当前位置:文档之家› 航空发动机原理与构造知识点

航空发动机原理与构造知识点

航空发动机原理与构造知识点
航空发动机原理与构造知识点

航空发动机原理与构造知识点

1.热力系

2.热力学状态参数

3.热力学温标表示方法

4.滞止参数在流动中的变化规律

5.连续方程、伯努利方程

6.激波

7.燃气涡轮发动机分类及应用

8.燃气涡轮喷气发动机即使热机也是推进器

9.涡喷发动机结构、组成部件及工作原理

10.涡扇发动机结构、组成部件及工作原理

11.涡桨发动机结构、组成部件及工作原理

12.涡轴发动机结构、组成部件及工作原理

13.EPR、EGT、涡轮前燃气总温含义

14.喷气发动机热力循环(理想循环、实际循环)

15.最佳增压比、最经济增压比

16.热效率、推进效率、总效率

17.喷气发动机推力指标

18.发动机中各部件推力方向

19.喷气发动机经济指标

20.涡扇发动机中N1、涡扇发动机涵道比的定义

21.涡扇发动机的优缺点及质量附加原理

22.发动机的工作原理(涡喷、涡扇、涡轴和涡桨)

23.发动机各主要部件功用和原理,各部件热力过程和热力循环

24.进气道的分类及功用

25.总压恢复系数和冲压比的定义

26.超音速进气道三种类型

27.超音速进气道工作原理(参数变化)

28.离心式压气机组成部件

29.离心式压气机增压原理

30.离心式压气机优缺点

31.轴流式压气机组成部件

32.轴流式压气机优缺点

33.压气机叶片做成扭转的原因

34.压气机基元级速度三角形及基元级增压原理

35.扭速

36.多级轴流式压气机特点

37.喘振现象原因及防喘措施(原因)

38.轴流式压气机转子结构形式、优缺点

39.鼓盘式转子级间连接形式

40.叶片榫头类型、优缺点

41.减振凸台的作用以及优缺点

42.压气机级的流动损失

43.多级轴流压气机流程形式,机匣结构形式

44.压气机喘振现象、根本原因、机理过程

45.压气机防喘措施、防喘措施原理

46.燃烧室的功用和基本要求

47.余气系数、油气比、容热强度的定义

48.燃烧室出口温度分布要求

49.燃烧室分类及优缺点

50.环形燃烧室的分类及区别

51.燃烧室稳定燃烧的条件和如何实现

52.燃烧室分股进气作用

53.燃烧室的组成基本构件及功用

54.旋流器功用

55.涡轮的功用和特点(与压气机比较)

56.涡轮叶片的分类和结构

57.一级涡轮为何可以带动更多级压气机

58.提高涡轮前温度措施

59.带冠叶片优缺点

60.间歇控制定义、发动机在起动巡航、停车时间隙变化情况

61.如何实现涡轮主动间隙控制

62.涡轮叶片冷却方式

63.喷管功用

64.亚音速喷管工作原理(参数变化)

65.亚音速喷管三种工作状态(亚临界、临界和超临界)的判别

66.超音速喷管形状

67.发动机噪声源及解决措施

68.发动机的基本工作状态

69.发动机特性(定义、表述)

70.涡喷发动机稳态工作条件(4个)举例说明如何保持稳态工作

71.稳态下涡轮前温度随转速变化规律

72.剩余功率的定义

73.发动机加速的条件

74.联轴器的分类及作用

75.封严装置的作用、基本类型

76.双转子、三转子支承方案

77.中介支点、止推支点作用

78.封严件作用和主要类型

79.燃油系统功用和主要组件功用

80.燃油泵分类和特点

81.燃油喷嘴分类和特点

82.发动机控制系统分类

83.滑油系统功用、主要部件及分类,滑油性能指标

84.起动过程的定义

85.起动过程三个阶段和特点

86.起动机的分类及应用

87.点火系统组成、原理及功用

88.辅助动力装置的功用

89.FADEC的英文全称及含义

90.发动机气路清洗目的及操作特点,孔探检查的目的和意义

91.发动机维修分类(预防性和恢复性)单元体设计的意义

航空发动机原理与构造复习题

一、选择题 1.燃气涡轮发动机的核心机包括 C 。 A.压气机、燃烧室和加力燃室B.燃烧室、涡轮和加力燃室 C.压气机、燃烧室和涡轮D.燃烧室、加力燃室和喷管 2.在0~9截面划分法中,压气机出口截面是 B 。 A.1—1截面B.3—3截面C.4—4截面D.6—6截面 3.在0~9截面划分法中,燃烧室出口截面是。 C A.1—1截面B.3—3截面C.4—4截面D.6—6截面 4.发动机正常工作时,燃气涡轮发动机的涡轮是_____B____旋转的。 A.压气机带动B.燃气推动 C.电动机带动D.燃气涡轮起动机带动 5.气流在轴流式压气机基元级工作叶轮内流动,其_____C____。 A.相对速度增加,压力下降B.绝对速度增加,压力增加 C.相对速度降低,压力增加D.绝对速度下降,压力增加 6.气流在轴流式压气机基元级整流环内流动,其____C_____。 A.相对速度增加,压力下降B.绝对速度增加,压力增加 C.相对速度降低,压力增加D.绝对速度下降,压力增加 7.气流流过轴流式压气机,其____C_____。 A.压力下降,温度增加B.压力下降,温度下降 C.压力增加,温度上升D.压力增加,温度下降 8.轴流式压气机基元级工作叶轮叶片通道和整流环叶片通道的形状是____C_____。A.工作叶轮叶片通道是扩散形的,整流环叶片通道是收敛形的 B.工作叶轮叶片通道是收敛形的,整流环叶片通道是扩散形的 C.工作叶轮叶片通道是扩散形的,整流环叶片通道是扩散形的 D.工作叶轮叶片通道是收敛形的,整流环叶片通道是收敛形的 9.轴流式压气机基元级工作叶轮和整流环的安装顺序和转动情况是_____B____。A.工作叶轮在前,不转动;整流环在后,转动 B.工作叶轮在前,转动;整流环在后,不转动 C.整流环在前,不转动;工作叶轮在后,转动 D.整流环在前,转动;工作叶轮在后,不转动 10.轴流式压气机基元级工作叶轮和整流环的安装顺序和转动情况是_____B____。A.工作叶轮在前,不转动;整流环在后,转动 B.工作叶轮在前,转动;整流环在后,不转动 C.整流环在前,不转动;工作叶轮在后,转动 D.整流环在前,转动;工作叶轮在后,不转动 11.多级轴流式压气机由前向后,____A_____。 A.叶片长度逐渐减小,叶片数量逐渐增多 B.叶片长度逐渐减小,叶片数量逐渐减小 C.叶片长度逐渐增大,叶片数量逐渐增多 D.叶片长度逐渐增大,叶片数量逐渐减小 12.涡轮由导向器和工作叶轮等组成,它们的排列顺序和旋转情况是___A_____。A.导向器在前,不转动;工作叶轮在后,转动 B.导向器在前,转动;工作叶轮在后,不转动

航空发动机原理

航空发动机原理 航空发动机的主要功用是为飞行器提供推进动力或支持力,是飞行器的心脏。自从飞机问世以来的几十年中,发动机得到了迅速的发展,从早期的低速飞机上使用的活塞式发动机,到可以推动飞机以超音速飞行的喷气式发动机,还有运载火箭上可以在外太空工作的火箭发动机等,时至今日,航空发动机已经形成了一个种类繁多,用途各不相同的大家族。 航空发动机常见的分类原则有两种:按空气是否参加发动机工作和发动机产生推进动力的原理。按发动机是否须空气参加工作,航空发动机可分为两类 1、吸空气发动机简称吸气式发动机,它必须吸进空气作为燃料的氧化剂(助燃剂),所以不能到稠密大气层之外的空间工作,只能作为航空器的发动机。一般所说的航空发动机即指这类发动机。如根据吸气式发动机工作原理的不同,吸气式发动机又分为活塞式发动机、燃气涡轮发动机、冲压喷气式发动机和脉动喷气式发动机等。 2、火箭喷气式发动机是一种不依赖空气工作的发动机,航天器由于需要飞到大气层外,所以必须安装这种发动机。它也可用作航空器的助推动力。按形成喷气流动能的能源不同,火箭发动机又分为化学火箭发动机、电火箭发动机和核火箭发动机等。 按产生推进动力的原理不同,飞行器的发动机又可分为 1、直接反作用力发动机 直接反作用力发动机是利用向后喷射高速气流,产生向前的反作用力来推进飞行器。直接反作用力发动机又叫喷气式发动机,这类发动机有涡轮喷气发动机、冲压喷气式发动机,脉动喷气式发动机,火箭喷气式发动机等。 2、间接反作用力发动机两类。 间接反作用力发动机是由发动机带动飞机的螺旋桨、直升机的旋翼旋转对空气作功,使空气加速向后(向下)流动时,空气对螺旋桨(旋翼)产生反作用力来推进飞行器。这类发动机有活塞式发动机、涡轮螺旋桨发动机、涡轮轴发动机、涡轮螺旋桨风扇发动机等。而涡轮风扇发动机则既有直接反作用力,也有间接反作用力,但常将其划归直接反作用力发动机一类,所以也称其为涡轮风扇喷气发动机。 附图: 活塞式发动机 航空活塞式发动机是利用汽油与空气混合,在密闭的容器(气缸)内燃烧,膨胀作功的机械。活塞式发动机必须带动螺旋桨,由螺旋桨产生推(拉)力。所以,作为飞机的动力装置时,发动机与螺旋桨是不能分割的。 为航空器提供飞行动力的往复式内燃机。发动机带动空气螺旋桨等推进器旋转产生推进力。 从1903年第一架飞机升空到第二次世界大战末期,所有飞机都用活塞式航空发动机作为动力装置。40

航空发动机原理试题

《气体动力学基础》试卷 一、 填空(30分,每空1分) 1. 气体密度是指_单位容积内气体的质量_。从微观上讲,密度的大小代表了_气体分子的疏密程度_。气体流过航空发动机的喷管时,其密度的变化规律是__减小__。 2.从微观上讲,气体压力是_大量气体分子无规则运动碰撞器壁的总效应_。在比容一定的情况下,气体温度升高,引起气体压力的变化规律是_增大 。 3.定压比热是指_在压力一定的条件下,1kg 气体温度升高或降低1℃,所需吸收或放出的热量_;定压比热与定容比热的关系式可以写成 R c c v p +=。 4.绝热过程是指 气体在和外界没有任何热交换的前提下,所进行的热力过程 ;在该过程中压力和比容的关系式可以写成k v v p p )(2 112=;该过程的外(容积)功的计算式可以写成)(1 11122v p v p k l --=。 5.“一维定常流”中“一维”是指_气流参数是一维坐标的函数_。 6.可压流的连续性方程可以写成 常数=V A ρ ,它说明_在一维定常流的条件下,流过各截面的气体流量相等_。 7. 一维定常流能量(焓)方程的一般形式是 1221222 i i V V l q -+-=±±外 。气体流过发动机的涡轮时,能量方程可以改写成 l V V i i +-=-2 212221 ,此方程表示的能量转换关系是 气体焓的下降,用来对外作功和增加气体的动能 ;气体流过发动机进气道时,能量方程可以改写成常数=+2 2 V i ,此方程表示的能量转换关系是_焓和动能之和保持不变 。 8.滞止压力(总压)是指_理想绝能条件下,将气流滞止到速度为零时的压力_。气体流过发动机的进气道时,在不考虑流动损失的情况下,总压的变化规律是 不变_的。

航空发动机原理

航空发动机主要有三种类型:活塞式航空发动机,燃气涡轮发动机和冲压发动机。 航空发动机的发展经历了活塞发动机,喷气时代的活塞发动机,燃气涡轮发动机,涡轮喷气发动机/涡轮风扇发动机,涡轮螺旋桨发动机/涡轮轴发动机。本文主要利用动态图来说明航空发动机的工作原理。 星型活塞发动机(常见于旧飞机,例如B-36,yun-5等): 星型活塞发动机的原理与汽车发动机的原理相同。燃料在汽缸中爆炸并燃烧以推动活塞工作,但汽缸装置为星形。汽车上的活塞发动机通常以V或w的形式布置。活塞式航空发动机由于效率低,噪音大,燃油消耗大而已基本取消。 涡轮喷气发动机:(J-7,MiG-25等) 涡轮喷气发动机是涡轮发动机的一种。取决于气流产生推力。它通常用于为高速飞机提供动力,但其燃油消耗高于涡轮风扇发动机。著名的MiG-25和SR-71黑鸟侦察机均配备了涡轮喷气发动机,其最大速度可突破3马赫。由于油耗高,逐渐被涡轮风扇发动机取代。 涡轮螺旋桨发动机:(Y-8,C-130,a-400m等) 涡轮喷气发动机的本质类似于带有减速器和外部螺旋桨的涡轮喷气发动机。涡轮螺旋桨发动机的推力主要由螺旋桨产生,而喷气机产生的推力很小,仅为螺旋桨的十分之一。涡轮螺旋桨发动机的优点是速度低,效率高,适用于运输机,海上巡逻机等。由于螺旋桨旋转的面积较大,因此在高速飞行时会有很多阻力,因此涡轮螺旋桨发动

机不适合高速飞行。 涡轮风扇发动机:(涡轮风扇10,AL-31F,f-135等,cmf56)涡轮风扇发动机是从涡轮喷气发动机发展而来的。与涡轮喷气发动机相比,涡轮风扇发动机的主要特点是第一级压缩机的面积要大得多。目前,大多数先进的飞机都使用涡扇发动机。涡扇发动机相当于涡轮螺旋桨发动机和涡轮喷气发动机性能的折衷产品,适用于以400-1000 km / h的速度飞行。 优点:高推力,高推进效率,低噪音,低油耗,飞行距离长。 缺点:风扇直径大,迎风面大,阻力大,发动机结构复杂,设计困难。 螺旋桨风扇发动机:(ge-36) 螺旋桨式风扇发动机不仅可以被视为具有先进高速螺旋桨的涡轮螺旋桨发动机,而且除了外部管道外,还可以被视为超高旁通比涡轮风扇发动机。它具有涡轮螺旋桨发动机低油耗率和涡轮风扇发动机高飞行速度的优点。实验中的Ge36显示出非常低的燃料消耗,但是由于噪音,它并未在任何飞机上使用。

《航空发动机结构分析》思考题

《航空发动机结构分析》 课后思考题答案 第一章概论 1.航空燃气涡轮发动机有哪些基本类型?指出它们的共同点、区别和应用。 答: 2.涡喷、涡扇、军用涡扇分别是在何年代问世的? 答:涡喷二十世纪三十年代(1937年WU;1937年HeS3B); 涡扇 1960~1962 军用涡扇 1966~1967 3.简述涡轮风扇发动机的基本类型。 答:不带加力,带加力,分排,混排,高涵道比,低涵道比。 4.什么是涵道比?涡扇发动机如何按涵道比分类? 答:(一)B/T,外涵与内涵空气流量比; (二)高涵道比涡扇(GE90),低涵道比涡扇(Al-37fn) 5.按前后次序写出带加力的燃气涡轮发动机的主要部件。 答:压气机、燃烧室、涡轮、加力燃烧室、喷管。 6.从发动机结构剖面图上,可以得到哪些结构信息? 答: a)发动机类型 b)轴数 c)压气机级数 d)燃烧室类型 e)支点位置 f)支点类型 第二章典型发动机 1.根据总增压比、推重比、涡轮前燃气温度、耗油率、涵道比等重要性能指标,指出各代涡喷、涡扇、军用涡扇发动机的性能指 标。 答:涡喷表2.1 涡扇表2.3 军用涡扇表2.2

2.al-31f发动机的主要结构特点是什么?在该机上采用了哪些先进技术? 答:AL31-F结构特点:全钛进气机匣,23个导流叶片;钛合金风扇,高压压气机,转子级间电子束焊接;高压压气机三级可调静子叶片九级环形燕尾榫头的工作叶片;环形燃烧室有28个双路离心式喷嘴,两个点火器,采用半导体电嘴;高压涡轮叶片不带冠,榫头处有减振器,低压涡轮叶片带冠;涡轮冷却系统采用了设置在外涵道中的空气-空气换热器,可使冷却空气降温125-210*c;加力燃烧室采用射流式点火方式,单晶体的涡轮工作叶片为此提供了强度保障;收敛-扩张型喷管由亚声速、超声速调节片及蜜蜂片各16式组成;排气方式为内、外涵道混合排气。 3.ALF502发动机是什么类型的发动机?它有哪些有点? 答:ALF502,涡轮风扇。优点: ●单元体设计,易维修 ●长寿命、低成本 ●B/T高耗油率低 ●噪声小,排气中NOx量低于规定 第三章压气机 1.航空燃气涡轮发动机中,两种基本类型压气机的优缺点有哪些? 答:(一)轴流压气机增压比高、效率高单位面积空气质量流量大,迎风阻力小,但是单级压比小,结构复杂; (二)离心式压气机结构简单、工作可靠、稳定工作范围较宽、单级压比高;但是迎风面积大,难于获得更高的总增压比。 2.轴流式压气机转子结构的三种基本类型是什么?指出各种转子结构的优缺点。 答 3.在盘鼓式转子中,恰当半径是什么?在什么情况下是盘加强鼓? 答:(一)某一中间半径处,两者自由变形相等联成一体后相互没有约束,即无力的作用,这个半径称为恰当半径;(二)当轮盘的自由变形大于鼓筒的自由变形;实际变形处于两者自由变形之间,具体的数值视两者受力大小而定,对轮盘来说,变形减少了,周向应力也减小了;至于鼓筒来说,变形增大了,周向应力增大了。 4.对压气机转子结构设计的基本要求是什么? 答:基本要求:在保证尺寸小、重量轻、结构简单、工艺性好的前提下,转子零、组件及其连接处应保证可靠的承受载荷和传力,具有良好的定心和平衡性、足够的刚性。 5.转子级间联结方法有哪些 答:转子间:1>不可拆卸,2>可拆卸,3>部分不可拆部分可拆的混合式。 6.转子结构的传扭方法有几种?答: a)不可拆卸:例,wp7靠径向销钉和配合摩擦力传递扭矩; b)可拆卸:例,D30ky端面圆弧齿传扭; c)混合式:al31f占全了;cfm56精制短螺栓。 7.如何区分盘鼓式转子和加强的盘式转子?

2013级《航空发动机原理》期末考试复习

《航空发动机原理》复习 一、单项选择题(共20题每题2分共40分) 1.以下哪个是衡量发动机经济性的性能参数( A )。 A EPR B FF C SFC D EGT 2.涡轮风扇发动机的涵道比是( D )。 A流过发动机的空气流量与流过内涵道的空气流量之比 B流过发动机的空气流量与流过外涵的空气流量之比 C流过内涵道的空气流量与流过外涵道的空气流量之比 D流过外涵道的空气流量与流过内涵道的空气流量之比 3.高涵道比涡扇发动机是指涵道比大于等于( C ). A 2 B 3 C 4 D 5 4.涵道比为4的燃气涡轮风扇发动机外涵产生的推力约占总(C )。 A20% B40% C80% D90% 5.涡桨发动机的喷管产生的推力约占总推力的( B ) A.85-90% B.10-15% C.25% D. 0 6.涡桨发动机使用减速器的主要优点是:( C ) A能够增加螺旋桨转速而不增加发动机转速 B螺旋桨的直径和桨叶面积可以增加 C可以提高发动机转速而增大发动机的功率输出又能使螺旋桨保持在较低转速而效率较高 D在增大螺旋桨转速情况下,能增大发动机转速 7.双转子发动机高压转子转速N2与低压转子转速Nl之间有( C ) A N2<Nl B N2=Nl C N2>Nl D设计者确定哪个大 8.亚音速进气道是一个( A )的管道。 A扩张形B收敛形 C先收敛后扩张形 D圆柱形 9.亚音速进气道的气流通道面积是( D )的。 A扩张形 B收敛形 C先收敛后扩张形 D先扩张后收敛形10.气流流过亚音速进气道时,( D )。 A速度增加,温度和压力减小 B速度增加,压力增加,温度不变 C速度增加,压力减小,温度增加 D速度减小,压力和温度增加11.在离心式压气机里两个起扩压作用的部件是( D )。 A涡轮与压气机B压气机与歧管C叶片与膨胀器D叶轮与扩压器12.轴流式压气机的一级由( C )组成。 A转子和静子 B扩压器和导气管 C工作叶轮和整流环 D工作叶轮和导向器 13. 空气流过压气机工作叶轮时, 气流的( C )。 A相对速度增加, 压力下降B绝对速度增加, 压力下降

航空发动机原理复习题

发动机原理部分 进气道 1.进气道的功用: 在各种状态下, 将足够量的空气, 以最小的流动损失, 顺利地引入压气机; 2.涡轮发动机进气道功能 冲压恢复—尽可能多的恢复自由气流的总压并输入该压力到压气机。提供均匀的气流到压气机使压气机有效的工作.当压气机进口处的气流马赫数小于飞行马赫数时, 通过冲压压缩空气, 提高空气的压力 3.进气道类型: 亚音进气道:扩张型、收敛型;超音速:内压式、外压式、混合式 4.冲压比:进气道出口处的总压与远前方气流静压的比值∏i=P1*/P0*。 影响进气道冲压比的因素:流动损失、飞行速度、大气温度。 5.空气流量:单位时间流入进气道的空气质量称为空气流量。 影响因素:大气密度, 飞行速度、压气机的转速 压气机 6.压气机功用:对流过它的空气进行压缩,提高空气的压力。供给发动机工作时所需 要的压缩空气,也可以为坐舱增压、涡轮散热和其他发动机的起动提供压缩空气。7.压气机分类及其原理、特点和应用 (1)离心式压气机:空气在工作叶轮内沿远离叶轮旋转中心的方向流动. (2)轴流式压气机:空气在工作叶轮内基本沿发动机的轴线方向流动. (3)混合式压气机: 8.阻尼台和宽叶片功用 阻尼台:对于长叶片,为了避免发生危险的共振或颤振,在叶身中部带一个减振凸台。 宽弦叶片:大大改善叶片减振特性。与带减振凸台的窄弦风扇叶片比,具有流道面积大,喘振裕度宽,及效率高和减振性好的优点。 9.压气机喘振: 是气流沿压气机轴向发生的低频率、高振幅的气流振荡现象。 10.喘振的表现: 发动机声音由尖锐转为低沉,出现强烈机械振动. 压气机出口压力和流量大幅度波动,出现发动机熄火. 发动机进口处有明显的气流吞吐现象,并伴有放炮声. 11.造成喘振的原因 气流攻角过大,使气流在大多数叶片的叶背处发生分离。 燃烧室 12.燃烧室的功用及有几种基本类型 功用:用来将燃油中的化学能转变为热能,将压气机增压后的高压空气加热到涡轮前允许的温度,以便进入涡轮和排气装置内膨胀做功。 分类:单管(多个单管)、环管和环形三种基本类型 13.简述燃烧室的主要要求点火可靠、燃烧稳定、燃烧完全、燃烧室出口温度场符合要 求、压力损失小、尺寸小、重量轻、排气污染少 14.环形燃烧室的结构特点、优缺点 结构特点:火焰筒和壳体都是同心环形结构,无需联焰管 优点:与压气机配合获得最佳的气动设计,压力损失最小;空间利用率最高,迎风面积最小;可得到均匀的出口周向温度场;无需联焰管,点火时容易传焰。 缺点:调试时需要大型气源; 采用单个燃油喷嘴,燃油—空气匹配不够好; 火焰筒刚性差;

各种飞机发动机原理

一、活塞式发动机 航空活塞式发动机是利用汽油与空气混合,在密闭的容器(气缸)内燃烧,膨胀作功的机械。活塞式发动机必须带动螺旋桨,由螺旋桨产生推(拉)力。所以,作为飞机的动力装置时,发动机与螺旋桨是不能分割的。主要由气缸、活塞、连杆、曲轴、气门机构、螺旋桨减速器、机匣等组成。气缸是混合气(汽油和空气)进行燃烧的地方。气缸内容纳活塞作往复运动。气缸头上装有点燃混合气的电火花塞(俗称电嘴),以及进、排气门。发动机工作时气缸温度很高,所以气缸外壁上有许多散热片,用以扩大散热面积。气缸在发动机壳体(机匣)上的排列形式多为星形或V形。常见的星形发动机有5个、7个、9 个、14个、18个或24个气缸不等。在单缸容积相同的情况下,气缸数目越多发动机功率越大。活塞承受燃气压力在气缸内作往复运动,并通过连杆将这种运动转变成曲轴的旋转运动。连杆用来连接活塞和曲轴。曲轴是发动机输出功率的部件。曲轴转动时,通过减速器带动螺旋桨转动而产生拉力。除此而外,曲轴还要带动一些附件(如各种油泵、发电机等)。气门机构用来控制进气门、排气门定时打开和关闭。 二、涡轮喷气发动机 在第二次世界大战以前,所有的飞机都采用活塞式发动机作为飞机的动力,这种发动机本身并不能产生向前的动力,而是需要驱动一副螺旋桨,使螺旋桨在空气中旋转,以此推动飞机前进。这种活塞式发动机+螺旋桨的组合一直是飞机固定的推进模式,很少有人提出过质疑。到了三十年代末,尤其是在二战中,由于战争的需要,飞机的性能得到了迅猛的发展,飞行速度达到700-800公里每小时,高度达到了10000米以上,但人们突然发现,螺旋桨飞机似乎达到了极限,尽管工程师们将发动机的功率越提越高,从1000千瓦,到2000千瓦甚至3000千瓦,但飞机的速度仍没有明显的提高,发动机明显感到“有劲使不上”。问题就出在螺旋桨上,当飞机的速度达到800公里每小时,由于螺旋桨始终在高速旋转,桨尖部分实际上已接近了音速,这种跨音速流场的直接后果就是螺旋桨的效率急剧下降,推力下降,同时,由于螺旋桨的迎风面积较大,带来的阻力也较大,而且,随着飞行高度的上升,大气变稀薄,活塞式发动机的功率也会急剧下降。这几个因素合在一起,决定了活塞式发动机+螺旋桨的推进模式已经走到了尽头,要想进一步提高飞行性能,必须采用全新的推进模式,喷气发动机应运而生。 喷气推进的原理大家并不陌生,根据牛顿第三定律,作用在物体上的力都有大小相等方向相反的反作用力。喷气发动机在工作时,从前端吸入大量的空气,燃烧后高速喷出,在此过程中,发动机向气体施加力,使之向后加速,气体也给发动机一个反作用力,推动飞机前进。事实上,这一原理很早就被应用于实践中,我们玩过的爆竹,就是依*尾部喷出火药气体的反作用力飞上天空的。早在1913年,法国工程师雷恩.洛兰就获得了一项喷气发动机的专利,但这是一种冲压式喷气发动机,在当时的低速下根本无法工作,而且也缺乏所需的高温耐热材料。1930年,弗兰克.惠特尔取得了他使用燃气涡轮发动机的第一个专利,但直到11年后,他的发动机在完成其首次飞行,惠特尔的这种发动机形成了现代涡轮喷气发动机的基础。现代涡轮喷气发动机的结构由进气道、压气机、燃烧室、涡轮和尾喷管组成,战斗机的涡轮和尾喷管间还有加力燃烧室。涡轮喷气发动机仍属于热机的一种,就必须遵循热机的做功原则:在高压下输入能量,低压下释放能量。因此,从产生输出能量的原理上讲,喷气式发动机和活塞式发动机是相同的,都需要有进气、加压、燃烧和排气这四个阶段,不同的是,在活塞式发动机中这4个阶段是分时依次进行的,但在喷气发动机中则是

汽车发动机构造及原理

第1篇汽车发动机构造与原理 第1章发动机基本结构与工作原理 内容提要 1.四冲程汽油机基本结构与工作原理 2.四冲程柴油机基本结构与工作原理 3.二冲程汽油机基本结构与工作原理 4.发动机的分类 5.发动机的主要性能指标 发动机:将其它形式的能量转化为机械能的机器。 内燃机:将燃料在气缸内部燃烧产生的热能直接转化为机械能的动力机械。有活塞式和旋转式两大类。本书所提汽车发动机,如无特殊说明,都是指往复活塞式内燃机。 内燃机特点:单机功率范围大(0.6-16860kW)、热效率高(汽油机略高于0.3,柴油机达0.4左右)、体积小、质量轻、操作简单,便于移动和起动性能好等优点。被广泛应用于汽车、火车、工程机械、拖拉机、发电机、船舶、坦克、排灌机械和众多其它机械的动力。 1.1 四冲程发动机基 本结构及工作原理 1.1.1 四冲程汽油机基本结 构及工作原理 1.四冲程汽油机基本结构 (图1-2) 2.四冲程汽油机基本工 作原理(图1-2) 表1-1 四冲程汽油机工作过 程 图1-2 四冲程汽油机基本结构简图 1-气缸 2-活塞 3-连杆 4-曲轴 5-气缸盖 6-进气 门 7-进气道 8-电控喷油器 9-火花塞 10-排气门

3.工作过程分析 (1)四冲程发动机:活塞在上、下止点间往复移动四个行程(相当于曲轴旋转了两周),完成进气、压缩、作功、排气一个工作循环的发动机就称为四冲程发动机。 四个行程中,只有一个行程作功,造成曲轴转速不均匀,工作振动大。所以在曲轴后端安装了一个质量较大的飞轮,作功时飞轮吸收储存能量,其余三个行程则依靠飞轮惯性维持转动。 (2)冲程与活塞行程: 冲程:指发动机的类型; 行程S:指活塞在上、下两个止点之间距离; 气缸工作容积V s:一个活塞在一个行程中所扫过的容积。 式中V s——工作容积(m3); D——气缸直径(mm); S——活塞行程(mm)。 发动机的排量V st:一台发动机所有气缸工作容积之和。 式中V st——发动机的排量(L); i——气缸数。 (3)压缩行程的作用 一是提高进入气缸内混合气的压力和温度(压缩终了的气缸内气体压力可达0.6~1.2MPa,温度达600K~700K),为混合气迅速着火燃烧创造条件; 二是可以有效提高发动机的燃烧热效率η。由热力学第一定律 当混合气被压缩程度提高时,发动机混合气燃烧所达到的最高温度(T1)升高,而排气的温度(T2)降低,导致热效率提高。 1860年,法国人Lenoir(勒努瓦)研制成功的世界第一台内燃机,没有压缩行程,热效率仅4.5%;1876年,德国人奥托(Otto)制造出第一台四冲程内燃机,采用压缩行程,虽然压缩比只有2.5,但热效率却提高到12%,有力地证明了科学是第一生产力这个真理。 压缩比ε:气缸内气体被压缩的程度。 式中V a——气缸总容积(活塞处于下止点时,活塞顶部以上的气缸容积);

航空发动机原理

气体动力学基础 一、 填空(30分,每空1分) 1. 气体密度是指_单位容积内气体的质量 _。从微观上讲,密度的大小代表了 _气体分子 的疏密程度-。气体流过航空发动机的喷管时,其密度的变化规律是 —减小 2. 从微观上讲,气体压力是 _大量气体分子无规则运动碰撞器壁的总效应 _。在比容一 定的情况下,气体温度升高,引起气体压力的变化规律是 —增大。 3. 定压比热是指_在压力一定的条件下,1kg 气体 温度升高或降低 1C,所需吸收或放出的 热量_;定压比热与定容比热的关系式可以写成 C p c v R 。 4. 绝热过程是指 气体在和外界没有任何热交换 的前提下, 所进行的热力过程 ;在该 过程中压力和比容的关系式可以写成 邑 (上)k ;该过程的外(容积)功的计算式可以写 P l V 2 、 1 成丨 (p 2 V 2 p 1v 1 )。 k 1 5?“ 一维定常流”中“一维”是指 _气流参数是一维坐标的函数 _。 6. 可压流的连续性方程可以写成 A V 常数,它说明_在一维定常流 的条件下,流过各 截面的气体流量相等 。 7. 一维定常流能量(焓)方程的一般形式是 i 2 i 1。气体流 过发动机的涡轮时,能量方程可以改写成 V 22 丨,此方程表示的能量转换

关系是气体焓的下降,用来对外作功和增加气体的动能;气体流过发动机进气道时,能量V 2 方程可以改写成i ——常数,此方程表示的能量转换关系是焓和动能之和保持不变。 2 8?滞止压力(总压)是指理想绝能条件下,将气流滞止到速度为零时的压力_。气体流过发动机的进气道时,在不考虑流动损失的情况下,总压的变化规律是不变的。

航空发动机原理与构造知识点

航空发动机原理与构造知识点 1.热力系 2.热力学状态参数 3.热力学温标表示方法 4.滞止参数在流动中的变化规律 5.连续方程、伯努利方程 6.激波 7.燃气涡轮发动机分类及应用 8.燃气涡轮喷气发动机即使热机也是推进器 9.涡喷发动机结构、组成部件及工作原理 10.涡扇发动机结构、组成部件及工作原理 11.涡桨发动机结构、组成部件及工作原理 12.涡轴发动机结构、组成部件及工作原理 13.EPR、EGT、涡轮前燃气总温含义 14.喷气发动机热力循环(理想循环、实际循环) 15.最佳增压比、最经济增压比 16.热效率、推进效率、总效率 17.喷气发动机推力指标 18.发动机中各部件推力方向 19.喷气发动机经济指标 20.涡扇发动机中N1、涡扇发动机涵道比的定义 21.涡扇发动机的优缺点及质量附加原理 22.发动机的工作原理(涡喷、涡扇、涡轴和涡桨) 23.发动机各主要部件功用和原理,各部件热力过程和热力循环 24.进气道的分类及功用 25.总压恢复系数和冲压比的定义 26.超音速进气道三种类型 27.超音速进气道工作原理(参数变化) 28.离心式压气机组成部件 29.离心式压气机增压原理 30.离心式压气机优缺点 31.轴流式压气机组成部件 32.轴流式压气机优缺点 33.压气机叶片做成扭转的原因 34.压气机基元级速度三角形及基元级增压原理 35.扭速 36.多级轴流式压气机特点 37.喘振现象原因及防喘措施(原因) 38.轴流式压气机转子结构形式、优缺点 39.鼓盘式转子级间连接形式 40.叶片榫头类型、优缺点

41.减振凸台的作用以及优缺点 42.压气机级的流动损失 43.多级轴流压气机流程形式,机匣结构形式 44.压气机喘振现象、根本原因、机理过程 45.压气机防喘措施、防喘措施原理 46.燃烧室的功用和基本要求 47.余气系数、油气比、容热强度的定义 48.燃烧室出口温度分布要求 49.燃烧室分类及优缺点 50.环形燃烧室的分类及区别 51.燃烧室稳定燃烧的条件和如何实现 52.燃烧室分股进气作用 53.燃烧室的组成基本构件及功用 54.旋流器功用 55.涡轮的功用和特点(与压气机比较) 56.涡轮叶片的分类和结构 57.一级涡轮为何可以带动更多级压气机 58.提高涡轮前温度措施 59.带冠叶片优缺点 60.间歇控制定义、发动机在起动巡航、停车时间隙变化情况 61.如何实现涡轮主动间隙控制 62.涡轮叶片冷却方式 63.喷管功用 64.亚音速喷管工作原理(参数变化) 65.亚音速喷管三种工作状态(亚临界、临界和超临界)的判别 66.超音速喷管形状 67.发动机噪声源及解决措施 68.发动机的基本工作状态 69.发动机特性(定义、表述) 70.涡喷发动机稳态工作条件(4个)举例说明如何保持稳态工作 71.稳态下涡轮前温度随转速变化规律 72.剩余功率的定义 73.发动机加速的条件 74.联轴器的分类及作用 75.封严装置的作用、基本类型 76.双转子、三转子支承方案 77.中介支点、止推支点作用 78.封严件作用和主要类型 79.燃油系统功用和主要组件功用 80.燃油泵分类和特点 81.燃油喷嘴分类和特点 82.发动机控制系统分类 83.滑油系统功用、主要部件及分类,滑油性能指标 84.起动过程的定义

航空发动机原理

航空发动机原理 您说的这个“如此简洁”的原理都是错的,重要的一步膨胀做功都没有,你让人家搞涡 轮的怎么办。。。 如果您只把“进气道进气—压气机增压—燃烧室加热—涡轮膨胀做功—尾喷管加速喷 出”这几个过程当作“航空发动机原理”当然可以说航空发动机的原理太简单了,但将这 个最基础的原理实现的过程就不算航空发动机原理了吗? 就从您提出的这个最简单的原理开始简单的捋一下: 1)知道了原理,首先得开始建模吧,不考虑损失的,将这个”进气—增压—加热—膨 胀做功—加速喷出“的过程用物理模型描述出来就是布雷顿循环——理解这个至少得学 过“工程热力学”吧。 2)有了循环,搞总体的人根据一定的经验和预估,按设计要求设计了循环参数(这 时就不能只考虑理想模型了,还要考虑效率和损失)。按最简单的,至少有总压比, 涡轮前温度和涵道比——最低要求学过“航空发动机原理”这门课(当然远远远远远远 远不够)。

3)有了循环参数得知道如何实现吧,这就需要对各个部件进行设计,得出各个部件 的工作曲线——每个部件的设计的基础理论都不止一本书要学。而每个部件设计又并 不是独立的,发动机各个部件的工作状态是耦合的,为了得到更好的性能,就需要各 个部件的设计人员进行讨(si)论(bi)。除此以外总体人员提出的设计参数又不一定 能够实现,这时为了团(shuai)结(guo)总体和设计又要开始讨(si)论(bi)。 重复(2)(3)直至收敛。 4)按照气动要求设计出来的各个部件还要满足结构要求,既要满足强度要求还要满 足刚度要求,板壳震动轴的一二三阶频率气动耦合振动叶片振动轮盘震动转子整体震 动等等等等一堆震动问题要解决,最可恶的是同时还要求重量轻!用结构老师的话 讲:如果航空发动机中的一个结构只有一两个作用,拿它的设计就是失败的。——知 道这些在说什么至少看过“航空发动机结构”吧。

航空发动机原理与构造

航空发动机原理、构造与系统 (Aviation Engine Principle,Structure and Systems) 教学大纲 本课程与其它课程的联系: 主要先修课程:航空概论、大学物理 主要后续课程:航空发动机维修 一、课程的性质 本课程是航空机电设备维修专业的一门主要专业课。 二、课程的地位、作用和任务 本课程旨在帮助学生掌握航空燃气涡轮发动机的基本工作原理和特性,掌握航空燃气涡轮发动机的基本结构,了解各主要工作系统的组成、工作原理。为学生将来从事航空维修打下必要的理论基础。 三、课程教学的基本要求 1.理解工程热力学、气体动力学的基本概念及在航空发动机上的应用。 2.掌握涡喷发动机各主要部件的工作原理、基本结构和工作特性 3.理解常用发动机(涡扇发动机)的工作特点、主要系统工作原理。 4.掌握航空发动机的维修和使用的基本知识。 四、课程教学内容 1.航空燃气涡轮发动机热工气动基础 1.1工程热力学部分 1.2气体动力学部分 重点:热力学第一定律,焓形式的能量方程式,机械能形式的能量方程式。 难点:机械能形式的能量方程式 思考题:10个 2.燃气涡轮发动机基本工作原理 2.1工作循环 2.2产生推力的原理 2.3主要性能参数 重点:燃气涡轮发动机的理想循环; 难点:主要性能参数。 思考题:5个,计算题:2个 3.涡喷发动机主要部件

3.1进气道 3.2压气机 3.3燃烧室 3.4涡轮 3.5尾喷管 重点:压气机增压原理,涡轮工作原理;收敛喷管的工作状态。 难点:压气机流量特性 思考题:20个,计算题:4个, 4.燃气涡轮发动机共同工作 4.1稳态共同工作 4.2过渡态共同工作 4.3单转子涡喷发动机特性 4.4双转子涡喷发动机特性 4.5涡轮螺旋桨发动机 4.6涡轮风扇发动机 4.7涡轮轴发动机 重点:稳态工作,转速特性,涡桨发动机特性,双转子涡扇发动机组成和工作原理,涡轴发动机部件的特点, 难点:高度特性,速度特性,涡扇发动机特性 思考题:15个 5.发动机总体结构 5.1转子支承机构 5.2联轴器 5.3支承结构 重点:各种类型发动机的转子结构,轴承,典型封严装置 难点:多转子发动机转子支承结构 思考题:5个 6.发动机工作系统 6.1燃油控制系统 6.2滑油系统 6.3起动系统; 6.4点火系统 6.5指示系统 6.6操纵系统 6.7排气系统 重点:各工作系统的组成、功用和典型系统 思考题:15个 7.辅助动力装置 7.1概述 7.2APU工作系统 7.3典型辅助动力装置 重点:结构和典型机型 思考题:2个 8.发动机使用维修

飞行学院《航空发动机原理与构造》复习

飞行学院《航空发动机原理与构造》复习资料 第一部分:航空发动机构造 一、单项选择题(每题2分) 1.涡喷涡扇涡桨涡轴发动机中,耗油率或当量耗油率的关系是(A) 2.A.sfc涡喷>sfc涡扇>sfc涡桨>sfc涡轴B.sfc涡扇>sfc涡桨>sfc涡轴>sfc涡喷 3.C.sfc涡桨>sfc涡轴>sfc涡喷>sfc涡扇D.sfc涡轴>sfc涡喷>sfc涡扇>sfc涡桨 4.发动机转子卸荷措施的目的是(B)。 5.A.减少发动机转子负荷,降低了发动机推力,以提高发动机运行可靠性 6.B.减少发动机转子轴向力,减少止推轴承数量,提高转子工作可靠性 7.C.减少发动机转子负荷,提高发动机推力 8.D.减少发动机转子负荷,降低转子应力水平,提高转子结构强度 9.涡扇发动机中,忽略附件传动功率,涡轮转子与压气机转子扭矩之间的关系是(D)。 10.A.M涡轮>-M压气机B.M涡轮<-M压气机 11.C.M涡轮=M压气机D.M涡轮=-M压气机 12.压气机转子结构中,加强盘式转子是为了(B)。 13.A.加强转子强度,提高转子可靠性 14.B.加强转子刚度,提高转子运行稳定性 15.C.加强转子冷却效果,降低温度应力 16.D.加强转子流通能力,提高压气机效率 17.压气机转子结构中(B)。 18.A.鼓式转子的强度>盘式转子的强度 19.B.鼓式转子的强度<盘式转子的强度 20.C.鼓式转子的强度=盘式转子的强度 21.D.鼓式转子与盘式转子强度比较关系不确定 22.压气机转子结构中的刚度(A) 23.A.盘鼓混合式转子>盘式转子 24.B.盘鼓混合式转子<盘式转子 25.C.盘鼓混合式转子=盘式转子 26.D.盘鼓混合式与盘式转子刚度大小关系不确定

航空发动机原理

2简单叙述燃气涡轮喷气发动机的组成以及工作原理:燃气涡轮发动机由进气道、压气机、燃烧室、涡轮、尾喷管组成。工作原理:以空气为工作介质。进气道将所需的外界空气以最小的流动损失顺利地引入发动机,压气机通过高速旋转的叶片对空气做功压缩空气,提高空气的压力,高压空气在燃烧室内和燃油混合,燃烧,将化学能转变为热能,形成高温高压的燃气,高温高压的燃气首先在涡轮内膨胀,将燃气的部分焓转变为机械能,推动涡轮旋转,去带动压气机然后燃气在喷管内继续膨胀,加速燃气,提高燃气速度,使燃气以较高的速度喷出,产生推力。 3燃气涡轮发动机分为哪几种?它们在结构以及工作原理上有什么明显区别 燃气涡轮发动机分为涡喷、涡扇、涡桨、涡轴四种。 涡轮螺旋桨发动机由燃气轮机和螺旋桨组成,他们之间还安排了一个减速器。工作原理:空气通过排气管进入压气机;压气机以高速旋转的叶片对空气做功压缩空气,提高空气压力;高压空气在燃烧室内和燃油混合,燃烧,将化学能转变为热能,形成高温高压燃气;高温高压燃气在涡轮内膨胀,推动涡轮旋转输出功去带动压气机和螺旋桨,大量空气流过旋转的螺旋桨,其速度有一定的增加,使螺旋桨产生相当大的拉力;气体流过发动机,产生反作用力。 如果燃气发生器后的燃气可用能全部用于驱动动力涡轮而不产生推力,则燃气涡轮发动机成为涡轮轴发动机,动力涡轮轴上的功率可以用来带动直升机的旋翼。 涡轮风扇发动机是由进气道、风扇、低压压气机、高压压气机、燃烧室、高压涡轮、低压涡轮和喷管组成。 4什么是EGT ,为什么它是一个非常重要的监控参数:EGT 是发动机排气温度。 原因:1、 EGT 的高低反映了发动机中最重要、最关键的参数涡轮前总温 的高低,EGT 高,则 就 高:EGT 超限,则 超限。2、EGT 的变化反映了发动机性能的变化;3、EGT 的变化反 应发动机的故障。 8进气道的功用以及分类:功用:(1)在各种状态下, 将足够量的空气, 以最小的流动损失, 顺利地引入压气机并在压气机进口形成均匀的流场以避免压气机叶片的振动和压气机失速;(2)当压气机进口处气流马赫数小于飞行马赫数时, 通过冲压压缩空气, 提高空气的压力。 分类:(1)亚音速进气道:主要用于民用航空发动机,而且为单状态飞机,大多采用扩张形、几何不可调的亚音速进气道。(2)超音速进气道:分为内压式、外压式和混合式三种 。 11. 离心式压气机由哪些部件组成,各部件是如何工作的? 答:离心式压气机由导流器, 叶轮, 扩压器, 导气管等部分组成,叶轮和扩压器是其中两个主要部件。导流器:安装在叶轮的进口处,其通道是收敛形的 使气流以一定方向均匀进入工作叶轮, 以减小流动损失,空气在流过它时速度增大,而压力和温度下降。叶轮:是高速旋转的部件,叶轮上叶片间的通道是扩张形的,空气在流过它时, 对空气作功, 加速空气的流速, 同时提高空气的压力。扩压器:位于叶轮的出口处,其通道是扩张形的,空气在流过它时将动能转变为压力位能, 速度下降, 压力和温度都上升 。导气管 :使气流变为轴向, 将空气引入燃烧室 。 12. 离心式压气机是如何实现增压的:叶轮中的扩散增压和离心增压,扩压器增压。气体增压主要靠离心增压: 气体流过叶轮,气体随叶轮作圆周运动,气体微团受惯性离心力作用,气体微团所在位置半径越大,圆周速度越大,气体微团所受离心力也越大,因此,叶轮外径处的压力远比内径处的压力高。 13. 离心式压气机的优缺点:离心式压气机的主要优点:单级增压比高:一级的增压比可达4:1-5:1, 甚至更高;同时离心式压气机稳定的工作范围宽;结构简单可靠;重量轻, 所需要的起动功率小。 *3T *3T *3T

飞行学院《航空发动机原理与构造》复习

飞行学院《航空发动机原理与构造》复习资料第一部分:航空发动机构造 一、单项选择题(每题2分) 1.涡喷?涡扇?涡桨?涡轴发动机中,耗油率或当量耗油率的关系是(A)? 2.A.sfc 涡喷>sfc 涡扇 >sfc 涡桨 >sfc 涡轴 B.sfc 涡扇 >sfc 涡桨 >sfc 涡轴 >sfc 涡喷 3.C.sfc 涡桨>sfc 涡轴 >sfc 涡喷 >sfc 涡扇 D.sfc 涡轴 >sfc 涡喷 >sfc 涡扇 >sfc 涡桨 4.发动机转子卸荷措施的目的是(B)。 5.A.减少发动机转子负荷,降低了发动机推力,以提高发动机运行可靠性 6.B.减少发动机转子轴向力,减少止推轴承数量,提高转子工作可靠性 7.C.减少发动机转子负荷,提高发动机推力 8.D.减少发动机转子负荷,降低转子应力水平,提高转子结构强度 9.涡扇发动机中,忽略附件传动功率,涡轮转子与压气机转子扭矩之间的关系是(D)。 10.A.M涡轮>-M压气机B.M涡轮<-M压气机 11.C.M涡轮=M压气机D.M涡轮=-M压气机 12.压气机转子结构中,加强盘式转子是为了(B)。 13.A.加强转子强度,提高转子可靠性 14.B.加强转子刚度,提高转子运行稳定性 15.C.加强转子冷却效果,降低温度应力 16.D.加强转子流通能力,提高压气机效率 17.压气机转子结构中(B)。 18.A.鼓式转子的强度>盘式转子的强度 19.B.鼓式转子的强度<盘式转子的强度 20.C.鼓式转子的强度=盘式转子的强度 21.D.鼓式转子与盘式转子强度比较关系不确定 22.压气机转子结构中的刚度(A) 23.A.盘鼓混合式转子>盘式转子 24.B.盘鼓混合式转子<盘式转子 25.C.盘鼓混合式转子=盘式转子 26.D.盘鼓混合式与盘式转子刚度大小关系不确定

中国民航大学2017年硕士研究生《航空发动机原理》考试大纲

中国民航大学2017年硕士研究生《航空发动机原理》考试大纲科目代码:822 适用专业:(082500)航空宇航科学与技术,(085232)航空工程 一、《航空发动机原理》的基本要求 1.了解航空发动机的历史和发展 2.了解航空喷气发动机常见故障及排除方法,明确使用、维护中应注意的问题 3.了解发动机稳态和动态特性 4.了解航空发动机部件相关结构 5.理解双转子涡喷及涡扇发动机工作原理和特性 6.理解发动机总体性能的整理,适航性的评定 7.掌握发动机各主要部件的工作原理 8.掌握发动机部件及工作原理相关专业英语词汇 9.掌握通过实验获取压气机流量特性曲线的理论和方法 10.掌握运用压气机通用特性线来分析发动机各部件的匹配特点 11.掌握工作点的变化及对发动机特性的影响。 12.掌握亚音速范围内的发动机工作原理 13.掌握压气机和涡轮的通用特性线的运用及发动机各部件的共同工作 二、主要内容 1.燃气涡轮发动机的工作原理 1.1航空发动机概述 1.2燃气涡轮发动机的工作原理 1.3喷气发动机热力循环 1.4喷气发动机的推力 1.5涡喷发动机的总效率、热效率及推进效率; 1.6喷气发动机的性能指标重点:推力公式的具体应用,发动机能量转换。难点:发动机推力的计算 2.进气道 2.1亚音速进气道组成、工作原理及主要性能参数 2.2超音速进气道的简单工作原理重点:亚音速进气道工作原理 3.压气机 3.1离心式压气机组成及各部件工作原理 3.2轴流式压气机基元级工作原理 3.3轴流式压气机的叶栅特性 3.4轴流式压气机级的工作原理 3.5轴流式压气机的参数 3.6压气机的流量特性 3.7压气机的喘振 重点:基元级速度三角形及增压原理,喘振机理及防喘措施,压气机通用特性 线 难点:喘振机理及防喘措施,压气机通用特性线 4.燃烧室 4.1对燃烧室的基本要求 4.2燃烧室的分类

汽车发动机构造与原理

22 第1篇 汽车发动机构造与原理 第1章 发动机基本结构与工作原理 发动机:将其 它形式的能量转化为机械能的机器。 内燃机:将燃料在气缸内部燃烧产生的热能直接转化为机械能的动力机械。有活塞式和旋转式两大类。本书所提汽车发动机,如无特殊说明,都是指往复活塞式内燃机。 内燃机特点:单机功率范围大(0.6-16860kW )、热效率高(汽油机略高于0.3,柴油机达0.4左右)、体积小、质量轻、操作简单,便于移动和起动性能好等优点。被广泛应用于汽车、火车、工程机械、拖拉机、发电机、船舶、坦克、排灌机械和众多其它机械的动力。 1.1 四冲程发动机基本结构及工作原理 1.1.1 四冲程汽油机基本结构及工作原理 1.四冲程汽油机基本结构(图1-2) 2.四冲程汽油机基本工作原理(图1-2) 表1-1 四冲程汽油机工作过 程 内容提要 1.四冲程汽油机基本结构与工作原理 2.四冲程柴油机基本结构与工作原理 3.二冲程汽油机基本结构与工作原理 4.发动机的分类 5.发动机的主要性能指标 图1-2 四冲程汽油机基本结构简图 1-气缸 2-活塞 3-连杆 4-曲轴 5-气缸盖 6-进气门 7-进气道 8-电控喷油器 9-火花塞 10-排气门

23 (1)四冲程发动机:活塞在上、下止点间往复移动四个行程(相当于曲轴旋转了两周),完成进气、压缩、作功、排气一个工作循环的发动机就称为四冲程发动机。 四个行程中,只有一个行程作功,造成曲轴转速不均匀,工作振动大。所以在曲轴后端安装了一个质量较大的飞轮,作功时飞轮吸收储存能量,其余三个行程则依靠飞轮惯性维持转动。 (2)冲程与活塞行程: 冲程:指发动机的类型; 行程S :指活塞在上、下两个止点之间距离; 气缸工作容积V s :一个活塞在一个行程中所扫过的容积。 S D V s 10 6 2 4?=π 式中 V s ——工作容积(m 3); D ——气缸直径(mm ); S ——活塞行程(mm )。 发动机的排量V st :一台发动机所有气缸工作容积之和。 i V V s st = 式中 V st ——发动机的排量(L ); i ——气缸数。 (3)压缩行程的作用 一是提高进入气缸内混合气的压力和温度(压缩终了的气缸内气体压力可达0.6~1.2MPa ,温度达600K~700K ),为混合气迅速着火燃烧创造条件; 二是可以有效提高发动机的燃烧热效率η。由热力学第一定律 1 2 1T T - =η 当混合气被压缩程度提高时,发动机混合气燃烧所达到的最高温度(T 1)升高,而排气的温度(T 2)降低,导致热效率提高。 1860年,法国人Lenoir (勒努瓦)研制成功的世界第一台内燃机,没有压缩行程,热效率仅4.5%;1876年,德国人奥托(Otto )制造出第一台四冲程内燃机,采用压缩 行程名称 曲轴转角 活塞行向 进气门 排气门 进气 0o~180o ↓ 开 关 压缩 180o~360o ↑ 关 关 作功 360o~540o ↓ 关 关 排气 540o~720o ↑ 关 开

相关主题
文本预览
相关文档 最新文档