当前位置:文档之家› 3.1.2 函数的极值

3.1.2 函数的极值

函数极值最值的求法及其应用

函数极值最值的求法及其应用 学习目标:会用导数求函数的极值与最值并利用其解决相关的数学问题. 学习重点:利用导数求函数单调区间和极值最值,并能利用他们解决相恒成立问题、方程的根和函数的零点问题. 学习难点:含参函数的分类讨论和数形结合的思想方法. 学习方法:指导学习法. 课前五分钟展示:求函数)0()(>+=a x a Inx x f 在区间[]1,e 上的最小值. 基础知识回顾: 1、 单调区间: 在某个区间(a,b)内,如果()0f x '> ,那么函数()y f x =在这个区间内单调 如果()0f x '<,那么函数()y f x =在这个区间内单调 注意:求参数范围时,若函数单调递增,则'()0f x ≥;若函数单调递减,则 '()0f x ≤”来求解,注意此时公式中的等号不能省略,否则漏解. 2、 函数的极值与最值: 极大值和极小值:一般地,设函数)(x f 在点0x 附近有定义,如果对0x 附近的所有的点都有)(x f <)(0x f 或)(x f >)(0x f ,就说)(0x f 是函数)(x f 的一个极大值或极小值,记作极大值y =)(0x f ,0x 是极大值点或记作极小值y =)(0x f ,0x 是极小值点.

在定义中,极大值与极小值统称为 取得极值的点称为 极值点是自变量的值,极值指的是 最大值和最小值:观察图中一个定义在闭区间[]b a ,上的 函数)(x f 的图象.图中)(1x f 与3()f x 是极小值,2()f x 是极大值.函数)(x f 在[]b a ,上的最大值是)(b f ,最小值是3()f x .一般地,在闭区间[]b a ,上连续的函数)(x f 在 []b a ,上必有最大值与最小值. 请注意以下几点: (1; (2)函数的极值不是唯一的; (3)极大值与极小值之间无确定的大小关系 ; (4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点取得最大值.最小值的点可能在区间的内部,也可能在区间的端点. 思考探究: 在连续函数)(x f 中,0)('= x f 是函数)(x f 在 x x =处取到极值的什么条件( ) A 、充分不必要条件 B 、必要不充分条件 C 、充要条件D 、既不充分也不必要条件 典型例题: 题型一:利用导数求函数的极值最值问题: 例1:求函数5224+-=x x y 在区间[]2,3-上的最大值与最小值.

函数极值的几种求法

函数极值的几种求法 ──针对高中生所学知识 摘要:函数是数学教学中一个重要的组成部分,从小学六年级的一元一次方程继而延伸到初中的一次函数,二次函数的初步介绍,再到高中的函数的单调性、周期性、最值、极值,以及指数函数、对数函数、三角函数的学习,这些足以说明函数在数学教学中的地位。极值作为函数的一个重要性质,无论是在历年高考试题中,还是在实际生活运用中都占有不可或缺的地位。本文主要阐述了初高中常见的几种函数,通过函数极值的相关理论给出每种函数极值的求解方法。 关键词:函数;单调性;导数;图像;极值 Abstract: Function is an important part of mathematics teaching. First the learning of linear equation in six grade, secondly the preliminary introduction of linear functions and quadratic functions in junior high school, then the monotonicity, the periodicity, the most value and the extreme value of function, finally the learning of the logarithmic function, exponential function and trigonometric function in high school. These are enough to show the important statue of the function in mathematics teaching. As an important properties of function, extreme value has an indispensable status whether in the calendar year test, or in daily life. This article will mainly expound the methods of solving the extreme value of sever functions in middle school. Key words: function; monotonicity; derivative; image; extreme value “函数”一词最先是由德国的数学家莱布尼茨在17世纪采用的,当时莱布尼茨用“函数”这一词来表示变量x的幂,也就是x的平方x的立方。之后莱布尼茨又将“函数”这一词用来表示曲线上的横坐标、纵坐标、切线的长度、垂线的长度等与曲线上的点有关的变量[]1。就这样“函数”这词逐渐盛行。在中国,清代著名数学家、天文学家、翻译家和教育家,近代科学的先驱者善兰给出的定义是:

论文函数的极值问题在实际中的应用.

函数的极值问题在实际中的应用 一、函数求极值方法的介绍 利用函数求极值问题,是微积分学中基本且重要的内容之一,函数求极值的方法很多,但主要可分为初等方法和微积分中的导数方法等。用初等方法求最值问题,主要是利用二次函数的最值性质,二次函数非负的性质,算术平均数不小于几何平均数。正弦,余弦函数的最值性质讨论问题。一般而言,他需要较强技巧,在解决某些问题时,其解法让人赏心悦目,但这些方法通用性较差,利用高等数学的导数等工具求解极值问题,通用性较强,应用也较强,应用也较广泛,下面给出用导数求极值最值得一些定理和方法。 1、一元函数极值的判定及求法 定理1(必要条件)设函数在点处可导,且在处取得极值,那么。 使导数为零的点,即为函数的驻点,可导函数的极值点必定是它的驻点,但反过来,函数的驻点却不一定是极值点。当求出驻点后,还需进一步判定求得驻点是不是极值点,下面给出判断极值点的两个充分性条件。 定理2(极值的第一充分条件)设在连续,在某领域内可导。 (1)若当时,当时,则在点取得最小值。 (2)若当时,当时,则在点取得最大值。 定理3(极值的第二充分条件)设在连续,在某领域内可导,在 处二阶可导,在处二阶可导,且,。 (1)若,则在取得极大值。 (2)若,则在取得极小值。 由连续函数在上的性质,若函数在上一定有最大、最小值。这就为我们求连续函数的最大、最小值提供了理论保证,本段将讨论怎样求出最大(小)值。在一个区间上,一个函数的最值可能在不可导点取得,也可能在区间的端点取得,除去这两种情况之外,必然在区间内部的可导点取得,根据上面的必要条件,

在这些点的导数为0,即为驻点。因此,我们如果要求一个函数在一个区间的最值,只要列举出不可导的点,区间端点以及驻点,然后比较函数在这些点的最值,即可求出最值。

多元函数的极值及其应用(精)

2012 年 5 月(上)科技创新与应用科教纵横多元函数的极值及其应用苏兴花(山东现代职业学院,山东济南 250104 )多元函数的极值问题在近年来研究比较广泛,相关的理论逐渐地完善起来,多元函数极值问题的应用也越来越广泛.然而在数学分析的教材中,与一元函数比较起来,多元函数极值的理论及应用却比较少,没有详细的讨论,例如二元函数极值的讨论中,当判别式时,无法判别二元函数的极值是否存在.鉴于这种状况与实际需要的矛盾,总结出几种较为简便的判别多元函数极值的方法,使得多元函数的极值问题的解决方法简单多样化,运用起来更加灵活与方便。 1 多元函数极值 1.1 极值的定义、性质和判定定理二元函数的极值定义 1 设二元函数 f(x,y 在点 P(a,b 的邻域 G 有定义,在 P 处给自变量的增量△P=(h,k,相应有函数增量.若,则称 P(a,b是函数 f(x,y的极大点(极小点).极大点(极小点)的函数值 f(a,b称为函数 f(x,y的极大值(极小值).极大值与极小值统称为函数的极值.定义 2 方程组的解(xy 平面上的某些点)称为函数 f(x,y的稳定点.定理 1 若函数 f(x,y在点 P(a,b存在两个偏导数,且P(a,b是函数 f(x,y的极值点,则 . 定理 2 设函数 f(x,y有稳定点 P(a,b,且在 P(a,b的邻域 G 存在二阶连续偏导数.令 1)若△<0,则 P(a,b是函数 f(x,y的极值点,(iA>0(或 C>0,P(a,b是函数 f(x,y的极小点; (iiA<0(或 C<0,P(a,b是函数 f(x,y的极大点. 2)若△>0,P(a,b不是函数 f(x,y的极值点. 1.2 多元函数极值推广 1.2.1 多元函数极值在数学分析中的推广定理设 f(P是 R n 中的实函数,且 f(P在点 P 0 取到极值,则 f(P 在点 P 0 的任何方向导数均为零. 1.2.2 多元函数极值在线性代数中的推广定理 1 设 n 元函数 f(x=f(x 1 ,x 2 ,...,x n 在某区域上具有二阶连续偏导数,并且区域内一点 P(a 1 ,a 2 ,...,a n 是 f(x的稳定点.其中为实对称矩阵,其元素且不全为零 (i,j= 1,2,...,n即A≠0. 1 若 A 为正定矩阵,f(P为极小值; 2 若 A 为负定矩阵,f(P为极大值; 3 若 A 既不正定,也不负定,则 f(P不是极值.注意:若二次齐次多项式为零,即 A=0 时,此时不能用 A 的正定与负定来判断 f(P是否为极值,或判断 f(P是极大值或极小值,需根据二次齐次多项式后边的高次项去判定.定理 2 设二元函数 f(x,y在点 P 0 (x 0 ,y 0 的某邻域内具有三阶连续偏导数,且 P 0 是稳定点,又,即△=0 时,则当时, f 在点 P 0 无极值.例 2 判别函数是否存在极值.解

函数的极值与导数教学设计一等奖

函数的极值与导数 作者单位:宁夏西吉中学作者姓名:蒙彦强联系电话: 一.教材分析 本节课选自高中数学人教A版选修2-2教材函数的极值与导数,就本册教材而言本节既是前面所学导数的概念、导数的几何意义、导数的计算、函数的单调性与导数等内容的延续和深化,又为下节课最值的学习奠定了知识与方法的基础,起着承上启下的作用.就整个高中教学而言,函数是高中数学主要研究的内容之一,而导数又是研究函数的主要工具,同时导数在化学、物理中都有所涉及可见它的重要性. 二.教学目标 1. 了解极大值、极小值的概念,体会极值是函数的局部性质; 2. 了解函数在某点取得极值的必要条件与充分条件; 3. 会用导数求函数的极值; 4. 培养学生观察、分析、探究、推理得出数学概念和规律的学习能力; 5. 感受导数在研究函数性质中的一般性和有效性,体会导数的工具作用.三.重点与难点 重点是会用导数求函数的极值. 难点是导函数的零点是函数极值点的必要不充分条件的理解. 四.学情分析 基于本班学生基础较差,思维水平参差不齐,所以备课上既要考虑到薄弱同学的理解与接受,又要考虑到其他同学视野的拓展,因此在本节课中我设置了许多的问题,来引导学生怎样学,以问答的方式来激发学生的学习兴趣,同时让更多的学生参与到教学中来.学生已经学习了函数的单调性与导数的关系,学生已经初步具备了运用导数研究函数的能力,为了进一步培养学生的这种能力,体会导数的工具作用,本节进一步研究函数的极值与导数. 五.教具教法 多媒体、展台,问题引导、归纳、类比、合作探究发现式教学 六.学法分析 借助多媒体辅助教学,通过观察函数图像分析极值的特征后,得出极值的定义;通过函数图像上极值点及两侧附近导数符号规律的探究,归纳出极值与导数的关系;通过求极值的问题归纳用导数求函数极值的方法与步骤. 七.教学过程 1.引入 让学生观察庐山连绵起伏的图片思考“山势有什么特点”并结合诗句“横看成岭侧成峰,远近高低各不同”,由此联想庐山的连绵起伏形成好多的“峰点”与“谷点”,这就是数学上研究的函数的极值引出课题. 【设计意图】从庐山美景出发并结合学生熟悉的诗句来激发学生学习兴趣,让学生在愉快中知道学什么.

求函数极值的几种方法

求解函数极值的几种方法 1.1函数极值的定义法 说明:函数极值的定义,适用于任何函数极值的求解,但是在用起来时却比较的烦琐. 1.2导数方法 定理(充分条件)设函数()f x 在0x 处可导且0()0f x '=,如果x 取0x 的左侧的值时,()0f x '>,x 取0x 的右侧的值时,()0f x '<,那么()f x 在0x 处取得极大值,类似的我们可以给出取极小值的充分条件. 例1 求函数23()(1)f x x x =-的单调区间和极值 解 23()(1)f x x x =- ()x -∞<<+∞, 3222()2(1)3(1)(1)(52)f x x x x x x x x '=-+-=--. 令 ()0f x '=,得到驻点为10x =,22 5 x = ,31x =.列表讨论如下: 表一:23()(1)f x x x =-单调性列表 说明:导数方法适用于函数()f x 在某处是可导的,但是如果函数()f x 在某处不可导,则就不能用这样的方法来求函数的极值了.用导数方法求极值的条件是:函数()f x 在某点0x 可导. 1.3 Lagrange 乘法数方法 对于问题: Min (,)z f x y = s.t (,)0x y =

如果**(,)x y 是该问题的极小值点,则存在一个数λ,使得 ****(,)(,)0x x f x y g x y λ+= ****(,)(,)0y y f x y g x y λ+= 利用这一性质求极值的方法称为Lagrange 乘法数 例2 在曲线3 1(0)y x x = >上求与原点距离最近的点. 解 我们将约束等式的左端乘以一个常数加到目标函数中作为新的目标函 数2231 ()w x y y x λ=++- 然后,令此函数对x 的导数和对y 的导数分别为零,再与原等式约束合并得 43 320201x x y y x λλ?+=?? +=???=? 解得 x y ?=? ?= ?? 这是唯一可能取得最值的点 因此 x y ==为原问题的最小值点. 说明:Lagrange 乘法数方法对于秋多元函数是比较方便的,方法也是比较简单的 :如果**(,)x y 是该问题的极小值点则存在一个数λ,使得 ****(,)(,)0x x f x y g x y λ+= ****(,)(,)0y y f x y g x y λ+= 这相当于一个代换数,主要是要求偏导注意,这是高等代数的内容. 1.4多元函数的极值问题 由极值存在条件的必要条件和充分条件可知,在定义域内求n 元函数()f p 的极值可按下述步骤进行:①求出驻点,即满足grad 0()0f p =的点0p ;②在0 p

函数极值与最值研究毕业论文

函数极值与最值研究 摘要:在实际问题中, 往往会遇到一元函数.二元函数,以及二元以上的多元函数的最值问题和极值问题等诸多函数常见问题。求一元函数的极值,主要方法有:均值等式法,配方法,求导法等。求一元函数的最值,主要方法有:函数的单调性法,配方法,判别式法,复数法,导数法,换元法等。求二元函数极值,主要方法有:条件极值拉格朗日乘数法,偏导数法等。求二元函数最值,主要方法有:均值不等式法,换元法,偏导数法等。对于多元函数,由于自变量个数的增加, 从而使该问题更具复杂性,求多元函数极值方法主要有:条件极值拉格朗日法, 等,对于多元函数最值问题与一元函数类似可以用极值来求函数的最值问题.主要方法有:向量法,均值不等式法,换元法,消元法,柯西不等式法,数形结合法等, 关键词:函数,极值,最值,极值点,方法技巧. Abstract: in practical problems,often encounter a unary function. The function of two variables, and multiplefunctions of two yuan more than the most value questionand extremum problems and many other functions of common problems. Extremum seeking a binary function,the main methods are: inequality extremum method,distribution method, derivation etc.. The value for theelement function, the main methods are: monotone method, function method, the discriminant method,complex method, derivative method, substitution methodetc.. For two yuan value function, the main methods are:conditional extremum of Lagrange multiplier method etc..Ask two yuan to the value function, the main methods are:mean inequality method, substitution method, partial derivative method etc.. For multivariate function, due to the increased number of

2函数的极值和最值及其应用

函数的极值和最值及其应用 函数极值的定义 ??????是函,则设函数在附近有定义,如果对附近的所有的点,都有xxxf?ff xx)(xf0000??????????的一,则的一个极大值。如果附近所有的点,都有 是函数数xxfxffxfx?f00个极小值,极大值与极小值统称为极值。 极值点只能在函数不可导的点或导数为零的点中取得。 ???.的极值点,则这就是说可导函数在点取极若函数在点处可导,且为 0fx?xxff000????0xf. 值的必要条件是0函数最值的定义 ????xffx Xx?不小于其他所有的区间上有定义,如果存在一点,使得在设函数X00??????,xff?xxfxX?,,亦即0????????xfmaxxxff?是在上的最大值,又可记为;则称X00????????,x?f?xffxXfxx同样使得,亦即,不大于其他所有的o0????????xxfxf?fmin . 是在则称上的最小值,又可记为X00??xf在注意上未必一定有最大(小)值。:函数X最值和极值的联系与区别 (1)极值一定是函数在某个区间内的最值; (2)极值未必是最值; (3)如果函数的最值在某个区间内取得,那么该点一定是极值点。 函数极值、最值的求解方法 1、降元法 求多元函数极值的基本方法之一就是选择两个变量作为主元,而消去其他变量,化为二元函数求解。 1 22,求函数的极值。例1:已知x?z?y22y?x?22,代人得解:由题设得xy2?x?y?2 22????282?z??2?x?x??2x 2??22?2?22?x???2?0???x?28??即函数的定义域为:2?2?22,?2?2??

二元函数的极值与最值

二元函数的极值与最值 二元函数的极值与最值问题已成为近年考研的重点,现对二元函数的极值与最值的求法总结如下: 1.二元函数的无条件极值 (1) 二元函数的极值一定在驻点和不可导点取得。对于不可导点,难以判断是否是极值点;对于驻点可用极值的充分条件判定。 (2)二元函数取得极值的必要条件: 设),(y x f z =在点),(00y x 处可微分且在点),(00y x 处有极值,则0),('00=y x f x ,0),('00=y x f y ,即),(00y x 是驻点。 (3) 二元函数取得极值的充分条件:设),(y x f z =在),(00y x 的某个领域内有连续上二阶偏导数,且=),('00y x f x 0),('00=y x f y ,令A y x f xx =),('00, B y x f xy =),('00,C y x f yy =),('00,则 当02<-AC B 且 A<0时,f ),(00y x 为极大值; 当02<-AC B 且A>0,f ),(00y x 为极小值; 02 >-AC B 时,),(00y x 不是极值点。 注意: 当B 2-AC = 0时,函数z = f (x , y )在点),(00y x 可能有极值,也可能没有极值,需另行讨论 例1 求函数z = x 3 + y 2 -2xy 的极值. 【分析】可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值. 【解】先求函数的一、二阶偏导数: y x x z 232 -=??, x y y z 22-=??. x x z 62 2 =??, 22 -=???y x z , 2 2 2 =??y z . 再求函数的驻点.令x z ??= 0,y z ??= 0,得方程组???=-=-. 022,0232x y y x 求得驻点(0,0)、),(3 2 32. 利用定理2对驻点进行讨论:

导数与函数极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试卷难度考查较大. 【方法点评】 类型一利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解读】

试卷分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞ 【答案】B 【解读】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解读】 试卷分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

高中数学人教版选修1-1(文科) 第三章 导数及其应用 3.3.2 函数的极值与导数(II)卷

高中数学人教版选修1-1(文科)第三章导数及其应用 3.3.2 函数的极值与导数(II) 卷 姓名:________ 班级:________ 成绩:________ 一、单选题 (共8题;共16分) 1. (2分)f′(x0)=0是函数f(x)在点x0处取极值的() A . 充分不必要条件 B . 既不充分又不必要条件 C . 充要条件 D . 必要不充分条件 2. (2分)(2017·湖北模拟) 已知函数f(x)=(2x+1)er+1+mx,若有且仅有两个整数使得f(x)≤0.则实数m的取值范围是() A . B . C . D . 3. (2分)已知非零向量,满足| |=2| |,若函数f(x)= x3+ | |x2+ x+1在R 上存在极值,则和夹角的取值范围是() A . B . C .

D . 4. (2分) (2019高二下·雅安期末) 已知函数在时取得极大值,则的取值范围是() A . B . C . D . 5. (2分)已知f(x)=x2+sin,f′(x)为f(x)的导函数,则f′(x)的图象是() A . B . C . D . 6. (2分) (2017高二上·邯郸期末) 设函数f(x)=ex(sinx﹣cosx)(0≤x≤2016π),则函数f(x)的各极大值之和为() A . B .

C . D . 7. (2分)函数的图象过原点且它的导函数的图象是如图所示的一条直线,则 的图象的顶点在() A . 第一象限 B . 第二象限 C . 第三象限 D . 第四象限 (其中), 8. (2分)(2018·绵阳模拟) 已知函数,有三个不同的零点, 则的值为() A . B . C . -1 D . 1 二、填空题 (共3题;共3分) 9. (1分) (2017高二下·太仆寺旗期末) 函数若函数在上有3个零点,则的取值范围为________.

多元函数的极值及其应用

多元函数的极值及其应用 作者:程俊 指导老师:黄璇 学校:井冈山大学 专业:数学与应用数学

【摘要】 多元函数的极值是函数微分学中的重要组成部分,本文对几种特殊的多元函数进行了简单的介绍,对多元函数的极值常见的求法进行了研究,并引入其在生活中、生产中解决实际问题的广泛应用,突显这一学术课题在生活中的重大意义。如今构建经济型节约社会慢慢成为我们共同努力的方向,而最优化问题是达到这一目标的有效途径,其常常有与多元函数的极值息息相关。对函数极值的研究不仅把理论数学推上一个高度,给经济方面,生活方面带来的益处不容小觑,本人浅谈极值问题,为了抛砖引玉,希望这一课题能有更广大额发展空间 【关键词】:多元函数;极值;生活中的应用

目录 Ⅰ引言 (1) Ⅱ多元函数极值的介绍………………………………………… 2.1什么是多元函数………………………………………… 2.2函数的极值理论………………………………………… Ⅲ几种函数的极值的常见求法……………………………… 3.1高中极值求法的弊端………………………………… 3.2拉格朗日乘数法……………………………………… 3.3消元法…………………………………………………… 3.4均值不等式法…………………………………………… Ⅳ多元函数在生活中的应用……………………………………

引言 历史表明,重要数学概念对数学发展的作用是不可估量的,函数概念对数学发展的影响,可以说是贯穿古今、旷日持久、作用非凡,回顾函数概念的历史发展,看一看函数概念不断被精炼、深化、丰富的历史过程,是一件十分有益的事情,它有助于我们提高对函数的认识。而函数的极值的作用已经蔓延到经济领域,在各种解决最优化中应用广泛,从而引发了本人对该课题的研究兴趣。 编者 2014年2月

高中数知识讲解_函数的极值与最值提高

导数的应用二------函数的极值与最值 【学习目标】 1. 理解极值的概念和极值点的意义。 2. 会用导数求函数的极大值、极小值。 3. 会求闭区间上函数的最大值、最小值。 4. 掌握函数极值与最值的简单应用。 【要点梳理】 要点一、函数的极值 (一)函数的极值的定义: 一般地,设函数)(x f 在点0x x =及其附近有定义, (1)若对于0x 附近的所有点,都有)()(0x f x f <,则)(0x f 是函数)(x f 的一个极大值,记作 )(0x f y =极大值; (2)若对0x 附近的所有点,都有)()(0x f x f >,则)(0x f 是函数)(x f 的一个极小值,记作 )(0x f y =极小值. 极大值与极小值统称极值. 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值. 要点诠释: 由函数的极值定义可知: (1)在函数的极值定义中,一定要明确函数y=f(x)在x=x 0及其附近有定义,否则无从比较. (2)函数的极值是就函数在某一点附近的小区间而言的,是一个局部概念;在函数的整个定义域内可能有多个极值,也可能无极值.由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小. (3)极大值与极小值之间无确定的大小关系.即一个函数的极大值未必大于极小值.极小值不一定是整个定义区间上的最小值. (4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点.而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点. (二)用导数求函数极值的的基本步骤: ①确定函数的定义域; ②求导数)(x f ';

函数的极值和最值(讲解)

函数的极值和最值 【考纲要求】 1.掌握函数极值的定义。 2.了解函数的极值点的必要条件和充分条件. 3.会用导数求不超过三次的多项式函数的极大值和极小值 4.会求给定闭区间上函数的最值。 【知识网络】 【考点梳理】 要点一、函数的极值 函数的极值的定义 一般地,设函数)(x f 在点0x x =及其附近有定义, (1)若对于0x 附近的所有点,都有)()(0x f x f <,则)(0x f 是函数)(x f 的一个极大值,记作 )(0x f y =极大值; (2)若对0x 附近的所有点,都有)()(0x f x f >,则)(0x f 是函数)(x f 的一个极小值,记作 )(0x f y =极小值. 极大值与极小值统称极值. 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值. 要点诠释: 求函数极值的的基本步骤: ①确定函数的定义域; ②求导数)(x f '; ③求方程0)(='x f 的根; ④检查'()f x 在方程根左右的值的符号,如果左正右负,则f(x)在这个根处取得极大值;如果左负右正,则f(x)在这个根处取得极小值.(最好通过列表法) 要点二、函数的最值 1.函数的最大值与最小值定理 若函数()y f x =在闭区间],[b a 上连续,则)(x f 在],[b a 上必有最大值和最小值;在开区间),(b a 内连 函数的极值和最值 函数在闭区间上的最大值和最小值 函数的极值 函数极值的定义 函数极值点条件 求函数极值

续的函数)(x f 不一定有最大值与最小值.如1 ()(0)f x x x = >. 要点诠释: ①函数的最值点必在函数的极值点或者区间的端点处取得。 ②函数的极值可以有多个,但最值只有一个。 2.通过导数求函数最值的的基本步骤: 若函数()y f x =在闭区间],[b a 有定义,在开区间(,)a b 内有导数,则求函数()y f x =在],[b a 上的最大值和最小值的步骤如下: (1)求函数)(x f 在),(b a 内的导数)(x f '; (2)求方程0)(='x f 在),(b a 内的根; (3)求在),(b a 内使0)(='x f 的所有点的函数值和)(x f 在闭区间端点处的函数值)(a f ,)(b f ; (4)比较上面所求的值,其中最大者为函数()y f x =在闭区间],[b a 上的最大值,最小者为函数 ()y f x =在闭区间],[b a 上的最小值. 【典型例题】 类型一:利用导数解决函数的极值等问题 例1.已知函数.,33)(23R m x x mx x f ∈-+=若函数1)(-=x x f 在处取得极值,试求m 的值,并求 )(x f 在点))1(,1(f M 处的切线方程; 【解析】2'()363,.f x mx x m R =+-∈ 因为1)(-=x x f 在处取得极值 所以'(1)3630f m -=--= 所以3m =。 又(1)3,'(1)12f f == 所以)(x f 在点))1(,1(f M 处的切线方程312(1)y x -=- 即1290x y --=. 举一反三: 【变式1】设a 为实数,函数()22,x f x e x a x =-+∈R . (1)求()f x 的单调区间与极值;

函数极值的求法及其应用

目录 摘要 (2) ABSTRACT (2) 第一章引言 (4) 第二章一元函数的极值 (5) 2.1极值的充分条件 (5) 2.2几种特殊函数的极值 (8) 第三章多元函数的极值 (12) 3.1无条件极值 (13) 3.2条件极值 (15) 第四章函数极值的应用 (19) 参考文献 (24) 致谢 (25)

函数极值的求法及其应用 曾浪 数学与信息学院数学与应用数学专业 2013级指导教师:罗家贵 摘要:函数极值问题是我们在中学数学和高等数学中都能常常遇见的问题,自然学科、工程技术及生产活动、生活实践中很多需要解决的问题,都与求函数极值有关,而导数和微积分的重要应用之一,就是求函数极值。本文从参考书中的例子和生活中的实际问题入手,分别对一元函数和多元函数的极值的求法及其应用进行总结和分析。 关键词:函数;极值;应用 The extreme of function of religion and its application Zeng Lang Mathematics and applied mathematics professional,college of mathematics and information,Grade 2013 Instructor:Luo Jiagui Abstract:Extremum problems is that we can often meet in the middle school mathematics and higher mathematics problems need to solve many natural science, engineering technology and production activities and life practice problems are related with extremal function, and the important application of derivative and differential calculus, is extremal function. In this paper, we start from the examples in reference books and the practical problems in life, and sum up and analyze the methods and applications of the extremum of the function of one variable and multiple functions. Key word: function; the extreme; application

高等数学(上册)教案15 函数的极值与最值

第3章 导数的应用 函数的极值与最值 【教学目的】: 1. 理解函数的极值的概念; 2. 掌握求函数的极值的方法; 3. 了解最大值和最小值的定义; 4. 掌握求函数的最值的方法; 5. 会求简单实际问题中的最值。 【教学重点】: 1. 函数极值的第一充分条件,第二充分条件; 2. 导数不存在情况下极值的判定; 3. 函数最值的求解方法; 4. 函数的最值的应用。 【教学难点】: 1. 导数不存在情况下极值的判定; 2. 区分函数的驻点、拐点、极值点以及最值点; 3. 区分极值点与极值,最值点与最值; 4. 函数的最值的应用。 【教学时数】:2学时 【教学过程】: 3.3.1函数的极值 从图3-7可以看出,函数)(x f y =在点2x 、5x 处的函数值2y 、5y 比它们近旁各点的函数值都大;在点1x 、4x 、6x 处的函数值1y 、4y 、6y 比它们近旁各点的函数值都小,因此,给出函数极值的如下定义: 一般地, 设函数)(x f y =在0x 的某邻域内有定义,若对 于0x 邻域内不同于0x 的所有x ,均有)()(0x f x f <,则称)(0x f 是函数)(x f y =的一个极大值,0x 称为极大值点;若对于0x 邻域内不同于0x 的所有x ,均有 )()(0x f x f >,则称)(0x f 是函数)(x f y =的一个极小值,0x 称为极小值点. 函数的极大值与极小值统称为极值,极大值点和极小值点统称为极值点. 注意 可导函数的极值点必是它的驻点,但反过来是不成立的,即可导函数的驻点不一定是它的极值点. 极值的第一充分条件 设函数)(x f y =在点0x 的邻域内可导且0)(0='x f ,则 (1)如果当x 取0x 左侧邻近的值时,0)(0>'x f ;当x 取0x 右侧邻近的值时, 图3-7 y O x a 1 x 2 x 3x 4x 5 x b

函数极值的求法及其应用

函数极值的求法及其应 用 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

目录 摘要 (2) ABSTRACT (2) 第一章引言 (4) 第二章一元函数的极值 (5) 极值的充分条件 (5) 几种特殊函数的极值 (8) 第三章多元函数的极值 (12) 无条件极值 (13) 条件极值 (15) 第四章函数极值的应用 (19) 参考文献 (24) 致谢 (25)

函数极值的求法及其应用 曾浪 数学与信息学院数学与应用数学专业 2013级指导教师:罗家贵 摘要:函数极值问题是我们在中学数学和高等数学中都能常常遇见的问题,自然学科、工程技术及生产活动、生活实践中很多需要解决的问题,都与求函数极值有关,而导数和微积分的重要应用之一,就是求函数极值。本文从参考书中的例子和生活中的实际问题入手,分别对一元函数和多元函数的极值的求法及其应用进行总结和分析。 关键词:函数;极值;应用 The extreme of function of religion and its application Zeng Lang Mathematics and applied mathematics professional,college of mathematics and information,Grade 2013 Instructor:Luo Jiagui Abstract: Extremum problems is that we can often meet in the middle school mathematics and higher mathematics problems need to solve many natural science, engineering technology and production activities and life practice problems are related with extremal function, and the important application of derivative and differential calculus, is extremal function. In this paper, we start from the examples in reference books and the practical problems in life, and sum up and analyze the methods and applications of the extremum of the function of one variable and multiple functions. Key word: function; the extreme; application

函数的极值与最值练习题及答案

【巩固练习】 一、选择题 1.(2015 天津校级模拟)设函数2 ()ln f x x x =+,则( ) A.1 2x = 为()f x 的极小值点 B. 2x =为()f x 的极大值点 C. 1 2 x =为()f x 的极大值点 D.2x =为()f x 的极小值点 2.函数y =ax 3+bx 2取得极大值和极小值时的x 的值分别为0和 1 3 ,则( ) A .a -2b =0 B .2a -b =0 C .2a +b =0 D .a +2b =0 3.函数y =2 3 x +x 2-3x -4在[0,2]上的最小值是( ) A .173- B .10 3 - C .-4 D .643- 4.连续函数f (x )的导函数为f ′(x ),若(x +1)·f ′(x )>0,则下列结论中正确的是( ) A .x =-1一定是函数f (x )的极大值点 B .x =-1一定是函数f (x )的极小值点 C .x =-1不是函数f (x )的极值点 D .x =-1不一定是函数f (x )的极值点 5.(2015 金家庄区校级模拟)若函数32()132x a f x x x = -++ 在区间1,43?? ??? 上有极值点,则实数a 的取值范围是( ) A.102, 3?? ??? B. 102,3?????? C. 1017,34?? ??? D. 172,4?? ??? 6.已知函数y=―x 2―2x+3在区间[a ,2]上的最大值为 15 4 ,则a 等于( ) A .32- B .12 C .12- D .12或32 - 7.已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m 、n ∈[-1,1],则f (m )+f ′(n )的最小值是( ) A .-13 B .-15 C .10 D .15 二、填空题 8.函数y=x+2cosx 在区间1 [ ,1]2 上的最大值是________ 。 9. 若f(x)=x 3+3ax 2+3(a +2)x +1有极大值和极小值,则a 的取值范围是__ _。 10.f (x )= 1+3sin x + 4cos x 取得最大值时,tan x = 11.设函数3 ()31(R)f x ax x x =-+∈,若对于任意x ∈[-1,1],都有()0f x ≥成立,则实数a 的值为________。

相关主题
文本预览
相关文档 最新文档