当前位置:文档之家› OpenCV边缘检测:Sobel、拉普拉斯算子

OpenCV边缘检测:Sobel、拉普拉斯算子

OpenCV边缘检测:Sobel、拉普拉斯算子
OpenCV边缘检测:Sobel、拉普拉斯算子

【OpenCV】边缘检测:Sobel、拉普拉斯算子

边缘

边缘(edge)是指图像局部强度变化最显著的部分。主要存在于目标与目标、目标与背景、区域与区域(包括不同色彩)之间,是图像分割、纹理特征和形状特征等图像分析的重要基础。

图像强度的显著变化可分为:

?阶跃变化函数,即图像强度在不连续处的两边的像素灰度值有着显著的差异;

?线条(屋顶)变化函数,即图像强度突然从一个值变化到另一个值,保持一较小行程后又回到原来的值。

图像的边缘有方向和幅度两个属性,沿边缘方向像素变化平缓,垂直于边缘方向像素变化剧烈.边缘上的这种变化可以用微分算子检测出来,通常用一阶或二阶导数来检测边缘。

(a)(b)分别是阶跃函数和屋顶函数的二维图像;(c)(d)是阶跃和屋顶函数的函数图象;(e)(f)对应一阶倒数;(g)(h)是二阶倒数。

一阶导数法:梯度算子

对于左图,左侧的边是正的(由暗到亮),右侧的边是负的(由亮到暗)。对于右图,结论相反。常数部分为零。用来检测边是否存在。

梯度算子Gradient operators

函数f(x,y)在(x,y)处的梯度为一个向量:

计算这个向量的大小为:

近似为:

梯度的方向角为:

Sobel算子

sobel算子的表示:

梯度幅值:

用卷积模板来实现:

【相关代码】

接口

[cpp]view plaincopy

1.CV_EXPORTS_W void Sobel( InputArray src, OutputArray dst, int ddepth,

2.int dx, int dy, int ksize=3,

3.double scale=1, double delta=0,

4.int borderType=BORDER_DEFAULT );

使用

[cpp]view plaincopy

1./////////////////////////// Sobe l////////////////////////////////////

2./// Generate grad_x and grad_y

3.Mat grad_x, grad_y;

4.Mat abs_grad_x, abs_grad_y;

5./// Gradient X

6.//Scharr( src_gray, grad_x, ddepth, 1, 0, scale, delta, BORDER_DEFAULT );

7.//Calculates the first, second, third, or mixed image derivatives using an e

xtended Sobel operator.

8.Sobel( src_gray, grad_x, ddepth, 1, 0, 3, scale, delta, BORDER_DEFAULT );

9.convertScaleAbs( grad_x, abs_grad_x );

10./// Gradient Y

11.//Scharr( src_gray, grad_y, ddepth, 0, 1, scale, delta, BORDER_DEFAULT );

12.Sobel( src_gray, grad_y, ddepth, 0, 1, 3, scale, delta, BORDER_DEFAULT );

13.convertScaleAbs( grad_y, abs_grad_y );

14./// Total Gradient (approximate)

15.addWeighted( abs_grad_x, 0.5, abs_grad_y, 0.5, 0, grad );

二阶微分法:拉普拉斯

二阶微分在亮的一边是负的,在暗的一边是正的。常数部分为零。可以用来确定边的准确位置,以及像素在亮的一侧还是暗的一侧。

LapLace 拉普拉斯算子

二维函数f(x,y)的拉普拉斯是一个二阶的微分,定义为:

其中:

可以用多种方式将其表示为数字形式。对于一个3*3的区域,经验上被推荐最多的形式是:

定义数字形式的拉普拉斯要求系数之和必为0

【相关代码】

接口

[cpp]view plaincopy

1.CV_EXPORTS_W void Laplacian( InputArray src, OutputArray dst, int ddepth,

2.int ksize=1, double scale=1, double delta=0,

3.int borderType=BORDER_DEFAULT );

使用

[cpp]view plaincopy

1.Mat abs_dst,dst;

2.int scale = 1;

3.int delta = 0;

4.int ddepth = CV_16S;

5.int kernel_size = 3;

6. Laplacian( src_gray, dst, ddepth, kernel_size, scale, delta, BORDER_DEFAUL

T );

7. convertScaleAbs( dst, abs_dst );

8. namedWindow( window_name2, CV_WINDOW_AUTOSIZE );

实践效果

原图

注意,边缘检测对噪声比较敏感,需要先用高斯滤波器对图像进行平滑。参考博文:【OpenCV】邻域滤波:方框、高斯、中值、双边滤波

Sobel 边缘检测

Sobel算子可以直接计算Gx 、Gy可以检测到边的存在,以及从暗到亮,从亮到暗的变化。仅计算| Gx |,产生最强的响应是正交于x轴的边;| Gy |则是正交于y轴的边。

Laplace边缘检测

拉普拉斯对噪声敏感,会产生双边效果。不能检测出边的方向。通常不直接用于边的检测,只起辅助的角色,检测一个像素是在边的亮的一边还是暗的一边利用零跨越,确定边的位置。

几种常用边缘检测算法的比较

几种常用边缘检测算法的比较摘要:边缘是图像最基本的特征,边缘检测是图像分析与识别的重要环节。基于微分算子的边缘检测是目前较为常用的边缘检测方法。通过对Roberts,Sobel,Prewitt,Canny 和Log 及一种改进Sobel等几个微分算子的算法分析以及MATLAB 仿真实验对比,结果表明,Roberts,Sobel 和Prewitt 算子的算法简单,但检测精度不高,Canny 和Log 算子的算法复杂,但检测精度较高,基于Sobel的改进方法具有较好的可调性,可针对不同的图像得到较好的效果,但是边缘较粗糙。在应用中应根据实际情况选择不同的算子。 0 引言 边缘检测是图像分析与识别的第一步,边缘检测在计算机视觉、图像分析等应用中起着重要作用,图像的其他特征都是由边缘和区域这些基本特征推导出来的,边缘检测的效果会直接影响图像的分割和识别性能。边缘检测法的种类很多,如微分算子法、样板匹配法、小波检测法、神经网络法等等,每一类检测法又有不同的具体方法。目前,微分算子法中有Roberts,Sobel,Prewitt,Canny,Laplacian,Log 以及二阶方向导数等算子检测法,本文仅将讨论微分算子法中的几个常用算子法及一个改进Sobel算法。 1 边缘检测

在图像中,边缘是图像局部强度变化最明显的地方,它主要存在于目标与目标、目标与背景、区域与区域( 包括不同色彩) 之间。边缘表明一个特征区域的终结和另一特征区域的开始。边缘所分开区域的内部特征或属性是一致的,而不同的区域内部特征或属性是不同的。边缘检测正是利用物体和背景在某种图像特征上的差异来实现检测,这些差异包括灰度、颜色或纹理特征,边缘检测实际上就是检测图像特征发生变化的位置。边缘的类型很多,常见的有以下三种: 第一种是阶梯形边缘,其灰度从低跳跃到高; 第二种是屋顶形边缘,其灰度从低逐渐到高然后慢慢减小; 第三种是线性边缘,其灰度呈脉冲跳跃变化。如图1 所示。 (a) 阶梯形边缘(b) 屋顶形边缘 (b) 线性边缘 图像中的边缘是由许多边缘元组成,边缘元可以看作是一个短的直线段,每一个边缘元都由一个位置和一个角度确定。边缘元对应着图像上灰度曲面N 阶导数的不连续性。如果灰度曲面在一个点的N 阶导数是一个Delta 函数,那么就

经典图像边缘检测

经典图像边缘检测(微分法思想)——Sobel算子 2008-05-15 15:29Sobel于1970年提出了Sobel算子,与Prewitt算子相比较,Sobel算子对检测点的上下左右进一步加权。其加权模板如下: 经典图像边缘检测(微分法思想)——Roberts交叉算子 2008-05-14 17:16 如果我们沿如下图方向角度求其交叉方向的偏导数,则得到Roberts于1963年提出的交叉算子边缘检测方法。该方法最大优点是计算量小,速度快。但该方法由于是采用偶数模板,如下图所示,所求的(x,y)点处梯度幅度值,其实是图中交叉点处的值,从而导致在图像(x,y)点所求的梯度幅度值偏移了半个像素(见下图)。

上述偶数模板使得提取的点(x,y)梯度幅度值有半个像素的错位。为了解决这个定位偏移问题,目前一般是采用奇数模板。 奇数模板: 在图像处理中,一般都是取奇数模板来求其梯度幅度值,即:以某一点(x,y)为中心,取其两边相邻点来构建导数的近似公式:

这样就保证了在图像空间点(x,y)所求的梯度幅度值定位在梯度幅度值空间对应的(x,y)点上(如下图所示)。 前面我们讲过,判断某一点的梯度幅度值是否是边缘点,需要判断它是否大于设定的阈值。所以,只要我们设定阈值时考虑到加权系数产生的影响便可解决,偏导数值的倍数不是一个问题。 经典图像边缘检测(微分法思想)——Prewitt算子 2008-05-15 11:29 Prewitt算子 在一个较大区域中,用两点的偏导数值来求梯度幅度值,受噪声干扰很大。若对两个点的各自一定领域内的灰度值求和,并根据两个灰度值和的差来计算x,y的偏导数,则会在很

Sobel边缘检测算子

经典边缘检测算子比较 一 各种经典边缘检测算子原理简介 图像的边缘对人的视觉具有重要的意义,一般而言,当人们看一个有边缘的物体时,首先感觉到的便是边缘。灰度或结构等信息的突变处称为边缘。边缘是一个区域的结束,也是另一个区域的开始,利用该特征可以分割图像。需要指出的是,检测出的边缘并不等同于实际目标的真实边缘。由于图像数据时二维的,而实际物体是三维的,从三维到二维的投影必然会造成信息的丢失,再加上成像过程中的光照不均和噪声等因素的影响,使得有边缘的地方不一定能被检测出来,而检测出的边缘也不一定代表实际边缘。图像的边缘有方向和幅度两个属性,沿边缘方向像素变化平缓,垂直于边缘方向像素变化剧烈。边缘上的这种变化可以用微分算子检测出来,通常用一阶或两阶导数来检测边缘,如下图所以。不同的是一阶导数认为最大值对应边缘位置,而二阶导数则以过零点对应边缘位置。 (a )图像灰度变化 (b )一阶导数 (c )二阶导数 基于一阶导数的边缘检测算子包括Roberts 算子、Sobel 算子、Prewitt 算子等,在算法实现过程中,通过22?(Roberts 算子)或者33?模板作为核与图像中的每个像素点做卷积和运算,然后选取合适的阈值以提取边缘。拉普拉斯边缘检测算子是基于二阶导数的边缘检测算子,该算子对噪声敏感。一种改进方式是先对图像进行平滑处理,然后再应用二阶导数的边缘检测算子,其代表是LOG 算子。前边介绍的边缘检测算子法是基于微分方法的,其依据是图像的边缘对应一阶导数的极大值点和二阶导数的过零点。Canny 算子是另外一类边缘检测算子,它不是通过微分算子检测边缘,而是在满足一定约束条件下推导出的边缘检测最优化算子。 1 Roberts (罗伯特)边缘检测算子 景物的边缘总是以图像中强度的突变形式出现的,所以景物边缘包含着大量的信息。由于景物的边缘具有十分复杂的形态,因此,最常用的边缘检测方法是所谓的“梯度检测法”。 设(,)f x y 是图像灰度分布函数; (,)s x y 是图像边缘的梯度值;(,)x y ?是梯度的方向。则有 [][]{} 1 2 22 (,)(,)(,)(,)(,)s x y f x n y f x y f x y n f x y = +-++- (1) (n=1,2,...) [][]{}1 (,)tan (,)(,)/(,)(,)x y f x y n f x y f x n y f x y ?-=+-+- (2)

数字图像课程设计报告:边缘检测算子的比较

数字图像处理课程设计报告题目数字图像课程设计—各边缘检测算子的对比 系别电气系 班级xxxxxxxxxxxxx学号xxxxxxxxxxxx 姓名xxxx指导老师xxxx 时间xxxxxxx

目录 一、课题设计的任务 (3) 1.1 课题选择 (3) 1.2 课题设计的背景 (3) 二、课题原理简介 (3) 三、经典边缘检测算子性能比较及程序 (6) 3.1MATLAB程序仿真 (6) 3.2实验结果的比较 (10) 四、实验结论 (11) 五、参考文献 (11)

一、课题设计的任务 1.1课题选择 各边缘检测的对比 1.2 课题设计的背景 我们感知外部世界的途径主要是听觉和视觉。而视觉主要是获取图像的信息,例如图片的特征和周围的背景区域的差别。这种灰度或结构等信息的突变,就称之为边缘。图像的边缘对人类视觉而言具有重要意义,有些差别很细微,人眼很难观察,这时就需要计算机图像处理技术,物体边缘上的这种变化可以用微分算子检测出来,通常用一阶或两阶导数来检测边缘。 本次我的课程设计就利用了MATLAB软件,通过实验,对各边缘检测算子进行了对比和研究,例如基于一阶导数的边缘检测算子Roberts算子、Sobel算子,基于二阶导数的拉普拉斯算子,canny边缘检测算子等。并且在4天内完成了课程设计作业,基本达到既定要求。 二、课题原理简介 边缘是一个区域的结束,也是另一个区域的开始,利用该特征可以分割图像。检测出的边缘并不等同于实际目标的真实边缘。图像的边缘有方向和幅度两个属性,沿边缘方向像素变化平缓,垂直于边缘方向像素变化剧烈。边缘上的这种变化可以用微分算子检测出来,通常用一阶或两阶导数来检测边缘,如下图所以。不同的是一阶导数认为最大值对应边缘位置,而二阶导数则以过零点对应边缘位置。 (a)图像灰度变化(b)一阶导数(c)二阶导数 下面是一些主要的边缘检测算子的原理介绍 1 Roberts(罗伯特)边缘检测算子 景物的边缘总是以图像中强度的突变形式出现的,所以景物边缘包含着大量的信息。由于景物的边缘具有十分复杂的形态,因此,最常用的边缘检测方法 是所谓的“梯度检测法”。设(,) s x y是图像边缘的 f x y是图像灰度分布函数;(,) 是梯度的方向。则有 梯度值;(,) x y

经典边缘检测算子对比

经典边缘检测算子比较 张丽 南京信息工程大学信息与计算科学系,南京210044 摘要:图像边缘检测技术是图像分割、目标识别、区域形态提取等图像分析领域中十分重要的基础。本文简要介绍各种经典图像边缘检测算子的基本原理,用Matlab仿真实验结果表明各种算子的特点及对噪声的敏感度,为学习和寻找更好的边缘检测方法提供参考价值。 关键字:图像处理;边缘检测;算子;比较 引言 图像的边缘时图像最基本的特征之一。所谓边缘(或边沿)是指周围像素灰度有阶跃性变化或“屋顶”变化的那些像素的集合。边缘广泛存在于物体与背景之间、物体与物体之间、基元与基元之间,因此它是图像分割依赖的重要特征。图像边缘对图像识别和计算机分析十分有用,边缘能勾划出目标物体,使观察者一目了然;边缘蕴含了丰富的内在信息(如方向、阶跃性质、形状等)。从本质上说,图像边缘是图像局部特性不连续性(灰度突变、颜色突变、纹理结构突变等)的反应,它标志着一个区域的终结和另一个区域的开始。 边缘检测技术是所有基于边界分割的图像分析方法的第一步,首先检测出图像局部特性的不连续性,再将它们连成边界,这些边界把图像分成不同的区域,检测出边缘的图像就可以进行特征提取和形状分析。为了得到较好的边缘效果,现在已经有了很多的边缘检测算法以及一些边缘检测算子的改进算法。但各算子有自己的优缺点和适用领域。本文着重对一些经典边缘检测算子进行理论分析、实际验证并对各自性能特点做出比较和评价,以便实际应用中更好地发挥其长处,为新方法的研究提供衡量尺度和改进依据。 一各种经典边缘检测算子原理简介 图像的边缘对人的视觉具有重要的意义,一般而言,当人们看一个有边缘的物体时,首先感觉到的便是边缘。灰度或结构等信息的突变处称为边缘。边缘是一个区域的结束,也是另一个区域的开始,利用该特征可以分割图像。需要指出的是,检测出的边缘并不等同于实际目标的真实边缘。由于图像数据时二维的,而实际物体是三维的,从三维到二维的投影必然会造成信息的丢失,再加上成像过程中的光照不均和噪声等因素的影响,使得有边缘的地

边缘检测算子比较

边缘检测算子比较 不同图像灰度不同,边界处一般会有明显的边缘,利用此特征可以分割图像。需要说明的是:边缘和物体间的边界并不等同,边缘指的是图像中像素的值有突变的地方,而物体间的边界指的是现实场景中的存在于物体之间的边界。有可能有边缘的地方并非边界,也有可能边界的地方并无边缘,因为现实世界中的物体是三维的,而图像只具有二维信息,从三维到二维的投影成像不可避免的会丢失一部分信息;另外,成像过程中的光照和噪声也是不可避免的重要因素。正是因为这些原因,基于边缘的图像分割仍然是当前图像研究中的世界级难题,目前研究者正在试图在边缘提取中加入高层的语义信息。 课题所用图像边缘与边界应该算是等同的。 在实际的图像分割中,往往只用到一阶和二阶导数,虽然,原理上,可以用更高阶的导数,但是,因为噪声的影响,在纯粹二阶的导数操作中就会出现对噪声的敏感现象,三阶以上的导数信息往往失去了应用价值。二阶导数还可以说明灰度突变的类型。在有些情况下,如灰度变化均匀的图像,只利用一阶导数可能找不到边界,此时二阶导数就能提供很有用的信息。二阶导数对噪声也比较敏感,解决的方法是先对图像进行平滑滤波,消除部分噪声,再进行边缘检测。不过,利用二阶导数信息的算法是基于过零检测的,因此得到的边缘点数比较少,有利于后继的处理和识别工作。 各种算子的存在就是对这种导数分割原理进行的实例化计算,是为了在计算过程中直接使用的一种计算单位; Roberts算子:边缘定位准,但是对噪声敏感。适用于边缘明显且噪声较少的图像分割。Roberts边缘检测算子是一种利用局部差分算子寻找边缘的算子,Robert算子图像处理后结果边缘不是很平滑。经分析,由于Robert算子通常会在图像边缘附近的区域内产生较宽的响应,故采用上述算子检测的边缘图像常需做细化处理,边缘定位的精度不是很高。Prewitt算子:对噪声有抑制作用,抑制噪声的原理是通过像素平均,但是像素平均相当于对图像的低通滤波,所以Prewitt算子对边缘的定位不如Roberts算子。 Sobel算子:Sobel算子和Prewitt算子都是加权平均,但是Sobel算子认为,邻域的像素对当前像素产生的影响不是等价的,所以距离不同的像素具有不同的权值,对算子结果产生的影响也不同。一般来说,距离越远,产生的影响越小。 Isotropic Sobel算子:加权平均算子,权值反比于邻点与中心点的距离,当沿不同方向检测边缘时梯度幅度一致,就是通常所说的各向同性。 在边沿检测中,常用的一种模板是Sobel 算子。Sobel 算子有两个,一个是检测水平边沿的;另一个是检测垂直平边沿的。Sobel算子另一种形式是各向同性Sobel(Isotropic Sobel)算子,也有两个,一个是检测水平边沿的,另一个是检测垂直平边沿的。各向同性Sobel 算子和普通Sobel算子相比,它的位置加权系数更为准确,在检测不同方向的边沿时梯度的幅度一致。由于建筑物图像的特殊性,我们可以发现,处理该类型图像轮廓时,并不需要对梯度方向进行运算,所以程序并没有给出各向同性Sobel算子的处理方法。 由于Sobel算子是滤波算子的形式,用于提取边缘,可以利用快速卷积函数,简单有效,因此应用广泛。美中不足的是,Sobel算子并没有将图像的主体与背景严格地区分开来,换言之就是Sobel算子没有基于图像灰度进行处理,由于Sobel算子没有严格地模拟人的视觉生理特征,所以提取的图像轮廓有时并不能令人满意。在观测一幅图像的时候,我们往往首先注意的是图像与背景不同的部分,正是这个部分将主体突出显示,基于该理论,我们可以给出阈值化轮廓提取算法,该算法已在数学上证明当像素点满足正态分布时所求解是最优的。

sobel算子边缘检测

源程序如下:#include #include #include #include #include #include #include #include #define ff(x,y) pBmpBuf0[256*(y)+(x)] #define gg(x,y) pBmpBuf9[256*(y)+(x)] //--------------------------------------------------------------------------------------- unsigned char *pBmpBuf;//读入图像数据的指针 int bmpWidth;//图像的宽 int bmpHeight;//图像的高 RGBQUAD *pColorTable;//颜色表指针 int biBitCount;//图像类型,每像素位数 //------------------------------------------------------------------------------------------- //读图像的位图数据、宽、高、颜色表及每像素位数等数据进内存,存放在相应的全局变量中 bool readBmp(char *bmpName) { FILE *fp=fopen(bmpName,"rb");//二进制读方式打开指定的图像文件 if(fp==0) return 0; //跳过位图文件头结构BITMAPFILEHEADER fseek(fp, sizeof(BITMAPFILEHEADER),0); //定义位图信息头结构变量,读取位图信息头进内存,存放在变量head中 BITMAPINFOHEADER head; fread(&head, sizeof(BITMAPINFOHEADER), 1,fp); //获取图像宽、高、每像素所占位数等信息 bmpWidth = head.biWidth; bmpHeight = head.biHeight; biBitCount = head.biBitCount;//定义变量,计算图像每行像素所占的字节数(必须是4的倍数)

数字图像处理几种边缘检测算子的比较

数字图像处理 几种边缘检测算子的比较 边缘检测是图像处理和计算机视觉中的基本问题,边缘检测的目的是标识数字图 像中亮度变化明显的点。图像属性中的显著变化通常反映了属性的重要事件和变化。 这些包括:深度上的不连续、表面方向不连续、物质属性变化和场景照明变化。边缘 检测是图像处理和计算机视觉中,尤其是特征提取中的一个研究领域。图像边缘检测 大幅度地减少了数据量,并且剔除了可以认为不相关的信息,保留了图像重要的结 构属性。有许多方法用于边缘检测,它们的绝大部分可以划分为两类:基于查找一 类和基于零穿越的一类。基于查找的方法通过寻找图像一阶导数中的最大和最小值 来检测边界,通常是将边界定位在梯度最大的方向。基于零穿越的方法通过寻找图 像二阶导数零穿越来寻找边界,通常是Laplacian过零点或者非线性差分表示的过 零点。 人类视觉系统认识目标的过程分为两步:首先,把图像边缘与背景分离出来;然后,才能知觉到图像的细节,辨认出图像的轮廓。计算机视觉正是模仿人类视觉的这个过程。因此在检测物体边缘时,先对其轮廓点进行粗略检测,然后通过链接规则把原来 检测到的轮廓点连接起来,同时也检测和连接遗漏的边界点及去除虚假的边界点。图 像的边缘是图像的重要特征,是计算机视觉、模式识别等的基础,因此边缘检测是图 象处理中一个重要的环节。然而,边缘检测又是图象处理中的一个难题,由于实际景 物图像的边缘往往是各种类型的边缘及它们模糊化后结果的组合,且实际图像信号存 在着噪声。噪声和边缘都属于高频信号,很难用频带做取舍。 这就需要边缘检测来进行解决的问题了。边缘检测的基本方法有很多,一阶的有Roberts Cross算子,Prewitt算子,Sobel算子,Canny算子, Krisch算子,罗盘算子;而二阶的还有Marr-Hildreth,在梯度方向的二阶导数过零点。现在就来 简单介绍一下各种算子的算法

对人脸边缘检测的几种算子实验比对

第07卷2007盔第06期 06月 V01.7 June No06 2007 对人脸边缘检测的几种算子实验比对 王晓红熊盛武 摘要:对于图像处理的一个研究分支一人脸识别与检测,自美国“9.11”事件后被广泛重视,并正在从实验室走向商业化。在这个过程中,科技工作者们有着众多不同的尝试方式,本文就一些经典的算法公式,选择不同的算子,通过MATLAB语言表现出来。 关键词:模式识别图像处理人脸检测算子 中图分类号:TP391.41文献标识码:A文章编号:1006-7973(2007)06-0145-02 一、前言 纵观人类历史,从制造简单的工具,到钻木取火;从四大发明到蒸汽机的使用;作为万物之灵的人类还制造了汽车、飞机、无线电、太空船…..直到一九四六年第一台计算机的出现,人类所发明的工具才真正有了和人类自身大脑作比较的工具一电脑!人类一直梦想着更接近于人的电脑来沿伸人 类大脑的工作。这就有了“fifthgenerationcomputer'’,这是日本在上世纪八十年代初制定的国家十年计划的目标:听得懂话,可识别图像,可以自我学习、可以判断和思考等等具有智能的计算机。可是时间已经过去了二十多年了,这个目标还没有实现。说明还有许多技术上的瓶颈还有待突破。想要让计算机做到以前只能由人类才能做到的事情,具备人的智能,具有对各种事件进行分析、判断的能力,还有很多的路要走。下面仅从识别图像这个方向来探讨人脸的识别。 二、人脸识别的发展现状 生物特征的识别技术从20世纪末兴起,伴随计算机硬件和信息技术的飞速发展使得地球变成了“地球村”,经过使人震惊的“9?11”事件后,现代社会对身份识别提出了更多、更高的要求。生物识别在图像识另Ⅱ领域也受到了空前的重视。生物识别技术已经在商业方面有了许多应用,并有不断纵深的趋势。据国际生物集团(InternationalBiometricGroup,IBG)的统计:到2007年将达到40亿美元。并且美国在“9?11”遇袭事件后,连续签署了3个国家安全法案(爱国者法案、航空安全法案、边境签证法案),要求必须采用生物认证技术。这对生物识别技术的应用起到了推波助澜的作用。 所谓生物特征的识别(BiometricIdentificationTechnology),就是利用人所特有的生物特征,包括生理特征和行为特征,用这些特征来进行人的身份鉴别。常用的有:脸相、虹膜、指纹、掌纹等;常用的行为特征包括:声音、笔迹、步姿等。生物特征具有以下一些特点:比如说人都有手掌,但每个人的掌纹都不一样,且这种独有的唯一的特征并不随时间变化而变化;在实际的应用中,人类特有的这些特征是可采集的,人脸的识别正是符合了这样一些特点,并且人脸识别的特点是以人为准,最大程度地确保了鉴别的可靠性。 三、人脸识别与其它识别技术的区别 在这些识别技术中,人脸识别技术(FaceRecognitionTechniques,FRT)是采用人的面部特征来确定一个人身份的,是生物特征识别技术的一个主要方向。和其他生物特征比,人脸特征的提取更具有主动、友善、无打扰等优点,基于这些特点,人脸识别技术才成为被广泛使用的方法。但是,人脸不是一成不变的,同一个人在不同的年龄段会有变化,另外光线、姿势、面部表情、面部附属物(如胡子、眼镜)等变化的影响,人脸的识别的准确度会大打折扣。就目前而言,大多的人脸识别系统还远未达到人类婴幼儿的识别能力,因此,人脸识别还有许多工作可做。 四、人脸识别方法之一——人脸检测的边缘检测方法 人脸识另lj技术包涵的内容很多,如模式识别、图像处理、计算机视觉、计算机图形学、各种数学算法的引用等等。 对于人脸的识别其首要目的是能够在图片中检测出来人脸来,即人脸检测,而人脸的检测最重要的是对其边缘的提取。图像的边缘点产生的原因虽然不同,但归根结底都是由于图像的灰度不连续或者灰度急剧变化的所造成的,利用这个特性,我们可以采用微分运算,得到边缘点,从而得到人脸的轮廓。 边缘检测是根据图像的灰度值或者色彩的急剧变化的特点,采用各种微分运算进行边缘检测的。下面就几种微分法进行理论比较。 首先需要介绍微分的原理: Af(i,j)=[,(?+1,j)一f(i,j)】十[厂(j,J+1)一f(i,j)】 m¨=誓+熹 为方便编程离散化后的差分方程为: 收稿日期:2007—3—21 作者简介:王晓红女武汉理工大学硕士研究生武汉商业服务学院讲师熊盛武男武汉理工大学教授博导  万方数据

图像边缘检测算子

课程设计任务书 学院信息科学与工程专业电子信息工程 学生姓名*** 班级学号09******* 课程设计题目图像边缘检测算子 课程设计目的与要求: 设计目的: 1.熟悉几种经典图像边缘检测算子的基本原理。 2.用Matlab编程实现边缘检测,比较不同边缘检测算子的实验结果。设计要求: 1.上述实验内容相应程序清单,并加上相应的注释。 2.完成目的内容相应图像,并提交原始图像。 3.用理论对实验内容进行分析。 工作计划与进度安排: 2012年 06月29 日选题目查阅资料 2012年 06月30 日编写软件源程序或建立仿真模块图 2012年 07月01 日调试程序或仿真模型 2012年 07月01 日结果分析及验收 2012年 07月02 日撰写课程设计报告、答辩 指导教师: 2012年 6月29日专业负责人: 2012年 6月29日 学院教学副院长: 2012年 6月29日

摘要 边缘检测是数字图像处理中的一项重要内容。本文对图像边缘检测的几种经典算法(Roberts算子、Sobel算子、Prewitt算子)进行了分析和比较,并用MATLAB实现这几个算法。最后通过实例图像对不同边缘检测算法的效果进行分析,比较了不同算法的特点和适用范围。 关键词:图像处理;边缘检测;Roberts算子;Sobel算子;Prewitt算子

目录 第1章相关知识.................................................................................................... IV 1.1 理论背景 (1) 1.2 数字图像边缘检测意义 (1) 第2章课程设计分析 (3) 2.1 Roberts(罗伯特)边缘检测算子 (3) 2.2 Prewitt(普瑞维特)边缘检测算子 (4) 2.3 Sobel(索贝尔)边缘检测算子 (5) 第3章仿真及结果分析 (7) 3.1 仿真 (7) 3.2 结果分析 (8) 结论 (10) 参考文献 (11)

Sobel边缘检测算子

经典边缘检测算子比较 一 各种经典边缘检测算子原理简介 图像的边缘对人的视觉具有重要的意义,一般而言,当人们看一个有边缘的物体时,首先感觉到的便是边缘。灰度或结构等信息的突变处称为边缘。边缘是一个区域的结束,也是另一个区域的开始,利用该特征可以分割图像。需要指出的是,检测出的边缘并不等同于实际目标的真实边缘。由于图像数据时二维的,而实际物体是三维的,从三维到二维的投影必然会造成信息的丢失,再加上成像过程中的光照不均和噪声等因素的影响,使得有边缘的地方不一定能被检测出来,而检测出的边缘也不一定代表实际边缘。图像的边缘有方向和幅度两个属性,沿边缘方向像素变化平缓,垂直于边缘方向像素变化剧烈。边缘上的这种变化可以用微分算子检测出来,通常用一阶或两阶导数来检测边缘,如下图所以。不同的是一阶导数认为最大值对应边缘位置,而二阶导数则以过零点对应边缘位置。 (a )图像灰度变化 (b )一阶导数 (c )二阶导数 基于一阶导数的边缘检测算子包括Roberts 算子、Sobel 算子、Prewitt 算子等,在算法实现过程中,通过22?(Roberts 算子)或者33?模板作为核与图像中的每个像素点做卷积和运算,然后选取合适的阈值以提取边缘。拉普拉斯边缘检测算子是基于二阶导数的边缘检测算子,该算子对噪声敏感。一种改进方式是先对图像进行平滑处理,然后再应用二阶导数的边缘检测算子,其代表是LOG 算子。前边介绍的边缘检测算子法是基于微分方法的,其依据是图像的边缘对应一阶导数的极大值点和二阶导数的过零点。Canny 算子是另外一类边缘检测算子,它不是通过微分算子检测边缘,而是在满足一定约束条件下推导出的边缘检测最优化算子。

基于Sobel算子的数字图像边缘检测

基于S o b e l算子的数字图像边缘检测 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

信号处理综合 设计报告 综合设计名称:基于Sobel算子的数字图像边缘检测学员:学号: 培养类型:技术类年级: 2013级专业:电子工程所属学院: 指导教员:职称:教授实验室: 305-507 实验日期:-2016.9.2

一、综合设计目的 (1)掌握数字信号处理的基本概念、基本理论和基本方法; (2)了解边缘检测的算法和用途,学习利用 Sobel 算子进行边缘检测的程序设计方法; (3)完成图像边缘处理系统的设计和实现,分析处理性能; (4)学会TMS320VC5509A DSP的程序设计方法。 二、综合设计要求 (1)在Matlab上独立编程实现通过Sobel算子的边缘检测; (2)读懂DSP-CCS平台例程,自选图像修改例程实现边缘检测,对比Matlab仿真和DSP-CCS平台处理的结果。 (3)完成实验思考题 三、详细设计过程 1.设计原理分析; Sobel边缘检测算子: 图像中的每个点都用这连个核做卷积,一个核对通常的垂直边缘相应最大,另一个对水平边缘相应最大。两个卷积的最大值作为该点的输出位(下文我们统称为梯度)。 Prewitt边缘检测算子: 以上两个卷积核形成了Prewitt算子。使用方法和Sobel算子一致,区别是系数不同。 2.设计方案和过程。 总体方案:

(1)选择图像灰度处理 这是程序运行的预处理,需要注意的Matlab仿真时,图像选取限制较小,在DSP-CCS平台处理时,注意图像选择要满足例程的空间要 求,一般选择80*80尺寸图像。 (2)卷积计算得出梯度 把图像与Sobel算子的两个模板分别进行卷积,取卷积后较大值为 该点的梯度。 上图显示了在只考虑水平边缘或垂直边缘的情况下的检测效果与实际效果的对比。 (3)二值处理计算阈值 把计算出的梯度归一化,然后带入Matlab中的graythresh函数,采用最大类间方差法获得阈值。 (4)高于阈值设为1,低于阈值设为0。把二值图像显示出来即为边缘检测的最终结果。 3.改进与创新 (1)八方向Sobel算子 在原有中两个模板的基础上,又增加六个方向的模板,即45°,135°,180°,225°,270°,315°。这样可以更加有效地检测图像多个方向边缘,使边缘信息更加完整。 (2)抗噪性能分析 通过在原图像中加入不同信噪比的高斯白噪声,观察边缘检测图像的变化,分析差别。

图像处理之四种边缘检测算子比较

数字图像处理 第三次作业 SpadesQ, Sun Yat-sen University 2017/4/27 1.边缘检测 边缘一般是指图像在某一局部强度剧烈变化的区域。强度变化一般有两种情况: ●阶跃变化 ●屋顶变化 边缘检测的任务: 找到具有阶跃变化或者屋顶变化的像素点的集合。 边缘检测基本原理: 既然边缘是灰度变化最剧烈的位置,最直观的想法就是求微分。 对于第一种情况:一阶微分的峰值为边缘点,二阶微分的零点为边缘点。 对于第二种情况:一阶微分的零点为边缘点,二阶微分的峰值为边缘点。

2.matlab内置函数

分析:通过对Roberts,Sobel,Prewitt,Log和Canny进行MATLAB 仿真实验对比,结果表明,Sobel,Prewitt和Roberts算子的算法简单,但检测精度不高,Log和Canny算子的算法复杂,但检测精度较高。在应用中应根据实 际情况选择不同的算子。

3.四种算子对比分析 3.1 Sobel算子 Sobel算子在边缘检测算子扩大了其模版,在边缘检测的同时尽量削弱了噪声。其模版大小为3×3,其将方向差分运算与局部加权平均相结合来提取边缘。在求取图像梯度之前,先进行加权平均,然后进行微分,加强了对噪声的一致。Sobel 算子所对应的卷积模版为: 图像中的每个像素点和以上水平和垂直两个卷积算子做卷积运算后,再计算得到梯度幅值G ( x,y),然后选取适当的阈值τ,若G ( x,y)>τ,则(i ,j)为边缘点,否则,判断(i,j)为非边缘点。由此得到一个二值图像{ g (i,j)},即边缘图像。Sobel 算子在空间上比较容易实现,不但产生较好的边缘检测效果,同时,由于其引入了局部平均,使其受噪声的影响也较小。若使用较大的邻域,抗噪性会更好,但也增加了计算量,并且得到的边缘比较粗。在对精度要求不是很高的场合下,

拉普拉斯算子、prewitt算子、sobel算子对图像锐化处理.doc

《数字图像处理作业》 图像的锐化处理 ---拉普拉斯算子、prewitt算子、sobel算子性能研究对比 完成日期:2012年10月6日

一、算法介绍 1.1图像锐化的概念 在图像增强过程中,通常利用各类图像平滑算法消除噪声,图像的常见噪声主要有加性噪声、乘性噪声和量化噪声等。一般来说,图像的能量主要集中在其低频部分,噪声所在的频段主要在高频段,同时图像边缘信息也主要集中在其高频部分。这将导致原始图像在平滑处理之后,图像边缘和图像轮廓模糊的情况出现。 为了减少这类不利效果的影响,就需要利用图像锐化技术,使图像的边缘变得清晰。图像锐化处理的目的是为了使图像的边缘、轮廓线以及图像的细节变得清晰,经过平滑的图像变得模糊的根本原因是因为图像受到了平均或积分运算,因此可以对其进行逆运算(如微分运算)就可以使图像变得清晰。从频率域来考虑,图像模糊的实质是因为其高频分量被衰减,因此可以用高通滤波器来使图像清晰。但要注意能够进行锐化处理的图像必须有较高的性噪比,否则锐化后图像性噪比反而更低,从而使得噪声增加的比信号还要多,因此一般是先去除或减轻噪声后再进行锐化处理。

考察正弦函数,它的微分 。微分后频率不变,幅度上升2πa倍。空间频率愈高,幅度增加就愈大。这表明微分是可以加强高频成分的,从而使图像轮廓变清晰。最常用的微分方法是梯度法和拉普拉斯算子。但本文主要探究几种边缘检测算子,Laplace、Prewitt、Sobel算子以下具体介绍。 图像边缘检测:边缘检测是检测图像局部显著变化的最基本运算,梯度是函数变化的一种度量。图像灰度值的显著变化可用梯度的离散逼近函数来检测,大幅度地减少了数据量,并且剔除了可以认为不相关的信息,保留了图像重要的结构属性。边缘检测可分为两大类基于查找一类和基于零穿越的一类。基于查找的方法通过寻找图像一阶导数中的最大和最小值来检测边界,通常是将边界定位在梯度最大的方向。基于零穿越的方法通过寻找图像二阶导数零穿越来寻找边界,通常是Laplacian过零点或者非线性差分表示的过零点。 1.2拉普拉斯算子

关于MATLAB边缘检测sobel算子

关于MATLAB边缘检测sobel算子 一、sobel介绍 索贝尔算子是图像处理中的算子之一,主要用作边缘检测。在技术上,它是一离散性差分算子,用来运算图像亮度函数的梯度之近似值。在图像的任何一点使用此算子,将会产生对应的梯度矢量或是其法矢量。 该算子包含两组3x3的矩阵,分别为横向及纵向,将之与图像作平面卷积,即可分别得出横向及纵向的亮度差分近似值。如果以代表原始图像,及分别代表经横向及纵向边缘检测的图像,其公式如下: 图像的每一个像素的横向及纵向梯度近似值可用以下的公式结合,来计算梯度的大小。 然后可用以下公式计算梯度方向。 在以上例子中,如果以上的角度等于零,即代表图像该处拥有纵向边缘,左方较右方暗。 二、程序 例1 clear all; close all; f=imread('dsy.jpg'); u=rgb2gray(f); F=double(f); U=double(u); [H,W]=size(u); uSobel=u; % ms=0; % ns=0;

for i=2:H-1 for j=2:W-1 Gx=(U(i+1,j-1)+2*U(i+1,j)+F(i+1,j+1))-(U(i-1,j-1)+2*U(i-1,j)+F(i-1,j+1)); Gy=(U(i-1,j+1)+2*U(i,j+1)+F(i+1,j+1))-(U(i-1,j-1)+2*U(i,j-1)+F(i+1,j-1)); uSobel(i,j)=sqrt(Gx^2+Gy^2); % ms=ms+uSobel(i,j); % ns=ns+(uSobel(i,j)-ms)^2; end end % ms=ms/(H*W); % ns=ns/(H*W); subplot(1,2,1);imshow(f);title('原图'); subplot(1,2,2);imshow(im2uint8(uSobel));title('Sobel处理后'); % S=[ms ns]; 程序运行结果: 例2 hg=zeros(3,3); %设定高斯平滑滤波模板的大小为3*3 delta=0.5; for x=1:1:3 for y=1:1:3 u=x-2; v=y-2; hg(x,y)=exp(-(u^2+v^2)/(2*pi*delta^2)); end

几种边缘检测算子比较

常用的检测算子有: (1)微分算子 (2)拉普拉斯高斯算子 (3)canny算子 微分算子 Sobel算子, Robert算子,prewitt算子比较 Sobel算子是滤波算子的形式来提取边缘。X,Y方向各用一个模板,两个模板组合起来构成1个梯度算子。X方向模板对垂直边缘影响最大,Y方向模板对水平边缘影响最大。 Robert算子是一种梯度算子,它用交叉的差分表示梯度,是一种利用局部差分算子寻找边缘的算子,对具有陡峭的低噪声的图像效果最好。 prewitt算子是加权平均算子,对噪声有抑制作用,但是像素平均相当于对图像进行地同滤波,所以prewitt算子对边缘的定位不如robert算子。 源程序: i=imread('tanke.jpg'); i2=im2double(i); ihd=rgb2gray(i2); [thr,sorh,keepapp]=ddencmp('den','wv',ihd); ixc=wdencmp('gbl',ihd,'sym4',2,thr,sorh,keepapp); figure,imshow(ixc),title('消噪后图像'); k2=medfilt2(ixc,[7 7]); figure,imshow(k2),title('中值滤波'); isuo=imresize(k2,0.25,'bicubic'); %sobert、robert和prewitt算子检测图像边缘 esobel=edge(isuo,'sobel'); erob=edge(isuo,'roberts'); eprew=edge(isuo,'prewitt'); subplot(2,2,1); imshow(isuo);title('前期处理图像'); subplot(2,2,2); imshow(esobel);title('sobel算子提取'); subplot(2,2,3); imshow(erob);title('roberts算子提取'); subplot(2,2,4);

图像边缘检测算子

图像边缘检测算子 沈阳理工大学数字图像处理课程设计 课程设计任务书 学院信息科学与工程专业电子信息工程学生姓名 *** 班级学号 09******* 课程设计题目图像边缘检测算子课程设计目的与要求: 设计目的: 1. 熟悉几种经典图像边缘检测算子的基本原理。 2. 用Matlab编程实现边缘检测,比较不同边缘检测算子的实验结果。设计要求: 1. 上述实验内容相应程序清单,并加上相应的注释。 2. 完成目的内容相应图像,并提交原始图像。 3. 用理论对实验内容进行分析。 工作计划与进度安排: 2012年 06月29 日选题目查阅资料 2012年 06月30 日编写软件源程序或建立仿真模块图 2012年 07月01 日调试程序或仿真模型 2012年 07月01 日结果分析及验收 2012年 07月02 日撰写课程设计报告、答辩 指导教师: 专业负责人: 学院教学副院长: 2012年 6月29日 2012年 6月29日 2012年 6月29日 I 沈阳理工大学数字图像处理课程设计 摘要

边缘检测是数字图像处理中的一项重要内容。本文对图像边缘检测的几种经典 算法(Roberts算子、Sobel算子、Prewitt算子)进行了分析和比较,并用MATLAB 实现这几个算法。最后通过实例图像对不同边缘检测算法的效果进行分析,比较了不同算法的特点和适用范围。 关键词:图像处理;边缘检测;Roberts算子;Sobel算子;Prewitt算子 II 沈阳理工大学数字图像处理课程设计 目录 第1章相关知识...................................................................... .............................. IV 1.1 理论背景...................................................................... (1) 1.2 数字图像边缘检测意义...................................................................... (1) 第2章课程设计分析...................................................................... . (3) 2.1 Roberts(罗伯特)边缘检测算 子 (3) 2.2 Prewitt(普瑞维特)边缘检测算 子 (4)

图像处理中各种边缘检测的微分算子简单比较(Sobel,Robert, Prewitt,Laplacian,Canny)

图像处理中各种边缘检测的微分算子简单比较(Sobel,Robert,Prewitt,Laplacian,Canny) 收藏 https://www.doczj.com/doc/7b1747475.html,/user1/44205/archives/2008/23882.html 不同图像灰度不同,边界处一般会有明显的边缘,利用此特征可以分割图像。需要说明的是:边缘和物体间的边界并不等同,边缘指的是图像中像素的值有突变的地方,而物体间的边界指的是现实场景中的存在于物体之间的边界。有可能有边缘的地方并非边界,也有可能边界的地方并无边缘,因为现实世界中的物体是三维的,而图像只具有二维信息,从三维到二维的投影成像不可避免的会丢失一部分信息;另外,成像过程中的光照和噪声也是不可避免的重要因素。正是因为这些原因,基于边缘的图像分割仍然是当前图像研究中的世界级难题,目前研究者正在试图在边缘提取中加入高层的语义信息。 在实际的图像分割中,往往只用到一阶和二阶导数,虽然,原理上,可以用更高阶的导数,但是,因为噪声的影响,在纯粹二阶的导数操作中就会出现对噪声的敏感现象,三阶以上的导数信息往往失去了应用价值。二阶导数还可以说明灰度突变的类型。在有些情况下,如灰度变化均匀的图像,只利用一阶导数可能找不到边界,此时二阶导数就能提供很有用的信息。二阶导数对噪声也比较敏感,解决的方法是先对图像进行平滑滤波,消除部分噪声,再进行边缘检测。不过,利用二阶导数信息的算法是基于过零检测的,因此得到的边缘点数比较少,有利于后继的处理和识别工作。 各种算子的存在就是对这种导数分割原理进行的实例化计算,是为了在计算过程中直接使用的一种计算单位; Roberts算子:边缘定位准,但是对噪声敏感。适用于边缘明显且噪声较少的图像分割。Roberts 边缘检测算子是一种利用局部差分算子寻找边缘的算子,Robert算子图像处理后结果边缘不是很平滑。经分析,由于Robert算子通常会在图像边缘附近的区域内产生较宽的响应,故采用上述算子检测的边缘图像常需做细化处理,边缘定位的精度不是很高。 Prewitt算子:对噪声有抑制作用,抑制噪声的原理是通过像素平均,但是像素平均相当于对图像的低通滤波,所以Prewitt算子对边缘的定位不如Roberts算子。 Sobel算子:Sobel算子和Prewitt算子都是加权平均,但是Sobel算子认为,邻域的像素对当前像素产生的影响不是等价的,所以距离不同的像素具有不同的权值,对算子结果产生的影响也不同。一般来说,距离越远,产生的影响越小。 Isotropic Sobel算子:加权平均算子,权值反比于邻点与中心点的距离,当沿不同方向检测边缘时梯度幅度一致,就是通常所说的各向同性。 在边沿检测中,常用的一种模板是Sobel 算子。Sobel 算子有两个,一个是检测水平边沿的;另一个是检测垂直平边沿的。Sobel算子另一种形式是各向同性Sobel(Isotropic Sobel)算子,也有两个,一个是检测水平边沿的,另一个是检测垂直平边沿的。各向同性Sobel算子和

相关主题
文本预览
相关文档 最新文档