当前位置:文档之家› 浇口的设计

浇口的设计

浇口的设计
浇口的设计

5.2.4 浇口的设计

浇口亦称进料口,是连接分流道与型腔的熔体通道。

浇口的设计与位置的选择恰当与否直接关系到塑件能否被完好地高质量地注射成型。

浇口可分成限制性浇口和非限制性浇口两大类。

限制性浇口的作用:

限制性浇口是整个浇注系统中截面尺寸最小的部位,通过截面积的突然变化,使分流道送来的塑料熔体产生突变的流速增加,提高剪切速率,降低粘度,使其成为理想的流动状态,从而迅速均衡地充满型腔。

对于多型腔模具,调节浇口的尺寸,还可以使非平衡布置的型腔达到同时进料的目的,提高塑件质量。

限制性浇口还起着较早固化防止型腔中熔体倒流的作用。

非限制性浇口的适用范围:非限制性浇口是整个浇口系统中截面尺寸最大的部位,它主要是对中大型筒类、壳类塑件型腔起引料和进料后的施压作用。

常用的浇口可分成以下几种形式:

(1)直接浇口

直接浇口又称主流道型浇口,它属于

非限制性型浇口,如图5.18所示。塑料

熔体由主流道的大端直接进入型腔,因

而具有流动阻力小、流动路程短及补缩

时间长等特点。由于注射压力直接作用

在塑件上,故容易在进料处产生较大的

残余应力而导致塑件翘曲变形。这种形

式的浇口截面大,去除浇口较困难,去

除后会留有较大的浇口痕迹,影响塑件

的美观。这类浇口大多用于注射成型大、

中型长流程深型腔筒形或壳形塑件,尤

其适合于如聚碳酸脂、聚砜等高粘度塑料。另外,这种形式的浇口只适于单型腔模具。

在设计直接浇口时,为了减小与塑件接触处的浇口面积,防止该处产生缩孔、变形等缺陷,一方面应尽量选用较小锥度的主流道锥角α (α=2°~ 4°),另一方面尽量减小定模板和定模座板的厚度。

直接浇口的浇注系统有着良好的熔体流动状态,塑料熔体从型腔底面中心部位流向分型面,有利于消除深型腔处气体不易排出的缺点,使排气通畅。这样的浇口形式,使塑件和浇注系统在分型面上的投影面积最小,模具结构紧凑,注射机受力均匀。

(2) 中心浇口

当筒类或壳类塑件的底部中心或接近于中心部位有通孔时,内浇口就开设在该孔口处,同时中心设置分流锥,这种类型的浇口称中心浇口,如图5.19所示。中心浇口实际上是直接浇口的一种特殊形式,它具有直接浇口的一系列的优点,而克服了直接浇口易产生的缩孔、变形等缺陷。中心浇口其实也是端面进料的环形浇口(下面介绍)。

图5.19 中心浇口的形式

在设计时,环形的厚度一般不小于0.5 mm。当进料口环形的面积大于主流道小端面积时,浇口为非限制性型浇口;反之,则浇口为限制性型浇口。

(3)侧浇口

侧浇口国外称为标准浇口,如图5.20所示。侧浇口一般开设在分型面上,塑料熔体从内侧或外侧充填模具型腔,其截面形状多为矩形(扁槽),改变浇口的宽度与厚度可以调节熔体的剪切速率及浇口的冻结时间。

这类浇口可以根据塑件的形状特征选择其位置,加工和修整方便,因此它是应用较广泛的一种浇口形式,普遍用于中小型塑件的多型腔模具,且对各种塑料的成型适应性均较强。

由于浇口截面小,减少了浇注系统塑料的消耗量,同时去除浇口容易,且不留明显痕迹。但这种浇口成型的塑件往往有熔接痕存在,且注射压力损失较大,对深型腔塑件排气不利。

图5.20a为分流道、浇口与塑件在分型面同一侧的形式;图5.20b为分流道和浇口与塑件在分型面两侧的形式,浇口搭接在塑件上;图5.20c为分流道与浇口和塑件在分型面两侧的形式,浇口搭接在分流道上。有搭接形式的侧浇口是塑件端面进料的侧浇口。设计时选择侧向进料还是端面进料,要根据塑件的使用要求而定。

侧浇口尺寸计算的经验公式如下:

(5.8)

t=(0.6—0.9)*δ(5.9)

式中 b ——侧浇口的宽度,mm;

A ——塑件的外侧表面积,mm2;

t——侧浇口的厚度;

δ——浇口处塑件的壁厚,mm。

推荐尺寸:

侧向进料的侧浇口(见图 5.20a),对于中小型塑件,一般深度t=0.5~2.0 mm(或取塑件壁厚的1/3~2/3),宽度b=1.5~5.0mm,浇口的长度L=0.7~2.0mm;端面进料的搭接式侧浇口(见图5.20b),搭接部分的长度L1=(0.6~0.9)+b/2mm,浇口长度l可适当加长,取L=2.0~3.0mm;侧面进料的搭接式浇口(见图5.20c),其浇口长度选择可参考端面进料的搭接式侧浇口。

侧浇口有两种变异的形式,即为扇形浇口和平缝浇口,下面分别介绍。

1)扇形浇口扇形浇口是一种沿浇口方向宽度逐渐增加厚度逐渐减小

的呈扇形的侧浇口,如图5.21所示,常用于扁平而较薄的塑件,如盖板、标卡和托盘类等。通常在与型腔接合处形成长L=1~1.3 mm厚t=0.25~1.0mm的进料口,进料口的宽度b视塑件大小而定,一般取6mm浇口处型腔宽度的1/4,整个扇形的长度L可取6mm左右,塑料熔体通过它进入型腔。采用扇

形浇口,使塑料熔体在宽度方向上的流动得到更均匀的分配,塑件的内应力因之较小,还可避免流纹及定向效应所带来的不良影响,减少带人空气的可能性,但浇口痕迹较明显。

图5.21 扇形浇口的形式图5.22 平缝浇口的形式

2)平缝浇口平缝浇口又称薄片浇口,如图5.22所示。这类浇口宽度

很大,厚度很小,几何上成为一条窄缝,与特别开设的平行流道相连。通过平行流道与窄缝浇口熔体得到均匀分配,以较低的线速度平稳均匀地流入型腔,降低了塑件的内应力,减少了因取向而造成的翘曲变形。这类浇口的宽度b一般取塑件长度的25%~100%,厚度t=0.2~1.5 mm,长度L=1.2~1.5 mm。这类浇口主要用来成型面积较少尺寸较大的扁平塑件,但浇口的去除比扇形浇口更困难,浇口在塑件上的痕迹也更明显。

(4)环形浇口

对型腔充填采用圆环形进料形式的浇口称环形浇口,如图5.23所示。环形浇口的特点是进料均匀,圆周上各处流速大致相等,熔体流动状态好,型腔中的空气容易排出,熔接痕可基本避免。图5.23a所示为内侧进料的环形浇口,浇口设计在型芯上,浇口的厚度t=0.25—1.6mm,长度L=0.8—1.8mm;图5.23b所示为端面进料的搭接式环形浇口,搭接长度L,=0.8—1.2mmm,总长L可取2—3 mm;图5.23e为外侧进料的环形浇口,其浇口尺寸可参考内侧进料的环形浇口。实际上,前述的中心浇口也是一种端面进料的环形浇口。环形浇口主要用于成型圆筒形无底塑件,但浇注系统耗料较多,浇口去除较难,浇口痕迹明显。

图5.23 环形浇口的形式

(5)轮幅式浇口

轮幅式浇口是在环形浇口基础上改进而成,由原来的圆周进料改为数小段圆弧进料,浇口尺寸与侧浇口类似,如图5.24所示。这种形式的浇口耗料比环形浇口少得多,且去除浇口容易。这类浇口在生产中比环形浇口应用广泛,多用于底部有大孔的圆筒形或壳型塑件。轮幅浇口的缺点是增加了熔接痕,这会影响塑件的强度。

图5.24 轮幅式浇口的形式

爪形浇口如图5.25所示,它可在型芯的头部开设流道,如图5.25a所示,也可在主流道下端开设,如图5.25b所示。爪形浇口加工较困难,通常用电火花成型。型芯可用作分流锥,其头部与主流道有自动定心的作用(型芯头部有一段与主流道下端大小—致),从而避免了塑件弯曲变形或同轴度差等成型缺陷。爪形浇口的缺点与轮幅式浇口类似,主要适用于成型内孔较小且同轴度要求较高的细长管状塑件。

图5.25 爪形浇口的形式

点浇口又称针点浇口或菱形浇口,是一种截面尺寸很小的浇口,俗称小浇口,如图5.26所示。这种浇口由于前后两端存在较人的压力差,可较大程度地增大塑料熔体的剪切速率并产生较大的剪切热,从而导致熔体的表观粘度下降,流动性增加,有利于型腔的充填,因而对于薄壁塑件以及诸如聚乙烯、聚丙烯等表观粘度随剪切速率变化敏感的塑料成型有利,但不利于成型流动性差及热敏性塑料,也不利于成型平薄易变形及形状非常复杂的塑件。

点浇口的设计形式有许多种。

图5.26a所示为直接式,直径为d的圆锥形的小端直接与塑件相连。

图5.26b所示为点浇口的另一种形式,圆锥形的小端有一端直径为d,长度为L的浇口与塑件相连,但这种形式的浇口直径d不能太小,浇口长度J 不能太长,否则脱模时浇口凝料会断裂而堵塞住浇口,影响注射的正常进行。

上述两种形式点浇口制造方便,但去除浇口时容易损伤塑件,浇口也容易磨损,仅适于批量不大的塑件成型和流动性好的塑料。

图5.26c所示为圆锥形小端带有圆角的形式,其截面积相应增大,塑料冷却减慢,注射过程中型芯受到的冲击力要小些,但加工不如上述两种方便。

图5.26d所示为点浇口底部增加一个小凸台的形式,其作用是保证脱模时浇口断裂在凸台小端处,使塑件表面不受损伤,但塑件表面遗留有高起的凸台,影响其表面质量,为了防止这种缺陷,可在设计时让小凸台低于塑件的表面。图5.26e是适用于一模多件或一个较大塑件多个点浇口的形式。

点浇口的各种尺寸如图5.26所示,d=0.5—1.5mm,最大不超过2 mm,L=0.5—2 mm,

常取1.0—1.5 mm,L0=0.5—1.5 mm,L1=1.0—2.5 mm,α=6°—15°,β=60°—90°。点浇口的直径也可以用下面的经验公式计算:

(5.10)

式中 d ——点浇口直径,mm;

δ——塑件在浇口处的壁厚,mm;

A ——型腔表面积,mm2。

*采用点浇口进料的浇注系统,在定模部分必须增加一个分形面,用于取出浇注系统的凝料,因此会增加模具的复杂性。

图5.26 点浇口的各种形式

(8)潜伏浇口

潜伏浇口又称减切浇口,由点浇口变异而来。这种浇口的分流道位于模具的分形面上,而浇口却斜向开设在模具的隐蔽处。塑料熔体通过型腔的侧面或推杆的端部注入型腔,因而塑件外表面不受损伤,不致因浇口痕迹而影响塑见的表面质量与美观效果。潜伏浇口的形式如图5.27所示。

图5.27a所示为浇口开设在定模部分的形式;

图5.27b所示为浇口开设在动模部分的形式;

图5.27c所示为潜伏浇口开设在推杆的上部而进料口在推杆上端的形式。

潜伏浇口一般是圆形截面,其尺寸设计可参考点浇口。潜伏浇口的锥角B取10°~20°,倾斜角A为42°~45°,推杆上进料口宽度为0.8~2 mm,具体数值大小应视塑件大小而定。

由于浇口与型腔相连时有一定角度,形成了能切断浇口的刃口,这一刃口在脱模或分型时形成的剪切力可将浇口自动切断,不过,对于较强韧的塑料则不宜采用。

图5.27 潜伏浇口的形式

由上所述,不同的浇口形式对塑料熔体的充填特性、成型质量及塑件的性能会产生不同的影响。各种塑料因其性能的差异而对不同形式的浇口会有不同的适应性,设计模具时可参考表5.2所列部分塑料所适应的浇口形式。

注:“。”表示塑料适用的浇口形式。

需要指出的是,表5.2是生产经验的总结。如果针对具体生产实际,能处理好塑料的性能、成型工艺条件及塑件的使用要求,即使采用了表中所列出的不适应的浇口,仍有可能取得注射成型的成功。

5.2.5 浇口的位置选择与浇注系统的平衡

5.2.5.1浇口的位置选择

如前所述,浇口的形式很多,但无论采用什么形式的浇口,其开设的位置对塑件的成型性能及成型质量影响都很大,因此,合理选择浇口的开设位置是提高塑件质量的一个重要设计环节。另外,浇口位置的不同还会影响模具的结构。选择浇口位置时,需要根据塑件的结构与工艺特征和成型的质量要求,并分析塑料原材料的工艺特性与塑料熔体在模内的流动状态、成型的工艺条件,综合进行考虑。

(1)尽量缩短流动距离

浇口位置的选择应保证迅速和均匀地充填模具型腔,尽量缩短熔体的流动距离,这对大型塑件更为重要。

(2)避免熔体破裂现象引起塑件的缺陷(避免喷射和蠕动)

小的浇口如果正对着一个宽度和厚度较大的型腔,则熔体经过浇口时,由于受到很高的剪切应力,将产生喷射和蠕动等熔体断裂现象。有时塑料熔体直接从型腔的一端喷射到型腔的另一端,造成折叠,在塑件上产生波纹状痕迹或其他表面疵瘢缺陷。要克服这种现象,可适当地加大浇口的截面尺寸,或采用冲击型浇口(浇口对着大型芯等),避免熔体破裂现象的产生。

(3)浇口应开设在塑件壁厚处

当塑件的壁厚相差较大时,若将浇口开设在壁薄处,这时塑料熔体进入型腔后,不但流动阻力大,而且还易冷却,影响熔体的流动距离,难以保证充填满整个型腔。从收缩角度考虑,塑件壁厚处往往是熔体最晚固化的地方,如果浇口开设在薄壁处,那壁厚的地方因液体收缩得不到补缩就会形成表面

凹陷或缩孔。为了保证塑料熔体顺利充填型腔,使注射压力得到有效地传递,而在熔体液态收缩时又能得到充分地补缩,一般浇口的位置应开设在塑件的壁厚处。

(4)应有利于型腔中气体的排除

要避免从容易造成气体滞留的方向开设浇口。如果这一要求不能充分满足,在塑件上不是出现缺料、气泡就是出现焦斑,同时熔体充填时也不顾畅,虽然有时可用排气系统来解决,但在选择浇口位置时应先行加以考虑。

(5)考虑分子定向的影响

塑料熔体在充填模具型腔期间,会在其流动方向上出现聚合物分子和填料的取向。由于垂直于流向和平行于流向之处的强度和应力开裂倾向是有差别的,往往垂直于流向的方位强度低,容易产生应力开裂,所以在选择浇口位置时,应充分注意这一点。图5.28a所示塑件,由于其底部圆周带有一金属环形嵌件,如果浇口开设在A处(直接浇口或点浇口),则此塑件使用不久就会开裂,因为塑料与金属环形嵌件的线收缩系数不同,嵌件周围的塑料层有很大的周向应力。若浇口开设在B处(侧浇口),由于聚合物分子沿塑件圆周方向定向,应力开裂的机会就会大为减少。图5.28b所示塑件为一带有铰链的聚丙烯盒体,为了使该铰链达到几千万次弯折而不断裂,就要求在铰链处高度定向,为此,将两点浇口开设在图示位置,有意识地让铰链部位高度定向。

图5.28 浇口位置对定向的影响

(6)减少熔接痕,提高熔接强度

由于浇口位置的原因,塑料熔体充填型腔时会造成两股或两股以上的熔体料流的汇合。在汇合之处,料流前端是气体且温度最低,所以在塑件上就会形成熔接痕。熔接痕部位塑件的熔接强度会降低,也会影响塑件外观,在成型玻璃纤维增强塑料制件时这种现象尤其严重。如无特殊需要最好不要开设一个以上的浇口,以免增加熔接痕,如图5.29所示。圆环形浇口流动状态好,无熔接痕,而轮幅式浇口有熔接痕,如图5.30所示,而且轮幅越多,熔接痕越多。

图5.29 减少熔接痕的数量

图5.30 环形浇口与轮幅浇口熔接痕比较

为了提高熔接的强度,可以在料流汇合之处的外侧或内侧设置一冷料穴(溢流槽),将料流前端的冷料引入其中,如图5.31所示。

(7)不在承受弯曲或冲击载荷的部位设置浇口

一般塑件的浇口附近强度最弱。产生残余应力或残余变形的附近只能承受一般的拉伸力,而无法承受弯曲和冲击力。

(8)浇口位置的选择应注意塑件外观质量

浇口的位置选择除保证成型性能和塑件的使用性能外,还应注意外观质量,即选择在不影响塑件商品价值的部位或容易处理浇口痕迹的部位开设浇口。

上述这些原则在应用时常常会产生某些不同程度的相互矛盾,应分清主次因素,以保证成型性能及成型质量,得到优质产品为主,综合分析权衡,从而根据具体情况确定出比较合理的浇口位置。

5.2.5.2浇注系统的平衡

为了提高生产效率,降低成本,小型(包括部分中型)塑件往往采取一模多腔的结构形式。在这种结构形式中,浇注系统的设计应使所有的型腔能同时得到塑料熔体均匀的充填,也就是说,应尽量采取从主流道到各个型腔分流道的形状及截面尺寸相同的设计,即型腔平衡式布置的形式。

若根据某种需要浇注系统被设计成型腔非平衡式布置的形式,则需要通过调节浇口尺寸,使各浇口的流量及成型工艺条件达到一致,这就是浇注系统的平衡,亦称浇口的平衡。

浇口平衡计算的思路是通过计算多型腔模具各个浇口的BGV(Balanced Gate Value)值来判断或计算。

浇口平衡时,BGV值应符合下述要求:相同塑件的多型腔,各浇口计算出的BGV值必须相等;不同塑件的多型腔,各浇口计算出的BGV值必须与其塑件型腔的充填量成正比。

相同塑件多型腔成型的BGV值可用下式表示:

(5.11)

式中A g——浇口的截面积;

L r——从主流道中心至浇口的流动通道的长度;

L g——浇口的长度。

不同(大小)塑件多型腔成型的BGV值可用下式表示:

(5.12)

式中W a、W b——分别为型腔a、b的充填量(熔体质量或体积);

A ga、A gb——分别为型腔a、b的浇口截面积,mm2;

L ra、L rb——分别为从主流道中心到型腔a、b的流动通道的长度

L ga、L gb——分别为型腔a、b的浇口长度,mm。

在一般多型腔注射模浇注系统设计中,浇口截面通常采用矩形或圆形点浇口,浇口截面积A g与分流道截面积A r的比值应取:

A g:A r =0.07—0.09(5.13)

设:矩形浇口的截面宽度b为其厚度t的3倍,即b=3t,各浇口的长度

为相等。进行浇口的平衡计算。

[例] 图5.32所示为相同塑件10个型腔的模具流道分布简图,各浇口为矩形窄浇口,各段分流道直径相等,分流道dr=6mm,各浇口的长度L g=1.25 mm为保证浇口平衡进料,确定浇口截面的尺寸。

图5.32 浇口平衡计算实例

解:从图5.32的型腔排布可看出,A2、B2、A4、94型腔对称布置,流道的长度相同;A3、B3、A5、B5对称相同;A1、B1对称相同。为了避免两端浇口和中间浇口的截面相差过大,可以A2、B2、A4、B4:为基准,先求出这两组浇口的截面尺寸,再求另外三组浇口的截面尺寸。

(1)分流道截面积Ar

(2)基准浇口A2、B2、A4、B4这两组浇口截面尺寸(取Ag=0.07Ar);

因为:b=3t,则,Ag= b×t=3t×t=3 t2;

所以:

(3)其他三组浇口的截面尺寸

根据BGV值相等原则:(公式5.11)

一模一腔点浇口顶板顶出开水瓶盖模具设计

武汉工程大学 塑料模具设计课程设计说明书 课题名称:一模一腔点浇口顶板顶出开水瓶盖模具设计专业班级:09高材03班 学生学号:0902020323 学生姓名: 学生成绩: 指导教师:刘仿军 课题工作时间:2013-01-08至2013-01-13 武汉工程大学教务处

课程设计任务书 一、设计题目 小组同学(每组人数不超过4人)自己选定熟悉的塑料制品作为模具课程设计题目(控制题目难度在两周内完成) 二、课题条件 1、利用图书馆资料,进行必要的文献调研; 2、利用现有模具教具、生活现场取得的制品进行设计; 3、可提供计算机进行模具设计绘图、说明书编写等工作。 三、设计任务 1、根据选定的塑料件,确定制品的原材料品种,及制品的尺寸精度要 求。 2、小组讨论确定完成制品模具设计的程序,可以参照附件一。 3、小组讨论确定该制品模具的基本结构组成及时间进度安排。 4、电脑或手工绘制模具装配图,要求模具结构合理,功能完备。 (1)如果两视图不能表达清楚的,需附加三视图、局部剖视图等; (2)模具装配图上应标注所有零件的件号、名称; (3)模具装配图上应有明细表,内容:件号、数量、材料、热处理状态、硬度、规格、备注等内容。 5、绘制非标准零件图,尺寸标注完全合理(包括配合尺寸) 6、撰写设计说明书,应书写本设计过程中设计结果及参数选用等内容。 四、设计说明书内容 1、制品使用要求及原材料的工艺性和成型性能; 2、模腔数目确定,分型面的选择,成型零部件设计,合模导向机构,

浇注系统类型的确定及脱模方式的设计,温度调节系统的布排; 3、校核注射模与注射机规格的适应性; 4、标注参考资料。

浇口的设计样本

5.2.4 浇口设计 浇口亦称进料口,是连接分流道与型腔熔体通道。 浇口设计与位置选取恰当与否直接关系到塑件能否被完好地高质量地注射成型。 浇口可提成限制性浇口和非限制性浇口两大类。 限制性浇口作用: 限制性浇口是整个浇注系统中截面尺寸最小部位,通过截面积突然变化,使分流道送来塑料熔体产生突变流速增长,提高剪切速率,减少粘度,使其成为抱负流动状态,从而迅速均衡地布满型腔。 对于多型腔模具,调节浇口尺寸,还可以使非平衡布置型腔达到同步进料目,提高塑件质量。 限制性浇口还起着较早固化防止型腔中熔体倒流作用。 非限制性浇口合用范畴:非限制性浇口是整个浇口系统中截面尺寸最大部位,它重要是对中大型筒类、壳类塑件型腔起引料和进料后施压作用。 惯用浇口可提成如下几种形式: (1)直接浇口 直接浇口又称主流道型浇口,它属于 非限制性型浇口,如图5.18所示。塑料 熔体由主流道大端直接进入型腔,因而 具备流动阻力小、流动路程短及补缩时 间长等特点。由于注射压力直接作用在 塑件上,故容易在进料处产生较大残存

应力而导致塑件翘曲变形。这种形式浇口截面大,去除浇口较困难,去除后会留有较大浇口痕迹,影响塑件美观。此类浇口大多用于注射成型大、中型长流程深型腔筒形或壳形塑件,特别适合于如聚碳酸脂、聚砜等高粘度塑料。此外,这种形式浇口只适于单型腔模具。 在设计直接浇口时,为了减小与塑件接触处浇口面积,防止该处产生缩孔、变形等缺陷,一方面应尽量选用较小锥度主流道锥角α (α=2°~ 4°),另一方面尽量减小定模板和定模座板厚度。 直接浇口浇注系统有着良好熔体流动状态,塑料熔体从型腔底面中心部位流向分型面,有助于消除深型腔处气体不易排出缺陷,使排气畅通。这样浇口形式,使塑件和浇注系统在分型面上投影面积最小,模具构造紧凑,注射机受力均匀。 (2) 中心浇口 当筒类或壳类塑件底部中心或接近于中心部位有通孔时,内浇口就开设在该孔口处,同步中心设立分流锥,这种类型浇口称中心浇口,如图5.19所

GATE-浇口设计分析

技术专栏 : 塑料射出成型模具的浇口设计 浇口(Gate)在射出成型模具的浇注系统(Feed System)中是连接流道(Runner)和型腔(Cavity)的熔胶通道。浇口设计和塑件质量有着密不可分的关系。 1. 浇口的位置和数目 1.1. 浇口位置与喷流(Jetting)的关系 浇口若能布置成冲击型浇口 -- 也就是使得进浇后的塑料熔体立刻冲击到一阻挡物(如型腔壁、芯型销等),让塑流稳定下来,就可以减少喷流的机率。 1.2. 浇口的位置和数目与熔接线(Weld Line)的关系 熔接线是两股熔胶的波前(Melt Front)相遇后所形成的线条。就塑件的外观或是强度而言,熔接线都是负面的。 每增加一个浇口,至少要增加一条熔接线,同时还要增加一个浇口痕(Gate Mark)、较多的积风(Air Trap)以及流道的体积。所以在型腔能够如期充填的前提下,浇口的数目是愈少愈好。为了减少浇口的数目,每一浇口应在塑流力所能及的流动比之内(Flow Length to Thickness Ratio),找出可以涵盖最大塑件面积的进浇位置。 更改浇口位置以后,能够将熔接线自敏感处移除为上策。如果熔接线无法移除,那么增加波前的熔胶温度(Melt Temperature);或是减少两相遇波前的熔胶温度差(Melt Temperature Difference);或是增加两波前相遇后的熔胶压力(Melt Pressure);或是增加熔胶波前相遇时的遇合角(Meeting Angle),都可以改善熔接线的质量。 1.3. 浇口的位置和数目与积风(Air Trap)的关系 积风是型腔内的空气和熔胶释出的气体被熔胶包围后的缺陷。积风的存在,重则导致短射(Short Shot)或焦痕(Burn Mark),轻亦影响外观和强度。 每增加一个浇口,就会增加积风发生的机率。当塑件厚薄差异大时,如果浇口位置设置不当,就会因为跑道现象(Race Track Effect)而导致积风。 1.4. 浇口位置与迟滞效应(Hesitation Effect)的关系 迟滞效应是熔胶流到厚薄交接处的时候,由于薄处的流阻较大,而在该处阻滞不前的效应。这种效应重则产生短射,轻亦形成迟滞痕(亦即高残余应力带)。 浇口应置于距离可能发生迟滞效应的最远处,以消除或减轻迟滞。 1.5. 浇口位置与缩痕(Sink Mark)和缩孔(Void)的关系 浇口应置于厚壁处以确保补缩的塑流(Compensation Flow)能够维持得最久,厚壁处才不会因为较大的收缩,而使得缩痕和缩孔更容易发生。 1.6. 浇口位置与溢料(Flash)的关系 型腔布置和浇口开设部位应立求对称,防止模具承受偏载而产生溢料现象。如(图一)所示,b) 的布置较之a)为合理。 1.7. 浇口位置与流动平衡(Flow Balance)的关系 就单型腔模具而言,熔胶波前于同一时间抵达型腔各末端,就叫做流动平衡。流动平衡的设计使得熔胶的压力、温度以及体积收缩率的分布比较均匀,塑件的质量较好。所以浇口位置的选择以是否达成流动平衡为准。 流动平衡与否,可以模拟充模的CAE进行确认。对浇口数目相同但是浇口位置不同的设计而言,能以最小的射压 (Injection Pressure)和锁模力(Clamp Force)充模的设计是流动最平衡的设计。

压铸模内浇口设计

压铸模设计总结 一.内浇口的尺寸设计 Ag = G/ρVgt Ag 内浇口的截面面积(mm2) G 通过内浇口的金属液质量(g) ρ液态金属的密度(cm3) Vg 内浇口处金属液的流动数度(m/s) t 型腔的充填时间(s) 液态合金的密度值 充填速度的推荐值 注意:当铸件的壁厚很薄却表面质量要求较高是,选用较大的值,对力学性能,如卡拉强度和致密度要求较高时学用较小值 充填时间推荐值 注意:型腔的充填时间铝合金取较大值,锌合金取中间值,镁合金取较小值 内浇口的厚度的经验数据

注意:内浇口的长短一般取2-3mm. 二.内浇口的设计原则 1. 进入型腔的金属液应先充填深腔难以排气的部位,后充填其他部位,并注意不要过早的封闭分形面,排气槽,便于内腔里的气体顺利排出。 2. 进入型腔的液体不要直接冲击型芯和型壁,减少动能的消耗,避免应冲击受腐蚀发生粘膜致使过早损坏。 3. 尽可能的采用单个浇口, 4. 形状复杂的薄壁零件应采用较薄的浇口,保证足够的充填速度,一般形状铸件,为保证静压力的传递作用,应采用较厚的内浇口,并设在铸件的厚处。 5. 内交口设置位置应使金属液充填压铸型腔各部分尺寸时,流程最短,流向改变少,减少充填过程中能量温度的降低三.横浇道的尺寸设计 Ar = (3-4)Ag(冷室压铸机) Ar = (2-3)Ag(热室压铸机) D = (5-8)T(卧式冷室压铸机) D = (8-10)T(立式冷室压铸机) D = (8-10)T(热室压铸机) W = Dtana + Ar/D Ag 内浇口的截面面积(mm2)

Ar 横浇道的截面面积(mm2) a 拖模斜度(10-15) T 内浇口的厚度(mm) D 横浇道深度(mm) r 圆角半径(2-3) W 横浇道的宽度(mm) 在确定横浇道的截面面积后,可根据下面的公式计算其的深度和宽度 D = C1 log(Ar) 1 W = C2 log(Ar) D 横浇道的深度或直径 W 横浇道的宽度 Ar 横浇道的截面面积 C1 C2 系数 (A) (B) (C) (D) (E) (F) A). C1 = 1.128 B). C1 = 0.922 C2 = 1.247 C). C1 = 0.678 C2 = 1.595

海尔模具浇口设计规范

1.概述 浇口是连接流道与制品的直接通道,浇口的类型及尺寸对制品的成型起着至关重要的作用。. 按照浇口的形状及作用,可大致分为以下类型:大水口、弯钩浇口、潜浇口、侧浇口、点浇口、运动(行位/斜顶)浇口等。 在汽车模具设计中,我们选择浇口类型及尺寸可以参考客户提供的样件,然后由CAE分析出合理的位置及尺寸,或者参考类似模具母本,如有不确定的因素应进行评审得出结果。 2.各种浇口设计要求 2.1 大水口 大水口又可分为冷流道大水口和热流道大水口。 2.1.1 冷流道大水口设计要求 冷流道大水口一般采用我司的标准浇口套,一般需要注意的尺寸在下图中标识。为匹配注塑机,首先要保证φA和SRB的尺寸要相应的大于注塑机的相关尺寸。φC的尺寸则要根据CAE提供的尺寸进行选择。同时要尽量短的选择H的尺寸,尽可能小于60mm,太长的话会引起料流温度下降引起注塑效果缺陷。 此类浇口适用范围:制品较小,易于填充,一般为非外观件,并且客户同意后期修料把的模具。

下表为我司现有海天系列注塑机喷嘴的部分参数供参考。 2.1.2 热流道大水口设计要求 热流道大水口又可分为普通热流道大水口和阀式热流道大水口。 2.1.2.1 普通热流道大水口 普通热流道大水口的设计要求类似于冷流道大水口设计要求,在热流道订购单中表明需要的尺寸即可。 2.1.2.2阀式热流道大水口 阀式热流道大水口在热嘴中有针阀,可以控制料流的开闭及保证点在制品上的热嘴不留下料把。在设计点在制品上的阀式热流道时,一定要注意以下两个问题:料把长度及封胶长 度。

如上图,按照产品胶位面切割后阀针没有接触到制品,会在制品上留下一段料把,影响制品外观及装配。 如上图,按照产品胶位面切割后,阀针和热嘴之间的封胶过小,长时间工作会使封胶段磨损失效,应保证封胶长度在1.8mm以上。 此类浇口适用范围:制品较大,多点浇口进料的模具,可以实现自动生产,便于机械手取件且不用后期修料把的模具

压铸件浇注系统的设计.doc

课程名称:压铸模具CAD/CAE综合训练 第15 单元(节),2学时,授课时间年月日,地点 项目/主题:压铸件浇注系统设计(2) 能力目标: 能根据产品成型需要设计合理的浇注系统 知识目标: 1、了解热压室、卧式冷压室铸模直浇道设计 2、掌握多型腔模横浇道的布局与设计要点 重点难点与解决方案: 重点:如何根据产品要求设计合理的浇注系统 难点:各种浇注系统的特点及应用 解决方案:根据实例讲解 教材、参考资料与媒体: 姜银方主编,《压铸工艺及模具设计》,化学工业出版社 练习图纸 PRT.练习文件 教学条件(环境): 多媒体 教学活动设计概要:(包括实施步骤、教学内容、方法手段、学生活动、时间分配、学习成果评价标准) 复习上节内容: 1.浇注系统的组成及分类 2.内浇口设计方法 3.内浇口尺寸计算的方法 一、项目引入方法手段:复习并分析项目 学生活动:思考、听讲时间分配:5分钟

本任务以摩托产品盖为载体(如图下图所示),训练学生合理设计浇注系统的能力 项目分析: 摩托产品盖模芯布局及浇系 统设计 材料: ADC12 生产批量:10万次 产品外形尺寸: 442X170X112 二、相关知识 1、直浇道设计 直浇道的结构与压铸机的类型有关,分为: 立式冷压室压铸机用直浇道 卧式冷压室压铸机用直浇道 热压室压铸机用直浇道 各种类型压铸机浇注系统的结构 1-直浇道; 2-横浇道;3-内浇道; 4-余料 1)立式冷压室压铸机用直浇道 立式冷压室压铸机用直浇道主要的组成: 压铸机上喷嘴 模具上的浇口套

镶块 分流锥 立式冷压室压铸机用直浇道 1—余料2—喷嘴3—浇道套 4—定模镶块5-分流锥 (1)直浇道的设计要点 根据内浇道截面积选择喷嘴导入口直径。 A、B、C各段均有脱模斜度,A段为1o30`,B段为1o30`~3o,C段的斜 度根据镶块厚度来确定,镶块厚斜度小,反之则大。 直浇道各段连接处的直径单边放大0.5~1.0mm。 由定模镶块与分流锥构成的环形通道截面积一般为喷嘴导入口的1.2倍左右。分流锥直径为: 式中:d2是直浇道底部环型截面处的外径(mm);d1是直浇道小端(喷嘴导入口)处直径(mm)。 直浇道与横浇道连接处要求圆滑过渡。 (2)浇口套设计要点 浇口套一般镶在定模座板上,采用浇口套可以节省模具钢和便于加工。 浇口套一个端面A与喷嘴端面相吻合,控制好配合间隙不允许金属液窜入接合面;浇口套的另一端面B与定模镶块相接,接触面上的镶块孔比浇口套孔大1-2mm。

点浇口设计简介

摘要针对多型腔点浇口模具,采用弹簧顺序脱模机构,利用定模底板分流道上的侧凹拉断点浇口凝料,利用球形拉料杆拉出浇道凝料,以及利用浇口板带动浇道凝料脱出球形拉料杆,实现了浇注系统凝料的自动脱出。模具动作可靠,能满足全自动化生产的需要。 关键词注射模具点浇口脱模机构 采用点浇口注射模具,可以实现塑料件与浇口凝料的自动拉断,减少人工操作,使塑料注射成型生产的自动化程度提高。但是,为了保证浇注系统凝料的自动脱模,常常需要在定模一边增设浇道凝料推出机构,增加分型面,从而导致模具脱模机构复杂化,也使模具结构复杂化。对于多型腔的点浇口模具,如能利用定模的定距分型动作来完成浇注系统凝料的自动脱模,则可以简化模具结构,并降低模具成本。 一、模具设计要点 普通流道的点浇口模具需采用双分型面模具结构,在定模一边应设置与定模定距分型的浇口板。对于多型腔的点浇口模具,浇注系统需设计分流道,在主流道的下面设计冷料井,并可采用拉料杆的结构。在点浇口模具浇注系统凝料自动脱模机构的设计中,利用这些必要的结构并加以改进,可实现浇注系统凝料的自动脱模。模具结构如图1所示。 (一)在限位拉杆3上设计压缩弹簧4,模具开模时,在弹簧弹力作用下,定模首先分型,定模底板2和浇口板5作定距分型,其分型距离为能方便取出点浇口凝料所需的宽度。 (二)利用侧凹拉断点浇口凝料 在定模底板分流道的末端,钻一斜孔形成分流道侧凹1。当定模刚分型时,浇注系统凝料受侧凹1 内凝料的阻碍而不能运动,此时浇道凝料与塑料件在最小截面处(浇口)拉断,浇口凝料脱出浇口板5而留在定模底板2的浇道内。但冷料井凝料仍留在浇口板上。 (三)利用球形拉料杆拉出浇道凝料 随着定模的继续分型,由于球形拉料杆6对冷料井凝料的限制作用,其阻力大于分流道侧凹1的阻力,球形拉料杆6将浇道凝料从定模底板2的流道中全部拉出,由于冷料井凝料仍未脱出,浇道凝料随浇口板5一起移动。 (四)浇口板带动浇道凝料脱出球形拉料杆 当限位拉杆3的轴肩与浇口板5的台阶接触时,由于限位拉杆3的限制,定模的定距分型即浇口板与定模底板的分型结束。注塑机继续开模,模具动模与定模分型,塑料件脱出型

浇口的设计原则

浇口的设计原则: 1.浇口位置尽量选择在分型面上,以便于加工及其使用时清理浇口 2.浇口位距型腔各个部位的距离尽量一致,并使其流程最短 3.浇口位置应保证塑料流入型腔时,对着型腔中宽畅,厚壁部位 4.避免浇口位置设置时料流直冲型腔壁,型芯,或者嵌件, 5.浇口的设置,最好避免使产品产生熔接痕或者控制熔接痕在不重要的部位 6.浇口位置及其料流流入方向有利于型腔内气体的排出 7.浇口在制品上易于清除,同时不影响制品外观 zym_16 edited on 2004-11-08 15:41 作者回复:【分享】浇注系统的设计[Re:zym_16] zym_16 模具技术版 版主 发贴:490 积分:31 于2004-09-27 10:57 主,分流道截面的选择, 1.主流道的截面大于或者等于各个分流道的截面面积之和 2.如果型腔数比较多,最好在各个分流道的拐弯处倒圆角 3.原则上,主流道的至浇口的末端的分流道的拐弯数不超过3个 作者回复:【分享】浇注系统的设计[Re:zym_16] zym_16 模具技术版 版主 发贴:490 积分:31 于2004-09-27 11:04 机嘴选择的考虑因素: 首先来复习一下机嘴的基本常识:

作者回复:【分享】浇注系统的设计[Re:zym_16] zym_16 模具技术版 版主 于2004-09-27 11:12 浇口套的球面半径大致有两种规格 a,1/2“(13mm) b,3/4”(19mm) 但是比较常用的还是SR13mm,16mm,20mm, 球面的深度3~5mm 理论上:浇口套的SR半径=注射机喷嘴半径SR1 + 2mm

浇口的设计原则

浇口的设计原则: 1. 浇口位置尽量选择在分型面上,以便于加工及其使用时清理浇口 2. 浇口位距型腔各个部位的距离尽量一致,并使其流程最短 3. 浇口位置应保证塑料流入型腔时,对着型腔中宽畅,厚壁部位 4. 避免浇口位置设置时料流直冲型腔壁,型芯,或者嵌件, 5. 浇口的设置,最好避免使产品产生熔接痕或者控制熔接痕在不重要的部位 6. 浇口位置及其料流流入方向有利于型腔内气体的排出 7. 浇口在制品上易于清除,同时不影响制品外观 zym_16 edited on 2004-11-08 15:41 E 于 2004-09-27 10:57 I ◎信息私语〕I 動1引用JI Q 搜索复制』過收聲I 主,分流道截面的选择, 模具技术版 1.主流道的截面大于或者等于各个分流道的截面面积之和 2. 如果型腔数比较多,最好在各个分流道的拐弯处倒圆角 3. 原则上,主流道的至浇口的末端的分流道的拐弯数不超过 3个 发贴:490 积分:31 作者 回复:【分享】浇注系统的设计 [Re:zym_佝 zym_16 崗干2004-09-27 11:04垃信息JI?私语艸1引胃II 風搜索复制)喘收視 zym_16 」于 2004-09-27 於刁 机嘴选择的考虑因素 模具技术版 首先来复习一下机嘴的基本常识: 版主 发贴:490 作者 回复: 【分享】浇注系统的设计 [Re:zym_佝 zym_16

积分:31

作者zym_16 模具技术版 P6,82 ? 13 - 8,011 030弘 回复:【分享】浇注系统的设计[Re:zym_佝 -于2004-09-27 11:12 ■I I rr禹二壮窑I /用耳匡解匚便割耳壬丽] 浇口套的球面半径大致有两种规格 a, 1/2 (13mm ) b, 3/4 ” 19mm) 但是比较常用的还是SR13mm,16mm, 20mm , 版主丄球面的深度3~ 5mm 理论上:浇口套的SR半径=注射机喷嘴半径SR1 + 2mm

浇口种类设计规范

浇口分类设计规范 浇口的种类大致分为以下:直浇口、侧浇口(侧浇口、扇形浇口)、搭底浇口、平缝浇口(内环形浇口、外环形)、针点浇口、潜浇口(表面潜浇口、顶杆式潜浇口、平板式零件潜浇口、香蕉潜浇口)。 一、直浇口 注: 1、d1必须满足注塑机的要求,浇道单边斜度最少1°。 2、浇道单边斜度最少1°。 3、d2在满足注塑的条件下在越小越好。 4、L越小越好,可以用加长喷嘴减短流道。 二、侧浇口 1、浇口尺寸计算方法:

h=nt w=(3-10)h L= (0.8-1.5 ) A=(20-30)° L1=0.5 -1 其中n 为常数,根据塑料的不同而不同 2、侧浇口自动脱浇口设计 侧浇口在一般设计是不能自动脱浇口的,如果把产品与流道 设计成不同时间顶出,便可以实现自动脱浇口的效果。 三、搭底浇口 搭底浇口是侧浇口的改良,适合某种特定形状的产品。 1)、在侧面不允许有浇口的情况下; 2)、避免有流纹的现象; 倒扣

3)除硬质PVC外,适合绝大多数产品。 注: h=nt w=(3-10)h L=0.8-1.5 四、扇形浇口 扇形浇口是侧浇口的改良,它的宽度随深度的减少而增加。 1)、适合于大型平板类形状产品 2)、塑料流入型腔呈扁平状,减少流纹及夹水纹的产生。 3)、适合除硬质PVC外的任何塑料,本公司PMMA产品

五、平缝式浇口 此尺寸参照侧浇口,以加强浇口处应力,便于断口整齐及近浇口的乱流现象。

六、针点浇口 1)针点浇口在脱模时能够把产品和流道自动分离开,因儿勿须后处理。

2)进胶点处形状的三中形式: 以上三种形式根据产品的实际要求选择。 七、潜浇口 1、表面潜浇口 ` 2 6.5 3 m m 潜定模潜动模

几种类型的冒口设计

几种类型的冒口设计 1.1.冒口类型的选择 1.2.普通冒口设计方法 以下摘自《西班牙汽车铸铁件浇冒口系统的设计及其特点》 1.2.1.缩管法

1.2.2.缩管法冒口设计程序 1.2.2.1.考虑铸件材质和重量 1.2.2.2.找出关键几何热节,按下表计算热节处模数W(有文献标为“Ms”,称为有效模数,不散热面不能计入。)Mr = km x Ms Ms 是铸件的关键模数, Mr 是补缩冒口的模数,km 是常数,灰铸铁与球铁不一样。? 亚共晶灰铸铁为0.6-1.0;? 球墨铸铁为0.8-1.1;? 可锻铸铁为1.2-1.4;? 钢为1.2-1.4;? 铜合金为1.2-1.4;? 铝合金为0.8-1.1。 1.2.2.3.通过W值计算出冒口补缩距离Ld=0.32W2(mm),又有补缩距离最大为10Mn(冒口颈模数) 1.2.2.4.冒口的计算 z Dp的计算和Hp的预定,Dp=85(Cw/Hp)1/2(mm)。一般Hp/ Dp=2~2.5 Cw—需冒口补缩的铸件重量之和(Kg),假想缩管重量Q=0.04 Cw(Kg)。 z冒口顶端直径1.1Dp≥直浇道下端直径 z冒口颈高宽比 0.75W:1.25W=1:1.67 z冒口颈长度 18mm,并愈短愈好。 以下摘自《DUCTILE IRON-The essentials of gating-中文版》,适用于球铁。 1.3.控制压力冒口 当铸型强度不够且铸件的模数远大于0.16 英寸(4mm)时,运用控制压力冒口。 大部分的湿型砂和覆膜砂选用该种方法。 1.3.1.控制压力冒口设计步骤: 1.3.1.1.标准冒口形状见下图67 1.3.1. 2.确定铸件特征(关键)模数Ms(上文为“W”)

浇口的设计

5.2.4 浇口的设计 浇口亦称进料口,是连接分流道与型腔的熔体通道。 浇口的设计与位置的选择恰当与否直接关系到塑件能否被完好地高质量地注射成型。 浇口可分成限制性浇口和非限制性浇口两大类。 限制性浇口的作用: 限制性浇口是整个浇注系统中截面尺寸最小的部位,通过截面积的突然变化,使分流道送来的塑料熔体产生突变的流速增加,提高剪切速率,降低粘度,使其成为理想的流动状态,从而迅速均衡地充满型腔。 对于多型腔模具,调节浇口的尺寸,还可以使非平衡布置的型腔达到同时进料的目的,提高塑件质量。 限制性浇口还起着较早固化防止型腔中熔体倒流的作用。 非限制性浇口的适用范围:非限制性浇口是整个浇口系统中截面尺寸最大的部位,它主要是对中大型筒类、壳类塑件型腔起引料和进料后的施压作用。 常用的浇口可分成以下几种形式: (1)直接浇口 直接浇口又称主流道型浇口,它属 于非限制性型浇口,如图所示。塑料熔 体由主流道的大端直接进入型腔,因而 具有流动阻力小、流动路程短及补缩时 间长等特点。由于注射压力直接作用在 塑件上,故容易在进料处产生较大的残 余应力而导致塑件翘曲变形。这种形式 的浇口截面大,去除浇口较困难,去除 后会留有较大的浇口痕迹,影响塑件的 美观。这类浇口大多用于注射成型大、 中型长流程深型腔筒形或壳形塑件,尤 其适合于如聚碳酸脂、聚砜等高粘度塑料。另外,这种形式的浇口只适于单型腔模具。 在设计直接浇口时,为了减小与塑件接触处的浇口面积,防止该处产生缩孔、变形等缺陷,一方面应尽量选用较小锥度的主流道锥角α(α=2°~ 4°),另一方面尽量减小定模板和定模座板的厚度。

直接浇口的浇注系统有着良好的熔体流动状态,塑料熔体从型腔底面中心部位流向分型面,有利于消除深型腔处气体不易排出的缺点,使排气通畅。这样的浇口形式,使塑件和浇注系统在分型面上的投影面积最小,模具结构紧凑,注射机受力均匀。 (2) 中心浇口 当筒类或壳类塑件的底部中心或接近于中心部位有通孔时,内浇口就开设在该孔口处,同时中心设置分流锥,这种类型的浇口称中心浇口,如图所示。中心浇口实际上是直接浇口的一种特殊形式,它具有直接浇口的一系列的优点,而克服了直接浇口易产生的缩孔、变形等缺陷。中心浇口其实也是端面进料的环形浇口(下面介绍)。 图中心浇口的形式 在设计时,环形的厚度一般不小于 mm。当进料口环形的面积大于主流道小端面积时,浇口为非限制性型浇口;反之,则浇口为限制性型浇口。

模具浇口设计2009

模具浇口设计2009-12-31 00:25 浇口亦称进料口,是连接分流道与型腔的熔体的通道.,也是注塑模进料系统的最后部分.浇口的设计与位置的选择恰当与否,直接关系到塑件能否完好的高质量地注射成型.其基本作用为: 1、从流道来的熔融塑料以最快的速度进入充满型腔。 2、型腔充满后,浇口能迅速冷却封闭,防止型腔能还未冷却的塑料回流。 浇口的设计和塑件的尺寸、形状模具结构,注射工艺条件及塑件性能等因素有关.但是根据上述两句基本作用来说,浇口截面小,长度要短,因为只有这样才能满足增大流料速度,快速冷却封闭,便于塑件分离以及浇口残痕最小等要求. 「浇口」(Gate)对於成形性及内部应力有较大的影响,通常依据成形品的形状来决定适当形式,可分为「限制浇口」与「非限制浇口」两大类. 限制性浇口是整个浇注系统中截面尺寸最小的部位,通过截面尺寸的突然变化使分流道送来的塑料熔体产生突变的流速增加,提高剪切速率,降低粘度,使其成为理想的流动状态,从而迅速均均衡的充满型腔.对于多型腔模具,调节浇口的尺寸,还可以使非平衡布置的型腔达到同时进料的目的,提高塑件质量. 另外限制性浇口还起着较早固化防止型腔中的熔体倒流的作用, 加工容易,易从浇道切断成形品,可减少残留应力. 又可分为「侧状浇口」(Side Gate)、「重叠浇口」(Overlap Gate)、「凸片浇口」(Tab Gate)、「扇形浇口」(Fan Gate)、「膜状浇口」(Film Gate)、「环形浇口」(Ring Gate)、「盘状浇口」(Disk Gate)、「点状浇口」(Point Gate)及「潜状浇口」(Submarine Gate)等 非限制性浇口是由竖浇道直接将塑料注入模穴的浇口,整个浇注系统中截面尺寸最大的部位,它主要是对中大型筒类,壳类塑件型腔起引料和进料后的施压作用. 浇口的种类、位置、大小、数目等,直接影响成形品的外观、变形、成形收缩率及强度,所以在设计上应考虑下列事项: 在注塑模设计中, 按浇口的结构形式和特点,常用的浇口形式有如下几种: 1、直接浇口既是主流道浇口,属于非限制性浇口. 塑料熔体由主流道的大端直接进入型腔,因儿具有流动阻力小,流动流程短及补给时间长等特点.但是也有一定的缺点如进料处有较大的残余应力而导致 塑件翘曲变形,由于浇口较大驱除浇口痕迹较困难,而且痕迹较大,影响美观.所以这类浇口多用于注射成 型大,中型长流程深型腔筒型或翘型塑件,尤其适合与如聚碳酸脂,聚砜等高粘度塑料.另外,这种形式的浇口只适合于单型腔模具. 在设计浇口时,为了减小与塑件接触处的浇口面积,防止该处产生缩口,变形等缺陷,一方面应尽量 选用较小锥度的主流道锥角a(a=2~4度),另一方面尽量减小定模板和定模座的厚度. 这样的浇口有良好的熔体流动状态,塑料熔体从型腔底面中心部位流向分型面,有利于排气;这样的形式 使塑件和浇注系统在分型面上的投影面积最小,模具结构紧凑,注射机受力均匀. 直接澆口(Direct Gate)或大水口(Sprue Gate). 澆道直接供應塑料到制成品. 澆道黏附在制成品上.在兩板的工模.大水口通常是一出一隻,但在三板模或熱流道工模的設計上,可以一啤多隻。缺點:在制成品表面形成水口印會影響成品外觀.而水口印大小在於:唧咀的細直徑孔、長度、脫模角;因此大水口印可以減細,只要將上述唧咀的呎寸改小. 但唧咀的直徑受爐咀直徑的影響,而水口要易於出模的關係,脫模角不能少過3度.所以只有唧咀長度可以減短,用加長爐咀即可.

塑料制品设计原则

塑料制品设计原则 一、尺寸,精度及表面精粗糙度 〈一〉尺寸 尺寸主要满足使用要求及安装要求,同时要考虑模具的加工制造,设备的性能,还要考虑塑料的流动性。 〈二〉精度 影响因素很多,有模具制造精度,塑料的成份和工艺条件等。 〈三〉表面粗糙度 由模具表面的粗糙度决定,故一般模具表面粗糙比制品要低一级,模具表面要进引研磨抛光,透过制品要求模具型腔与型芯的表面光洁度要一致 Ra 〈 0.2 um 塑件圈上无公差要求的仍由尺寸,一般采用标准中的8 级,对孔类尺寸可以标正公差,而轴类各件尺寸可以标负出差。中心距尺寸可以棕正负公差,配合部分尺寸要高于非配合部分尺寸。 二、脱模斜度 由于塑件在模腔内产生冷却收缩现象,使塑件紧抱模腔中的型芯和型腔中的凸出部分,使塑件取出困难,强行取出会导至塑件表面擦分,拉毛,为了方便脱模,塑件设计时必须考虑与脱模(及轴芯)方向平行的内、外表面,设计足够的脱模斜度,一般1°——1°30`。 一般型芯斜度要比型腔大,型芯长度及型腔深度越大,则斜度不减小。三、壁厚 根据塑件使用要求(强度,刚度)和制品结构特点及模具成型工艺的要求而定:壁厚太小,强度及刚度不足,塑料填充困难;壁厚太大,增加冷却时间,降低生产率,产生气泡,缩孔等。 要求壁厚尽可能均匀一致,否则由于冷却和固化速度不一样易产生内应力,引起塑件的变形及开裂。 四、加强筋 设计原则: 〈一〉中间加强筋要低于外壁 0.5 mm 以上,使支承面易于平直。

〈二〉应避免或减小塑料的局部聚积。 〈三〉筋的排例要顺着在型腔内的流动方向。 五、支承面 塑件一般不以整个平面作为支承面,而取而代之以边框,底脚作支承面。 六、圆角 要求塑件防有转角处都要以圆角(圆弧)过渡,因尖角容易应力集中。 塑件有圆角,有利于塑料的流动充模及塑件的顶出,塑件的外观好,有利于模具的强度及寿命。 七、孔(槽) 塑件的孔三种成型加工方法: (1)模型直接模塑出来。 (2)模塑成盲孔再钻孔通。 (3)塑件成型后再钻孔。先模塑出浅孔好。 1、模塑通孔要求孔径比(长度与孔径比)要小些,当孔径〈1.5MM,由于模芯易弯曲折断,不适于模塑模塑型芯的三种方式。 2、肓孔的深度:h 〈(3—5)d d〈 1.5时, h 〈 3d 3、异形孔(槽)设计 塑件如有侧孔或凹槽,则需要活动块或抽芯机构"平行射成原则"确定塑件侧孔(槽)是否适合于脱模。 热塑性塑料中软而有弹性的,如聚乙烯,聚丙烯,聚甲醛导制品,内孔与外像浅的可强制脱模。 八、螺纹 塑件中的螺纹可用模塑成型出来,或切削方法获得通常折装或受力大的,要采用 金属螺纹嵌件来成型。 九、嵌件 为了增加塑料制品整体或某一部位的强度与刚度,满足使用的要求,常在塑件体内设置金属嵌件。

注塑浇口设计

浇口设计 浇口是连接分流道与型腔之间的一段细短通道,是浇注系统的最后部分,其作用是使塑料以较快速度进入并充满型腔。它能很快冷却封闭,防止型腔内还未冷却的熔体倒流。设计时须考虑产品的尺寸、截面积尺寸、模具结构、成型条件及塑料性能。浇口应尽量小,与产品分离容易,不造成明显痕迹。其类型多种多样。 浇口的作用 (1)防止倒流。当注射压力消失后,封锁型腔,使尚未冷却固化的塑料不会倒流回分流道。 (2)升高熔体温度。熔体经过浇口时,会因剪切及挤压而升温,有利于熔体的填充型腔。 (3)调节及控制进料量,使各腔能在差不多相同的时间内同时充满。这叫做人工平衡进料。 (4)提高成型质量。浇口设计不合理时,易产生填充不足、收缩凹陷、蛇纹、震纹、熔接痕及翘曲变形等缺陷。 浇口的分类 浇口形式很多,包括侧浇口、潜伏式浇口、点浇口、直接浇口、扇形浇口、薄片浇口、爪形浇口、环形浇口、伞形浇口及二次浇口等。 其中点浇口又称细水口,常用于三板模的浇注系统,熔体可由型腔任何位置一点或多点地进入型腔。适合PE、PP、PC、PS、PA、POM、AS、ABS等多种塑料。 点浇口优点: (1)位置有较大的自由度,方便多点进料。 (2)浇口可自行脱落,留痕小。 (3)浇口附近残余应力小。 (4)本浇口对桶形,壳形,盒形制品及面积较大的平板类制品的成型非常适用。 本塑件属于小型塑件,为盒盖形,用一模多腔,其表面要求较高,要求从中心进浇。结合上述对浇口的介绍本次应选用点浇口。 浇口位置的选择: (1)浇口位置尽量选择在分型面上,以便于清除及模具加工,因此能用侧浇口时不用点浇口。 (2)浇口位置距型腔各部位距离相等,并使流程最短,使熔体能在最短的时间内同时填满型腔的各部位。 (3)浇口位置应选择对型腔宽畅、厚壁部位,便于补缩,不致形成气泡和

塑模进胶口设计

塑模进胶口设计 浇口的种类及其特微浇口的种类浇口的断面积成形性后精修加工其他特点直接浇口大 1.成形性良好,后加工困难 2.浇口部易生内部残锱应力。膜浇口扁形浇口良好困难1.成形性良好,后加工困难2.流痕或定向佳,具防止变形之效果环形浇口圆形浇口1.成形性容易,后加工困难。2主要适于圆筒部品,有孔成品,可得无结合线之凸片浇口稍良好稍良好1为侧面浇口之一种,可解决浇口部的残锱应力问题侧面浇口容易1.浇口断面可任意变更,也可做多数个浇口,或者只1个浇口,而在数个地方做附属浇口也可以2.易发生喷痕之不良情形针点浇口隧道浇口小易生浇口,堵塞情形不必要1. 浇口在成形自动切数断,故有利于自动成形。2. 浇口的痕迹不明显,通常不必后加工。3. 浇口之压力损失大,必须高之射出压力。4. 浇口部份易被固化之残锱树脂堵隹。9.盘形浇口: 沿产品外圆周而扩展进料,其进料点对称,充模均匀,能消除结合线.有利於排气.水口常用冲切方式去除,设计时注意冲切工艺.10.扇形浇口: 从分流道到模腔方向逐渐放大呈扇形,适用於长条或扁平而薄之产品,可减少流纹和定向应力.扇形角度由产品形状决定,浇口横面积不可大於流道断面积.11.环形浇口:沿产品整个外圆周扩展进胶,它能使塑胶绕型芯均匀充模,排气良好,减少结合线.但浇口切除困难,它适用於薄壁长管状产品.12.点浇口: 是一种截面积小如针状之浇口,一般用於流动较好之塑胶,其浇口长度一般不超过其直径,所以脱模后浇口自动切断,不须再修正.而浇口残痕不明显.在箱罩,盒壳体及大面积产品中应用相当广泛,它可以使模具增加一个分模面,便於水口脱模.其缺点是因进浇口较小易造成压力损耗,成型时产生一些不良(流痕,烧焦,黑点)其形状有菱形,单点形,双点形,多点形等.13.侧浇口: 一般开设在模具一边,分模面上由内侧或外侧进胶,截面多为矩形,适用於一模多穴.14.直接浇口: 直接由主流道进入模腔,适用於单穴深腔壳形,箱形模具.其流道流程短,压力损失少,有利於排气,但浇口去除不便,会留明显痕迹.15.潜伏浇口: 其浇口呈倾斜状潜伏在分模面一方,在产品侧面或里面进胶脱模时可自动切断针点浇口,适用自动化生产.设计要点: 1. 进胶口应开设在产品肉厚部分,保证充模顺利和完全.2. 其位置应选在使塑胶充模流程最短处,以减少压力损失,有利於模具排气.3. 可通过模流分析或经验,判断产品因浇口位置而产生之结合线处,是否影响产品外观和功能,可加设冷 料穴加以解决.4. 在细长型芯附近避免开设浇口,以免料流直接冲击型芯,产生变形错位或弯曲.5. 大型或扁平产品,建议采用多点进浇,可防止产品翘曲变形和缺料.6. 尽量开设在不影响产品外观和功能处,可在边缘或底部处.7. 浇口尺寸由产品大小,几何形状,结构和塑胶种类决定,可先取小尺寸再根据试模状况进行修正.8. 一模多穴时,相同的产品采用对称进浇方式,对於不\同产品在同一模具中成型时,优先将最大产品放在靠近主流道的位置.9. 在浇口附近之冷料穴,尽端常设置拉料杆,以利於浇道脱模.4. 热流道目前浇注系统发展和改进的一个重要方向,就是开发热流道模具.它与一般注射模具的主要区别就是注射成型过程中,浇注系统内之塑胶不会冷却拟固,也不会形成浇道与产品一起脱模.因此也称无流道模

注塑模具浇口设计说明

浇口类型 选择浇口类型和选择最佳的浇口尺寸以及浇口位置一样重要。浇口类型可分为人工和自动去除式浇口。 人工去除式浇口 人工去除式浇口主要是指那些要求操作者在进行制件再加工时将其与流道分离。使用人工去除式浇口的原因有: ?浇口体积过大,以至于当模具打开时无法从制件处剪切。 ?一些剪切敏感的材料(如PVC)不能存在高剪切率,从而不能应用自动去除式浇口设计。 ?在穿过较宽处的时候,为了保证流动分布的同时性,以达到特定的分子纤维排列,通常不使用自动浇口去除方式。 型腔的人工去除式浇口类型包括: ?注道式浇口 ?边缘浇口 ?凸片浇口 ?重叠式浇口 ?扇形浇口 ?薄膜浇口 ?隔膜浇口 ?外环浇口 ?轮辐或多点浇口 自动去除式浇口 自动去除式浇口的特点是,在打开制模模具顶出制件的过程中,可以切断或剪切浇口。自动去除式浇口应用于: ?避免在再加工时去除浇口 ?保持所有顶出的周期时间一致 ?浇口残留最小化 自动去除式浇口包括: ?针点浇口 ?潜入式(隧道式)浇口 ?热流道浇口 ?阀门浇口 注道浇口

推荐这种浇口应用于单型腔模具或要求对称充填的制件。这种类型的浇口适合于较大壁厚处,这样保压压力将更为有效。较短的浇口最好,这样模具充填更为快速,且压力损失较低。浇口另一侧需配备一个冷料井。使用这种浇口的劣势在于,流道(或注道)被修整之后,制件表面会产生浇口痕迹。可以通过制件厚度来控制凝固,但凝固并不取决于制件厚度。一般而言,在注道浇口附近的收缩率较低,而注道浇口处的收缩率较大。这会导致浇口附近具有较高的拉伸应力。 尺寸 起初,注道直径由机器射嘴来控制。该注道直径必须比射嘴口直径大 0.5mm左右。标准注道衬套的锥度为2.4度,开口面向制件。因此可以通过注道长度来控制制件处附近的浇口直径,该直径应当比该处壁厚至少大 1.5mm或约为该处壁厚的两倍。注道和制件的连结点应为放射状的,以避免应力裂化。 ?锥角较小(最小为1度),可能导致在喷射过程中注道无法与注道衬套脱离。 ?锥度较大,造成材料浪费且冷却时间延长。 ?非标准注道锥度,更昂贵而收益很少。 注道浇口 边缘浇口 边缘浇口或侧边浇口适用于具有中等厚度和较厚的部分,也可用于多型腔双板模具中。浇口位于分型面处,制件从侧边、顶部或底部进行充填。 尺寸 浇口尺寸一般为制件厚度的80%至100%,最大为3.5mm,宽度为1.0至12mm。浇口段长度不超过1.0, 0.5mm 最佳。 边缘浇口 凸片浇口 凸片浇口一般用于扁平的薄制件,以减少型腔内的剪切应力。应用凸片浇口,在注塑成型后进行修剪,可以将浇口附近的高剪切应力限制在辅力片上。凸片浇口通常用于精密注塑成型。 尺寸

压力铸造模具设计说明

压力铸造模具设计说明 一、压铸简介压力铸造简称压铸,是一种将熔融合金液倒入压室内,以高速充填钢制模具的型腔,并使合金液在压力下凝固而形成铸件的铸造方法。压铸区别于其它铸造方法的主要特点是高压和高速。①金属液是在压力下填充型腔的,并在更高的压力下结晶凝固,常见的压力为15—100MPa。②金属液以高速充填型腔,通常在10—50米/秒,有的还可超过80米/秒,(通过内浇口导入型腔的线速度—内浇口速度),因此金属液的充型时间极短,约0.01—0.2秒(须视铸件的大小而不同)内即可填满型腔。压铸机、压铸合金与压铸模具是压铸生产的三大要素,缺一不可。所谓压铸工艺就是将这三大要素有机地加以综合运用,使能稳定地有节奏地和高效地生产出外观、内在质量好的、尺寸符合图样或协议规定要求的合格铸件,甚至优质铸件。1、压铸机(1)压铸机的分类压铸机按压室的受热条件可分为热压室与冷压室两大类。而按压室和模具安放位置的不同,冷室压铸机又可分为立式、卧式和全立式三种形式的压铸机。热室压铸机立式 冷室卧室全立式(2)压铸机的主要参数a合型力(锁模力)(千牛)————————KN b压射力(千牛)—————————————KN c动、定型板间的最大开距——————————mm d动、定型板间的最小开距——————————mm e动型板的行程———————————————mm f大杠内间距(水平×垂直)—————————mm g大杠直径—————————————————mm h顶出力——————————————————KN i顶出行程—————————————————mm j压射位置(中心、偏心)——————————mm k一次金属浇入量(Zn、Al、Cu)———————Kg l压室内径(Ф)——————————————mm m空循环周期————————————————s n铸件在分型面上的各种比压条件下的投影面积注:还应有动型板、定型板的安装尺寸图等。2、压铸合金压铸件所采用的合金主要是有色合金,至于黑色金属(钢、铁等)由于模具材料等问题,目前较少使用。而有色合金压铸件中又以铝合金使用较广泛,锌合金次之。下面简单介绍一下压铸有色金属的情况。(1)、压铸有色合金的分类 铅合金自由收缩混合收缩受阻收缩锡合金0.3-0.4% -----0.2-0.3% 0.4-0.5% 低熔点合金锌合金--------0.3-0.4% 0.4-0.6% 0.6-0.8% 铝铝合金0.5-0.7% 铝硅系--0.3-0.5% 0.7-0.9% 压铸有色合金 铜系0.7-0.9% 铝镁系---0.5-0.7% 0.9-1.1% 镁合金----------0.5-0.7% 铝锌系高熔点合金 )、各(2 铜合金0.9-1.1% 0.7-0.9% 结构简>3mm 铸件平均壁厚铸件平均壁厚≤合金种类温度类压铸合金推荐的浇铸3mm 单结构复杂结构简单结构复杂 600-620 ℃610-650℃℃640-680 610-650铝硅系铝合金℃铝铜系℃600-640℃ 660-700 630-660℃630-660℃640-680 铝镁系℃℃640-670 ℃660-700650-690℃℃600-650 ℃580-620 ℃620-660 ℃590-620 铝锌系 锌合金420-440℃430-450℃400-420℃420-440℃ 镁合金640-680℃660-700℃640-670℃650-690℃ 铜合金普通黄铜910-930℃940-980℃900-930℃900-950℃ 硅黄铜900-920℃930-970℃910-940℃910-940℃ 注注:①浇铸温度一般以保温炉的金属液的温度来计量。②锌合金的浇铸温度不能

相关主题
文本预览
相关文档 最新文档