当前位置:文档之家› 半刚性沥青混凝土路面早期破坏及防治

半刚性沥青混凝土路面早期破坏及防治

半刚性沥青混凝土路面早期破坏及防治
半刚性沥青混凝土路面早期破坏及防治

前言

路面早期破坏即道路在使用初期就产生裂缝、沉陷、变形等现象。沥青混凝土路面的破损形式主要有裂缝(包括横、纵、龟、网裂)及变形(包括车辙、推移、波浪、沉陷、松散、剥落、坑槽),它们对路面的破坏主要是雨、雪水通过面层缝隙进入各结构层,导致各结构层松散、强度散失,从而形成更大面积的破坏。破坏的原因是多方面的,主要包括设计、施工、养护、行车荷载、自然环境,其中施工是主要因素。形成沥青路面早期破坏的原因

设计方面

(1)对交通量估计不准从而导致累积当量轴次计算不准确,如实际值偏大或对交通增长率估计不足,都会造成设计不当.导致路面超荷服务,最终导致早期破坏。

(2)设计中对材料参数取值不准确,如对各结构层抗压回弹模量、抗弯拉强度没作实验而取规范值与实际值不符,如取值偏大.则造成路的整体强度不足,路面就会在行车荷载作用下发生早期破坏。

(3)进行路面结构组合时考虑不足,如沥青面层与半刚性基层(特别是二灰类)问未设下封层.由于半刚性基层缩裂.可导致面层出现反射裂缝。

(4)沥青混凝土面层厚度偏小.易形成强基薄面的结构方式.而基层受力特性主要承担行车荷载的垂直压力.无法分担行车对路面的剪力作用.在交通量较大情况下,这种结构方式极易形成路面早期破坏。

施工方面

如完全按规范施工是基本上可以避免路面早期破坏的,但由于施工条件、施工人员素质、施工机械等各方面因素限制,使得道路施工不仅在沥青面层上施工不当,易形成路面早期破损.而且在路基、底基层施工中也留下造成路面早期破坏的隐患。

(1)在路基施工中,不同土质不是分层填筑而是混填就会导致路基强度不均,在行车荷载作用下易造成不均匀沉陷,从而导致面层破裂。

(2)各结构层压实度不足会直接影响各结构强度承载能力,在行车荷载作用下,易造成结构层松散,不均匀沉陷,从而导致面层破坏。

(3)在半填半挖路基施工中,坡度为1:5—1:2.5时未挖台阶开蹬处理.则在通车后易导致路基整体滑动.从而形成剪切破坏,面层出现横、纵缝。

(4)挡土墙未按规范施工造成承载力不足.会引起路基下沉,导致面层破坏。

(5)在基层、底基层施工中细料较多,或不经养护通车造成表面松散.形成薄弱地带,导致面层龟裂。

(6)拌和半刚性基层材料时,级料配合比未严格控制或未用专用机械拌和.均可造成粒料离析,导致基层强度不均.在粗料多的地方面层就会出现龟裂、网裂.而细料多的地方易产生沉陷.导致沥青面层破坏。

(7)在基层施工中用路拌法而出现素土夹层.由于在设计中各结构层考虑为不间断连续体,出现素土层则间断各结构层间联系.不能有效抵抗设计要求的弯拉应力.易造成路面开裂。

(8)基层底基层稳定土施工接缝处理不好,纵、横缝处易形成薄弱地带,导致面层在行车荷载作用下产生网裂。

(9)对半刚性基层(如二灰稳定粒料基层),如养护期短而铺筑面层开放交通,会导致基层松散形成面层早期破坏。

(10)半刚性基层施工季节气温低,易发生基层冻融破坏.导致路面破损。

(11)在水泥稳定类施工中作业段过长,碾压时水泥已初凝或偷工减料导致水泥、石灰剂量小,都会导致强度不足、减弱,使面层破坏。

(12)在施工中为抢工期盲目加大水泥剂量,从而产生大量收缩裂缝.导致面层形成反射裂缝。

(13)在面层施工中沥青用量低,会导致表面松散,石料压碎值未达到要求或面层厚度不够,都会使整体强度不足而导致路面早期破坏。

以上简要分析了设计、施工中易引起沥青路面早期破坏的各种因素。不难看出施工因素是引起路面早期破坏的主要。因素.不但沥青混凝土面层施工不当会引起路面早期破损,而且基层及土基的施工不当与面层的早期破损也有直接或间接的关系。

沥青路面早期破坏的防治措施

面层施工中的防治措施

首先应结合具体情况完成沥青混合料组成设计.且混合料配比一经确定应在拌和中准确执行。如果混合料性质不稳定,易使摊辅厚度发生变化,如温度过高、沥青用量偏大、矿粉掺量过多都会使铺层变薄影响路面强度,易导致早期破坏。在面层的摊铺碾压过程,摊铺机操作及本身调整对面层质量影响很大.其速度应根据拌和量、运力来确定,一般情况下不可随意变动.否则极易造成路面不平整,从而使面层厚度不均.形成强度薄弱地带。压实是最后一道工序,既不能压实不足达不到强度要求,也不能压实过度导致孔隙率减小,出现泛油和失稳,影响路面的强度和稳定性。在碾压施工时,碾压温度是碾压质量的关键,油料温度偏低则不易碾压成形,从而达不到压实度要求,影响路面强度。

基层施工中的防治措施

沥青路面的早期破坏往往与基层施工有直接的关系。道路基层主要承受面层传递的荷载垂直作用力,并把它扩散到垫层和土基中,因此基层应有足够的强度和刚度,且应有平整的表面;以保证面层厚度均匀。从使用材料上可分为结合料稳定类、非粒料类、无机结合料稳定类,又称为半刚性或整体型。由于半刚性基层具有整体性强、刚度大、水稳性好等特点,国内外高等级公路已越来越多地采用半刚性基层。因而熟悉半刚性基层材料的强度形成原理及其特有的缩裂特性,对指导正确施工,避免因基层施工不当造成面层早期破坏,具有重要意义。

(1)石灰稳定类,如石灰土、石灰砂砾土、石灰碎石等。其强度形成是石灰与土发生强烈的化学作用,使土的工程性质发生变化,从而提高土的强度和稳定性。一般来说.粘土颗粒的活性强,与石灰作用后可形成较好的强度.但土质不宜过粘.否则不易打碎、拌和,影响稳定效果,易出现裂缝,导致面层出现反射裂缝,这也是造成路面早期破损的因素之一。石灰土的强度与其密实度有密切的关系,提高石灰土的密实度有着显著的技术经济效果。实践证明.密实度每增减1%,强度变化4%,且密实的灰土其抗冻性、水稳性及抗缩裂性均好。因而在石灰土施工中,一定要达到密实度要求.否则易发生基层强度不足而导致路面早期破损。

(2)水泥稳定类,包括水泥稳定砂砾、砂砾土、碎石土、土等。它的强度形成主要是水泥与细粒土的细粒相互作用。由于要达到规定的强度.水泥剂量就要随粉粒和粘粒含量增大而增加,因此可见其稳定重粘土是不适合的。虽然水泥稳定土强度会随水泥用量增加而增大.但应考虑其温缩、干缩性质及经济性.一般情况下以5%一6%为宜。如为提高基层强度盲目加大剂量.将产生大量缩裂,从而使面层产生反射裂缝,造成路面破坏。

(3)综合稳定类,是指以石灰或水泥为主要结合料而外掺少量活性物质,以提高土的技术性质,如二灰类。其中粉煤灰系空心球体.为缓凝物质,难以在水中溶解.导致二灰混合料中火山灰反应相当缓慢,这也是其早期强度低的主要原因.但其抗冻性比石灰土有显著提高,且温缩系数小得多,对抗裂很有意义。由于其初期抗冻性较差,因而注意在冰冻前应施工完成。

(4)半刚性基层材料的缺点是抗变形能力低.在温度或湿度变化时易产生开裂.当沥青面层较薄时易形成横向裂缝。由于土的收缩系数(温度每降低1℃时单位长度的收缩量)较干系数(含水量每减少1%单位长度的收缩量)要大4—5。倍。所以缩裂多发生在冬季,且土的粘性愈大,结合料剂量越高,裂缝愈多愈宽。因而我们在基层与面层施工上应尽量做到越冬施工.这样可减少或消除半刚性基层缩裂对沥青面层的影响。在选择材料上应尽量用粘性不太大的土。除此之外在施工中还应注意

①控制压实度含水量,因为在大于最佳含水量下压实.会使基层具有较大的缩裂性质。

②为避免沥青面层开裂,可在半刚性基层上铺筑碎石过渡层1 5--27cm。

③对石灰土可掺加粗粒料.如砂、碎石、碎砖、煤碴(<50%),这样即可节约石灰.又可改善碾压时拥摊现象。

④设置收缩缝于半刚性基层.5—10mm宽,厚为层厚的0.5-1倍,内填砂、沥青或油毛毡。

⑤对二灰稳定粒料类基层,虽然它的后期强度高.隔温性及水稳性均好.但其早期强度低,在重交通道路上常因基层早强不足导致路面早期破坏,而在低温条件下其强度增长率更低.这就要求二灰类半刚性基层施工应在冰冻前完成。

⑥还应强调的是,由于在用弹性层状理论体系进行结构层设计时假设各层紧密连续.因而在施工中使各结构层间边界紧密连续就显得非常重要,如出现夹层,将使整个道路结构保证率大大降低,导致路面早期破坏.这也使得厂拌成为大势所趋。

路基施工中的防治措施

路基可以说是整个道路工程质量的关键。在整个道路的质量保证中,路基质量占有举足轻重的位置。它是路面结构的支承体,车轮荷载通过路面结构的整体传至土基。路面结构损坏除它本身原因外,主要是由于土基变形过大所引起的,由此可见土基的荷载——变形特性对路面结构的整体强度和刚度有很大影响。土基变形包括塑性和弹性变形两部分。过大的塑性变形将导致各种柔性路面结构产生车辙和纵向不平整.约占路面结构总变形的70--95%。路基的温度状况变化也是影响路面结构强度与稳定性的重要因素。值得注意的是,路肩以下路基湿度的季节性变化对路面的下路基也有影响,通常在路面边缘以内1 m左右湿度开始增大,直至路面边缘处与路肩的湿度相当.因而对路肩的处治一定要注意以防止雨水渗入为主,从而使路面下的土基湿度趋向稳定。路基施工相对来说是比较简单,只要注意分层填筑,碾压充分达到压实度要求,路基质量是可以保证的。

结论

影响沥青路面早期破损的因素很多.以上主要从设计、施工角度出发对应注意的问题作了简要的分析,可以看出只要设计得当、规范施工,就可以消除和减少不利因素的影响.从而避免沥青路面的早期破坏。(文/吕占民)

浅谈沥青路面早期破坏原因

浅谈沥青路面早期破坏原因 本文从路面设计、路面施工、养护管理及其他环节,结合本人的工程实践,分析了沥青路面早期破坏的原因。 标签:道路工程沥青路面破坏原因 0 引言 瀝青路面的主要类型有沥青表面处治、沥青贯入式、热拌沥青混合料和乳化沥青混合料路面等,因其具有造价相对较低、行车舒适、修复方便,能够利用石化企业副产品等优点而被广泛用于公路和城市道路、机场等基础设施的面层处理。沥青路面早期破坏的现象有:泛油、波浪、壅包、滑溜、裂缝、坑槽、局部沉陷、松散、车辙等九种。这些病害极具普遍性和严重性,为公路工程质量通病之一。 1 路面设计 1.1 结构设计不合理 沥青面层结构选用不当、混合料类型不合理。根据沥青路面设计规范,沥青面层除应满足车辆的使用要求外,还应满足雨水不渗等要求,宜选用粒径较小,空隙也小的级配混合料,尽量采用小粒径沥青砼,以提高沥青路面面层的防渗性。对于选用中粗粒砼或开级配或半开级配沥青碎石的沥青路面,必须在沥青面层下设下封层,防止雨水渗入。 1.2 设计与路段实际情况相差大 我县一条沥青路面砼路穿过土基过湿地段,但设计按一般正常情况设计,全部利用挖方和就地借方填筑路基,采取逐层碾压法施工,又是雨季施工,造成极大的窝工,严重影响了工期。施工单位只好申报监理工程师并经业主同意借方填筑,仅此一项就较原设计增大投资,现该段沥青路面破坏较为严重,已多处修补。 1.3 油路补强段的路面厚度考虑不足 我县在加快实现乡镇通油、水泥路路面工程,但为充分利用老路并节约土地及投资,利用旧路的线位及结构层。按照公路补强设计的一般要求和科学态度,宜先对所利用的路段状况进行客观评估,根据旧路的状况(特别是强度弯沉指标)确定利用旧路的方案及补强厚度。但设计单位没有认真细致的调查,大致给出一个补强厚度及路段桩号就草草了事,结果导致许多补强路段补强后弯沉值大于设计值,造成新路强度不足,早期破坏严重。 1.4 岩石路段石质类型确定有误

沥青路面早期损坏及防治

M AINTENANCE 养护天地 本栏目由高远路业集团独家协办 目前很多沥青路面普遍存在的早期损坏现象,本文从热拌沥青混合料组成设计和施工控制的角度分析原因,并提出相应的防治措施。 热拌沥青混合料(以下简称沥青混合料)作为性能优良的道路建筑材料,但由于沥青路面长期直接承受行车荷载和自然因素作用,如何保证路面质量,提高路面的使用耐久性,减少路面早期损坏等问题一直是广大公路建设者不断探讨的课题。沥青路面产生病害的原因比较复杂,各地因为环境、地理及气候条件不同,出现病害的方式或程度也各不相同,比较常见的病害如泛油、车辙、松散及坑槽等,本文试从以下几个方面对沥青路面产生早期病害的原因进行分析。 沥青路面早期损坏原因 原材料的影响 矿料。矿质原材料对路面质量和使用寿命具有决定性作用。石料的强度、酸碱性、岩石结理情况是在矿料选材时应考虑的主要因素,矿料加工的级配、颗粒形状、表面纹理或粗糙度是保证合成矿料间相互嵌挤形成较好内摩擦力的主要物理指标。其中矿质材料分档、材料级配和合成比例直接决定了合成矿质混合料级配好坏,对提高设计沥青混合料高温抗变形能力的影响尤为明显。因此,设计好的沥青混合料首先应认真抓好矿质原材料的选材,严格控制矿质原材料备料质量。 沥青。沥青的稠度、感温性和含蜡量等指标直接影响沥青与矿料的粘结力,并由此影响沥青路面的强度和沥青混合料路用性能。各地根据气候分区选择与本地气候、交通条件相适应的沥青种类及标号,并使用优质的沥青,对预防沥青路面早期出现车辙,有效防止路 面开裂,保证路面有较好的抗疲劳破坏 能力具有重要的意义。高速公路因重 载、超载车辆和渠化行车作用,一般宜 选用稠度大、感温性小、软化点高、含 蜡量低的重交石油沥青,以增大沥青混 合料中沥青的粘聚力,这对预防和提高 沥青混合料抗变形能力很有效。 掺加料。沥青混合料的掺加料通 常多指填料,使用比较多的如矿粉、消 石灰、水泥等,此外还有用于沥青改性 目的熔融或分散在沥青中的掺加料。当 沥青用量一定时,填料的比面积及掺量 决定了沥青膜的厚度,矿料之间滑动变 形随填料的增加而减小。沥青混合料配 合比设计时,选用水稳性好的填料,并 保证填料足够的掺量,以减小沥青膜的 厚度和自由沥青含量是十分必要的。 材矿质混合料设计 矿料的合成比例决定了矿质混合 料合成级配,JTG F40-2004《公路 沥青路面施工技术规范》要求,矿质 混合料合成级配应使包括0.075mm、 2.36mm、4.75mm筛孔在内的较多筛 孔的通过率接近技术规范级配范围的中 值,但“规范”未区别各地气候差异、 道路交通条件和不同油面层位的功能, 要求进行合成矿料级配调整。设计时片 面强调按密实级配原则设计矿质混合 料,这类沥青混合料结构强度受温度影 响较大,通常表现为低温抗裂性和密水 性较好,高温抗变形能力差。 马歇尔试验技术标准和最佳沥青用量选定 沥青混合料各项路用性能与沥青 混合料最佳沥青用量的选定息息相关, 而马歇尔试验技术标准的选定范围直接 决定了沥青用量选定。实践证明,设计 沥青混合料马歇尔试验的稳定度、流值 比较容易能满足规范要求,因此决定沥 青混合料最佳沥青用量选定的主要控制 性指标是目标空隙率、沥青饱和度范 围、残留稳定度和动稳定度标准等。各 地进行沥青混合料设计时首先应结合本 地实际情况在规范规定范围内选定合适 的马歇尔技术标准,以保证据此确定的 最佳沥青用量能够满足不同层位油面的 使用功能要求。 施工控制的影响 施工配合比的控制 沥青混合料材料组成设计分为目 标配合比设计、生产配合比设计、生产 配合比验证三个阶段,为了保证设计沥 青混合料各层的结构功能,优化矿质混 合料组成设计时对目标配合提出了较明 确的要求,并通过目标配合比设计确定 了各冷料仓材料比例和沥青用量。生产 配合比设计阶段,为尽量提高拌和楼的 产量,减少拌和过程中的待料、溢料现 象,应使生产配合比各热料仓矿料合成 级配与目标配合比合成矿料级配尽量吻 合,以此保证拌和楼冷料仓同热料仓平 衡供料,并真正使目标配合比优化设计 的意图得到落实。 拌和温度和拌和时间控制 拌和楼生产时,沥青和骨料的加 热温度与拌和时间控制将直接影响沥青 混合料的均匀性和质量。当沥青或骨料 加热温度过高,会使沥青产生老化,常 见沥青混合料出现枯料、没有色泽,沥 青或骨料加热温度过低或拌和时间不 够,常易出现花白料,沥青混合料均匀 性差或出料温度偏低,影响摊铺和压实 质量。因此,实际施工中按规范推荐温 度范围选定与施工时气温相适宜的加热 温度,控制好沥青混合料出料温度和拌 和时间十分必要。 沥青路面早期损坏及防治 文/李志坤 TRANSPOWORLD 2012No.13(Jul) 74

沥青路面推移拥包形成的原因及防治措施

沥青路面推移拥包形成的原因及防治措施(2008-07-31 04:14:41) 分类:道路施工标签:混合料沥青路面面层结构 层杂谈 沥青路面属柔性路面,它具有行车舒适、振动小和噪音低等优点,在我国的公路路面中占绝对的比例。但就已建公路而言,有相当部分没有达到预期的使用功能,存在使用期达不到设计使用年限的问题。有的路面第一年建成,当年或第二年就出现部分推移和拥包,严重影响了车辆行驶的安全性、舒适性,在社会和经济上造成了不可弥补的损失和影响。 1、沥青路面推移拥包的现象 沥青路面的破坏有很明显的阶段性。从现象上看有三个阶段:第一阶段平整度有很小的变化,需仔细观察才能发现,路面出现波浪式皱纹;第二阶段平整度明显变差,路面出现一个挨一个的直径5cm~20cm的小疙瘩;第三阶段是开裂、推移拥包阶段,路面上出现与路中心线成20°~50°夹角的裂缝,锐角方向与行车方向一致,路面边缘出现一隆起带,隆起带内混合料粘结性差,呈松散状。 2、沥青路面推移拥包的原因分析 沥青路面产生推移拥包的因素是多方面的,如交通量的大小、车辆超载情况温度、路线线型、路面设计、路面材料、路面施工工艺及施工机械水平等。笔者经过多年的观察和思考,主要从以下几方面进行分析。 2.1超限超载车辆对路面的影响 有资料表明:超载30%时.换算系数为满载的3.131倍超载60%时换算系数为7.725倍,超载100%,时换算系数为20.393倍。在沥青路面运行早期,沥青混合料中的颗粒构成尚不稳定,处于微移动阶段,沥青路面结构层的抗弯拉强度及抗冲击强度均没有达到最佳值。而早期重型车的通行使结构层的拉应力远远大于沥青面层的抗弯拉强度.经车轮重复碾压,形成车辙,出现推移拥包,直接导致沥青路面的稳定性破坏。 2.2路线线型对路面的影响 通过几年来对沥青路面早期破坏的详细观察,往往是在山岭重丘纵坡较大路段、平曲线半径较小路段和长直线进入小半径平曲线的缓和曲线路段最易出现推移拥包。原因是在纵坡较大路段受重力的影响,使该路段的剪切力比其它路段明显偏大;在小半径平曲线路段,按规范设置超高,往往由于计算行车速度与实际行车速度有差异,在车辆行驶过程中,与平曲线成45°夹角处剪切力偏大,在长直线末进入小半径平曲线前,往往要刹车减速,也导致路面剪切力偏大。当剪切力大于路面结构层的粘结力时,导致路面发生推移拥包。 2.3路面基层对路面的影响

半刚性基层沥青路面问题分析

半刚性基层沥青路面问题分析 半刚性基层沥青路面具有与柔性路面完全不同的结构特征。因此,其病害成因和维修对策也与传统的柔性路面有所不同,本文根据半刚性基层沥青路面的典型病害特征及产生原因,提出了路面养护维修的主要对策。 关键字:半刚性基层沥青路面病害对策 一、半刚性基层路面的典型病害特征 半刚性基层沥青路面的典型病害可划分为两大类型:非结构性损坏和结构性损坏。前者指半刚性基层的板体性未受到破坏,而后者是指路面损坏位置下的半刚性基层受到损坏,板体强度减弱或完全丧失。 1、非结构性损坏 该类病害主要有桥头跳车、间距规则的横向裂缝、路表局部网裂和正常车辙等,病害特征如下。 (1)桥头跳车桥头跳车有两种情况:(1)台背填土压实不足,导致填土在台背后数十米范围内下沉。其特征为:沉降在行车方向是渐变的,延续距离相对较长,路面的整体强度未受破坏,路表面也少有损坏,但行车时具有明显的“波浪”感;(2)由于桥梁与台背填土刚度的差异而产生的不均匀沉降,从而出现的跳台。其特征为:延续距离短,只有几米,路面少有损坏发生,行车时具有明显的“瞬间跳车冲击”感。 (2)间距规则的横向裂缝这种裂缝一般为半刚性基层的结构性收缩而导致的反射裂缝。它横向贯穿公路全幅路面,深度方向贯通全部结构层,并且缝隙宽随季节变化。一般认为这种裂缝不可避免,对路面的整体性没有损害。 (3)纵向裂缝这种裂缝的数量较少,大多发生在高路堤地段路基外侧。成因是路堤中央与外侧压实不均匀、旧路帮宽或地基受外部水源的长期侵蚀,导致路基或地基的不均匀沉降。一般情况下裂缝较宽。 (4)路表局部网裂路表局部网裂多发生在行车道轮迹下,成因为路面局部施工缺陷。如:材料不均匀、基层成型不好、沥青面层与基层间有软弱夹层等。它起始于轮迹处,而远离轮迹处的路面施工缺陷由于受车辆荷载的影响较小,因此难以出现此类损坏。 2、结构性损坏该类损坏主要有路面局部凹陷龟裂和结构性辙槽。 (1)路面局部凹陷龟裂这种损坏是路面局部网裂的延续。因局部网裂没有得到及时的维修封堵,雨水渗入到基层,而高速行驶车辆轮胎的强大“泵吸”作用

路面早期破损防治措施

路面早期破损防治措施 1、沥青路面早期破损 产生的原因主要有: (1)片面追求交工时的平整度,忽视压实度的要

求。 (2)混合料到场及终压温度偏低,甚至在低温情 况下过度碾压。 (3)材料配合比不当,基质沥青未达标。 (4)路面基层收缩造成沥青路面的反射裂缝,雨水沿道路裂缝渗入路面基层和路床,降低路基路面的稳定性和强度,造成局部变形,扩展成网状裂缝。 (5)路面基层甚至路床、基底承载力不足,弯沉值过大。地下水侵入 防治措施 (1)不要片面追求个别指标暂时的、不合理的高水平,要全面考虑基层、面层的综合强度、舒适性、安全性和耐久性。 (2)各结构层必须达到规定的压实标准,并应按照规范要求的频率对各结构层检验实际的压实度和设计的孔隙率是否相吻合。 (3)原材料质量是提高沥青路面质量的关键,业主、监理、施工单位都要对沥青路面工程的原材料问题给予足够重视。

(4)沥青混合料的组成设计必须严格按JTGF40-2004要求进行,严格进行车辙试验检验,中、上面层结构要进行水稳定性和低温弯曲试验检验。 (5)摊铺碾压中,严把沥青混合料进场摊铺的质量关,严格控制摊铺和初压、终压的沥青混合料温度,严格按碾压操作规程施工,防止横向裂缝的产生;严格按照规范要求做好纵横向接缝。 (6)重视路面的防排水设计,尤其是中央分隔带及挖方路堑的排水设计,地下水丰富的路段应在边沟下面以及路堑路床设臵纵横盲沟,将地下水引出路基外,有条件的可以考虑对中央分隔带做防水封闭。 2、水泥路面早期断板、开裂

形成原因: ? (1)施工停顿时间过长。 ? (2)切缝过迟,缝深过浅,面板收缩断裂。(春秋季节,昼夜温差大) ? (3)养护不及时。 ? (4)路基发生不均匀沉降;不重视基层施工。 防治措施: (1)控制混凝土所用原材料特别是水泥 的技术指标,使用合格路用水泥和低碱含 量水泥,禁止使用小窑水泥。 (2)施工中应有备用设备,减少中间停 顿;如果必须中间长时间停顿,应设工作 缝。

第十一章--刚性路面

第十一章刚性路面 ?水泥混凝土路面是以水泥与水合成的水泥浆为结合料,以碎(砾)石、砂为集料,加适当的掺合料及外加剂,拌合成水泥混凝土混合料铺筑而成的高等级路面。经过一段时间的养护,能达到很高的强度与耐久性。 ?水泥混凝土路面属于刚性路面,它由混凝土面板和基层、垫层组成。根据材料的要求、组成及施工工艺的不同,水泥混凝土路面包括普通混凝土、碾压混凝土、钢筋混凝土、连续配筋混凝土、钢纤维混凝土等。 (1)普通混凝土 目前采用最广泛的是就地浇筑的普通混凝土路面。普通混凝土又称有接缝素混凝土,是指仅在接缝处和一些局部范围(如角隅、边缘)内配置钢筋的水泥混凝土面层。这是目前应用最为广泛的一种面层类型。混凝土面层通常采用等厚断面,其厚度多变动于18~30cm,视轴载大小和作用次数以及混凝土强度而定。面层通常采用整体(整层)式浇筑;面层较厚时,也可采用双层浇筑方式。面层由纵向和横向接缝划分为矩形板块。 (2)碾压混凝土 这是一种采用不同方法施工的普通混凝土。它不是在混合料内部振捣密实成型,而是采用类似于水泥稳定粒料基层的施工方法铺筑,通过路碾压实成型。这类面层具有不需专用的混凝土铺面机械施工,完工后可以较早地开放交通(如7d或14d),还可以采用粉煤灰掺代水泥而降低造价。碾压混凝土面层目前主要用于行车速度不太高的道路、停车场或停机坪的面层;或者用作下面层,在其上面铺筑高强的普通混凝土、钢纤维混凝土或沥青混凝土薄面层,而形成复合式面层。 (3)钢筋混凝土 这是一种为防止混凝土面层板产生的裂缝缝隙张开而在板内配置纵向和横向钢筋的混凝土面层。通常,它仅在下述情况下采用:板的长度较大,如6m以上;板下埋有沟、管、线等地下设施或者路基可能产生不均匀沉降而使板开裂;板的平面形状不规则或板内开设孔口等。钢筋混凝土路面由于板的长度大,接缝缝隙宽,因而在横缝内应设置传力杆以提供相邻板的传荷能力。 (4)连续配筋混凝土 除了在邻近构造物处或与其他路面交接处设置胀缝,以及视施工需要设置施工缝外,在路段长度内不设横缝,并配置纵向连续钢筋和横向钢筋。连续配筋混凝土面层的厚度为普通混凝土面层厚度的0.8~0.9倍。这类面层由于钢筋用量大,造价高,一般仅用于高速公路或交通繁重的道路,或者用于加铺已损坏的旧混凝土路面。 (5)钢纤维混凝土 在混凝土中掺拌钢纤维,可以提高混凝土的韧度和强度,减少其收缩量。钢纤维可以采用不同方式制造,如钢丝截断法、薄钢板剪切法、熔抽法和钢坯铣削法,由此得到不同形状和横截面的纤维。由于钢纤维混凝土的造价高,因而这类面层主要用于设计标高受到限制的旧混凝土路面上的加铺层,或者用作复合式混凝土面层的上面层。 ?本章主要介绍素混凝土路面,即除接缝处及边角外不配钢筋的混凝土路面。?内容包括路面特点、损坏现象、结构组合、板厚设计、接缝设计、补强设计、材料组成与配比设计、施工工艺及质量控制。

柔性基层与半刚性基层沥青路面重载适应性分析

柔性基层与半刚性基层沥青路面重载适应性分析摘要:论文以路面力学软件bisar3.0为计算工具,分析标准轴载、超载50%、超载100%的情形下对这两种不同基层沥青路面的力学响应,对比研究其路表弯沉、路面结构各层次(面层、基层、底基层)的力学特性。结果表明,柔性基层沥青路面与半刚性基层沥青路面的重载适应性存在明显差异。只有对其合理优化组合,才能实现这两种路面结构的优势互补。 关键词:柔性基层;半刚性基层;重载适应性 abstract: the paper to pavement mechanics for computing tools bisar3.0 software, analysis standard axle load, overload, overload 100% 50% of cases of the two different the mechanical response of the asphalt pavement, the contrast of the way the table deflection, pavement structure all levels (surface, basic level, subbase) mechanical properties. the results show that the asphalt pavement and flexible grassroots semi-rigid base of the asphalt pavement overloaded adaptability differences. only for the rational optimized combination, can realize the two complementary advantages of pavement structure. keywords: flexible grassroots; semi-rigid base; overloaded adaptability 中图分类号:u416.217文献标识码:a 文章编号:

沥青路面常见病害及产生原因

沥青路面常见病害及产生原因 [摘要] 随着交通量的快速增长,沥青路面早期破坏现象在我区时有发生,只有对沥青路面病害进行分类以及对病害产生的原因进行分析,才能制定出合理的处治措施,达到及时处治路面病害,确保公路通行安全和行车舒适的目的。 [关键词] 沥青路面病害原因 1.宁夏沥青路面破损种类 沥青混凝土面层具有良好的力学性能和较好的耐久性以及行车舒适性,适合于各种车辆的通行,并具有坚实、耐久、平整、良好的抗滑、防渗、耐疲劳的性能和抗高温开裂的温度稳定性。但由于种种原因,沥青路面早期破坏的现象在我区时有发生,短时期内还无法杜绝,开展对沥青路面破损的研究就显得尤为重要。宁夏是东西窄、南北长,面积不大。但沥青路面占干线公路的90%以上,南北环境、地理、气候也不相同,路面破损的表现形式也不一样。以下就宁夏国省干线公路沥青路面上常见的一些破损进行研究,通过这些年各分局对沥青路面状况的调查,路面破损大体可以分为两类,一是属于路面表层的破损(功能性破损);二是属于路面结构层的破损(结构性破损)。在宁夏常见的沥青路面破损归纳起来有裂缝类、松散类、变形类、其它类四种: 1.1裂缝类 裂缝类破损包括以下几种:不规则裂缝、网状裂缝、纵向裂缝、横向裂缝。 1.2松散类 松散类破损包括以下几种:坑槽、松散、推移、啃边。 1.3变形类 变形类破损包括以下几种:沉陷、车辙、波浪、拥包、桥头跳车、翻浆。 1.4其它类 其它类破损包括以下几种:泛油、麻面、磨光、修补损坏。 2.沥青路面破损产生的原因 产生沥青路面破损的原因比较复杂,除受当地环境、地理、气候等条件的影响外,还将受到来自设计、施工质量方面的影响,特别是超载车辆的碾压对沥青路面的早期破损影响尤为严重。 2.1裂缝类 2.1.1横向裂缝 (1)沥青面层在施工时,施工缝未按规范要求进行处理或处理不当,致使接缝不紧密,结合不好。 (2)沥青未达到适合于本地区气候条件和使用要求的质量标准,致使沥青面层温度收缩或温度疲劳应力大于沥青混合料的抗拉强度。 (3)半刚性基层收缩裂缝产生的反射裂缝。 (4)桥梁、涵洞两侧的台背填土产生固结或地基沉降。 (5)路面结构设计不当,施工质量差,车辆的严重超载。 2.1.2纵向裂缝 (1)沥青面层前后摊铺时,两幅之间的施工缝未按规范要求认真处理,结合不紧密在行车的作用下脱开。 (2)纵向沟槽回填土压实质量差而发生沉陷,路基压实度不均匀。 (3)加宽路段的新老路基未挖台阶,致使新老路基结合处沉降不一。

沥青路面的早期损坏与防护(毕业论文)

沥青路面的早期损坏与防护 摘要:针对沥青混凝土路面的早期破坏的情况 ,简单分析了沥青路 面的早期破坏现象和产生原因,并提出了预防措施。 关键词:高速公路沥青路面早期损坏防护 前言 随着我国公路工程不断网化,沥青混凝土路面以其较好的耐久性和行车舒适性占有了我国公路的较大比重。沥青混凝土路面有较好的力学性能。并且坚韧,平整,有良好的抗滑、抗渗和耐疲劳的性能。沥青混凝土路面有较好的温度稳定性,可以抵抗温差大而产生的路面开裂。但是由于各种原因,沥青混凝土路面早期破坏时有发生,有的产生横、纵向裂缝,有的局部拥包,有的产生路面汲浆,路面边部断裂,局部的沥青混凝土层剥落等。不仅影响了工程的观感质量,也影响了路面的整体性和行车的安全性。加之雨水的浸入渗透,使路面基层,路基遭到侵蚀,破坏和变行,沥青混凝土的抗温度裂缝能力、抗疲劳破坏能力、抗水破坏和抗松散能力逐渐减弱,沥青面层的破坏现象逐渐增多,此时要采取养护措施来改善和恢复路面应有的使用性能。 1 高速公路沥青路面早期损坏情况 1.1 几种主要路面早期损坏现象 1.1.1软土地基继续沉降产生的路面(含桥头)沉陷 花高价进行处理的软土地基未得到应有效果的主要原因在于:采取处 理措施后到铺筑路面前允许软土地基固结沉降的时间太短。我国高速公路

除在构造物头上采用粉喷桩、搅拌桩、石灰粉煤灰土桩和碎石桩等桩基处理措施外,通常都采用袋装砂井或塑料排水板与砂垫层、加载预压相结合的排水固结法处理措施。即使是打穿软土层的排水固结法,也需要有较长的时间供软土层固结基本完成。我国高速公路的计划施工期往往较短,而实际施工期则更短,导致不得不在软土地基继续明显沉降的情况下铺筑路面,这样就造成了上述后果。造成软土地段路面大量沉陷的另一个重要原因是,袋装砂井或塑料排水板或粉喷桩、搅拌桩等没有打穿软土层,致使砂井底、排水板下端以及桩尖下部仍有一个层厚不一的软土层。排水固结法不能使这个软土层中的水较快排出,在上层荷载作用下此层中的水需要更长的时间才能逐渐排出并使土体固结到稳定状态。未打穿软土层的各种桩实际是悬浮在软土层中,只能靠桩周的摩擦力起支撑其上的路面荷载的作用。桩下的软土层在上层荷载作用下,需要更长的时间才能逐渐固结稳定。当前的施工技术要将塑料排水板或袋装砂井打入深25m以上的软土层是困难的,粉喷桩的有效深度也只有约15m。 1.1.2路基压实度不够导致路面的早期损坏 路基路面局部沉陷变形、构造物相邻接的填土路堤压实度不够以及对原地基(介于软土地基和坚硬地基之间的地基)未做适当处理,使相邻构造物的路面明显下沉,产生了俗称的桥头跳车。 1.1.3基层质量不好造成的损坏 基层是沥青路面最重要的承重层,其质量优劣直接影响路面的早期破坏和寿命。半刚性材料层之间或半刚性层下部有一定厚度的素土夹层,素土夹层潮湿后使路面承载能力显著下降。载重卡车通过产生“弹簧”现象

最新半刚性基层沥青路面典型结构设计

半刚性基层沥青路面典型结构设计

半刚性基层沥青路面典型结构设计 黄晓明 【东南大学交通学院南京210018】 摘要:通过对江苏、安徽、浙江三省高等级公路若干线段及沪宁高速公路无锡试验段的调查、测试和分析,提出了高等级公路半刚性基层沥青路面典型结构图式及其注意事项,对半刚性基层沥青路面的结构设计具有较好的参考价值。 关键词:半刚性基层沥青路面结构设计 1概述 我国90%以上的高等级公路沥青路面基层和底基层采用半刚性材料。半刚性基层沥青路面已经成为我国高等级公路沥青路面的主要结构类型。 在七·五期间,国家组织开展了“高等级公路半刚性基层、重交通道路沥青面层和抗滑表层的研究”的研究工作,对沥青混合料的高温稳定性、低温抗裂性,沥青面层的开裂机理、车辙和疲劳、抗滑表层设计和应用、半刚性基层材料的强度特性和收缩特性,组成设计要求等进行了深入的研究工作,提出了较为完整的研究报告,为高等级公路半刚性基层沥青路面的设计和施工提供了理论依据和技术保证。

由于现行的《柔性路面设计规范》颁布于1986年,随着国家对交通运输业的日益重视和人们筑路经验的不断提高,一致认为1986年版的《柔性路面设计规范》已不能满足高等级公路半刚性基层沥青路面的需要。由于对半刚性基层认识不足,使得设计结果具有一定的盲目性,设计结果要么过分保守,要么因路面结构设计不当而产生早期破坏,造成很大的经济损失。因此,如何利用七·五国家攻关项目取得的成果,结合近十年来半刚性基层沥青路面的设计和施工经验,根据实际使用效果,提出适合本地区特点的路面结构,对路面结构设计方法的更新和路面实际使用效果的改善具有重要的意义。根据江苏、安徽、浙江高等级公路的实际,江苏在镇江、无锡、苏州、徐州、连云港共计4线10段进行调查,安徽在合肥、马鞍山、淮南三市调查了3线8段,浙江在嘉兴和杭州调查了2线5段共计9线23段。调查的路面结构具有一定的典型性。 2国内外研究概况 2.1国外国道主干线基层的结构特点 国外国道主干线基层结构有以下特点: (1)多数采用结合料稳定的粒料(包括各种细粒土和中粒土)及稳定细粒土(如水泥土、石灰土等)只能用作底基层,有的国家只用作路基改善层。法国和西班牙在重交通的高速公路上,要求路面底基层也用结合料处治材料。 (2)使用最广泛的结合料是水泥和沥青,石灰使用得较少。此外,还使用当地的低活性慢凝材料和工业废渣,如粉煤灰、粒状矿渣等。

半刚性基层沥青路面的过去,现在和未来

半刚性基层沥青路面的过去,现在和未来 马辉112364 摘要:我国所修建的高速公路中90%以上为半刚性基层沥青路面结构,这种结构承载能力强,车辙深度小,水稳定性好,且已成为我国高等级公路的主要结构型式。但实践证明半刚性基层沥青路面有一些不可避免的技术问题,如由于半刚性基层材料的收缩特性而导致的沥青路面早期开裂,半刚性基层材料在行车荷载水和温度梯度的综合作用下出现的基层唧泥现象,在重交通条件下出现的早期疲劳损坏现象等等。本文从半刚性基层的特点,典型结构和主要病害以及防止措施等方面对半刚性基层沥青路面做了详细的介绍,并在结构优化和重载条件下半刚性基层沥青路面的发展做了展望。 关键词:半刚性基层沥青路面;病害;裂缝;结构优化;重载交通 1.概述 在粉碎的或原状松散的土中掺人一定量的无机结合料(水泥、石灰或工业废渣等)和水,拌和后经压实与养生,其抗压强度符合规定要求的材料称为无机结合料稳定材料。由于无机结合料稳定材料的刚度介于柔性路面材料和刚性路面材料之间,故常称此为半刚性材料,以此修筑的基层(底基层)亦称为半刚性基层(底基层),在此基础上修筑的沥青路面称为半刚性基层沥青路面。 20世纪80年代中期以来,由于交通量大增,以及轴载和重车比例增大,对路面的整体强度和平整度提出了更高的要求,相应地,对基层的要求也提高到了一个更高的水平。由于原有的级配碎石基层暴露出很大的弊端,即容易导致新建或改建的高等级公路沥青路面发生一些严重的早期损坏现象,于是普遍采用无机结合料稳定粒料(土)类基层,即在路面材料中掺入一定比例的石灰、水泥、粉煤灰或其他工业废渣等结合料,加水拌和形成混和料,经摊铺压实及养生后形成路面基层。进入20世纪90年代以后,沥青混凝土为面层的半刚性基层路面被广泛地应用于国内二级以上公路(含高速公路)。半刚性基层材料在国外一般都用水泥稳定,称为CTB(Cement Treated Base),最早应用于对软弱地基的处理,随后发展并应用于基层和底基层路面结构设计。与传统的全柔性路面基层(级配碎石、级配砾石、填隙碎石等)相比,石灰、水泥、粉煤灰等结合料都具有很高(或一定)的活

浅析沥青路面早期损坏原因

浅析沥青路面早期损坏原因 [摘要]沥青路面凭借铺设速率快、良好性能、修复方便以及较低造价等特性成为公路路面铺设的首选,但同时也面临沥青路面容易破坏而导致巨大经济损失的难题,尤其是早期损害带来的危害更大。本文将结合笔者实践工作经验,对当前沥青路面早期损害原因进行阐述,并针对具体损害原因提出防护措施,为相关养护和管理工作提供参考和依据。 【关键词】沥青路面;损害;防护措施 引言 沥青路面早期病害现象主要有泛油、波浪、拥包、滑溜、裂缝、坑槽、局部沉陷、松散、车辙9种[1]。本文将具体分析沥青路面破坏的原因以及相关养护措施。 一、沥青路面早期破坏的原因 (1)环境条件的影响 外在环境的变化是人为因素所不能控制的,恶劣环境会直接导致新建路面早期损害。例如:气温的变化,沥青具有热胀冷缩特性,在昼夜温差较大的地区,温度反复的骤升夜降会导致沥青路面疲劳,原因是温度骤降会导致路基上层土体冻结,但是路基下部土体温度仍然比较高,水分在土体内由温度高处往温度比较低处移动,使路基上层土体水分增多并随着温度降低冻结成冰。此时土孔隙内的自由水在0℃以下时不断冻结,形成晶体,继而引发冰晶体接触的土颗粒表面的薄膜水受冰的结晶力作用,移动到冰晶体上面冻结,这样,该处土粒周围的水膜减薄而剩余了许多表面能(即水的张力作用),增加了从水膜能较厚土粒处吸湿的能力土中温度高处的水分便向上移动,补充低温处土粒薄膜水的转移,从而温度高处的水分不断向温度较低处的冰晶体移动而形成冰晶,而冰晶体的体积越积越大,形成冰胀作用,使路基路面产生冻裂,冻胀隆起现象[2]。 (2)人为因素的影响 ①严重超载。伴随着国民经济高速迅猛发展,社会对物流的要求也越来越高,伴随着对公路运输要求(运输频率和载重)也越来越高。进而导致一些个人或者部门为了自己的私利,严重超载,结果给沥青路面(尤其是新铺设好的路面)带来了巨大破坏,大大缩减了路面的使用寿命,也浪费了大量人力物力去养护路面,得不偿失。 ②采用的铺设材料不达标。沥青和沙石材料类型差异较大,导致路面质量降

《路基路面工程》刚性路面课程设计模板(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改 赠人玫瑰,手留余香。

高速公路水泥混凝土路面设计实例 一、轴载换算 水泥混凝土路面结构设计以100KN 的单轴-双轮组荷载作为标准轴载。不同轴轮型和轴载的作用次数,按下式换算为标准轴载的作用次数。 16 1 100n i s i i i P N N δ=?? = ? ??∑ (1) ;30.432.2210i i P δ-=? (2) 50.221.0710i i P δ--=? (3) ;80.222.2410i i P δ--=? (4) Ns ——100KN 的单轴-双轮组标准轴载的作用次数; Pi ——单轴-单轮、单轴-双轮组或三轴-双轮组轴型i 级轴载的总重(KN ); n ——轴型和轴载级位数; i N ——各类轴型i 级轴载的作用次数; i δ——轴-轮型系数,单轴-双轮组时, i δ=1;单轴-单轮时,按式(2)计 算;双轴-双轮组时,按式(3)计算;三轴-双轮组时,按式(4)计算。 轴载换算

和等于40KN(单轴)和80KN(双轴)的轴载可略去。调查分析双向交通的分布情况,选取交通量方向分布系数,一般取0.5,车道数为6,所以交通量车道分布

系数取0.6。 Ns=∑0.5×0.6×5693.4073=1708.02次 查《公路水泥砼路面设计规范(JTG D40-2002)》,此路面属重交通,设计使用年限为30年。由《公路水泥砼路面设计规范(JTG D40-2002)》取轮迹横向分布系数为0.22,可计算得到设计年限内标准轴载累计作用次数N e 为: ()[] ηγ γτ 365 11?-+= s e N N 次 19985088.9=22.0% 5.9365]1%)5.91[(02.170830??-+?= 二、路面板厚度计算 路基的强度和稳定性同路基的干湿状态有密切关系,并在很大程度上影响路面结构的设计,路基按干湿状态不同,分为四类:干燥、中湿、潮湿和过湿。为了保证路基路面结构的稳定性一般要求路基处于干燥或中湿状态,当处于过湿状态时,路基不稳定,冰冻区春融翻浆,非冰冻区弹簧,路基经处理后方可铺筑路面。下面对潮湿、中湿、干燥3种状态分别讨论。 (一)干燥状态 1、初拟路面结构 查《公路水泥砼路面设计规范(JTG D40-2002)》表4.4.6,初拟普通水泥混泥土路面层厚度为h=0.26m, 基层选用水泥稳定碎石(水泥用量为5%),厚为h 1=0.22m 。底基层厚度为h 2=0.20m 的级配碎石。普通水泥混凝土板的平面尺寸宽为3.75m,长为5.0m 。纵缝为设拉杆平缝,横缝为设传力杆假缝。

半刚性基层沥青路面面层层位功能

TRANSPOWORLD 2012 No.18 (Sep) 172前言 随着国外耐久性沥青路面(或称长寿命沥青路面)设计理念的引进,我国道路工作者对沥青路面结构组合设计越来越重视,半刚性沥青路面结构的沥青面层厚度有逐渐增厚的趋势。那么,沥青面层分几层设计合适,每一沥青层材料设计应侧重哪些方面的性能要求等,则是沥青路面结构设计必须要明确的关键问题,否则,盲目的增加沥青面层厚度将很难起到路面耐久的作用。本文利用长寿命沥青路面设计分析软件BISAR3.0,以及希尔斯(Hills)和布来因(Brien)提出的温度应力计算公式,分析了半刚性基层沥青路面在沥青面层厚度、模量、行车荷载和环境温度等条件下的沥青面层应力分布规律,并依此确定沥青面层不同深度的功能分区,对指导半刚性基层沥青路面的沥青面层组合设计具有重要意义。 沥青路面结构与设计计算参数 采用的半刚性基层沥青路面结构形式及参数见图1。 应力计算时采用垂直荷载作用下的弹性层状连续体系,荷载采用双轮组单轴载100KN作为标准轴载,单轮传压面当量圆直径21.30cm,轮胎接地压强0.7MPa,两轮中心距31.95cm。计算点为单圆荷载中心处以下每2cm深度取一点。 利用BISAR3.0的沥青面层应力分布规律分析 在半刚性基层沥青路面设计中,影响沥青面层内部里应力分布规律的主要变量有面层厚度、面层模量,以及行车荷载的大小等。 面层厚度对应力的影响分析 在保持路面其他设计参数不变的条件下,改变沥青面层厚度(H 1为16cm~30cm),进行沥青面层不同深度处的拉应力(拉应力为负值时材料受压,拉应力为正值时材料受拉)、剪切应力的计算。沥青面层不同深度处的 拉应力、剪切应力随深度变化规律见图2、图3。 由图2可见,当面层总厚度H1从16cm增加到30cm时,应力为压应力的范围由距路表深度0~8cm增加到0~15cm;距路表深度8~15cm以下则表现为拉应力,并随深度增加而增大, 均在面层底部达到最大值,因此,面层厚度对沥青面层层底拉应力峰值位置的影响不大。同时随沥青面层总厚度的增加,面层底部最大拉应力值减小。由此表明增加面层厚度有利于提高面层的抗疲劳破坏能力。 由图3可见,当面层厚度H 1从16cm增加到30cm时,剪应力沿路面深 度先增大后减小,且均在6~7cm深度处剪应力达到最大值。因此面层厚度对最大剪应力位置无明显影响。 面层模量对拉应力的影响分析 在保持路面其他设计参数不变的条件下,改变沥青面层模量(E1为1000MPa~2400MPa),进行沥青面层不同深度拉应力和剪切应力的计算。沥青面层不同深度处的拉应力、剪切应力随深度变化规律见图4、图5。 由图4可见,当面层模量E 1从1000Mpa增加到2400Mpa时,应力为压应力的范围变化不大,基本在距路表深度0~11cm范围内,而在距路表深度10cm以下则表现为拉应力,且拉应力随深度增加而增大,在面层底达到最大值。同时,随面层模量的增加,面层底部最大拉应力增大。总的来说,面层模量对层底拉应力峰值位置无明显影响。 由图5可见,当面层模量E 1从 H IGHWAY 现代公路 半刚性基层沥青路面面层层位功能分析 文/李海波 魏如喜

《路基路面工程》刚性路面课程设计模板

高速公路水泥混凝土路面设计实例 一、轴载换算 水泥混凝土路面结构设计以100KN 的单轴-双轮组荷载作为标准轴载。不同轴轮型和轴载的作用次数,按下式换算为标准轴载的作用次数。 16 1 100n i s i i i P N N δ=?? = ? ??∑ (1) ;30.432.2210i i P δ-=? (2) 50.221.0710i i P δ--=? (3) ;80.222.2410i i P δ--=? (4) Ns ——100KN 的单轴-双轮组标准轴载的作用次数; Pi ——单轴-单轮、单轴-双轮组或三轴-双轮组轴型i 级轴载的总重(KN ); < n ——轴型和轴载级位数; i N ——各类轴型i 级轴载的作用次数; i δ——轴-轮型系数,单轴-双轮组时,i δ=1;单轴-单轮时,按式(2)计算; 双轴-双轮组时,按式(3)计算;三轴-双轮组时,按式(4)计算。 轴载换算

于40KN(单轴)和80KN (双轴)的轴载可略去。调查分析双向交通的分布情况,选取交通量方向分布系数,一般取,车道数为6,所以交通量车道分布系数取。 Ns=∑××=次 查《公路水泥砼路面设计规范(JTG D40-2002)》,此路面属重交通,设计使用年限为30年。由《公路水泥砼路面设计规范(JTG D40-2002)》取轮迹横向分布系数为,可计算得到设计年限内标准轴载累计作用次数N e 为: ()[] ηγ γτ 365 11?-+= s e N N 次 19985088.9=22.0% 5.9365]1%)5.91[(02.170830??-+?= 、 二、路面板厚度计算 路基的强度和稳定性同路基的干湿状态有密切关系,并在很大程度上影响路面结构的设计,路基按干湿状态不同,分为四类:干燥、中湿、潮湿和过湿。为了保证路基路面结构的稳定性一般要求路基处于干燥或中湿状态,当处于过湿状态时,路基不稳定,冰冻区春融翻浆,非冰冻区弹簧,路基经处理后方可铺筑路面。下面对潮湿、中湿、干燥3种状态分别讨论。 (一)干燥状态 1、初拟路面结构 查《公路水泥砼路面设计规范(JTG D40-2002)》表4.4.6,初拟普通水泥混泥土路面层厚度为h=0.26m, 基层选用水泥稳定碎石(水泥用量为5%),厚为h 1=0.22m 。底基层厚度为h 2=0.20m 的级配碎石。普通水泥混凝土板的平面尺寸宽为3.75m,长为5.0m 。纵缝为设拉杆平缝,横缝为设传力杆假缝。 2、材料参数的确定 (1)混凝土的设计弯拉强度与弹性模量

养护高等级公路半刚性基层沥青路面的主要对策

养护高等级公路半刚性基层沥青路面的主要对策 1半刚性基层路面的特征 在我国高等级公路中半刚性基层沥青路面是主要的路面结构形式,由于该路面与柔性路面的结构特征不同。所以,它产生病害的原因及维修对策与柔性路面也是不同的。半刚性基层具有较高的刚度,具备较强的荷载扩散能力。所以施工及运营过程中一定要保持半刚性基层的整体性;半刚性基层起着结构承载能力作用,而沥青面层只起着功能层作用。因此半刚性基层沥青路面结构的主要破坏形 式是半刚性基层的弯拉疲劳损坏;该路面采用防水下渗措施是十分重要的。这是规范的规定。正因为这些与柔性路面的不同,如果还采用柔性路面的维修方法, 自然就导致半刚性基层沥青路面维修的失败。这里就其高等级公路半刚性基层沥青路面的病害特征及其产生原因,对传统的路面维修方法进行了修正和改进,同时新对策在路面养护维修实践中保证了路面维修的有效性和耐久性。 2半刚性基层沥青路面的病害 半刚性基层沥青路面的典型病害可划分非结构性损坏和结构性损坏。非结构性损坏是指半刚性基层的板体性未受到破坏。而结构性损坏是指路面损坏位置下的半刚性基层受到损坏,从而使板体强度减弱或完全丧失。 (1)非结构性损坏,主要有桥头跳车、间距规则的横向裂缝、路表局部网裂、正常车辙和桥面铺装层剥落等。桥头跳车有两种情况: 一是台背填土压实不足,导致填土在台背后数十米范围内下沉。其特征为:沉降在行车方向是渐变的,延续距离相对较长,路面的整体强度未受破坏,路表面也少有损坏,但行车时具有明显的“波浪”感; 二是由于桥梁与台背填土刚度的差异而产生的不均匀沉降,从而出现的跳台。其特征为:延续距离短,只有几米,路面少有损坏发生,行车时具有明显的“瞬间 跳车冲击”感。间距规则的横向裂缝为半刚性基层的结构性收缩而导致的反射裂缝,它横向贯穿高速公路半幅路面,深度方向贯通全部结构层,并且缝宽随季节变化。一般认为这种裂缝不可避免,对路面的整体性没有损害。纵向裂缝的数量较少,大多发生在高路堤地段路基外侧。成因为路堤中央与外侧压实不均或地基

城市道路路面破坏因素及策略

城市道路路面破坏因素及策略 1、前言 沥青路面因其具有造价相对较低、行车舒适、修复方便,能够利用石化副产品等优点而被广泛用于城市道路的面层处理。目前,随着城市交通量日益增大,使城市道路路面面临严峻的考验,很多城市道路沥青路面均呈现出一定的早期破坏,如开裂、泛油、剥落、车辙等现象,有的城市道路甚至当年通车即发生了病害,正常维修期大大提前,直接影响了车辆的运行,也增大了养护管理资金的投入。对此,现就其原因及对策做出详细的分析。 2、城市道路沥青路面早期破坏的原因 沥青路面早期破坏的现象有:泛油、滑溜、裂缝、坑槽、局部沉陷、松散、车辙等。这些病害极具普遍性和严重性,为路面工程质量通病之一。提高路面质量,攻克路面早期损坏顽症,是一个链条工程,需要项目决策、设计施工、科研、管理等各环节、各部门的协作配合。早期破坏类型归纳为: 水损害破坏是沥青混凝土路面在水或冻融循环的条件下,由于汽车轮动态荷载的作用,进入路面空隙中的水不断产生动水压力或真空负压抽吸的反复循环作用,水分逐渐渗入沥青与集料的接口上,使沥青粘附性降低并逐渐丧失粘结力,沥青膜从集料表面脱落(剥离),沥青混合料出现掉粒、松散,继而形成沥青混凝土路面水损性坑槽。 裂缝,路面裂缝是路面早期破损最常见的病害之一,它的危害在于从裂缝中不断进入水份使基层甚至路基软化,导致路面承载能力下降,加速路面破坏。包括横向裂缝和纵向裂缝。 龟裂,龟裂又称裂,通常是沿轮迹带出现单条或多条平行纵缝,逐渐在纵缝间出现横向或斜向连接缝,一般多发生在行车道轮迹形成龟裂。主要由路面结构强度不足引起。 车辙,车辙是在行车载荷重复作用下,路面产生累积永久性的带状凹槽。 车辙变形主要是由于沥青混合料级配设计不合理、稳定性差或由于基层及面层施工时压实度不足,使轮迹带处的面层和基层材料在行车荷载反复作用下出现固结变形和侧向剪切位移引起。 波浪,主要原因是路面组成材料设计不合理或施工质量差,导致路面材料不足以抵抗车轮水平力的作用。

相关主题
文本预览
相关文档 最新文档