测工件安放在基准面上进行检测。 线与面和面与面之间垂直度的检测方法相同,后者需要多测量几次。 1.测量平面之间的垂直度,需要借助于方箱或直角尺座,将被

相关主题
文本预览
相关文档 最新文档