当前位置:文档之家› 桥梁振动测试技术

桥梁振动测试技术

桥梁振动测试技术

第一章振动的分类

机械振动按信息和数据的形式分为确定性振动和随机振动两大类。

1 确定性振动也称有规则的振动。其可以分为简谐振动,复杂周期振动,准周期振动,瞬变振动。

2 随机振动是一种非确定性振动。

第二章信号

信号的基础理论包含信号的基本概念,信号在正交函数集中地分解,连续周期信号,连续非周期信号的傅里叶级数变换,拉普拉斯变换信号的时频特性,MATLAB实现。

2.1 信号的基本概念

信号:即指带有信息的某种物理量,例如电信号,光信号等。通常把信号分为两大类:时域(或时间)连续信号和时域(或时间)离散信号。时域连续信号是指定义在连续时间域内的信号,其函数值可以是连续数值也可以是离散函数。时域离散是指在离散时间点上的信号,其函数值可以是连续数值也可以是离散函数信号。

2.2信号在正交函数集中地分解

振动测试理论和方法综述

振动测试理论和方法综述 摘要:振动是工程技术和日常生活中常见的物理现象。在长期的科学研究和工程实践中,已逐步形成了一门较完整的振动工程学科,可供进行理论计算和分析。随着现代工业和现代科学技术的发展,对各种仪器设备提出了低振级和低噪声的要求,以及对主要生产过程或重要设备进行监测、诊断,对工作环境进行控制等等。这些都离不开振动的测量。振动测试技术在工业生产中起着十分重要的作用,为此设计和制造高效的振动测试系统便成为测试技术的重要内容。本文概述了振动测试的发展历程,总结和分析了振动测试系统的基本组成和应用理论,列举了几种机械振动测试系统的类型。最后分析了振动测试系统的几个发展趋势。 关键词:振动测试;振动测试系统;测试技术;激振测试系统 1.引言 振动问题广泛存在于生活和生产当中。建筑物、机器等在内界或者外界的激励下就会产生振动。而机械振动常常会破坏机械的正常工作,甚至会降低机械的使用寿命并对机器造成不可逆的损坏。多数的机械振动是有害的。因而对振动的研究不仅有利于改善人们的生活环境和生活水平,也有助于提高机械设备的使用寿命,提高人们的生产效率。正因如此振动测试在生产和科研等多方面都有着十分重要的地位[1]。为了控制振动,将振动给人们带来的危害降至最低,就需要我们了解振动的特性和规律,对振动进行测试和研究。振动测试应运而生。 振动测试有着较为长久的发展历史,是与人类社会的发展有着紧密的联系。随着计算机技术和相关高科技技术的问世和发展,振动测试系统也有了飞跃性的发展。振动测试系统从最早的简单机械设备的应用到如今的先进的计算机技术和设备的应用。从刚开始的检测人员的耳朵来进行测量、判断和计算出大概的故障点的原始方法到现在的计算机控制、存储、处理数据的处理[2],无不体现出振动测试系统的长足发展和飞跃式的进步。与此同时,振动测试在理论方面也有了长足的发展,1656 年惠更斯首次提出物理摆的理论并且创造出了单摆机械钟到现今的自动控制原理和计算机的日趋完善,人们对机械振动分析的研究已日趋成熟。而伴随着振动测试系统的进步和日臻成熟,其在国民的日常生活和生产中所扮演的角色也愈发的重要。 2.振动测试与分析系统(TDM)的发展

振动测试和分析技术综述分析解析

振动测试和分析技术综述 黄盼 (西华大学,成都四川 610039) 摘要:振动测试和分析对结构和系统动态特性分析及其故障诊断是一种有效的手段。综述了当前振动测试和分析技术,包括振动测试与信号分析的国内外发展概况、振动信号数据采集技术、振动测试技术、以及振动测试与信号分析的工程应用,最后对振动测试与分析技术的未来发展方向进行了展望。 关键词:振动测试; 信号分析; 动态特性; 综述 Summary of Vibration Testing and Analysis HuangPan ( Xihua University,Chengdu 610039,China) Abstract: Vibration testing and analysis is an effective tool in analyzing structure and system dynamic characteristic and detecting the failures of structures,systems and facilities. The present paper reviews the current vibration testing and analysis techniques,including the development of vibration measurement and analysis of domestic and foreign,vibration signal data acquisition,vibration testing technology ,vibration measurement and analysis in engineering application. Finally,the future development in the field of vibration testing and analysis is predicted. Key words: vibration testing; signal analysis; dynamic characteristic;overview

桥梁专业设计技术规定 第八章 桥梁震动及抗震

8 桥梁振动及抗震 8.1结构抗震体系 8.1.1结构应具有合理的地震作用传力途径和明确的计算简图。结构除了具有必要的承载能力以外,还应具有良好的变形能力和耗能能力,以保证结构的延性性能。 8.1.2结构的质量和刚度应均匀分布,避免因质量和刚度突变而造成地震时结构各部分相对变形过大。对于质量和刚度变化较大的部位,应采取有效措施予以加强。 8.1.3结构基础应建造在坚硬的地基上,尽可能避开活断层及地质条件不好的地基。当结构必须建造在软土地基或可能液化的地基上时,应对地基进行处理。 8.1.4上部结构应尽量采取连续的形式。当上部结构与下部结构之间的支座允许上部结构平动时,必须保证支承面宽度并采取相应的限位措施,防止落梁的发生。 8.1.5确定墩柱的截面尺寸时应避免墩柱的轴压比(墩柱所承受的轴向压力与抗压极限承载力之比)过大,以保证墩柱截面的延性性能。 8.1.6对于多跨连续结构,各中墩柱的截面尺寸和高度应使各柱的纵桥向刚度和横桥向刚度基本相同。跨径相差较大时,应考虑上部结构质量对横桥向频率的影响。对于地面高差较大的地形,可通过下挖地面来调整墩柱的高度。 8.1.7对于大跨度桥梁,应结合桥位处的地质条件和地震动特性等具体情况,对各种结构体系进行分析研究,选择抗震性能较好的结构体系。 8.2地震反应计算 8.2.1工程设计项目应按《地震安全性评价管理条例》(国务院令第323号)及各地方相应管理办法,要求业主对相应区域进行地震危险性分析,

并根据地震危险性分析进行结构的地震反应计算。在桥梁建设中尽量避开具有危险性的活动地震断层。活动性地震断层附近桥梁的地震反应计算要特别注意地面位移对结构的影响。按“条例”不需进行地震安全性评价的一般性工程,应按照《中国地震动参数区划图》(GB18306-xx)规定的设防要求进行抗震设防。 8.2.2应根据工程的重要性等级、场地的地质条件和地震烈度、结构的自振特性等情况,按照规范用反应谱方法进行结构的地震反应计算。对于大跨度桥梁,还应进行时程反应分析,并考虑地震动的空间不均匀性。 8.2.3对于地震作用的计算,应按公路桥梁相关规范执行,城市桥梁应根据道路等级和桥梁的重要性,按表8.1进行重要性系数修正。 表8.1 城市桥梁重要性修正系数Ci 考虑地震引起的位移,避免结构因位移过大而导致非强度破坏。 8.2.5对大跨度桥梁进行地震反应计算时,由于高阶振型的影响较大,必须计算足够多的振型。 8.2.6采用减震措施设计时,应结合具体桥型进行动力时程分析。 8.3构件抗震设计和抗震构造措施 8.3.1 应搜集桥位处地震基本烈度、地质构造、地震活动情况、工程地质及水文地质条件,并根据地震基本烈度及桥梁重要性等级采取相应的

振动测试常见小知识

振动测试常见小知识问答 1什么是振动? 振动是机械系统中运动量(位移,速度和加速度)的振荡现象。 2振动的目的? 振动试验的目的是模拟一连串振动现象,测试产品在寿命周期中,是否能承受运输或使用过程的振动环境的考验,也能确定产品设计和功能的要求标准。振动试验的精义在于确认产品的可靠性及提前将不良品在出厂前筛检出来,并评估其不良品的失效分析使其成为高水平,高可靠性的产品。 3.振动分几种? 振动分正弦振动和随机振动两种。 4.什么是正弦振动? 能用一项正弦函数表达式表达其运动规律的周期运动。 例如凡是旋转、脉动、振荡(在船舶、飞机、车辆、空间飞行器上所出现的)所产生的振动均是正弦振动。 5.正弦振动的目的? 正弦振动试验的目的是在试验室内模拟电工电子产品在运输、储存、使用过程中所遭受的振动及其影响,并考核其适应性。 6.正弦振动的试验条件由什么确定? 正弦振动试验的验条件(严酷等级)由振动频率范围、振动量、试验持续时间(次数)共同确定. 7.什么是振动频率范围? 振动频率范围表示振动试验由某个频率点到某个频率点进行往复扫频。 例如:试验频率范围5-50Hz,表示由5Hz到50Hz进行往复扫频。 8.什么是频率? 频率:每秒振动的次数.单位:Hz。 9.什么是振动量? 振动量:通常通过加速度和位移来表示. 加速度:表示速度对时间倒数的矢量。加速度单位:gn或m/s2 位移:表示物体相对于某参考系位置变化的矢量。位移单位:mm 10.什么是试验持续时间(次数)? 振动时间表示整个试验所需时间, 次数表示整个试验所需扫频循环次数. 11.什么是扫频循环?

扫频循环:在规定的频率范围内往返扫描一次: 例如:5Hz→50Hz→5Hz,从5Hz扫描到50Hz后再扫描到5Hz。 12.什么是重力加速度? 重力加速度:物体在地球表面由于重力作用所产生的加速度。 1gn=10m/s2(GB/T 2422-1995 电工电子产品环境试验术语) 13.扫描方式(sweep mode)分几种? 线性扫描:是线性的,即单位时间扫过多少赫兹,单位是Hz/s或Hz/min,这种扫描用于细找共振频率的试验. 对数扫描:频率变化按对数变化,扫描率可以是oct/min ,对数扫描的意思是相同的时间扫过的频率倍频程数是相同的 14.什么是扫描速度(sweep speed)?分几种? 扫描速度(sweep speed):指从最低频率扫描到最高频率的速度. 1)oct/min:多少倍频程每分钟. 例:1oct/min,5Hz到10Hz需1分钟,10Hz到20Hz需1分钟。 2)min/sweep:多少分钟每次扫频. 例:5-500Hz,扫描速度:1分钟/sweep,表示从5Hz到500Hz需1分钟。 3)Hz/s:多少Hz每秒. 例:5-10Hz,扫描速度:1Hz/s,表示5Hz到6Hz需1秒,6Hz到7Hz需1秒。 15.振动试验中试验几个方向?怎么区分方向? 除有关规范另有规定外,应在产品的三个互相垂直方向上进行振动试验。 一般定义产品长边为X轴向,短边为Y轴向,产品正常摆放上下为Z轴向。 16.什么是交越频率? 交越频率:在振动试验中由一种振动特性量变为另一种振动特性量的频率。如交

模态分析与振动测试技术

模态分析与振动测试技术 固体力学 S0902015 李鹏飞

模态分析与振动测试技术 模态分析的理论基础是在机械阻抗与导纳的概念上发展起来的。近二十多年来,模态分析理论吸取了振动理论、信号分析、数据处理数理统计以及自动控制理论中的有关“营养”,结合自身内容的发展,形成了一套独特的理论,为模态分析及参数识别技术的发展奠定了理论基础。 一、单自由度模态分析 单自由度系统是最基本的振动系统。虽然实际结构均为多自由度系统,但单自由度系统的分析能揭示振动系统很多基本的特性。由于他简单,因此常常作为振动分析的基础。从单自由度系统的分析出发分析系统的频响函数,将使我们便于分析和深刻理解他的基本特性。对于线性的多自由度系统常常可以看成为许多单自由度系统特性的线性叠加。 二、多自由度系统模态分析 对于多自由度系统频响函数数学表达式有很多种,一般可以根据一个实际系统来讨论,给出一种形式;也可根据问题的要求来讨论,给出其他不同的形式。为了课程的紧凑,直接联系本课程的模态分析问题,我们就直接讨论多自由度系统通过频响函数表达形式的模态参数和模态分析。即多自由度系统模态参数与模态分析。 多自由度系统模态分析将主要用矩阵分析方法来进行。 我们以N个自由度的比例阻尼系统作为讨论的对象。然后将所分析的结果推广到其他阻尼形式的系统。 设所研究的系统为N个自由度的定常系统。其运动微分方程为: (2—1) ++= M X CX KX F ?)阶式中M,C,K分别为系统的质量、阻尼及刚度矩阵。均为(N N 矩阵。并且M及K矩阵为实系数对称矩阵,而其中质量矩阵M是正定矩阵,刚度矩阵K对于无刚体运动的约束系统是正定的;对于有刚体运动的自由系统则是半正定的。当阻尼为比例阻尼时,阻尼矩阵C为对称矩阵(上述是解耦条件)。 N?阶矩阵。即 X及F分别为系统的位移响应向量及激励力向量,均为1

结构动力特性测试方法及原理

结构动力特性的测试方法及应用(讲稿) 一. 概述 每个结构都有自己的动力特性,惯称自振特性。了解结构的动力特性就是进行结构抗震设 计与结构损伤检测的重要步骤。目前,在结构地震反应分析中,广泛采用振型叠加原理的反应谱分析方法,但需要以确定结构的动力特性为前提。n 个自由度的结构体系的振动方程如下: [][][]{}{})()()()(...t p t y K t y C t y M =+??????+?????? 式中[]M 、[]C 、[]K 分别为结构的总体质量矩阵、阻尼矩阵、刚度矩阵,均为n 维矩阵;{} )(t p 为外部作用力的n 维随机过程列阵;{})(t y 为位移响应的n 维随机过程列阵;{})(t y &为速度响应的n 维随机过程列阵;{})(t y && 为加速度响应的n 维随机过程列阵。 表征结构动力特性的主要参数就是结构的自振频率f (其倒数即自振周期T )、振型Y(i)与阻尼比ξ,这些数值在结构动力计算中经常用到。 任何结构都可瞧作就是由刚度、质量、阻尼矩阵(统称结构参数)构成的动力学系统,结构一旦出现破损,结构参数也随之变化,从而导致系统频响函数与模态参数的改变,这种改变可视为结构破损发生的标志。这样,可利用结构破损前后的测试动态数据来诊断结构的破损,进而提出修复方案,现代发展起来的“结构破损诊断”技术就就是这样一种方法。其最大优点就是将导致结构振动的外界因素作为激励源,诊断过程不影响结构的正常使用,能方便地完成结构破损的在线监测与诊断。从传感器测试设备到相应的信号处理软件,振动模态测量方法已有几十年发展历史,积累了丰富的经验,振动模态测量在桥梁损伤检测领域的发展也很快。随着动态测试、信号处理、计算机辅助试验技术的提高,结构的振动信息可以在桥梁运营过程中利用环境激振来监测,并可得到比较精确的结构动态特性(如频响函数、模态参数等)。目前,许多国家在一些已建与在建桥梁上进行该方面有益的尝试。 测量结构物自振特性的方法很多,目前主要有稳态正弦激振法、传递函数法、脉动测试法与自由振动法。稳态正弦激振法就是给结构以一定的稳态正弦激励力,通过频率扫描的办法确定各共振频率下结构的振型与对应的阻尼比。 传递函数法就是用各种不同的方法对结构进行激励(如正弦激励、脉冲激励或随机激励等),测出激励力与各点的响应,利用专用的分析设备求出各响应点与激励点之间的传递函数,进而可以得出结构的各阶模态参数(包括振型、频率、阻尼比)。脉动测试法就是利用结构物(尤其就是高柔性结构)在自然环境振源(如风、行车、水流、地脉动等)的影响下,所产生的随机振动,通过传感器记录、经谱分析,求得结构物的动力特性参数。自由振动法就是:通过外力使被测结构沿某个主轴方向产生一定的初位移后突然释放,使之产生一个初速度,以激发起被测结构的自由振动。 以上几种方法各有其优点与局限性。利用共振法可以获得结构比较精确的自振频率与阻尼比,但其缺点就是,采用单点激振时只能求得低阶振型时的自振特性,而采用多点激振需较多的设备与较高的试验技术;传递函数法应用于模型试验,常常可以得到满意的结果,但对于尺度很大的实际结构要用较大的激励力才能使结构振动起来,从而获得比较满意的传递函数,这在实际测试工作中往往有一定的困难。 利用环境随机振动作为结构物激振的振源,来测定并分析结构物固有特性的方法,就是近年来随着计算机技术及FFT 理论的普及而发展起来的,现已被广泛应用于建筑物的动力分析研究中,对于斜拉桥及悬索桥等大型柔性结构的动力分析也得到了广泛的运用。斜拉桥或悬索桥的环境随机振源来自两方面:一方面指从基础部分传到结构的地面振动及由于大气变化而影响到上部结构的振动(根据动力量测结果,可发现其频谱就是相当丰富的,具有不同的脉动卓越周期,反应了不同地区地质土壤的动力特性);另一方面主要来自过桥车辆的随机振动。

振动测试技术资料

拱桥振动测试 姓名:刘沛 学号:0214185 班级:研14-1班 课程:振动测试技术 年月:2015年7月18日

目录 一振动测试概述 (1) 1 振动分类及描述 (1) 2 振动基本参量表示方法 (1) 3 振动测试仪器分类及配套使用 (3) 4 窗函数的分类及用途 (4) 5 信号采集及分析过程中出现的问题,怎样解决? (7) 二、惯性式速度型与加速度型传感器 (8) 1 惯性式速度传感器的分类 (8) 2 压电式加速度传感器 (9) 三振动特性参数的常用量测方法 (12) 1 振动基本参数的量测 (12) 2 简谐振动频率的量测 (12) 3 机械系统固有频率的测量 (12) 4 简谐振动幅值的测量: (12) 5衰减系数的测量: (13) 6结构动力特性参数量测 (13) 7 稳态正弦激振及测试 (13)

8 瞬态激振及测试 (14) 9 随机激振及测试 (15) 四题目(结构设计) (16) 1 结构设计资料及试验要求 (16) 2.试验目的 (18) 3.试验方法 (18) 4 结果分析 (20) 五概念 (22) 1 功率谱 (22) 2 自相关函数 (22) 3 互相关函数 (23) 4 相干函数 (23) 5 传递函数 (24) 六模态分析 (26) 1 概念 (26) 2 方法分类及理解 (26)

一振动测试概述 1 振动分类及描述 按照运动的表现形式,振动可以分为确定性和非确定性振动(即随机振动)。确定性振动又分为周期性和非周期性振动。周期性振动分为简谐振动和复杂周期振动。非周期运动又分为准周期和瞬态振动。非确定性振动分为平稳随机和非平稳随机,平稳随机又分为各态历经和非各态历经。按振动激励类型分类,振动可分为随机自由振动和随机强迫振动。按振动位移的特征分类,振动可分为:横向振动(振动体上的质点在垂直于轴线的方向产生位移的振动)、纵向振动(振动体的质点沿轴线方向产生位移的振动)和扭转振动(振动体上的质点沿轴线方向产生位移的振动)。周期运动的最简单形式是简谐振动。这种振动的表示方法及特点是描述其他振动形式的基础。一般的周期运动可以借助傅里叶级数表示成一系列简谐振动的叠加,该过程称为谐波分析。非周期运动则需要通过傅里叶积分作谐波分析。 2 振动基本参量表示方法 工程振动测试的主要参数有位移、速度、加速度、激振力、振幅、振动频率、阻尼比及结构的振动模态等。其中前五个参数属于时域测试参数。 下面分别来说明振动基本参量的表示方法及其含义: (1)振幅(A):振幅就是振动过程中振动物体离开平衡位置的最大距离。振动的幅度有三种表示法,即峰值、平均值和有效值。 (2)周期(T):从振动波形来看,连续两次波峰或者波谷之间耗费的时间就是一个振动周期,也就是完成一次振动所需的时间。 (3)频率(f):单位时间内振动循环的次数f,单位是赫兹(Hz)。频率是振动特性的标志,是分析振动原因的重要依据。周期T是物体完成一个振动

振动测试技术模态实验报告

研究生课程论文(2016-2017学年第二学期) 振动测试技术 研究生:

模态试验大作业 0 模态试验概述 模态试验(modal test)又称试验模态分析。为确定线性振动系统的模态参数所进行的振动试验。模态参数是在频率域中对振动系统固有特性的一种描述,一般指的是系统的固有频率、阻尼比、振型和模态质量等。 模态试验中通过对给定激励的系统进行测量,得到响应信号,再应用模态参数辨识方法得到系统的模态参数。由于振动在机械中的应用非常普遍。振动信号中包含着机械及结构的内在特性和运行状况的信息。振动的性质体现着机械运行的品质,如车辆、航空航天设备等运载工具的安全性与舒适性;也反映出诸如桥梁、水坝以及其它大型结构的承载情况、寿命等。同时,振动信号的发生和提取也相对容易因此,振动测试与分析已成为最常用、最基本的试验手段之一。 模态分析及参数识别是研究复杂机械和工程结构振动的重要方法,通常需要通过模态实验获得结构的模态参数即固有频率、阻尼比和振型。模态实验的方法可以分为两大类:一类是经典的纯模态实验方法,该方法是通过多个激振器对结构进行激励,当激振频率等于结构的某阶固有频率,激振力抵消机构内部阻尼力时,结构处于共振状态,这是一种物理分离模态的方法。这种技术要求配备复杂昂贵的仪器设备,测试周期也比较长;另一类是数学上分离模态的方法,最常见的方法是对结构施加激励,测量系统频率响应函数矩阵,然后再进行模态参数的识别。 为获得系统动态特性,常需要测量系统频响函数。目前频响函数测试技术可以分为单点激励单点测量( SISO)、单点激励多点测量( SIMO) 、多点激励多点测量( MIMO)等。单点激励一般适用于较小结构的频响函数测量,多点激励适用于大型复杂机构,如机体、船体或大型车辆机构等。按激励力性质的不同,频响函数测试分为稳态正弦激励、随机激励及瞬态激励三类,其中随机激励又有纯随机、伪随机、周期随机之分。瞬态激励则有快速正弦扫描激励、脉冲激励和阶跃激励等几种方式。按激励力性质的不同,频响函数测试分为稳态正弦激励、随机激励及瞬态激励三类,其中随机激励又有纯随机、伪随机、周期随机之分,瞬态激励则有快速正弦扫描激励、脉冲激励和阶跃激励等几种方式。 振动信号的分析和处理技术一般可分为时域分析、频域分析、时频域分析和时间序列建模分析等。这些分析处理技术从不同的角度对信号进行观察和分析,为提取与设备运行状态有关的特征信息提供了不同的手段。信号的时域分析包括时域统计分析、时域波形分析和时域相关分析。对评价设备运行状态和

微振动的高精度测量原理

微振动的测量原理及其应用 吴志超(机械与电子工程学院电子信息工程)指导教师:许海峰 摘要:振动是指描述系统状态的参量(如位移、电压)在其基准值上下交替变化的过程。狭义的指机械振动,即力学系统中的振动。电磁振动习惯上称为振荡。力学系统能维持振动,必须具有弹性和惯性。由于弹性,系统偏离其平衡位置时,会产生回复力,促使系统返回原来位置;由于惯性,系统在返回平衡位置的过程中积累了动能,从而使系统越过平衡位置向另一侧运动。正是由于弹性和惯性的相互影响,才造成系统的振动。 对振动的研究意义非常重大。通过掌握振动的基本理论和分析方法,用以确定和限制振动时,工程结构和机械产品的性能、寿命及安全的有害影响;本文介绍了接触式和非接触式两种微振动的测量原理,可以运用振动理论去创造和设计新型振动设备、仪表及自动化装置。主题词:微振动;测量原理;应用 Abstract:Vibration refers to describe the system state parameters (such as displacement, voltage) in its benchmark fluctuation variations of process. In its narrow sense means mechanical vibration, namely the mechanical system of vibration. Electromagnetic vibration habit is called on oscillation. Mechanical system can maintain vibration, must have the flexibility and inertia. Due to its equilibrium elasticity, system deviation position, can produce reply force, prompting system; return to its original position Because of inertia, system in return balance position process accumulated the kinetic energy, so that the system across to the other side movement balance position. Because of elasticity and inertia mutual influence, just cause system vibration. The vibration research significance of very significant. Through mastery of vibration of basic theory and analysis method to determine and restrictions vibrating engineering structural and mechanical product performance, the life and the safety of harmful influence; This paper introduces the contact and contact-less two micro vibration measuring principle of vibration theory, and can be used to create and design a new vibration equipment,

振动测试技术方案设计

振动测试技术案 采用加速度计作为振动传感器,在各种工况下,对被测系统多个测点的加速度信号进行测量,通过FFT频谱分析,得到结构的固有频率,描述系统的振动特性。 却迪哎怯嗟惟悟号追辿蟹數赛紫蚩胖讣竿机 图1振动测试硬件流程图 、传感器指标分析 最常用的振动测量传感器按各自的工作原理可分为压电式、压阻式、电容式、电感式以及光电式。压电式加速度传感器因为具有测量频率围宽、量程大、体积小、重量轻、对被测件的影响小以及安装使用便,所以成为最常用的振动测量传感器。在一般通用振动测量时,用户主要关心的是加速度计传感器的技术指标,包括灵敏度、带宽、量程、分辨率、输出电气特性等。 (1)灵敏度 传感器的灵敏度是传感器的最基本指标之一,灵敏度的大小直接影响到传感器对振动信号的测量。不难理解,传感器的灵敏度应根据被测振动量(加速度值)大小而定,但由于加速度传感器是测量振动的加速度值,而在相同的位移幅值条件下加速度值与信号的频率平成正比,所以不同频段的加速度信号大小相差甚大。选择加速度传感器灵敏度时应对信号有充分的估计,最常用的振动测量压电式加速度计

灵敏度,电压输出型(IEPE型)为50?100 mV/g,电荷输出型为 1 ?50 PC/g。 (2)带宽 传感器的带宽是指传感器在规定的频率响应幅值误差( 士5%, 士10%, 士3dB)传感器所能测量的频率围。频率围的高,低限分别称为高、低频截止频率。截止频率与误差直接相关,所允的误差围大则其频率围也就宽。作为一般原则,传感器的高频响应取决于传感器的机械特性,而低频响应则由传感器和后继电路的综合电气参数所决定。高频截止频率高的传感器必然是体积小,重量轻,反之用于低频测量的高灵敏度传感器相对来说则一定体积大和重量重。 (3)量程 加速度传感器的测量量程是指传感器在一定的非线性误差围所能测量的最大测量值。通用型压电加速度传感器的非线性误差大多为1%。作为一般原则,灵敏度越高其测量围越小,反之灵敏度越小则测量围越大。IEPE(电压)输出型压电加速度传感器的测量围是由在线性误差围所允的最大输出信号电压所决定,最大输出电压量值一般 都为士5V。通过换算就可得到传感器的最大量程,即等于最大输出电压与灵敏度的比值。需要指出的是IEPE压电传感器的量程除受非线性误差大小影响外,还受到供电电压和传感器偏置电压的制约。当 供电电压与偏置电压的差值小于传感器技术指标给出的量程电压时,传感器的最大输出信号就会发生畸变。因此IEPE型加速度传感器的偏置电压稳定与否不仅影响到低频测量也可能会使信号失真,这种现 象在高低温测量时需要特别注意,当传感器的置电路在非室温条件下不稳定时,传感器的偏置电压很可能不断缓慢地漂移而造成测量信号忽大忽小。 (4)分辨率 即能测量到的最小加速度变化量。加速度传感器的分辨率受其噪声的限制,输出噪声的大小随频带宽度而变化。 (5)输出电气特性

第四章 桥梁振动试验

第四章桥梁振动试验 4.1概述 振动是设计承受动荷载的工程结构必须研究的问题,桥梁不仅要研究由车辆移动荷载引起的振动,还要研究桥梁结构本身的抗震、抗风性能和能力。 随着结构计算、施工技术和建筑材料等方面科技水平的不断进步,桥梁的跨度越来越大,因此对桥梁振动性能的研究分析提出了更高的要求。桥梁振动试验可以求的基本问题可以归类为三种:桥梁振源、桥梁自振特性和结构动力反应。 桥梁振源的测定一般包括对能引起桥梁振动的风、地震和车辆振动等振动荷载的测定。 桥梁自振特性是桥梁结构的固有特性,也是桥梁振动试验中最基本的测试内容。 车辆、风和地震等外荷载作用下桥梁结构动力反应的测定是评价桥梁结构动力性能的基本内容之一。 传统的结构动力学方法,根据力学原理建立结构的数学模型,然后由已知振源(输入力或运动)去求所需要的动态响应。这种方法至少有两方面的问题难以完善:一是阻尼系数只能凭假定设置;其次是计算图式和设计图式与实际结构之间的差异。 振动试验已经发展起来的参数识别与模态分析技术,是改善理论计算不足的有力手段。它的基本做法是,利用已知(或未知)输入力对结构激振,用仪器测得结构的输出响应,然后通过输入、输出的关系(或仅输出)求取结构的数学模型,使更接近于结构的实际情况。 振动试验作为一门独立的工程振动学科,解决了许多理论计算上无法解决的实际问题,我国从1976年唐山地震后滦河大桥的抗震试验开始,各高校、科研单位先后对许多实桥和模型桥做过振动试验,特别是近年来对新建的一些大跨度桥梁进行施工阶段和运营阶段的振动试验,许多实测数据已直接为桥梁结构的振动分析、抗震抗风研究所利用。 4.2桥梁自振特性参数测定 测定桥梁自振特性参数是桥梁振动试验的基本内容,要研究桥梁结构的抗震、抗风或抗其它动荷载的性能和能力必须了解桥梁结构的自振特性。 自振特性参数,也称动力特性参数和振动模态参数,主要包括结构的自振频率(自振周期)、阻尼比和振型等,是由结构形式、材料性能等结构固有的特性决定,与外荷载无关。 4.2.1自振特性参数 1.自振频率和自振周期 自振频率是自振特性参数中最重要的概念,物理上指单位时间内完成振动的次数,通常用f表示,单位为赫兹(Hz),也可以用圆频率ω(ω =2πf)表示,单位为1/秒(1/s)。 自振周期(T)指物体振动波形重复出现的最小时间,单位为秒(s),它和自振频率互成倒数关系T=1/f。

汽车的振动测试技术

汽车的振动测试技术-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

汽车的振动测试技术 汽车供应商们采用先进的振动测试技术来保证汽车在行驶中的安静和平稳。汽车上的零件和组装件必须经受振动可控测试技术的检验。 汽车内部从仪表板到桌椅,从安全气囊传感器到引擎注油泵,诸多零部件都要经过精确振动模式和幅度的测试。 在有些情况下,要用振动测试法验证汽车的各种装置在一般路面条件下不会损坏。在另一些情况下,通过振动测试来识别机械发出的烦人的噪声。 在振动控制的工业中,开发成功的数字信号处理技术有可能在实验室和生产线上制造成更加贴近真实的振动环境。今天,振动测试除了使用随机波、正弦波和冲击波的传统方法,又增加了更加复杂的方法,比如随机波上加正弦波和波形复制。 正如名称所示,随机正弦波是把随机振动与正弦波结合起来形成复杂的振动形式;波形复制振动模仿出真实的汽车振动环境。随机正弦波振动把多个正弦波与具有宽频带的噪声结合在一起。正弦波振动可以是固定的或者是扫描式的谐波或非谐波振动,而且在整个频带内的振动幅度是可变的。就模仿在路面变化行驶中的随机振动的汽车来说,其引擎转速增加或减少时,随机正弦波振动是很好的测试方法。 实际应用 采用随机正弦波振动和波形复制方法对汽车进行测试,可真实地再现汽车行驶中的实际环境,用作设计验证和质量控制。 ?仪表板 许多汽车制造厂对仪表板组件进行振动测试以检查其发出的咯吱声和卡嗒声。这一项是新车购买者可能最不满意的地方,在保证金中占很大份额。 为了测试建造了专用振动台,它不使用风扇,为的是造成清静的环境来验证振动中的仪表板是否有咯吱声和卡嗒声。因为没有通风散热,只能在温升超过工作温度时做短时间的振动测试,然后测试要暂停一会儿让设备冷却下来。 除振动台外,所有能发出噪声的仪器设备,包括振动台的控制器都应放在测试室的列边。遥控面板和显示器要悬挂在测试装置的上面,便于工作人员能听见噪声并控制测试过程。 用于检验咯吱声和卡嗒声的振动模式,由随机波、扫描正弦波和代表负荷的多段波形所构成。其振动幅度要控制在汽车正常行驶中的额定实验值内。为了避免振动过于猛烈。要维修部件并做好紧固工作。 在振动测试中,操作人员起着关键性的作用,例如施加扫描式正弦波来重复加速引擎的振动模式,此时可能要加上几次扫频来发现异常的噪声。由于咯吱声和卡嗒声难于发现起因,操作者必须停止对仪表板做下一步的操作,并且用于动方式来控制振动频率和振幅,检查产生噪音的真正原因。这样才能找到产生噪声的机理,许多设备生产厂也采用这种方法作为质量控制的手段。

土木工程结构振动控制技术及其应用研究.

万方数据

万方数据 万方数据 《6? 善s. 曼s. 蓑s. 辎4. 图6模拟结构阻尼比随TLMD频率比变化曲线 模拟结构阻尼比达到极值。频率比在0.96~0.98区间,即频率比在最优值附近改变±1%时,模拟结构阻尼比变化较为平缓且均在6%以上。

实桥通常采用多重TLMD(MTLMD进行减振,为此在室内进行了MTLMD减振性能试验。分别将1~4台频率和阻尼均调为优化值的减振器固定到上述模拟结构上进行试验,得到模拟结构阻尼比随TLMD总质量比变化的曲线如图7所示,按TMD 理论计算的相应曲线亦绘于图7。从图7可知,模拟结构的阻尼比随TLMD总质量比增加而增大,4台TLMD(质量比1.91%时,模拟结构阻尼比达到7.13%,抑振效果非常好。1~4台TLMD 的试验值与同质量比下的TMD理论计算值比较,模拟结构阻尼比分别提高27%、23%、35%和46%,说明新型TLMD双调谐减振器由于同时具有TLD 和TMD的抑振效能,抑振性能在TMD基础上有大幅提升。 图7MTLMD抑振性能的试验值与TMD理论僵对比3.1.3实桥试验 选取九江长江大桥三大拱中2根典型吊杆(C32A32和C10A10,对该新型减振器进行了减振性能实桥试验。在每根吊杆上安装4台活动质量均为10kg的减振器,如图8所示。首先撤下吊杆原有TMD减振器,分别进行激振并得到吊杆自身的自振特性;然后安装试验用新型减振器TLMD对吊杆激振,进行新型TLMD减振性能试验;最后对撤下的既有TMD减振器进行检修,使之恢复最佳状态,重新安装到吊杆上进行综合减振性能试验。试验结果如图9所示。 由图9可知,吊杆C32A32和C10A10在TLMD质量比分别为1.57%与1.56%的情形下, 图8新型TLMD实桥安装 图9实桥试验结果 目标振型阻尼比达到了5.09%和3.58%,阻尼分别提高了50.9倍和35.8倍。对非目标振型,结构阻尼比也有所提高。对比原TMD在质量比为1.9%时,目标振型阻尼比为3%左右,TLMD具有更好的减振效果。TLMD与TMD减振器共同工作时,目标振型的结构阻尼比进一步增加到5.47%和4.98%,非目标振型的结构阻尼比有更明显的提高。

桥梁共振和预防

列车-桥梁共振研究的现状与发展趋势及预防共振的措施 列车通过桥梁时将引起桥梁结构的振动,而桥梁的振动又反过来影响车辆的振动,这种相互作用、相互影响的问题就是车辆与桥梁之间振动耦合的问题。人类自1825年建成第一条铁路以来,便开始了对列车与桥梁相互作用研究探索的漫长历史过程。1849年Willis提交了第一份关于桥梁振动研究的报告,探讨了Chester铁路桥梁塌毁的原因。在随后的近100年时间内,由于当时力学水平、计算技术、方法及手段的落后,研究中通常将车辆、桥梁简单地看作两个独立的模型,在这种模型里,机车车辆被简化成单个或多个集中力,或者将其各种动力因素简化为简谐力,而桥梁被处理成均布等截面梁,采用级数展开的方法进行近似的求解,这些方法基本上只能算是解析或半解析法。 20 世纪60、70年代以来,电子计算机的出现以及有限元技术的发展,使得车桥耦合振动研究有了飞速的发展,从车桥系统的力学模型、激励源的模拟到研究方法和计算手段等都有了质的飞跃,人们可以建立比较真实的车辆和桥梁计算模型,然后用数值模拟法计算车辆和桥梁系统的耦合振动响应,美国、日本、欧洲和国内诸多学者为车桥耦合振动理论的发展做出了重要贡献,在车辆模型、桥梁模型以及车桥系统耦合振动方面取得了不少成就。 本文就车桥耦合振动的研究思路、车辆分析模型、桥梁分析模型、轮轨接触关系、激励源、数值计算方法6个方面,较系统地阐述了列车~桥梁耦合振动研究的现状与进展,总结在上述6个方面已取得的一些研究成果和结论,同时,指出目前研究工作中存在的尚待进一步完善的问题,就如何进一步开展上述领域的研究作了初步探讨。 1 车桥耦合振动研究的现状 20 世纪60、70年代,西欧和日本开始修建高速铁路,对桥梁动力分析提出了更高的要求;同时,电子计算机的出现以及有限元技术的发展,使得车桥振动研究具备了强有力的分析手段,这极大地促进了车桥耦合振动研究的向前发展。 日本在修建本四联络线时,对车桥动力响应做了大量的理论研究、试验研究和现场测试工作。通过分析轮轨横向力、轮重减载率、脱轨系数和车体加速度来

机械振动测试系统综述

机械振动测试系统综述 翟 慧 强 张 金 萍 于 玲 王 丹 (沈阳化工大学 机械工程学院,辽宁 沈阳 110142) 摘 要:机械振动测试技术在工业生产中起着十分重要的作用,为此设计和制造高效的机械振动测试系统便成为测试技术的重要内容。本文首先概述了机械振动测试系统的发展历程。总结和分析了发展机械振动 测试系统的基本组成和应用理论。根据不同原理列举了几种机械振动测试系统的类型并对不同的机械振动 测试系统进行分析,探讨了他们的优点和不足。最后在此基础上分析了机械振动测试系统的几个发展趋势和 系统建设中仍然要注意的抗干扰问题和故障诊断问题。 关键词:机械振动测试系统;测试技术;抗干扰;故障诊断 1 引言 振动问题广泛存在于热门的生活和生产当中。建筑物、机器等在内界或者外界的激励下就会产生振动。而机械振动常常会破坏机械的正常工作,甚至会降低机械的使用寿命并对机器造成不可逆的损坏多数的机械振动是有害的。因而对振动的研究不仅有利于改善人们的生活环境和生活水平,也有助于提高机械设备的使用寿命,提高人们的生产效率。正因如此振动测试在生产和科研等多方面都有着十分重要的地位[1]。为了控制振动,将振动给人们带来的危害降至最低,就需要我们了解振动的特性和规律,对振动进行测试和研究。振动测试系统应运而生。 振动测试系统有着较为长久的发展历史,是与人类社会的发展有着紧密的联系。随着计算机技术和相关高科技技术的问世和发展,振动测试系统也有了飞跃性的发展。振动测试系统从最早的简单机械设备的应用到如今的先进的计算机技术和设备的应用。从刚开始的检测人员的耳朵来进行测量、判断和计算出大概的故障点的原始方法到现在的计算机控制、存储、处理数据的处理[2]。无不体现出振动测试系统的长足发展和飞跃式的进步。与此同时,机械振动测试在理论方面也有了长足的发展,1656年惠更斯首次提出物理摆的理论并且创造出了单摆机械钟到现今的自动控制原理和计算机的日趋完善,人们对机械振动分析的研究已日趋成熟。而伴随着振动测试系统的进步和日臻成熟,其在国民的日常生活和生产中所扮演的角色也愈发的重要。 2机械振动测试系统的基本理论与组成 机械振动测试就是利用现代一些测试手段,对所研究物体的机械振动进行测量,并对测得的信号进行更细致的分析,以期获得在各种工作状态下物体的机械振动特性,从而判断物体的机械振动特性是否符合要求。 振动测试系统主要由传感器、信号调节部分、数模转换器、信号处理部分和数据记录部分、反馈部分等组成。传感器是将被测量转换成某种电信号的部件。是整个测试系统最重要的组成部分。信号调节部分是把传感器的输出信号转换成适合于进一步传输和处理的形式。经过加工处理使得原始信号更加便于分析和处理。这种信号的转换多数是电信号直接的转换。信号处理部分是对来自信号调节环节的信号进行各种运算和分析。这也是测试的核心意义所在,包括对时域和频域的分析,已得到各种参数。数模转换器是采用计算机等进行测试、控制系统时进行模拟信号与数字信号的相互转换的环节。测试系统的主要作用是更加便捷易懂的将初试信号转换成某种信号进行提取分析。因此最重要的是信号不能失真,不出现扰动。这就对测试系统提出了较为严格的要求[3]。 3.振动测试系统的分类 近几年来,振动测试理论与方法都有了很大的发展。目前振动测试方法按其原理不同可以分为四类。直观类、光学类、机械类和电测类。直观法操作简便,不受各种器材的限制。

振动试验理论基础与方法培训

奥 申 检 测 振动试验理论基础与方法培训 主讲人:洪城明 上海奥申检测科技有限公司 培训目的: (1)基本了解振动试验相关的基础理论(2)掌握理解振动试验相关的核心理论 (3)了解振动试验设备结构、功能,掌握其主要参数范围 (4)了解振动试验传感器关键参数、掌握核查方法与使用注意点(5)理解并掌握正弦振动、随机振动的试验方法(6)理解并掌握冲击试验方法 (7)了解夹具要求、开发验证过程,掌握共振搜寻确认方法(8)掌握GMW17010对零件振动试验的要求、流程和方法

奥 申 检 测 1.1振动试验目的 在实验室内模拟一连串实际的振动现象,测试产品在寿命周期中,是否能承受运输、储存或使用过程的振动环境的考验。 1.2应用 (1)耐久测试——获得临界使用条件,确定产品设计和功能的使用边界、制定要求标准。 (2)质控测试——考核产品耐振动性能是否达标、提前筛检出不良品,确认质量和提升产品的可靠性。 (3)失效分析——模拟失效环境,分析失效模式,助力改进。 1.3测试原理 通过振动硬件(振动台、夹具、控制器、传感器),按照目标振动条件输入振动参数,对目标施加外部振动激励,目标产生振动响应,通过采集和分析响应信号,分析目标振动状态和耐振性。 2测试硬件 2.1振动试验台 2.1.1分类 振动试验设备分机械振动试验台、电液振动试验台、电动振动试验台、模拟汽车运输试验台。 (1) 机械式振动试验台:适宜于低频定振试验或低频定位移扫频试验。 (2) 电液式振动试验台:适宜于低频定振试验或中低频扫频试验及随机试验和冲击实验。 (3) 电动式振动试验台:适宜于任何形式的给定信号的振动及冲击试验。 (4) 模拟汽车运输试验台:可代替实际跑车试验 2.1.2电动振动台结构(振动台-振动发生器、控制器、功放、冷却器) 2.1.3电动振动台原理 励磁线圈如图示2-2在振动台台体内建立磁场,励磁线圈与直流电源相连,在环行气隙里产生一个高磁通量。动圈部件,包括台面、骨架和驱动线圈,悬挂在振动台的环行气隙里,当交流电流通过驱动线圈时,电磁力会在驱动线圈的绕组上产生,使得台面产生向上和向下的往复移动,如图示2-2中双向箭头处显示。台面的移动量取决于振动控制器输出的驱动信号的大小和频率以及扩展台面(如果有的话)的质量、所加的负载质量和台面悬挂系统的刚度。

相关主题
文本预览
相关文档 最新文档